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In the present paper we perform the homogenization of the 
semilinear elliptic problem

⎧⎪⎨
⎪⎩
uε ≥ 0 in Ωε,

−div A(x)Duε = F (x, uε) in Ωε,

uε = 0 on ∂Ωε.

In this problem F (x, s) is a Carathéodory function such that
0 ≤ F (x, s) ≤ h(x)/Γ(s) a.e. x ∈ Ω for every s > 0, with h in 
some Lr(Ω) and Γ a C1([0, +∞[) function such that Γ(0) = 0
and Γ′(s) > 0 for every s > 0. On the other hand the open 
sets Ωε are obtained by removing many small holes from a 
fixed open set Ω in such a way that a “strange term” μu0

appears in the limit equation in the case where the function 
F (x, s) depends only on x.
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We already treated this problem in the case of a “mild 
singularity”, namely in the case where the function F (x, s)
satisfies 0 ≤ F (x, s) ≤ h(x)( 1

s
+ 1). In this case the solution 

uε to the problem belongs to H1
0 (Ωε) and its definition is a 

“natural” and rather usual one.
In the general case where F (x, s) exhibits a “strong
singularity” at u = 0, which is the purpose of the present 
paper, the solution uε to the problem only belongs to H1

loc(Ωε)
but in general does not belong to H1

0 (Ωε) anymore, even if 
uε vanishes on ∂Ωε in some sense. Therefore we introduced a 
new notion of solution (in the spirit of the solutions defined 
by transposition) for problems with a strong singularity. 
This definition allowed us to obtain existence, stability and 
uniqueness results.
In the present paper, using this definition, we perform the 
homogenization of the above semilinear problem and we prove 
that in the homogenized problem, the “strange term” μu0 still 
appears in the left-hand side while the source term F (x, u0)
is not modified in the right-hand side.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The present paper deals with the homogenization of the following strongly singular 
semilinear problem posed in perforated domains Ωε:⎧⎪⎪⎨

⎪⎪⎩
uε ≥ 0 in Ωε,

−div A(x)Duε = F (x, uε) in Ωε,

uε = 0 on ∂Ωε.

(1.0ε)
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Here A(x) is a N × N bounded coercive matrix, F (x, s) is a Carathéodory function 
F (x, s) : Ω × [0, +∞[→ [0, +∞] which possibly has a very strong singularity at s = 0; an 
example of such a function F (x, s) is

F (x, s) = f(x)
(
a + sin(1

s )
)

exp(−1
s )

+ g(x)
(
b + sin(1

s )
)

sγ
+ l(x) a.e. x ∈ Ω, ∀s > 0, (1.1)

where γ > 0, a > 1, b > 1 and where the functions f , g and l are nonnegative; another 
example is given in (2.5) below. The precise assumptions that we actually make on the 
function F (x, s) are given in Subsection 2.2 below. On the other hand, the open sets Ωε

are obtained by removing many small closed holes from a fixed open set Ω ⊂ RN , N ≥ 2. 
The model example is the case where a bounded open set Ω is perforated by small holes 
which are closed balls of radius rε with

{
rε = C0ε

N/(N−2) if N ≥ 3,
rε = exp(−C0/ε

2) if N = 2,
(1.2)

which are periodically distributed in RN at the vertices of an N -dimensional lattice of 
cubes of size 2ε. The general framework that we will use for Ωε in the present paper is 
(a slight generalization of) the one studied by D. Cioranescu and F. Murat in [3] (see 
also [15] and [5]); it will be described in details in Subsection 2.3 below.

Note that in (1.0ε) the homogeneous Dirichlet boundary condition is imposed on the 
whole boundary of Ωε, which includes the boundary of all the holes. In the “classical” 
case where the singular semilinear term F (x, uε) is replaced by a fixed source term 
f(x) ∈ L2(Ω) which does not depend on uε, the homogenization in the framework of [3]
of problem (1.0ε) leads to a problem where “a strange term” μu0 appears in the left-hand 
side, where μ is a bounded nonnegative measure of H−1(Ω) which depends on the holes 
and which is actually the asymptotic memory of them.

In [9] we treated the case of problem (1.0ε) where the singularity at s = 0 is mild, 
namely the case where

0 ≤ F (x, s) ≤ h(x)( 1
sγ

+ 1) a.e. x ∈ Ω, ∀s > 0, for some 0 ≤ γ ≤ 1. (1.3)

In that paper we proved, for ε fixed, existence, stability and uniqueness results for the 
solution to (1.0ε), as well as the homogenization result for perforated domains of the 
type described above. In this case where (1.3) is satisfied, the solutions to problem (1.0ε)
belong to H1

0 (Ωε), the equation is intended in the usual weak sense (or more exactly in 
a slight variant of it), and the test functions that we use belong to H1

0 (Ωε).
In contrast, the purpose of the present paper is to treat the case with strong singular-

ities, namely the case where γ > 1 in (1.3), or more generally where F (x, s) can exhibit 
any type of singularity at s = 0 (see for example (1.1) above and example (2.5) below). 
In this case the solutions uε to (1.0ε) do not in general belong to H1

0 (Ωε) (see [14]), 
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but only to H1
loc(Ωε), even if uε vanishes in some sense on ∂Ωε. This induces significant 

difficulties in order to define a convenient notion of solution, on the first hand in the 
description of the space which the solution has to belong to, and on the second hand 
in the definition of the space V(Ωε) of test functions to be used in the equation. In [10]
we introduced a notion of solution by defining non standard spaces for the solution and 
for the test functions, and by writing the equation like in the definition of solutions by 
transposition introduced by J.-L. Lions and E. Magenes and by G. Stampacchia. This 
framework, which is recalled in Subsection 3.1 below, allowed us to prove in [10] exis-
tence, stability and uniqueness results. The present paper uses this framework and can 
therefore be considered as a continuation of [10]. It is also a confirmation of the fact that 
the framework introduced in [10] is robust.

In the present paper we prove that, as in the case studied in [3] where F (x, s) depends 
only on x, the “strange term” μu0 appears in the left-hand side of the homogenized 
problem while the source term F (x, u0) is not modified in the right-hand side. In other 
terms, see Theorem 5.1 below, we prove that from any sequence of solutions uε to (1.0ε)
one can extract a subsequence which converges, in a convenient sense, to a solution u0

to the homogenized problem⎧⎪⎪⎨
⎪⎪⎩
u0 ≥ 0 in Ω,

−div A(x)Du0 + μu0 = F (x, u0) in Ω,

u0 = 0 on ∂Ω.

(1.4)

Note that the definition of solution that we use for the solution u0 to (1.4) is a variant 
of the definition introduced in [10]. This definition has been introduced in Section 5 of 
[12] and is recalled in Section 4 below.

This homogenization result was not a priori obvious, since the holes “tend to invade 
the whole of Ω” (see Remark 6.6 below) and since the source term F (x, uε) has a singular 
behaviour at the boundary of the holes.

The method of the proof consists in merging the methods of [3] and of [10]. This 
however presents some difficulty, since the solution uε to (1.0ε) in general does not 
belong to H1

0 (Ωε). This leads us (see Section 6 below) to modify the test function wε

used in [3] (which is more or less the difference between 1 and the capacitary potential of 
the holes in Ω) by introducing a variant zε of it, which now belongs to the space V(Ωε)
of test functions introduced in [10].

In the best of our knowledge, there are only a very few papers concerned with homog-
enization in the context of this type of singular semilinear problems. In the paper [1] the 
authors deal with the case where, in a fixed domain Ω, the matrices Aε(x) wildly vary 
with ε, remaining uniformly bounded and coercive. For that they use the framework 
introduced in [2] which is based on the use of strong maximum principle and on the 
assumption that the function F (x, s) is nonincreasing in s. Note that these properties 
are never used in the present paper, and neither in [9], [10], [11] and [12]. On the other 
hand, in the paper [8] the authors consider the homogenization of singular semilinear 
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problems posed in a domain divided in two parts separated by an oscillating interface. 
Lastly, in the paper [13], the authors study the homogenization in infinite cylinders per-
forated with small holes with Dirichlet boundary condition. In contrast, there are many 
papers concerned with existence and uniqueness of solutions to (1.0ε) for ε fixed. Let us 
just quote, inter alia, [2], [4], [14], [16] and [17].

To conclude this Introduction, let us mention that in the present context of the
homogenization of strongly singular semilinear problems posed in perforated domains 
with Dirichlet boundary condition, we have not been able to prove a corrector result, 
while we were able to do it in [9] in the context of mild singularities. The corrector result 
thus remains for us an open problem in the case of strong singularities.

The plan of the present paper is as follows: In Section 2 we give the assumptions that 
we make on the matrix A(x), on the function F (x, s) and on the sequence of perforated 
domains Ωε. In Section 3 we recall the definition introduced in [10] of the solution to the 
strongly singular semilinear problem posed in Ωε, and the results of existence, stability 
and uniqueness obtained in [10]. Note that these solutions satisfy a priori estimates which 
are recalled in Section 7. In Section 4, we recall the definition given in [12] of the solution 
to the homogenized problem with a strange term (1.4) (this definition is a variant of the 
definition given in [10]). In Section 5, we state the main result of the present paper, 
namely the homogenization result for problem (1.0ε). This result is proved in Section 8. 
An important tool for this proof, namely the function zε which replaces here the function 
wε used in [3], is defined in Section 6.

2. Notation and assumptions

As said in the Introduction, in this paper we deal with the asymptotic behaviour, as 
ε tends to zero, of solutions to the singular semilinear elliptic problem

⎧⎪⎪⎨
⎪⎪⎩
uε ≥ 0 in Ωε,

−div A(x)Duε = F (x, uε) in Ωε,

uε = 0 on ∂Ωε,

(2.0ε)

where F (x, s) is possibly singular at s = 0, where uε satisfies the homogeneous Dirichlet 
boundary condition on the whole of the boundary of Ωε, and where Ωε is a perforated 
domain obtained by removing many small holes from a given open bounded set Ω in RN , 
with a repartition of those many small holes producing a “strange term” when ε tends 
to 0.

After the brief Subsection 2.1 dealing with some notation, we give in Subsection 2.2
the assumptions on the matrix A(x) and on the function F (x, s); then in Subsection 2.3
we describe the geometry of the perforated domains and (a slight generalization of) 
the framework introduced in [3] for treating this problem when the right-hand side is 
F (x, u) = f(x) in L2(Ω).
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2.1. Notation

In this paper Ω denotes a bounded open subset of RN .
We denote by D(Ω) the space of the C∞(Ω) functions whose support is compact and 

included in Ω, and by D′(Ω) the space of distributions on Ω.
We denote by M+

b (Ω) the space of nonnegative bounded Radon measures on Ω.
Since Ω is bounded, ‖Dw‖L2(Ω)N is a norm which is equivalent to ‖w‖H1(Ω) on H1

0 (Ω). 
We set

‖w‖H1
0 (Ω) = ‖Dw‖(L2(Ω))N ∀w ∈ H1

0 (Ω).

For every s ∈ R and every k > 0 we define as usual

s+ = max{s, 0}, s− = max{0,−s},

Tk(s) = max{−k,min{s, k}}, Gk(s) = s− Tk(s).

For any measurable function l : x ∈ Ω → l(x) ∈ [0, +∞] we denote

{l = 0} = {x ∈ Ω : l(x) = 0}, {l > 0} = {x ∈ Ω : l(x) > 0}.

Finally, in the present paper, we denote by ϕ functions which belong to
H1

0 (Ω) ∩ L∞(Ω), while we denote by φ functions which belong to D(Ω).

2.2. The matrix A(x) and the function F (x, s)

In this Subsection, we give the precise assumptions that we make on the data of 
problem (2.0ε).

We assume that

Ω is an open bounded set of RN , N ≥ 2, (2.1)

(no regularity is assumed on the boundary ∂Ω of Ω), that the matrix A is bounded and 
coercive, i.e. satisfies

A(x) ∈ (L∞(Ω))N×N , ∃α > 0, A(x) ≥ αI a.e. x ∈ Ω, (2.2)

and that the function F satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F : (x, s) ∈ Ω × [0,+∞[→ F (x, s) ∈ [0,+∞] is a Carathéodory function,
i.e. F satisfies
i) ∀s ∈ [0,+∞[, x ∈ Ω → F (x, s) ∈ [0,+∞] is measurable,
ii) for a.e. x ∈ Ω, s ∈ [0,+∞[→ F (x, s) ∈ [0,+∞] is continuous,

(2.3)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) ∃h, h(x) ≥ 0 a.e. x ∈ Ω, h ∈ Lr(Ω),

with r = 2N
N + 2 if N ≥ 3, r > 1 if N = 2,

ii) ∃Γ : s ∈ [0,+∞[→ Γ(s) ∈ [0,+∞[, Γ ∈ C1([0,+∞[),
such that Γ(0) = 0 and Γ′(s) > 0 ∀s > 0,

iii) 0 ≤ F (x, s) ≤ h(x)
Γ(s) a.e. x ∈ Ω,∀s > 0.

