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GELFAND-TYPE PROBLEMS INVOLVING THE

1-LAPLACIAN OPERATOR

A. Molino and S. Segura de León

Abstract: In this paper, the theory of Gelfand problems is adapted to the 1-Lapla-
cian setting. Concretely, we deal with the following problem:{

−∆1u = λf(u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a domain, λ ≥ 0, and f : [0,+∞[ → ]0,+∞[ is any

continuous increasing and unbounded function with f(0) > 0.

We prove the existence of a threshold λ∗ =
h(Ω)
f(0)

(h(Ω) being the Cheeger constant

of Ω) such that there exists no solution when λ > λ∗ and the trivial function is

always a solution when λ ≤ λ∗. The radial case is analyzed in more detail, showing
the existence of multiple (even singular) solutions as well as the behavior of solutions

to problems involving the p-Laplacian as p tends to 1, which allows us to identify
proper solutions through an extra condition.
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1. Introduction

This paper is devoted to analyzing Gelfand-type problems when the
Laplacian operator is replaced with the 1-Laplacian. Regarding the do-
main Ω ⊂ RN (N ≥ 1), it is a bounded open set having a Lipschitz
continuous boundary. Our aim is twofold. On one hand, we obtain so-
lutions to problems of this kind and check that the main properties of
Gelfand problems driven by the p-Laplacian (with p > 1) still hold.
We point out that assumptions of great generality on the function that
appears on the right hand side are considered. On the other hand, we
provide asymptotic information of Gelfand p-Laplacian problems as p
goes to 1.

The classical Gelfand problem involves the existence and boundedness
of positive solutions to the following semilinear elliptic equation:

(1)

{
−∆u = λeu in Ω,

u = 0 on ∂Ω,
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where λ > 0. This problem was introduced in the lecture notes [23] for
its application to thermal self-ignition problems of a chemically active
mixture of gases in a vessel (other applications can be found in [15, 28,
30]).

Many authors have analyzed this problem, obtaining a threshold λ∗ >
0 beyond which there is no solution and such that there exists a minimal
solution wλ for each λ ∈ [0, λ∗[. Even more, the family {wλ : 0 ≤ λ < λ∗}
is increasing in λ. It is worth mentioning that we mean minimal solution
when it is smaller than any other positive solution. The multiplicity of
solutions in the radial case has also been studied jointly with the associ-
ated bifurcation diagram, which depends on the dimension N (see [27]).

In recent decades, the classical Gelfand problem has been extended
in two main directions. On the one hand, the exponential function is
replaced with convex positive functions, nondecreasing, and superlinear
at +∞ (like the power function f(u) = (1 + u)m, m > 1). In this
general setting, we refer to the pioneering works [9, 17, 35] and the
recent survey [10]. On the other hand, larger classes of operators are
considered; we highlight the fractional Laplacian [39], the Laplacian with
a quadratic gradient term [7, 36], the 1-homogeneous p-Laplacian [14],
and the k-Hessian [25, 26].

However, the most studied problem is that driven by the p-Laplacian
(p > 1) [13, 16, 21, 22, 42], which extends the previous problem (1)
into a more general framework and reads as follows:

(Qλ)

{
−div(|∇u|p−2∇u) = λf(u) in Ω,

u = 0 on ∂Ω,

under the assumptions

(Hp)
f : [0,∞[→ [0,∞[ is an increasing C1 function

with lims→∞ f(s)/sp−1 =∞ and f(0) > 0.

Recall that a (weak) solution to problem (Qλ) is a function u ∈W 1,p
0 (Ω)

satisfying∫
Ω

|∇u|p−2∇u · ∇ϕ =

∫
Ω

λ f(u)ϕ for all ϕ ∈ C∞c (Ω).

Note that the solutions are also superharmonic functions. Therefore, by
using the strong maximum principle (see e.g. [37]), solutions to (Qλ) are
positive in Ω.

On the existence of solutions, the existence has been shown in [13,
Theorem 1.4] of a critical value λ∗p > 0 such that for each λ < λ∗p
there exists wλ(p), a minimal and regular solution. In addition, if λ >



Gelfand-Type Problems 271

λ∗p, then problem (Qλ) admits no regular solution. It should be noted
that by regular solution we mean that f(wλ(p)) ∈ L∞(Ω). It should be
remembered that, due to regularity results, this implies that the solution
belongs to C1,α(Ω) (see e.g. [32]).

Regarding the existence and boundedness of solutions to (Qλ) for λ =
λ∗p, called extremal solution and denoted by u∗p := limλ→λ∗p wλ(p), there

are only partial results. Specifically, for Ω = B1(0) (the unit ball with
center zero), it has been obtained that extremal solution u∗p is bounded

if N < p2+3p
p−1 ([11, Theorem 1.3]). We stress that, in general domains, the

optimal dimension that guarantees the boundedness of u∗p remains un-
known. Nevertheless, some interesting results in the original case p = 2
and f convex satisfying (Hp) should be mentioned. Indeed, the bound-
edness of extremal solutions for dimension N ≤ 3 is proved in [38],
for N = 4 in [43], and, recently, in [12] is obtained for 5 ≤ N ≤ 9. Ob-
serve that this result