(2.4)

Remark 2.1.

• i) Note that in the whole of the present paper we assume that

N ≥ 2,

(see Remark 2.2 below).
• ii) Note that the matrix A(x) and the function F (x, s) are defined for x ∈ Ω and 

not only for x ∈ Ωε.
• iii) The function F (x, s) can have a very wild behaviour in s when s tends to zero. 

A possible example is given by (1.1) above, or more generally by

F (x, s) = f(x) (a + sin(S(s)))
exp(−S(s)) + g(x)

(
b + sin(1

s )
)

sγ
+ l(x) a.e. x ∈ Ω, ∀s > 0, (2.5)

where γ > 0, a > 1, b > 1, where the function S satisfies

S ∈ C1(]0,+∞[), S′(s) < 0 ∀s > 0, S(s) → +∞ as s → 0, (2.6)

and where the functions f, g and l are nonnegative and belong to Lr(Ω) with r
defined by (2.4) above. About example (2.5), please see Remark 2.1 viii) of [10].

• iv) The function F = F (x, s) is a nonnegative Carathéodory function with values in 
[0, +∞] and not only in [0, +∞[. But, in view of conditions (2.4 ii) and (2.4 iii), for 
almost every x ∈ Ω, the function F (x, s) can take the value +∞ only when s = 0
(or, in other terms, F (x, s) is finite for almost every x ∈ Ω when s > 0).

• v) Note that the growth condition (2.4 iii) is stated for every s > 0, while in (2.3)
F is supposed to be a Carathéodory function defined for s in [0, +∞[ and not only 

in ]0, +∞[. Indeed an indeterminacy 
0
0 appears in 

h(x)
Γ(s) when h(x) = 0 and s = 0, 

while the growth and Carathéodory assumptions (2.4) and (2.3) imply that

F (x, s) = 0 ∀s ≥ 0 a.e. on {x ∈ Ω : h(x) = 0}.

On the other hand, when h is assumed to satisfy h(x) > 0 for almost every x ∈ Ω, 
one can write (2.4 iii) for every s ≥ 0.
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• vi) The function h which appears in hypothesis (2.4 i) is an element of H−1(Ω). 
Indeed, when N ≥ 3, the exponent r = 2N

N+2 is nothing but the Hölder’s conjugate 
(2∗)′ of the Sobolev’s exponent 2∗, i.e.

when N ≥ 3, 1
r

= 1 − 1
2∗ , where 1

2∗ = 1
2 − 1

N
. (2.7)

Making an abuse of notation, we will set

2∗ = any p with 1 < p < +∞ when N = 2. (2.8)

With this abuse of notation, h belongs to Lr(Ω) = L(2∗)′(Ω) ⊂ H−1(Ω) for all N ≥ 2
since Ω is bounded. This result is indeed a consequence of Sobolev’s and Trudinger 
Moser’s inequalities, which (with the above abuse of notation) assert that

‖v‖L2∗ (Ω) ≤ CS‖Dv‖(L2(Ω))N ∀v ∈ H1
0 (Ω) when N ≥ 2, (2.9)

where CS = CS(N) when N ≥ 3 and CS = CS(p, Ω) when N = 2. In the latest case, 
for p given with 1 < p < +∞, the constant CS = CS(p, Ω) is bounded independently 
of Ω when Ω ⊂ Q, for Q a bounded open set of R2.

• vii) In Section 5 of [9] we performed the homogenization of problem (2.0ε) in the case 
where F (x, s) has a mild singularity at s = 0, namely in the case where in (2.4 iii) 
the function F (x, s) satisfies

0 ≤ F (x, s) ≤ h(x)( 1
sγ

+ 1) with 0 < γ ≤ 1. (2.10)

This is a particular case of the general case treated in the present paper, but that 
case is easier to treat since the solution uε to (2.0ε) belongs to H1

0 (Ωε) when (2.10)
holds true. This property allowed us to prove in that case a corrector result when the 
matrix A(x) is symmetric and when u0 further belongs to L∞(Ω), see Theorem 5.5 
of [9].

Many other remarks can be made about the function F (x, s), and we refer the reader 
to Section 2 of [10] for them. �
2.3. The perforated domains Ωε

In order to obtain the domain Ωε, we perforate the fixed domain Ω (see (2.1)) in a way 
that we describe now. According to (a slight generalization of) the setting presented in 
[3], we consider here, for every ε which takes its values in a sequence of positive numbers 
which tends to zero, a finite number n(ε) of closed sets T ε

i of RN , 1 ≤ i ≤ n(ε), which 
are the holes. The domain Ωε is defined by removing these holes T ε

i from Ω, that is by 
setting
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Ωε = Ω −
n(ε)⋃
i=1

T ε
i . (2.11)

Here, as well as everywhere in the present paper, for every function yε in L2(Ω), we 
define yε̃ as the extension by zero of yε to Ω, namely by

yε̃(x) =

⎧⎪⎪⎨
⎪⎪⎩
yε(x) in Ωε,

0 in
n(ε)⋃
i=1

T ε
i ;

(2.12)

then yε̃ ∈ L2(Ω) and ‖yε̃‖L2(Ω) = ‖yε‖L2(Ωε); moreover

if yε ∈ H1
0 (Ωε), then yε̃ ∈ H1

0 (Ω) with Dyε̃ = Dyε̃ and ‖yε̃‖H1
0 (Ω) = ‖yε‖H1

0 (Ωε).

(2.13)

We suppose that the sequence of domains Ωε is such that there exist a se-
quence of functions wε, a distribution μ ∈ D′(Ω) and two sequences of distributions
με ∈ D′(Ω) and λε ∈ D′(Ω) such that1

wε ∈ H1(Ω) ∩ L∞(Ω), (2.14)

0 ≤ wε ≤ 1 a.e. x ∈ Ω, (2.15)

wε = wε̃ in Ω and ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), wεϕ ∈ H1

0 (Ωε), (2.16)

wε ⇀ 1 in H1(Ω) weakly, in L∞(Ω) weakly-star and a.e. in Ω as ε → 0, (2.17)

μ ∈ H−1(Ω), (2.18)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−div tA(x)Dwε = με − λε in D′(Ω),
με ∈ H−1(Ω), λε ∈ H−1(Ω),
με ≥ 0 in D′(Ω),
με → μ in H−1(Ω) strongly,
〈λε, yε̃〉H−1(Ω),H1

0 (Ω) = 0 ∀yε ∈ H1
0 (Ωε).

(2.19)

The model example for Ωε

The prototype of the examples where assumptions (2.14), (2.15), (2.16), (2.17), (2.18)
and (2.19) are satisfied is the case where the matrix A(x) is the identity (and where 
therefore the operator −div A(x)D is the Laplace’s operator −Δ), where Ω ⊂ RN , N ≥ 2, 
and where the holes T ε

i are balls of radius rε with rε given by

1 Erratum corrige: please note that at the beginning of (5.4) of [9] we should have added the assertion 
“wε = wε̃ in Ω and” (as it is done in (2.16) in the present paper).
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{
rε = C0ε

N/(N−2) if N ≥ 3,
ε2 log rε → −C0 if N = 2,

for some C0 > 0 (taking rε = exp(−C0/ε
2) is the model case for N = 2) which are 

periodically distributed at the vertices of an N -dimensional lattice of cubes of size 2ε; 
in this case the measure μ is given by

⎧⎪⎨
⎪⎩
μ = SN−1(N − 2)

2N CN−2
0 if N ≥ 3,

μ = 2π
4

1
C0

if N = 2,

see e.g. [3] and [15] for more details, and for other examples, in particular for the case 
where the holes have a different form and/or are distributed on a manifold. �
Remark 2.2. In dimension N = 1, there is no sequence wε which satisfies (2.16) and 
(2.17) whenever for every ε there exists at least one hole T ε

iε
with T ε

iε
∩ Ω �= Ø, see 

Remark 5.1 of [9] for more details. This is the reason why we assume in the present 
paper that N ≥ 2. �
Some properties of wε and μ

One deduces from the first assertion of (2.16) that

wε = 0 in
n(ε)⋃
i=1

T ε
i ; (2.20)

moreover, the second assertion of (2.16) means that for every ε and every ϕ ∈ H1
0 (Ω) ∩

L∞(Ω), there exists a sequence φn (which depends on ε and on ϕ) such that

φn ∈ D(Ωε), φñ → wεϕ̃ in H1(Ω). (2.21)

On the other hand, taking any φε ∈ D(Ωε) as test function in the first statement of 
(2.19) implies that

−div tA(x)Dwε = με in D′(Ωε), (2.22)

which means that the distribution λε “only acts on the holes T ε
i ”, i = 1, · · · , n(ε); this 

fact is also reflected by the last assertion of (2.19).
Taking vε = wεφ, with φ ∈ D(Ω), φ ≥ 0, as test function in the first assertion of 

(2.19) we have, thanks to the first assertion of (2.16) and to the last assertion of (2.19),∫
φ tA(x)DwεDwε +

∫
wε tA(x)DwεDφ = 〈με, wεφ〉H−1(Ω),H1

0 (Ω),
Ω Ω
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from which using (2.17) and the fourth statement of (2.19) we deduce that
∫
Ω

φA(x)DwεDwε → 〈μ, φ〉H−1(Ω),H1
0 (Ω) ∀φ ∈ D(Ω), φ ≥ 0, (2.23)

and therefore using the coercivity (2.2) that

μ ≥ 0.

The distribution μ ∈ H−1(Ω) is therefore also a nonnegative measure. Moreover, using 
(2.23), (2.2) and (2.17), one deduces that

⎧⎪⎨
⎪⎩
∀φ ∈ D(Ω), φ ≥ 0,∫
Ω

φ dμ = 〈μ, φ〉H−1(Ω),H1
0 (Ω) = lim

ε

∫
Ω

φA(x)DwεDwε ≤ C‖φ‖L∞(Ω),

for a constant C which does not depend on φ. Therefore the measure μ is a nonnegative 

finite Radon measure which satisfies 
∫
Ω

dμ ≤ C < +∞, or in other terms

μ ∈ M+
b (Ω). (2.24)

We will therefore use in the present paper the following (well) known result2 (see e.g. 
[6] Section 1 and [7] Subsection 2.2 for more details):

if y ∈ H1
0 (Ω) and if ν ∈ M+

b (Ω) ∩ H−1(Ω), then y (or more exactly its quasi-
continuous representative for the H1

0 (Ω) capacity) satisfies

⎧⎪⎨
⎪⎩
∀ν ∈ M+

b (Ω) ∩H−1(Ω), ∀y ∈ H1
0 (Ω),

one has y ∈ L1(Ω; dν) with 〈ν, y〉H−1(Ω),H1
0 (Ω) =

∫
Ω

y dν ; (2.25)

moreover {
∀ν ∈ M+

b (Ω) ∩H−1(Ω), ∀y ∈ H1
loc(Ω) ∩ L∞(Ω),

one has y ∈ L∞(Ω; dν) with ‖y‖L∞(Ω;dν) = ‖y‖L∞(Ω);
(2.26)

therefore when y ∈ H1
0 (Ω) ∩ L∞(Ω), then y belongs to L1(Ω; dν) ∩ L∞(Ω; dν) and 

thus to Lp(Ω; dν) for every p, 1 ≤ p ≤ +∞.

2 The reader who would not enter in this theory could continue reading the present paper assuming in 
(2.18) that μ is a function of Lr(Ω) (with r = 2N

N+2 if N ≥ 3 and r > 1 if N = 2) and not only an element 
of H−1(Ω).
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The limit problem for a source term in L2(Ω)
When one assumes that the holes T ε

i , i = 1, · · · , n(ε), are such that the assumptions 
(2.14), (2.15), (2.16), (2.17), (2.18) and (2.19) hold true, then (see [3], or [15], or [5] for 
a more general framework), for every f ∈ L2(Ω), the (unique) solution yε to the linear 
problem

{
yε ∈ H1

0 (Ωε),
−div A(x)Dyε = f in D′(Ωε),

(2.27)

satisfies

yε̃ ⇀ y0 in H1
0 (Ω),

where y0 is the (unique) solution to

{
y0 ∈ H1

0 (Ω) ∩ L2(Ω; dμ),
−div A(x)Dy0 + μy0 = f in D′(Ω),

or equivalently to

⎧⎪⎨
⎪⎩
y0 ∈ H1

0 (Ω) ∩ L2(Ω; dμ),∫
Ω

A(x)Dy0Dz +
∫
Ω

y0z dμ =
∫
Ω

fz ∀z ∈ H1
0 (Ω) ∩ L2(Ω; dμ). (2.28)

Note that the “strange term” μu0 which appears in the limit equation (2.28) is the 
asymptotic memory of the fact that yε̃ was zero on the holes T ε

i .

3. Definition of a solution to the singular semilinear problem in Ωε

In Subsection 3.1 we first recall the definition of a solution to the singular semilinear 
problem (2.0ε) which will be used in the present paper; this definition has been introduced 
in Section 3 of [10]. Then, in Subsection 3.2, we recall the main properties (existence, 
uniqueness and stability) of such a solution; we will recall in Section 7 below a priori 
estimates which are satisfied by every such a solution. All these properties have been 
stated and proved in Sections 4, 5, 6, and 7 of [10].

3.1. The space V(Ωε) of test functions and the definition of a solution to the problem 
in Ωε

In order to recall the notion of solution to problem (2.0ε) that we will use in the present 
paper, we recall the definition of the space V(Ωε) of test functions and a notation (see 
Section 3 of [10]).
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Definition 3.1. (Definition 3.1 of [10]) The space V(Ωε) is the space of the functions vε
which satisfy

vε ∈ H1
0 (Ωε) ∩ L∞(Ωε), (3.1)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∃Iε finite, ∃ϕ̂ε

i , ∃ĝεi , i ∈ Iε, ∃f̂ε, with
ϕ̂ε
i ∈ H1

0 (Ωε) ∩ L∞(Ωε), ĝεi ∈ (L2(Ωε))N , f̂ε ∈ L1(Ωε),
such that −div tA(x)Dvε =

∑
i∈Iε

ϕ̂ε
i (−div ĝεi ) + f̂ε in D′(Ωε). � (3.2)

In the definition of V(Ωε) we use the notation ϕ̂i
ε, ĝiε and f̂ε to help the reader to 

identify the functions which enter in the definition of the functions of V(Ωε).

Observe that V(Ωε) is a vector space.

Definition 3.2. (Definition 3.2 of [10]) When v ∈ V(Ωε) with

−div tA(x)Dvε =
∑
i∈Iε

ϕ̂ε
i (−div ĝεi ) + f̂ε in D′(Ωε),

where Iε, ϕ̂ε
i , ĝεi and f̂ε are as in (3.2), and when yε satisfies

yε ∈ H1
loc(Ωε) ∩ L∞(Ωε) with ϕεyε ∈ H1

0 (Ωε) ∀ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε),

we use the following notation:

〈〈−div tA(x)Dvε, yε〉〉Ωε =
∑
i∈Iε

∫
Ωε

ĝεiD(ϕ̂ε
iy

ε) +
∫
Ωε

f̂εyε. � (3.3)

In notation (3.3), the right-hand side is correctly defined since ϕ̂ε
iy

ε ∈ H1
0 (Ωε) and 

since yε ∈ L∞(Ωε). In contrast the left-hand side 〈〈−div tADvε, yε〉〉Ωε is just a notation.

Remark 3.3. In this Remark we recall some observations which are detailed in Re-
marks 3.4 and 3.5 of [10].

• i) If yε ∈ H1
0 (Ωε) ∩ L∞(Ωε), then ϕεyε ∈ H1

0 (Ωε) for every ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε), 

so that for every vε ∈ V(Ωε), 〈〈−div tADvε, yε〉〉Ωε is defined. In this case one has

{
∀vε ∈ V(Ωε), ∀yε ∈ H1

0 (Ωε) ∩ L∞(Ωε),
〈〈−div tA(x)Dvε, yε〉〉Ωε = 〈−div tA(x)Dvε, yε〉H−1(Ωε),H1

0 (Ωε).
(3.4)
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• ii) If ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε), then (ϕε)2 ∈ V(Ωε), with

−div tA(x)D(ϕε)2 = ϕ̂ε(−div ĝε) + f̂ε inD′(Ωε), (3.5)

with ϕ̂ε = 2ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε), ĝε = tA(x)Dϕε ∈ (L2(Ωε))N and

f̂ε = −2 tA(x)DϕεDϕε ∈ L1(Ωε).
More in general, if ϕε

1 and ϕε
2 belong to H1

0 (Ωε) ∩ L∞(Ωε), then ϕε
1ϕ

ε
2 belongs to 

V(Ωε).
• iii) If ϕε ∈ H1

0 (Ωε) ∩ L∞(Ωε) with supp ϕε ⊂ Kε, Kε compact, Kε ⊂ Ωε, then 
ϕε ∈ V(Ωε), since

−div tA(x)Dϕε = φ
ε(−div tA(x)Dϕε) in D′(Ωε), (3.6)

for every φ
ε ∈ D(Ωε), with φ

ε = 1 on Kε.
In particular every φε ∈ D(Ωε) belongs to V(Ωε). �

We now recall the definition of a solution to problem (2.0ε) that we will use in the 
present paper.

Definition 3.4. (Definition 3.6 of [10]) Assume that the matrix A and the function F
satisfy (2.2), (2.3) and (2.4). We say that uε is a solution to problem (2.0ε) if uε satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i)uε ∈ L2(Ωε) ∩H1
loc(Ωε),

ii)uε(x) ≥ 0 a.e. x ∈ Ωε,

iii)Gk(uε) ∈ H1
0 (Ωε) ∀k > 0,

iv)ϕεTk(uε) ∈ H1
0 (Ωε) ∀k > 0, ∀ϕε ∈ H1

0 (Ωε) ∩ L∞(Ωε),

(3.7ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀vε ∈ V(Ωε), vε ≥ 0,
with − div tA(x)Dvε =

∑
i∈Iε

ϕ̂ε
i (−div ĝεi ) + f̂ε in D′(Ωε),

where ϕ̂ε
i ∈ H1

0 (Ωε) ∩ L∞(Ωε), ĝεi ∈ (L2(Ωε))N , f̂ε ∈ L1(Ωε),
one has

i)
∫
Ωε

F (x, uε)vε < +∞,

ii)
∫
Ωε

tA(x)DvεDGk(uε) +
∑
i∈Iε

∫
Ωε

ĝεiD(ϕ̂ε
iTk(uε)) +

∫
Ωε

f̂εTk(uε) =

= 〈−div tA(x)Dvε, Gk(uε)〉H−1(Ωε),H1
0 (Ωε) + 〈〈−div tA(x)Dvε, Tk(uε)〉〉Ωε =

=
∫
Ωε

F (x, uε)vε ∀k > 0. �

(3.8ε)
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Remark 3.5. When uε satisfies (3.7ε), one has

ϕεDuε ∈ (L2(Ωε))N ∀ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε); (3.9)

indeed one writes in (D′(Ωε))N

ϕεDuε = ϕεDTk(uε) + ϕεDGk(uε) = D(ϕεTk(uε)) − Tk(uε)Dϕε + ϕεDGk(uε). �
Remark 3.6. In Definition 3.4, the requirement (3.7ε) is the “space” (which is not a
vectorial space) to which the solution should belong, while the requirement (3.8ε ii) 
expresses the partial differential equation of (2.0ε) in terms of (non standard) test
functions, in the spirit of the solutions defined by transposition introduced by
J.-L. Lions and E. Magenes and by G. Stampacchia.

Indeed, very formally, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

“〈−div tA(x)Dvε, Gk(uε)〉H−1(Ωε),H1
0 (Ωε) =

∫
Ωε

(−div tA(x)Dvε)Gk(uε) =

=
∫
Ωε

vε (−divA(x)DGk(uε))”,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

“〈〈−div tA(x)Dvε, Tk(uε)〉〉Ωε =
∫
Ωε

(−div tA(x)Dvε)Tk(uε) =

=
∫
Ωε

vε (−divA(x)DTk(uε)”,

so that (3.8ε ii) formally means that

“
∫
Ωε

vε (−divA(x)Duε) =
∫
Ωε

F (x, uε)vε ” ∀vε ∈ V(Ωε), vε ≥ 0.

Since every vε can be written as vε = (vε)+ − (vε)− with (vε)+ ≥ 0, (vε)− ≥ 0, one has 
formally (this is formal since we do not know whether (vε)+ and (vε)− belong to V(Ωε)
when vε belongs to V(Ωε))

“ − div A(x)Duε = F (x, uε)”

which is the second statement of (2.0ε).
On the other hand, the third assertion of (3.7ε) formally implies (this is formal since 

in the present paper the boundary ∂Ωε of Ωε is not assumed to be smooth) that for 
every k > 0, one has “Gk(uε) = 0 on ∂Ωε ”, i.e. “0 ≤ uε ≤ k on ∂Ωε ” in view of the 
second assertion of (3.7ε), which formally implies that “uε = 0 on ∂Ωε ”, i.e. the third 
statement of (2.0ε).

For further remarks about Definition 3.4, see Remark 3.7 and Proposition 3.8 
of [10]. �
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3.2. Statements of existence, stability and uniqueness results for the problem in Ωε

In this Subsection we recall results of existence, stability and uniqueness of the solution 
to problem (2.0ε) in the sense of Definition 3.4. These results have been stated and proved 
in [10].

Theorem 3.7. (Existence) (Theorem 4.1 of [10]) Assume that the matrix A and the func-
tion F satisfy (2.2), (2.3) and (2.4). Then there exists at least one solution uε to problem 
(2.0ε) in the sense of Definition 3.4. �
Theorem 3.8. (Stability) (Theorem 4.2 of [10]) Assume that the matrix A satisfies as-
sumption (2.2). Let Fn be a sequence of functions and F∞ be a function which all satisfy 
assumptions (2.3) and (2.4) for the same h and the same Γ. Assume moreover that

a.e. x ∈ Ω, Fn(x, sn) →F∞(x, s∞) if sn → s∞, sn ≥ 0, s∞ ≥ 0. (3.10)

Let uε
n be any solution to problem (2.0ε)n in the sense of Definition 3.4, where (2.0ε)n

is the problem (2.0ε) with F (x, s) replaced by Fn(x, s).
Then there exists a subsequence, still labelled by n, and a function u∞, which is a 

solution to problem (2.0ε)∞ in the sense of Definition 3.4, such that (for ε fixed)

⎧⎪⎪⎨
⎪⎪⎩
uε
n → uε

∞ in L2(Ωε) strongly, in H1
loc(Ωε) strongly and a.e. in Ωε,

Gk(uε
n) → Gk(uε

∞) in H1
0 (Ωε) strongly ∀k > 0,

ϕεTk(uε
n) → ϕεTk(uε

∞) in H1
0 (Ωε) strongly ∀k > 0, ∀ϕε ∈ H1

0 (Ωε) ∩ L∞(Ωε). �
(3.11)

Finally, the following uniqueness result holds true when, further to (2.3) and (2.4), 
the function F (x, s) is assumed to be nonincreasing with respect to s, i.e. to satisfy

F (x, s) ≤ F (x, t) a.e. x ∈ Ω, ∀s,∀t, 0 ≤ t ≤ s. (3.12)

Theorem 3.9. (Uniqueness) (Theorem 4.3 of [10]) Assume that the matrix A and the func-
tion F satisfy (2.2), (2.3) and (2.4). Assume moreover that the function F (x, s) satisfies 
assumption (3.12). Then the solution to problem (2.0ε) in the sense of Definition 3.4 is 
unique. �

When assumptions (2.2), (2.3), (2.4) as well as (3.12) hold true, Theorems 3.7, 3.8
and 3.9 together assert that problem (2.0ε) is well posed in the sense of Hadamard in 
the framework of Definition 3.4.

In Section 7 below, we will recall a priori estimates which are satisfied by every solution 
to (2.0ε) in the sense of Definition 3.4.
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4. Definition of a solution to the homogenized singular semilinear problem in Ω

In this Section we recall the definition of the solution to the problem
⎧⎪⎪⎨
⎪⎪⎩
u ≥ 0, in Ω,

−div A(x)Du + μu = F (x, u) in Ω,

u = 0 on ∂Ω,

(4.1)

when μ satisfies

μ ∈ M+
b (Ω) ∩H−1(Ω). (4.2)

This Definition, which has been introduced in Section 5 of [12], is an adaptation of 
Definition 3.4 above.

Definition 4.1. (Definition 5.1 of [12]) Assume that the matrix A, the function F and 
the Radon measure μ satisfy (2.2), (2.3), (2.4) and (4.2). We say that u is a solution to 
problem (4.1) if u satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i)u ∈ L2(Ω) ∩H1
loc(Ω),

ii)u(x) ≥ 0 a.e. x ∈ Ω,

iii)Gk(u) ∈ H1
0 (Ω) ∀k > 0,

iv)ϕTk(u) ∈ H1
0 (Ω) ∀k > 0, ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω),

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀v ∈ V(Ω), v ≥ 0,
with − div tA(x)Dv =

∑
i∈I

ϕ̂i(−div ĝi) + f̂ in D′(Ω),

where ϕ̂i ∈ H1
0 (Ω) ∩ L∞(Ω), ĝi ∈ (L2(Ω))N , f̂i ∈ L1(Ω),

one has

i)
∫
Ω

F (x, u)v < +∞,

ii)
∫
Ω

tA(x)DvDGk(u) +
∑
i∈I

∫
Ω

ĝiD(ϕ̂iTk(u)) +
∫
Ω

f̂Tk(u) +
∫
Ω

uvdμ =

= 〈−div tA(x)Dv,Gk(u)〉H−1(Ω),H1
0 (Ω) + 〈〈−div tA(x)Dv, Tk(u)〉〉Ω +

∫
Ω

uv dμ =

=
∫
Ω

F (x, u) v ∀k > 0. �

(4.4)

Note that the term 
∫

uvdμ has a meaning, as shown in the following Remark.

Ω
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Remark 4.2. In (4.4 ii) the term 
∫
Ω

uvdμ has a meaning since (4.3) and

v ∈ H1
0 (Ω) ∩ L∞(Ω) actually imply that

uv ∈ L1(Ω; dμ). (4.5)

Indeed one can write

uv = Tk(u)v + Gk(u)v,

where Tk(u)v and Gk(u), which belong to H1
0 (Ω) by (4.3 iv) and (4.3 iii), belong to 

L1(Ω; dμ) in view of (2.25), while v, which belongs to H1
0 (Ω) ∩ L∞(Ω), belongs to 

L∞(Ω; dμ) in view of (2.26).
Actually one can prove (see Section 5 of [12]) that every function u which is a solution 

to problem (4.1) in the sense of Definition 4.1 satisfies the regularity result

u ∈ L2(Ω; dμ). (4.6)

Since v ∈ H1
0 (Ω) ∩ L∞(Ω) also belongs to L2(Ω; dμ) in view of (2.25) and (2.26), this 

again proves (4.5).
Note however that this second proof of (4.5) uses the fact that u satisfies (4.3) and 

(4.4), while the first proof only uses the fact that u satisfies (4.3). �
Remark 4.3. As mentioned in Section 5 of [12], one can prove, for solutions to problem 
(4.1) in the sense of Definition 4.1, results of existence, stability and uniqueness which 
are similar to the results recalled in Subsection 3.2 above for the solutions to problem 
(2.0ε) in the sense of Definition 3.4. Every solution to problem (4.1) in the sense of 
Definition 4.1 moreover satisfies a priori estimates which are similar to the ones recalled 
in Section 7 above, see Section 5 of [12] for more details. �
5. Statement of the homogenization result for the singular semilinear problem in Ωε

The existence Theorem 3.7 above asserts that when the matrix A and the function 
F satisfy assumptions (2.2), (2.3) and (2.4), then for every given ε > 0, the singular 
semilinear problem (2.0ε) posed in Ωε has at least a solution uε in the sense of Defini-
tion 3.4; moreover (see Theorem 3.9 above) this solution is unique if the function F (x, s)
also satisfies assumption (3.12).

The following result, which is the main result of the present paper, asserts that the 
homogenization process for the singular semilinear problem (2.0ε) produces a result 
which is very similar to the homogenization result (2.28) above which holds true for the 
“classical” problem (2.27) when the source term f belongs to L2(Ω).

Theorem 5.1. (Homogenization) Assume that the matrix A and the function F satisfy 
(2.2), (2.3) and (2.4). Assume also that the sequence of perforated sets Ωε is such that 



D. Giachetti et al. / Journal of Functional Analysis 274 (2018) 1747–1789 1765
(2.14), (2.15), (2.16), (2.17), (2.18) and (2.19) are satisfied. For every ε > 0, let uε be 
any solution to problem (2.0ε) in the sense of Definition 3.4, or, in other terms, any 
function which satisfies (3.7ε) and (3.8ε), i.e.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i)uε ∈ L2(Ωε) ∩H1
loc(Ωε),

ii)uε(x) ≥ 0 a.e. x ∈ Ωε,

iii)Gk(uε) ∈ H1
0 (Ωε) ∀k > 0,

iv)ϕεTk(uε) ∈ H1
0 (Ωε) ∀k > 0, ∀ϕε ∈ H1

0 (Ωε) ∩ L∞(Ωε),

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀vε ∈ V(Ωε), vε ≥ 0,
with − div tA(x)Dvε =

∑
i∈Iε

ϕ̂ε
i (−div ĝεi ) + f̂ε in D′(Ωε),

where ϕ̂ε
i ∈ H1

0 (Ωε) ∩ L∞(Ωε), ĝεi ∈ L2(Ωε)N , f̂ε ∈ L1(Ωε),
one has

i)
∫
Ωε

F (x, uε)vε < +∞,

ii)
∫
Ωε

tA(x)DvεDGk(uε) +
∑
i∈Iε

∫
Ωε

ĝεiD(ϕ̂ε
iTk(uε)) +

∫
Ω

f̂εTk(uε) =

= 〈−div tA(x)Dvε, Gk(uε)〉H−1(Ωε),H1
0 (Ωε) + 〈〈−div tA(x)Dvε, Tk(uε)〉〉Ωε =

=
∫
Ωε

F (x, uε)vε ∀k > 0.

(5.2)

Then there exists a subsequence, still denoted by ε, such that for uε̃, the extension by 
zero of uε to Ω defined by (2.12), one has

uε̃ ⇀ u0 in L2(Ω) weakly and a.e. in Ω, (5.3)

Gk(uε̃) ⇀ Gk(u0) in H1
0 (Ω) weakly and a.e. in Ω ∀k > 0, (5.4){

ϕwεTk(uε̃) ⇀ ϕTk(u0) in H1
0 (Ω) weakly and a.e. in Ω

∀k > 0, ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω),

(5.5)

where u0 satisfies (4.3) and (4.4), or, in other terms, where the limit u0 is a solution to 
problem (4.1) in the sense of Definition 4.1, i.e.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i)u0 ∈ L2(Ω) ∩H1
loc(Ω),

ii)u0(x) ≥ 0 a.e. x ∈ Ω,

iii)Gk(u0) ∈ H1
0 (Ω) ∀k > 0,

iv)ϕT (u0) ∈ H1(Ω) ∀k > 0, ∀ϕ ∈ H1(Ω) ∩ L∞(Ω),

(5.6)
k 0 0
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀v ∈ V(Ω), v ≥ 0,
with − div tA(x)Dv =

∑
i∈I

ϕ̂i(−div ĝi) + f̂ in D′(Ω),

where ϕ̂i ∈ H1
0 (Ω) ∩ L∞(Ω), ĝi ∈ L2(Ω)N , f̂ ∈ L1(Ω),

one has

i)
∫
Ω

F (x, u0)v < +∞,

ii)
∫
Ω

tA(x)DvDGk(u0) +
∑
i∈I

∫
Ω

ĝiD(ϕ̂iTk(u0)) +
∫
Ω

f̂ Tk(u0) +
∫
Ω

uv dμ =

= 〈−div tA(x)Dv,Gk(u0)〉H−1(Ω),H1
0 (Ω) + 〈〈−div tA(x)Dv, Tk(u0)〉〉Ω +

∫
Ω

uv dμ =

=
∫
Ω

F (x, u0) ∀k > 0. �

(5.7)

Remark 5.2. Observe that in the case where assumption (3.12) is made on the function 
F (x, s), i.e. when F (x, s) is assumed to be nonincreasing with respect to s, the solutions 
uε to problem (2.0ε) in the sense of Definition 3.4 and u0 to problem (4.1) in the sense 
of Definition 4.1 are unique. In this case there is no need to extract a subsequence 
in Theorem 5.1 and the convergences (5.3), (5.4) and (5.5) hold true for the whole 
sequence ε. �
6. Definition of the function zε, and the strong convergence of χΩε

6.1. Definition of the function zε, a variant of the test function wε

The idea of the proof of the homogenization Theorem 5.1 of the present paper is to 
combine the ideas of the proof of the existence Theorem 4.1 of [10] with the ideas of the 
proof of the homogenization Theorem 1.2 of [3]. In the latest paper a key tool is the use 
of the test function wεφ, where φ ∈ D(Ω) and where wε is defined is in (2.14), (2.15), 
(2.16), (2.17), (2.18) and (2.19). Unfortunately, this function does not (seem to) belong 
to V(Ωε): indeed, the function wεφ belongs to H1

0 (Ωε) ∩L∞(Ωε), but the computation in 
D′(Ωε) of −div tA(x)D(wεφ) produces four terms, where three of them are in the form 
required for wεφ to belong to V(Ωε), but where the fourth term

φ(−div tADwε) = φ(με − λε) = φμε in H−1(Ωε),

is in the form φ(−div Gε) for some Gε ∈ (L2(Ωε))N (see (6.10) below), but not in the 
required form ϕ̂ε

i (−div Ĝε) with ϕ̂ε
i ∈ H1

0 (Ωε) ∩ L∞(Ωε), since φ belongs to H1
0 (Ω) ∩

L∞(Ω) but not to H1
0 (Ωε) ∩ L∞(Ωε). For this reason we introduce in this Section the 

function zε, which is a variant of wε but which is such that zεv belongs to V(Ωε) for 
every v ∈ V(Ω). Note that the function zε does not (seem to) belong to the smaller (and 
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easier to understand) space of test functions W(Ωε) introduced in Subsection 3.3 of [12], 
which is made of finite sums of products ϕεψε with ϕε and ψε in H1

0 (Ωε) ∩L∞(Ωε). This 
is actually the reason for which we decided to choose in [10] the framework of the space 
V(Ω) instead of the framework of the space W(Ω).

Proposition 6.1. Assume that (2.14), (2.15), (2.16), (2.17), (2.18) and (2.19) hold true. 
Then (for a subsequence, as far as the almost everywhere convergence in (6.5) is con-
cerned), there exists a function zε such that

zε ∈ H1(Ω) ∩ L∞(Ω), (6.1)

zε − wε ∈ H1
0 (Ωε), (6.2)

0 ≤ zε(x) ≤ wε(x) ≤ 1 a.e. x ∈ Ω, (6.3)

zεv ∈ V(Ωε) ∀v ∈ V(Ω), (6.4)

zε ⇀ 1 in H1(Ω) weakly, in L∞(Ω) weakly-star and a.e. in Ω as ε → 0, (6.5)

−div tA(x)Dzε = wεμε in D′(Ωε). � (6.6)

Remark 6.2. Note that in view of (2.20), the two first assertions of (6.3) imply that in 
particular

zε = 0 in
n(ε)⋃
i=1

T ε
i . � (6.7)

Remark 6.3. As far as (6.4) is concerned, we will actually prove that

zεϕ ∈ H1
0 (Ωε) ∩ L∞(Ωε) ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω), (6.8)

and that if v is such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v ∈ V(Ω)
with −div tA(x)Dv =

∑
i∈I

ϕ̂i(−div ĝi) + f̂ in D′(Ω),

where ϕ̂i ∈ H1
0 (Ω) ∩ L∞(Ω), ĝi ∈ L2(Ω)N , f̂ ∈ L1(Ω),

(6.9)

and if Gε is a sequence such that

{
με = −div Gε in D′(Ω), μ = −div G in D′(Ω),
with Gε → G in (L2(Ω))N strongly,

(6.10)

(note that such a sequence Gε exists since με converges strongly in H−1(Ω) to μ in view 
of the fourth assertion of (2.19)), one has
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zεv ∈ V(Ωε)
with −div tA(x)D(zεv) =
=

∑
i∈I

zεϕ̂i (−div ĝi) + wεv (−div Gε) + zεf̂ − tA(x)DvDzε − tA(x)DzεDv

in D′(Ωε). �
(6.11)

Proof of Proposition 6.1.

First step. Since wε ∈ H1(Ω) and με ∈ H−1(Ω), the product wεμε is, as usual, the 
distribution on Ω defined, for every φ ∈ D(Ω), as

〈wεμε, φ〉D′(Ω),D(Ω) = 〈με, wεφ〉H−1(Ω),H1
0 (Ω). (6.12)

We claim that actually

wεμε ∈ H−1(Ω); (6.13)

indeed, since με ≥ 0 in D′(Ω) (see the third assertion of (2.19)), με is a nonnegative 
Radon measure on Ω, and therefore με belongs to M+

b (ω) for every open set ω with 
ω ⊂ Ω. Taking, for any given φ ∈ D(Ω), an open set ω with suppφ ⊂ ω ⊂ ω ⊂ Ω, we 
have, using (6.12) in Ω and then (2.25) in ω,

〈wεμε, φ〉D′(Ω),D(Ω) = 〈με, wεφ〉H−1(Ω),H1
0 (Ω) = 〈με, wεφ〉H−1(ω),H1

0 (ω) =
∫
ω

wεφdμε,

and then, using (2.15) and then (2.25) in Ω,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
|〈wεμε, φ〉D′(Ω),D(Ω)| =

∣∣∣∣∣∣
∫
ω

wεφdμε

∣∣∣∣∣∣ ≤
∫
ω

wε|φ|dμε ≤
∫
ω

|φ| dμε =

=
∫
Ω

|φ| dμε = 〈με, |φ|〉H−1(Ω),H1
0 (Ω) ≤ ‖με‖H−1(Ω)‖φ‖H1

0 (Ω) ∀φ ∈ D(Ω).

This implies that (6.13) holds true with

‖wεμε‖H−1(Ω) ≤ ‖με‖H−1(Ω). (6.14)

Second step. Since wεμε belongs to H−1(Ω) by (6.13), one has

wεμε ∈ H−1(Ω) ⊂ H−1(Ωε).

Applying Lax–Milgram’s lemma then implies the existence (and the uniqueness) of the 
solution yε to
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⎧⎪⎪⎨
⎪⎪⎩
yε ∈ H1(Ωε),
yε − wε ∈ H1

0 (Ωε),
−div tA(x)Dyε = wεμε in D′(Ωε).

(6.15)

We now define zε by

zε = yε̃, (6.16)

where yε̃ is the extension by zero of yε to Ω defined by (2.12). Therefore zε satisfies (6.2)
and (6.6), and one deduces from yε − wε̃ = zε − wε̃, from yε − wε̃ ∈ H1

0 (Ω), from the 
first assertion of (2.16) and from (2.14) that zε ∈ H1(Ω).

Third step. We now prove that

0 ≤ zε(x) ≤ wε(x) a.e. x ∈ Ω, (6.17)

a fact which in particular implies (6.3) in view of (2.15), and which completes the proof 
of (6.1).

Since one has

0 = zε = wε in
n(ε)⋃
i=1

T ε
i ,

a fact which follows from (6.16) and from the first assertion of (2.16), we only have to 
prove that

0 ≤ yε(x) ≤ wε(x) a.e. x ∈ Ωε. (6.18)

In order to prove (6.18), we first observe that −(yε)− ∈ H1
0 (Ωε): indeed one has 

−(yε)− ∈ H1(Ωε) in view of (6.15) and also

−(yε − wε)− ≤ −(yε)− ≤ 0 a.e. in Ωε,

where the first inequality results from the facts that the function −s− is nondecreasing 
and that wε ≥ 0 (see (2.15)); therefore Lemma A.1 of [10] and yε − wε ∈ H1

0 (Ωε) imply 
that −(yε)− ∈ H1

0 (Ωε). Using −(yε)− as test function in (6.15) we get, in view of (2.15)
and of the third assertion of (2.19),∫

Ωε

tA(x)DyεD(−(yε)−) = 〈wεμε,−(yε)−〉H−1(Ωε),H1
0 (Ωε) ≤ 0,

which implies that

0 ≤ yε(x) a.e. x ∈ Ωε.
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On the other hand, since yε − wε ∈ H1
0 (Ωε) by (6.15), using (yε − wε)+ ∈ H1

0 (Ωε) as 
test function in (6.15) and (2.22) we get

∫
Ωε

tA(x)D(yε − wε)D(yε − wε)+ = 〈wεμε − με, (yε − wε)+〉H−1(Ωε),H1
0 (Ωε).

Since in view of (2.15) and of the third assertion of (2.19) one has

〈(wε − 1)με, (yε − wε)+〉H−1(Ωε),H1
0 (Ωε) ≤ 0,

this implies that

yε(x) − wε(x) ≤ 0 a.e. x ∈ Ωε.

We have proved that (6.18) (and therefore (6.17)) holds true.

Fourth step. Let us now prove that

zε − wε → 0 in H1
0 (Ω) strongly. (6.19)

Combined with (2.17) this will imply (6.5) (for a subsequence, as far as the almost 
everywhere convergence is concerned).

Using yε − wε ∈ H1
0 (Ωε) as test function in (6.15) and (2.22) we get

∫
Ωε

tA(x)D(yε − wε)D(yε − wε) = 〈wεμε − με, yε − wε〉H−1(Ωε),H1
0 (Ωε).

By the coercivity of the matrix A, this implies that

{
α‖yε − wε‖2

H1
0 (Ωε) ≤ 〈wεμε − με, yε − wε〉H−1(Ωε),H1

0 (Ωε) ≤
≤

(
‖wεμε‖H−1(Ωε) + ‖με‖H−1(Ωε)

)
‖yε − wε‖H1

0 (Ωε),
(6.20)

which in view of (6.14), of the fourth assertion of (2.19) and of (2.13) implies that 
‖yε − wε‖H1

0 (Ωε) = ‖zε − wε‖H1
0 (Ω) is bounded. But zε − wε is also bounded in L∞(Ω)

in view of (6.3) and (2.15). Therefore (wε − 1)(zε − wε) is bounded in H1
0 (Ω) ∩ L∞(Ω), 

so that in view of (2.17)

(wε − 1)(zε − wε) ⇀ 0 in H1
0 (Ω) weakly. (6.21)

Writing

{
〈wεμε − με, yε − wε〉H−1(Ωε),H1

0 (Ωε) = 〈wεμε − με, zε − wε〉H−1(Ω),H1
0 (Ω) =

= 〈με, (wε − 1)(zε − wε)〉H−1(Ω),H1
0 (Ω),
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and using (6.21) and the fact that με tends to μ in H−1(Ω) strongly by the fourth 
assertion of (2.19), we deduce (6.19) from the first line of (6.20).

Fifth step. At this point, we have proved the existence of a sequence zε which satisfies 
(6.1), (6.2), (6.3), (6.5) and (6.6). Let us now prove that zε satisfies (6.4), or more 
precisely (6.8) and (6.11) when v ∈ V(Ω) satisfies (6.9).

Assertion (6.8) follows from the equality

zεϕ = (zε − wε)ϕ + wεϕ,

and from the facts that when ϕ ∈ H1
0 (Ω) ∩L∞(Ω), then both (zε−wε)ϕ and wεϕ belong 

to H1
0 (Ωε) ∩ L∞(Ωε) (see (6.2), (6.3), (2.14), (2.15) and (2.16)).

On the other hand, using (6.9), (6.15) and (6.10), we have in D′(Ωε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div tA(x)D(zεv) = −div(zε tA(x)Dv) − div(v tA(x)Dzε) =
= zε(−div tA(x)Dv) − tA(x)DvDzε+
+ v (−div tA(x)Dzε) − tA(x)DzεDv =
=

∑
i∈I

zεϕ̂i(−div ĝi) + zεf̂ − tA(x)DvDzε+

+ vwε(−div Gε) − tA(x)DzεDv in D′(Ωε),

(6.22)

which proves that the equation stated in (6.11) holds true. This proves (6.11), and 
therefore (6.4), in particular since zεϕ̂i and wεv belong to H1

0 (Ωε) ∩ L∞(Ωε), by (6.8), 
(2.16) and (2.14). �
6.2. Strong convergence of the sequence χΩε in L1(Ω)

In this Subsection we prove the following Proposition:

Proposition 6.4. Assume that the sequence of perforated set Ωε is such that (2.14), (2.15), 
(2.16), (2.17), (2.18) and (2.19) are satisfied. Then

χΩε → 1 in L1(Ω) strongly as ε → 0. � (6.23)

From (6.23) one immediately deduces that for a subsequence, still denoted by ε, one 
has

χΩε → 1 a.e. in Ω as ε → 0. (6.24)

Proof. In view of (2.20) one has

wεχΩε = wε a.e. in Ω. (6.25)
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Since 0 ≤ χΩε ≤ 1, one can extract a subsequence such that

χΩε ⇀ θ in L∞(Ω) weakly-star as ε → 0, (6.26)

so that using (2.17) and passing to the limit in (6.25), one has

θ = 1 a.e. in Ω,

which implies that (6.26) holds true with θ = 1 for the whole sequence ε.
It is then sufficient to write that

‖χΩε − 1‖L1(Ω) =
∫
Ω

|χΩε − 1| =
∫
Ω

(1 − χΩε) →
∫
Ω

(1 − θ) = 0 as ε → 0

to deduce (6.23) for the whole sequence ε. �
Remark 6.5. Note that (6.24) implies that, for every subsequence ε′ of ε and for almost 
every x0 ∈ Ω, there exists ε0(x0) > 0 such that

χΩε′ (x0) = 1 ∀ε′, ε′ < ε0(x0),

or in other terms that

x0 ∈ Ωε′ ∀ε′, ε′ < ε0(x0). � (6.27)

Remark 6.6. Assertion (6.27) implies that almost every x0 ∈ Ω belongs to Ωε′ for ε′
sufficiently small (ε′ < ε0(x0)), which formally means that “Ωε is very close to Ω”.

In contrast, note that if we consider the case of holes periodically distributed at the 
vertices of a cubic lattice of size εj = 1/2j , with j ∈ N, namely the case considered in 
the model example described in the Section 2 above, every point of the form

c
εj0
k = k εj0 =

(
k1

2j0 ,
k2

2j0 , · · · ,
kN
2j0

)
with k = (k1, k2, · · · , kN ) ∈ ZN and j0 ∈ N

is, for every j ≥ j0, the center of some hole T εj
i which is extremely small, since its size 

is rεj = C0ε
N/(N−2)
j = C02−jN/(N−2) (for N ≥ 3); therefore such a point cεj0k does not 

belong to Ωε for εj = 1/2j ≤ 1/2j0 ; note that these points are dense in Ω, and “tend to 
invade the whole of Ω” as εj tends to zero. �
7. A priori estimates for the solutions to the singular semilinear problem in Ωε

In this Section we recall a priori estimates which are satisfied by every solution to 
(2.0ε) in the sense of Definition 3.4; these estimates have been stated and proved in [10].
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Proposition 7.1. (A priori estimate of Gk(uε) in H1
0 (Ωε)) (Proposition 5.1 of [10]) Assume 

that the matrix A and the function F satisfy (2.2), (2.3) and (2.4). Then for every uε

solution to problem (2.0ε) in the sense of Definition 3.4 one has

‖Gk(uε)‖H1
0 (Ωε) = ‖DGk(uε)‖(L2(Ωε))N ≤ CS

α

‖h‖Lr(Ωε)

Γ(k) ∀k > 0, (7.1)

where CS is the (generalized) Sobolev’s constant defined by (2.9) above. �
Remark 7.2. (Remark 5.2 of [10]) From Poincaré’s inequality

‖yε‖L2(Ωε) ≤ CP (Ωε)‖Dyε‖(L2(Ωε))N ∀yε ∈ H1
0 (Ωε), (7.2)

where the constant CP (Ωε) is bounded independently of Ωε when Ωε ⊂ Q, for Q a 
bounded open set of RN , one deduces from (7.1), writing uε = Tk(uε) + Gk(uε), that 
every solution uε to problem (2.0ε) in the sense of Definition 3.4 satisfies the following 
a priori estimate in L2(Ωε)

‖uε‖L2(Ωε) ≤ k|Ωε| 12 + CP (Ωε)CS

α

‖h‖Lr(Ωε)

Γ(k) ∀k > 0, (7.3)

which, taking k = k0 for some k0 fixed or minimizing in k provides an a priori estimate 
of ‖uε‖L2(Ωε) which does not depend on k. �
Proposition 7.3. (A priori estimate of ϕεDTk(uε) in (L2(Ωε))N for ϕε ∈ H1

0 (Ωε) ∩
L∞(Ωε)) (Proposition 5.4 of [10]) Assume that the matrix A and the function F sat-
isfy (2.2), (2.3) and (2.4). Then for every uε solution to problem (2.0ε) in the sense of 
Definition 3.4 one has

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖ϕεDTk(uε)‖2

(L2(Ωε))N ≤

≤ 32k2

α2 ‖A‖2
(L∞(Ωε))N×N ‖Dϕε‖2

(L2(Ωε))N + C2
S

α2

‖h‖2
Lr(Ωε)

Γ(k)2 ‖ϕε‖2
L∞(Ωε)

∀k > 0, ∀ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε),

(7.4)

where CS is the (generalized) Sobolev’s constant defined by (2.9) above. �
Remark 7.4. (Remark 5.5 of [10]) From the a priori estimate (7.4) one deduces that every 
solution uε to problem (2.0ε) in the sense of Definition 3.4 satisfies the following a priori 
estimate of ϕεTk(uε) in H1

0 (Ωε)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖ϕεTk(uε)‖2

H1
0 (Ωε) = ‖D(ϕεTk(uε))‖2

(L2(Ωε))N ≤

≤
(

64k2

α2 ‖A‖2
(L∞(Ωε))N×N + 2k2

)
‖Dϕε‖2

(L2(Ωε))N + 2C
2
S

α2

‖h‖2
Lr(Ωε)

Γ(k)2 ‖ϕε‖2
L∞(Ωε)

∀k > 0, ∀ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε). �

(7.5)
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For δ > 0, define the function Zδ : s ∈ [0, +∞[→ Zδ(s) ∈ [0, +∞[ by

Zδ(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ s ≤ δ,

− s
δ + 2 if δ ≤ s ≤ 2δ,

0 if 2δ ≤ s.

(7.6)

Proposition 7.5. (Control of the quantity 
∫
Ω

F (x, uε)Zδ(uε)v when δ is small) (Proposi-

tion 5.9 of [10]) Assume that the matrix A and the function F satisfy (2.2), (2.3) and 
(2.4). Then for every uε solution to problem (2.0ε) in the sense of Definition 3.4 and for 
every vε such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vε ∈ V(Ωε), vε ≥ 0,
with − div tA(x)Dvε =

∑
i∈Iε

ϕ̂ε
i (−div ĝεi ) + f̂ε in D′(Ωε)

where ϕ̂ε
i ∈ H1

0 (Ωε) ∩ L∞(Ωε), ĝεi ∈ L2(Ωε)N , f̂ε ∈ L1(Ωε),

(7.7)

one has
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀δ > 0,
∫
Ωε

F (x, uε)Zδ(uε) vε ≤

≤ 3
2

⎛
⎝∫

Ωε

∣∣∣∣∣
∑
i∈Iε

ĝεiDϕ̂ε
i + f̂ε

∣∣∣∣∣
⎞
⎠ δ +

∑
i∈Iε

∫
Ω

Zδ(uε) ĝεiDuε ϕ̂ε
i . �

(7.8)

Note that the second term of the right-hand side of (7.8) has a meaning since in view 
of (3.9) above one has Duε ϕ̂ε

i ∈ (L2(Ωε))N .
A consequence of Proposition 7.5 is:

Proposition 7.6. (Proposition 5.12 of [10]) Assume that the matrix A and the function F
satisfy (2.2), (2.3) and (2.4). Then for every uε solution to problem (2.0ε) in the sense 
of Definition 3.4 one has

∫
{uε=0}

F (x, uε)vε = 0 ∀vε ∈ V(Ωε), vε ≥ 0. � (7.9)

8. Proof of the homogenization Theorem 5.1

First step. In this first step we state a priori estimates and we extract a subsequence, 
still denoted by ε, such that convergences (5.3), (5.4) and (5.5) of Theorem 5.1 hold true 
for some u0 which satisfies (5.6).
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As already said in the existence Theorem 3.7 of Subsection 3.2 above, for every ε there 
exists at least one solution to problem (2.0ε) in the sense of Definition 3.4. This solution 
in particular satisfies the a priori estimates (7.1), (7.3) and (7.5) stated in Proposition 7.1
and in Remarks 7.2 and 7.4 above.

Since Ωε ⊂ Ω, since the generalized Sobolev’s constant CS which appears in (2.9)
does not depend on Ωε when N ≥ 3, and is bounded independently of Ωε when N = 2
since Ωε ⊂ Ω (see the comment after (2.9)), and since the Poincaré’s constant CP (Ωε)
which appears in (7.2) is bounded independently of Ωε since Ωε ⊂ Ω (see the comment 
after (7.2)), the a priori estimates (7.1) and (7.3) imply that

‖Gk(uε̃)‖H1
0 (Ω) = ‖Gk(uε)‖H1

0 (Ωε) ≤ C(k), (8.1)

‖uε̃‖L2(Ω) = ‖uε‖L2(Ωε) ≤ C, (8.2)

where the constants C(k) and C do not depend on ε for k > 0 fixed.
Similarly, taking in (7.5) ϕε = zεϕ, with ϕ ∈ H1

0 (Ω) ∩ L∞(Ω) and zε defined by 
Proposition 6.1, and observing that ‖zεϕ‖L∞(Ωε) and ‖D(zεϕ)‖(L2(Ω))N are bounded 
independently of ε, one obtains that

‖zεϕTk(uε̃)‖H1
0 (Ω) = ‖zεϕTk(uε)‖H1

0 (Ωε) ≤ C(k)(‖ϕ‖L∞(Ω) + ‖Dϕ‖(L2(Ω))N ), (8.3)

where the constant C(k) does not depend on ε for k > 0 fixed.
Using the (generalized) Sobolev’s inequality (2.9) for Gk(uε̃), the fact that zε is 

bounded in H1(Ω) ∩ L∞(Ω), ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) and (8.1), one obtains that

⎧⎨
⎩
‖zεϕGk(uε̃)‖W 1,q

0 (Ω) ≤ C(k)(‖ϕ‖L∞(Ω) + ‖Dϕ‖(L2(Ω))N )

where q is defined by 1
q

= 1
2∗ + 1

2 ,
(8.4)

where 2∗ is defined by (2.7) and (2.8), and where the constant C(k) does not depend on 
ε for k > 0 fixed.

Collecting together (8.3) and (8.4) implies that

zεϕuε̃ = zεϕTk(uε̃) + zεϕGk(uε̃)

is bounded in W 1,q
0 (Ω), and therefore that

zεϕuε̃ is compact in Lq(Ω) for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω). (8.5)

On the other hand, let us write, for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω)

ϕuε̃ = zεϕuε̃ + (1 − zε)ϕuε̃. (8.6)

Since (1 − zε) tends to zero in Lp(Ω) strongly for every p < +∞ (see (6.5)), since 
ϕ ∈ L∞(Ω) and since uε̃ is bounded in L2(Ω) (see (8.2)), one has
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(1 − zε)ϕuε̃ → 0 in Lq(Ω) strongly as ε → 0. (8.7)

From (8.5), (8.6) and (8.7) one concludes that

ϕuε̃ is compact in Lq(Ω) ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω). (8.8)

In view of (8.2) and (8.8) one can extract a subsequence, still denoted by ε, such that 
there exists some u0 ∈ L2(Ω) such that

uε̃ ⇀ u0 in L2(Ω) weakly and a.e. in Ω as ε → 0. (8.9)

This proves (5.3).
For the same subsequence, one has, in view of (8.9), (8.1), (6.5) and (8.3)

Gk(uε̃) ⇀ Gk(u0) in H1
0 (Ω) weakly and a.e. in Ω ∀k > 0 as ε → 0, (8.10){

zεϕTk(uε̃) ⇀ ϕTk(u0) in H1
0 (Ω) weakly and a.e. in Ω

∀k > 0, ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) as ε → 0.

(8.11)

This proves (5.4).
Moreover, since similarly to (8.3), one has, taking ϕε = wεϕ in (7.5),

‖wεϕTk(uε̃)‖H1
0 (Ω) ≤ C(k)(‖ϕ‖L∞(Ω) + ‖Dϕ‖(L2(Ω))N ), (8.12)

where the constant C(k) does not depend on ε for k > 0 fixed, one also has

{
wεϕTk(uε̃) ⇀ ϕTk(u0) in H1

0 (Ω) weakly and a.e. in Ω
∀k > 0, ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω) as ε → 0.
(8.13)

This proves (5.5).
Note that since uε̃ is nonnegative on Ω, one has

u0(x) ≥ 0 a.e. x ∈ Ω. (8.14)

On the other hand, since Gk(u0) ∈ H1
0 (Ω) in view of (8.10) and since for every 

φ ∈ D(Ω) one has φTk(u0) ∈ H1
0 (Ω) in view of (8.11), the function u0 satisfies

u0 ∈ H1
loc(Ω). (8.15)

As announced at the beginning of this first step, we have extracted a subsequence, 
still denoted by ε, and defined an u0 which satisfies (5.6) uch that convergences (5.3), 
(5.4) and (5.5) hold true.

It remains to prove that u0 satisfies (5.7). This is done in the second, third, fourth, 
fifth, sixth, seventh and eighth steps below.
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Second step. We now consider any fixed v ∈ V(Ω) with v ≥ 0. In view of (6.3) and (6.4)
and of Remark 6.3, the function zεv belongs to V(Ωε) with zεv ≥ 0 and satisfies (6.11)
when v satisfies (6.9). The use of vε = zεv in (5.2) is therefore licit and one has

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωε

tA(x)D(zεv)DGk(uε) +

+
∑
i∈I

∫
Ωε

ĝiD(zεϕ̂iTk(uε)) +
∫
Ωε

GεD(wεvTk(uε)) +

+
∫
Ωε

(
zεf̂ − tA(x)DvDzε − tA(x)DzεDv

)
Tk(uε) =

= 〈−div tA(x)D(zεv), Gk(uε)〉H−1(Ωε),H1
0 (Ωε) + 〈〈−div tA(x)D(zεv), Tk(uε)〉〉Ωε =

=
∫
Ωε

F (x, uε)zεv.

(8.16)

From now on, v ∈ V(Ω), v ≥ 0, and k > 0 will be fixed.
In the present step and in the next one, we pass to the limit, as ε tends to zero, in 

the first term of the left-hand side of (8.16) and we prove that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωε

tA(x)D(zεv)DGk(uε) →

→
∫
Ω

tA(x)DvDGk(u0) +
∫
Ω

Gk(u0) v dμ as ε → 0,
(8.17)

in which we observe that the first term of the right-hand side can also be written as
∫
Ω

tA(x)DvDGk(u0) = 〈−div tA(x)Dv,Gk(u0)〉H−1(Ω),H1
0 (Ω). (8.18)

For that we introduce, for k > 0 fixed and for every n > k, the function
Sk,n : R+ → R+ defined by

Sk,n(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ s ≤ k,

s− k if k ≤ s ≤ n,

n− k if n ≤ s.

(8.19)

Observe that one has

Gk(s) = Sk,n(s) + Gn(s) ∀s > 0, ∀n, n > k, (8.20)

Sk,n(s) = Tn−k(Gk(s)) ∀s > 0, ∀n, n > k. (8.21)
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Using (8.20) we write the first term of the left-hand side of (8.16) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωε

tA(x)D(zεv)DGk(uε) =

=
∫
Ωε

tA(x)D(zεv)DSk,n(uε) +
∫
Ωε

tA(x)D(zεv)DGn(uε).
(8.22)

We first pass to the limit in the first term of the right-hand side of (8.22) as ε tends 
to zero for n and k fixed, n > k > 0. For that we write, using (6.6) in the latest equality 
below,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωε

tA(x)D(zεv)DSk,n(uε) =

=
∫
Ωε

tA(x)DzεD(Sk,n(uε)v) −
∫
Ωε

tA(x)DzεDv Sk,n(uε) +

+
∫
Ωε

tA(x)DvDSk,n(uε) zε =

= 〈wεμε, Sk,n(uε)v〉H−1(Ωε),H1
0 (Ωε) −

∫
Ωε

tA(x)DzεDv Sk,n(uε) +

+
∫
Ωε

tA(x)DvDSk,n(uε) zε.

(8.23)

We now observe that in view of formula (8.21) and of the convergence (8.10) of Gk(uε̃)
to Gk(u0) in H1

0 (Ω) weakly, one has for n > k fixed

{
Sk,n(uε̃) = Tn−k(Gk(uε̃)) → Tn−k(Gk(u0)) = Sk,n(u0)
in H1

0 (Ω) weakly, in L∞(Ω) weakly-star and a.e. in Ω as ε → 0.
(8.24)

Therefore, using in the first term of the right-hand side of (8.23) the strong convergence 
of με to μ in H−1(Ω) (see the fourth assertion of (2.19)) and the convergence (2.17), and 
then the equality (2.25), we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈wεμε, Sk,n(uε)v〉H−1(Ωε),H1
0 (Ωε) = 〈με, Sk,n(uε)vwε〉H−1(Ωε),H1

0 (Ωε) =
= 〈με, Sk,n(uε̃)vwε〉H−1(Ω),H1

0 (Ω) →

→ 〈μ, Sk,n(u0)v〉H−1(Ω),H1
0 (Ω) =

∫
Ω

Sk,n(u0) v dμ as ε → 0.
(8.25)

For what concerns the second and the third terms of the right-hand side of (8.23), we 
have, using Lebesgue’s dominated convergence theorem as well as (6.5) and (8.24),
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−
∫
Ωε

tA(x)DzεDv Sk,n(uε) = −
∫
Ω

tA(x)DzεDv Sk,n(uε̃) → 0 as ε → 0, (8.26)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωε

tA(x)DvDSk,n(uε) zε =
∫
Ω

tA(x)DvDSk,n(uε̃) zε →

→
∫
Ω

tA(x)DvDSk,n(u0) as ε → 0.
(8.27)

Collecting together (8.23), (8.25), (8.26) and (8.27), we have proved that the first term 
of the right-hand side of (8.22) satisfies, for n and k fixed with n > k > 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωε

tA(x)D(zεv)DSk,n(uε) →

→
∫
Ω

tA(x)DvDSk,n(u0) +
∫
Ω

Sk,n(u0) v dμ as ε → 0.
(8.28)

Let us now pass to the limit in the right-hand side of (8.28) as n tends to infinity.
Since DSk,n(u0) = DGk(u0)χ{k≤u0≤n}, one has by Lebesgue’s dominated convergence 

theorem

Sk,n(u0) → Gk(u0) in H1
0 (Ω) strongly as n → +∞,

and therefore, still by Lebesgue’s dominated convergence theorem,

Sk,n(u0) → Gk(u0) in L1(Ω; dμ) strongly as n → +∞.

Therefore the right-hand side of (8.28) satisfies, since v ∈ L∞(Ω; dμ) (see (2.26)),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

tA(x)DvDSk,n(u0) +
∫
Ω

Sk,n(u0) v dμ →

→
∫
Ω

tA(x)DvDGk(u0) +
∫
Ω

Gk(u0) v dμ as n → +∞.
(8.29)

Passing to the limit in the right-hand side of (8.22), first as ε tends to zero for n
fixed and then as n tends to infinity, and collecting together (8.28) and (8.29), will prove 
(8.17) whenever we will have proved that the second term of the right-hand side of (8.22)
satisfies

lim sup
ε

∣∣∣∣∣∣
∫
Ωε

tA(x)D(zεv)DGn(uε)

∣∣∣∣∣∣ → 0 as n → +∞, (8.30)

a result that we will prove in the third step just below.
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Third step. In this third step we prove (8.30). As just said, this completes the proof of 
(8.17).

For that, we estimate the second term of the right-hand side of (8.22).
Since zε is bounded in H1(Ω) ∩ L∞(Ω) (see (6.3) and (6.5)), one has
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣
∫
Ωε

tA(x)D(zεv)DGn(uε)

∣∣∣∣∣∣ ≤
≤ ‖A‖(L∞(Ω))N×N ‖D(zεv)‖(L2(Ω))N ‖DGn(uε)‖(L2(Ωε))N ≤
≤ ‖A‖(L∞(Ω))N×N

(
‖zε‖L∞(Ω)‖Dv‖(L2(Ω))N + ‖v‖L∞(Ω)‖Dzε‖(L2(Ω))N

)
‖DGn(uε)‖(L2(Ωε))N ≤

≤ C(v)‖DGn(uε)‖(L2(Ωε))N ∀ε, ∀n,

(8.31)

where C(v) is a constant which depends on v but neither on ε nor on n.
We now estimate ‖DGn(uε)‖(L2(Ωε))N in a way which is more precise than the a priori 

estimate (7.1). For that we use the (energy) equality (5.4) of [10], namely
∫
Ωε

A(x)DGn(uε)DGn(uε) =
∫
Ωε

F (x, uε)Gn(uε),

which is formally obtained by using Gn(uε) as test function in (2.0ε). Using in this 
inequality the coercivity (2.2) of the matrix A and the growth condition (2.4) on the 
function F gives, since Γ is increasing and since Gn(s) = 0 for s ≤ n,

α‖DGn(uε)‖2
(L2(Ωε))N ≤

∫
Ωε

h(x)
Γ(uε)Gn(uε) ≤

∫
Ωε

h(x)
Γ(n)Gn(uε) =

∫
Ω

h(x)
Γ(n)Gn(uε̃).

Passing to the limit in ε for n fixed thanks to (8.10) gives

lim sup
ε

‖DGn(uε)‖2
(L2(Ωε))N ≤ ω(n) ∀n > 0, (8.32)

where ω(n) is defined by

ω2(n) = 1
α

∫
Ω

h(x)
Γ(n)Gn(u0) ∀n > 0. (8.33)

Since Γ is increasing and since for s ≥ 0 fixed Gn(s) is nonincreasing in n, one has, 
for n ≥ n0,

ω2(n) = 1
α

∫
Ω

h(x)
Γ(n)Gn(u0)χ{u0≥n} ≤ 1

α

∫
Ω

h(x)
Γ(n0)

Gn0(u0)χ{u0≥n} ∀n, n ≥ n0.
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Since the measure of the set {x ∈ Ω : u0(x) ≥ n} tends to zero as n tends to infinity 
(recall that u0 ∈ L2(Ω) by (8.9)), and since h(x)Gn0(u0) ∈ L1(Ω), one deduces, fixing 
n0, that

ω2(n) → 0 as n → +∞. (8.34)

Collecting together (8.31), (8.32), (8.33) and (8.34) proves that the second term of 
the right-hand side of (8.22) satisfies

lim sup
ε

∣∣∣∣∣∣
∫
Ωε

tA(x)D(zεv)DGn(uε)

∣∣∣∣∣∣ ≤ C(v)ω(n) → 0, as n → +∞.

i.e. (8.30), as announced in the beginning of this third step.

Fourth step. In this fourth step we pass to the limit, as ε tends to zero, in the second, 
third and fourth terms of the left-hand side of (8.16) and we prove that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈I

∫
Ωε

ĝiD(zεϕ̂iTk(uε)) +
∫
Ωε

GεD(wεvTk(uε)) +

+
∫
Ωε

(
zεf̂ − tA(x)DvDzε − tA(x)DzεDv

)
Tk(uε) →

→
∑
i∈I

∫
Ω

ĝiD(ϕ̂iTk(u0)) +
∫
Ω

f̂Tk(u0) +
∫
Ω

Tk(u0) v dμ as ε → 0,

(8.35)

in which we observe that, in view of notation (3.3) of Definition 3.2, the two first terms 
of the right-hand side can also be written as

∑
i∈I

∫
Ω

ĝiD(ϕ̂iTk(u0)) +
∫
Ω

f̂Tk(u0) = 〈〈−div tA(x)Dv, Tk(u0)〉〉Ω. (8.36)

For the second term of the left-hand side of (8.16), i.e. for the first term of the left-hand 
side of (8.35), we have, in view of (8.11) and since ϕ̂i ∈ H1

0 (Ω) ∩ L∞(Ω),
∫
Ωε

ĝiD(zεϕ̂iTk(uε)) =
∫
Ω

ĝiD(zεϕ̂iTk(uε̃)) →
∫
Ω

ĝiD(ϕ̂iTk(u0)) as ε → 0. (8.37)

Similarly, using the strong convergence of Gε to G in (L2(Ω))N (see (6.10)), (8.13)
and the fact that v ∈ H1

0 (Ω) ∩ L∞(Ω), we have, for the third term of the left-hand side 
of (8.16), i.e. for the second term of the left-hand side of (8.35),

∫
Ωε

GεD(wεvTk(uε)) =
∫
Ω

GεD(wεvTk(uε̃)) →
∫
Ω

GD(vTk(u0)) as ε → 0. (8.38)
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Moreover, in view of (6.10) and of (2.25) we have, since vTk(u0) ∈ H1
0 (Ω) ∩ L∞(Ω)

because of (8.11),
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

GD(vTk(u0)) = 〈−div G, vTk(u0)〉H−1(Ω),H1
0 (Ω) =

= 〈μ, vTk(u0)〉H−1(Ω),H1
0 (Ω) =

∫
Ω

Tk(u0) v dμ.
(8.39)

Finally, in view of (6.5) and (8.9), which implies that Tk(uε̃)Dv converges to Tk(u0)Dv

in (L2(Ω))N strongly by Lebesgue’s dominated convergence theorem, we have, for the 
fourth term of the left-hand side of (8.16), i.e. for the third term of the left-hand side of 
(8.35),

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωε

(
zεf̂ − tA(x)DvDzε − tA(x)DzεDv

)
Tk(uε) =

=
∫
Ω

(
zεf̂ − tA(x)DvDzε − tA(x)DzεDv

)
Tk(uε̃) →

∫
Ω

f̂Tk(u0)

as ε → 0.

(8.40)

Collecting together (8.37), (8.38), (8.39) and (8.40) we have proved (8.35).

At this point, see (8.17), (8.18), (8.35) and (8.36), we passed to the limit in the 
left-hand side of (8.16). In the sixth, seventh and eighth steps below, we will pass to the 
limit in the right-hand side of (8.16).

Fifth step. Before of doing that, we prove in the present fifth step that
∫
Ω

F (x, u0)v < +∞ ∀v ∈ V(Ω), v ≥ 0, (8.41)

or in other terms that assertion (5.7 i) holds true.
Since the left-hand side of (8.16) converges as ε tends to zero, the right-hand side of 

(8.16) satisfies
∫
Ωε

F (x, uε)zεv ≤ C(v) ∀v ∈ V(Ω), v ≥ 0, ∀ε, (8.42)

where the constant C(v) < +∞ does not depend on ε. Using the extension by zero 
defined in (2.12), (8.42) is equivalent to

∫
F (x, uε)̃zεv ≤ C(v) ∀ε. (8.43)
Ω
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We claim that

F (x, uε)̃ → F (x, u0) a.e. x ∈ Ω as ε → 0. (8.44)

Indeed, in view of Remark 6.5 and in particular of (6.27), we know that, for every 
subsequence ε′ of ε and for almost every x0 ∈ Ω, there exists ε0(x0) such that x0 belongs 
to Ωε′ for every ε′ < ε0(x0). This implies that

F (x0, u
ε′(x0))˜ = F (x0, u

ε′̃(x0)) ∀ε′, ε′ < ε0(x0).

Since

F (x0, u
ε′̃(x0)) → F (x0, u

0(x0)) a.e. x0 ∈ Ω

in view of the convergence (8.9) and of the Carathéodory hypothesis (2.3), this implies 
(8.44).

Results (8.43) and (8.44) combined with (6.5), the fact that F (x, uε̃)zεv ≥ 0, and 
finally Fatou’s lemma immediately imply (8.41).

Sixth step. As already said at the end of the fourth step, in the present sixth step and 
in the seventh and eighth steps, we pass to the limit in the right-hand side of (8.16).

For doing that, we introduce a new parameter δ > 0 and we write the right-hand side 
of (8.16) as

∫
Ωε

F (x, uε)zεv =
∫
Ωε

F (x, uε)Zδ(uε) zεv +
∫
Ωε

F (x, uε) (1 − Zδ(uε)) zεv, (8.45)

where Zδ is the function defined by (7.6).

In the present sixth step we prove that the first term of the right-hand side of (8.45)
satisfies

lim sup
ε

∫
Ωε

F (x, uε)Zδ(uε) zεv → 0 as δ → 0. (8.46)

For that we use estimate (7.8) of Proposition 7.5 above with vε = zεv for any v ∈ V(Ω), 
v ≥ 0; this choice is licit in view of (6.4). In view of (6.11), the estimate (7.8) reads as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀δ > 0,
∫
Ωε

F (x, uε)Zδ(uε) zεv ≤ Iεδ + II ε
δ,

where

Iεδ = 3
2

⎛
⎝∫

Ωε

∣∣∣∣∣
∑
i∈I

ĝiD(zεϕ̂i) + GεD(wεv) +

+zεf̂ − tA(x)DvDzε − tA(x)DzεDv
∣∣∣) δ,

II ε
δ =

∑
i∈I

∫
Ωε

Zδ(uε) ĝi Duε zεϕ̂i +
∫
Ωε

Zδ(uε)GεDuε wεv.

(8.47)

Since zε and wε are bounded in H1(Ω) ∩L∞(Ω) (see (6.5) and (2.17)), since ϕ̂i and v
belong to H1

0 (Ω) ∩L∞(Ω), since ĝi belongs to (L2(Ω))N , since Gε is bounded in (L2(Ω))N
(see (6.10)), and since f̂ belongs to L1(Ω), we have, as far as Iεδ is concerned,

lim sup
ε

Iεδ ≤ 3
2Cδ, (8.48)

where the constant C does not depend neither on ε nor on δ, and therefore we have

lim sup
ε

Iεδ → 0 as δ → 0. (8.49)

For what concerns the first term of II εδ, in view of (6.8), (3.9), (3.7ε i), (3.7ε iii) and 
(3.7ε iv), we have

{
Duε zεϕ̂i = (DTk(uε) + DGk(uε))zεϕ̂i =
= D(zεϕ̂iTk(uε)) − Tk(uε)D(zεϕ̂i) + DGk(uε) zεϕ̂i in D′(Ωε).

Since when aε ∈ L2(Ωε) and bε ∈ L2(Ω), one has aεbε̃ = aε̃bε, and since zεϕ̂iTk(uε) and 
Gk(uε) belong to H1

0 (Ωε), we have in view of (2.13)

{
Duε zεϕ̂ĩ = D(zεϕ̂iTk(uε))˜ − Tk(uε)̃D(zεϕi) + DGk(uε)̃zεϕ̂i =
= D(zεϕ̂iTk(uε))̃ − Tk(uε)̃D(zεϕ̂i) + DGk(uε)̃zεϕ̂i in D′(Ω).

But since Tk(0) = Gk(0) = 0 implies that Tk(uε)̃ = Tk(uε̃) and Gk(uε)̃ = Gk(uε̃), we 
finally have

Duεzεϕ̂ĩ = D(zεϕ̂iTk(uε̃)) − Tk(uε̃)D(zεϕ̂i) + DGk(uε̃)zεϕ̂i in D′(Ω).

Since Duεzεϕ̂ĩ is zero on Ω \ Ωε, and even if

Zδ(uε)̃ = 0 in Ω \ Ωε while Zδ(uε̃) = 1 in Ω \ Ωε,
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we have
⎧⎨
⎩Zδ(uε)ĝiDuεzεϕi
˜ = Zδ(uε̃)ĝiDuε zεϕ̂ĩ =

= Zδ(uε̃)ĝi
(
D(zεϕ̂iTk(uε̃)) − Tk(uε̃)D(zεϕ̂i) + DGk(uε̃)zεϕ̂i

)
in D′(Ω).

(8.50)

Therefore, in view of (8.9), (8.10), (8.11) and (6.5), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀δ > 0 fixed,∫
Ωε

Zδ(uε) ĝi Duε zεϕ̂i =

=
∫
Ω

Zδ(uε̃) ĝi
(
D(zεϕ̂iTk(uε̃)) − Tk(uε̃)D(zεϕ̂i) + DGk(uε̃)zεϕ̂i

)
→

→
∫
Ω

Zδ(u0) ĝi
(
D(ϕ̂iTk(u0)) − Tk(u0)Dϕ̂i + DG(u0)ϕ̂i

)
=

=
∫
Ω

Zδ(u0) ĝi Du0 ϕ̂i as ε → 0.

(8.51)

A proof which is very similar to the proof of (8.51) implies that for the second term 
of II ε

δ we have

⎧⎪⎨
⎪⎩
∀δ > 0 fixed,∫
Ωε

Zδ(uε)GεDuε wεv →
∫
Ω

Zδ(u0)G0Du0 v as ε → 0. (8.52)

Let us now pass to the limit in the right-hand side of (8.51) as δ tends to zero. Since

Zδ(s) → χ{s=0}(s), ∀s ≥ 0,

and since u0 ∈ H1
loc(Ω) implies that

Du0 = 0 a.e. in {x ∈ Ω : u0(x) = 0},

we have ∫
Ω

Zδ(u0) ĝi Du0ϕ̂i →
∫
Ω

χ{u0=0}ĝi Du0 ϕ̂i = 0 as δ → 0. (8.53)

The same proof implies that for the right-hand side of (8.52) we have

∫
Zδ(u0)G0Du0v → 0 as δ → 0. (8.54)
Ω
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Collecting together the definition (8.47) of II ε
δ and the results obtained in (8.51), 

(8.53), (8.52) and (8.54) proves that

lim
ε

II ε
δ → 0 as δ → 0. (8.55)

Finally, collecting together (8.47), (8.49) and (8.55) proves (8.46), as announced at 
the beginning of this sixth step.

Seventh step. In this seventh step we prove that
∫

Ω∩{u0=0}

F (x, u0) v = 0. (8.56)

By (2.12), we have F (x, uε)̃ = 0 in Ω \ Ωε, and even if Zδ(uε̃) = 1 in Ω \ Ωε, we have

F (x, uε)Zδ(uε)˜ = F (x, uε)̃Zδ(uε̃) in Ω, (8.57)

from which we deduce that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀δ > 0,
∫

Ω∩{u0=0}

F (x, uε)̃Zδ(uε̃) zεv =
∫

Ω∩{u0=0}

F (x, uε)Zδ(uε)˜ zεv =

=
∫

Ωε∩{u0=0}

F (x, uε)Zδ(uε) zεv ≤
∫
Ωε

F (x, uε)Zδ(uε) zεv.
(8.58)

On the other hand, (8.44), (8.9) and (6.5) imply that

F (x, uε)̃Zδ(uε̃)zεv → F (x, u0)Zδ(u0) v a.e. in Ω as ε → 0. (8.59)

Using Fatou’s lemma in the left-hand side of (8.58) and observing that

Zδ(u0) = 1 in {x ∈ Ω : u0(x) = 0} ∀δ > 0,

the almost everywhere convergence (8.59) and the inequality (8.58) imply that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀δ > 0,
∫

Ω∩{u0=0}

F (x, u0)v ≤ lim inf
ε

∫
Ω∩{u0=0}

F (x, uε)̃Zδ(uε̃) zεv ≤

≤ lim sup
ε

∫
Ωε

F (x, uε)Zδ(uε) zεv,
(8.60)

which letting δ tend to zero and using (8.46) implies (8.56).
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Eighth step. In this eighth step we prove that the second term of the right-hand side of 
(8.45) satisfies

lim
ε

∫
Ωε

F (x, uε)(1 − Zδ(uε)) zεv →
∫
Ω

F (x, u0) v as δ → 0. (8.61)

Indeed, similarly to the results obtained in the seventh step, we have

F (x, uε)(1 − Zδ(uε))˜ = F (x, uε)̃(1 − Zδ(uε̃)) in Ω, (8.62)

as well as

F (x, uε)̃(1 − Zδ(uε̃))zεv → F (x, u0)(1 − Zδ(u0))v a.e. in Ω. (8.63)

On the other hand, we have

1 − Zδ(uε̃) = 0 a.e. in {x ∈ Ω : uε̃(x) ≤ δ},

while the fact that the set {x ∈ Ω : uε̃(x) > δ} is a subset of Ωε (since uε̃ = 0 in Ω \Ωε) 
and the conditions (2.4 iii) and (2.4 ii) on the functions F (x, s) and Γ(s) imply that

0 ≤ F (x, uε)̃ = F (x, uε) ≤ h(x)
Γ(uε) = h(x)

Γ(uε̃)
≤ h(x)

Γ(δ) a.e. in {x ∈ Ω : uε̃(x) > δ}.

Together with 0 ≤ Zδ(s) ≤ 1 and (6.3), the two latest assertions imply that

0 ≤ F (x, uε)̃(1 − Zδ(uε̃))zεv ≤ h(x)
Γ(δ)v a.e. in Ω, (8.64)

where h(x)v ∈ L1(Ω) in view of condition (2.4 i).
From (8.62), (8.63), (8.64) and Lebesgue’s dominated convergence theorem we deduce 

that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀δ > 0,
∫
Ωε

F (x, uε)(1 − Zδ(uε)) zεv =
∫
Ω

F (x, uε)̃ (1 − Zδ(uε̃)) zεv →

→
∫
Ω

F (x, u0) (1 − Zδ(u0)) v as ε → 0.
(8.65)

Since

Zδ(u0) → χ{u0=0} a.e. in Ω as δ → 0,

applying again Lebesgue’s dominated convergence theorem thanks to (8.41) and then 
using (8.56) implies that
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∫
Ω

F (x, u0)(1 − Zδ(u0)) v →
∫
Ω

F (x, u0)(1 − χ{u0=0}) v =
∫
Ω

F (x, u0)v as δ → 0.

This proves (8.61).

Ninth (and last) step. Collecting together (8.16), (8.17), (8.18), (8.35), (8.36), (8.45), 
(8.46) and (8.61), we have proved that u0 satisfies (5.7 ii).

Recall that we have also proved in the fifth step above (see (8.41)) that u0 satisfies 
(5.7 i).

Finally recall that we have proved in the first step above that the subsequence that we 
have extracted satisfies convergences (5.3), (5.4) and (5.5), and that its limit u0 satisfies 
(5.6).

The proof of Theorem 5.1 is complete. �
Acknowledgments

The authors would like to thank Gianni Dal Maso and Luc Tartar for their friendly 
help, and Lucio Boccardo, Juan Casado-Díaz and Luigi Orsina for having introduced 
them to singular semilinear problems. They also would like to thank their own institu-
tions (Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Facoltà di Ingegneria 
Civile e Industriale, Sapienza Università di Roma, Departamento de Matemática Apli-
cada y Estadística, Universidad Politécnica de Cartagena, and Laboratoire Jacques-Louis 
Lions, Université Pierre et Marie Curie Paris VI et CNRS) for providing the support to 
reciprocal visits which allowed them to perform the present work. The work of Pedro J. 
Martínez-Aparicio has been partially supported by the grant MTM2015-68210-P of the 
Spanish Ministerio de Economía y Competitividad (MINECO-FEDER), the FQM-116 
grant of the Junta de Andalucía and the grant Programa de Apoyo a la Investigación de la 
Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19461/PI/14.

References

[1] L. Boccardo, J. Casado-Díaz, Some properties of solutions of some semilinear elliptic singular prob-
lems and applications to the G-convergence, Asymptot. Anal. 86 (2014) 1–15.

[2] L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial 
Differential Equations 37 (2010) 363–380.

[3] D. Cioranescu, F. Murat, Un terme étrange venu d’ailleurs, I, in: H. Brezis, J.-L. Lions (Eds.), 
Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. II, 
in: Research Notes in Math., vol. 60, Pitman, London, 1982, pp. 98–138;
D. Cioranescu, F. Murat, Un terme étrange venu d’ailleurs, II, in: H. Brezis, J.-L. Lions (Eds.), 
Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. III, 
in: Research Notes in Math., vol. 70, Pitman, London, 1982, pp. 154–178;
English translation: D. Cioranescu, F. Murat, A strange term coming from nowhere, in: A. Cherkaev, 
R.V. Kohn (Eds.), Topics in Mathematical Modeling of Composite Materials, in: Progress in Non-
linear Differential Equations and Their Applications, vol. 31, Birkhäuser, Boston, 1997, pp. 44–93.

[4] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, 
Comm. Partial Differential Equations 2 (1977) 193–222.

http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4243s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4243s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib424Fs1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib424Fs1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds2
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds2
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds2
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds3
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds3
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib434Ds3
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib435254s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib435254s1


D. Giachetti et al. / Journal of Functional Analysis 274 (2018) 1747–1789 1789
[5] G. Dal Maso, A. Garroni, New results on the asymptotic behaviour of Dirichlet problems in perfo-
rated domains, Math. Models Methods Appl. Sci. 3 (1994) 373–407.

[6] G. Dal Maso, F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated 
domains with homogeneous monotone operators, Ann. Sc. Norm. Super. Pisa 24 (1997) 239–290.

[7] G. Dal Maso, F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with 
simultaneously varying operators and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 
445–486.

[8] P. Donato, D. Giachetti, Existence and homogenization for a singular problem through rough sur-
faces, SIAM J. Math. Anal. 48 (2016) 4047–4086.

[9] D. Giachetti, P.J. Martínez-Aparicio, F. Murat, A semilinear elliptic equation with a mild singularity 
at u = 0: existence and homogenization, J. Math. Pures Appl. 107 (2017) 41–77.

[10] D. Giachetti, P.J. Martínez-Aparicio, F. Murat, Definition, existence, stability and uniqueness of 
the solution to a semilinear elliptic problem with a strong singularity at u = 0, Ann. Sc. Norm. 
Super. Pisa (2017), in press.

[11] D. Giachetti, P.J. Martínez-Aparicio, F. Murat, Advances in the study of singular semilinear elliptic 
problems, in: F. Ortegón Gallego, M.V. Redondo Neble, J.R. Rodríguez Galván (Eds.), Trends in 
Differential Equations and Applications, in: SEMA-SIMAI Springer Series, vol. 8, Springer Interna-
tional Publishing, Switzerland, 2016, pp. 221–241.

[12] D. Giachetti, P.J. Martínez-Aparicio, F. Murat, Remarks on the definition of the solution to a 
semilinear elliptic problem with a strong singularity at u = 0, in preparation.

[13] D. Giachetti, B. Vernescu, M.A. Vivaldi, Asymptotic analysis of singular problems in perforated 
cylinders, Differential Integral Equations 29 (2016) 531–562.

[14] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. 
Math. Soc. 111 (1991) 721–730.

[15] V.A. Marcenko, E.Ja. Hruslov, Boundary Value Problems in Domains with Fine-Grained Boundary 
(in Russian), Naukova Dumka, Kiev, 1974.

[16] F. Oliva, F. Petitta, Finite and infinite energy solutions of singular elliptic problems: existence and 
uniqueness, J. Differential Equations 264 (2018) 311–340.

[17] C.A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 
(1976) 53–63.

http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4447s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4447s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib444D75s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib444D75s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib444D7532s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib444D7532s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib444D7532s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib446F47s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib446F47s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D31s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D31s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D32s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D32s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D32s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D33s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D33s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D33s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib474D4D33s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib475656s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib475656s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4C4Ds1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4C4Ds1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4D48s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4D48s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4F50s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib4F50s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib5374s1
http://refhub.elsevier.com/S0022-1236(17)30436-6/bib5374s1

	Homogenization  of a Dirichlet semilinear elliptic problem  with a strong singularity at u=0  in a domain with many small holes
	1 Introduction
	2 Notation and assumptions
	2.1 Notation
	2.2 The matrix A(x) and the function F(x,s)
	2.3 The perforated domains Ωε

	3 Deﬁnition of a solution to the singular semilinear problem in Ωε
	3.1 The space V(Ωε) of test functions and the deﬁnition of a solution to the problem in Ωε
	3.2 Statements of existence, stability and uniqueness results for the problem in Ωε

	4 Deﬁnition of a solution to the homogenized singular semilinear problem in Ω
	5 Statement of the homogenization result for the singular semilinear problem in Ωε
	6 Deﬁnition of the function zε, and the strong convergence of χΩε
	6.1 Deﬁnition of the function zε, a variant of the test function wε
	6.2 Strong convergence of the sequence χΩε in L1(Ω)

	7 A priori estimates for the solutions to the singular semilinear problem in Ωε
	8 Proof of the homogenization Theorem 5.1
	Acknowledgments
	References


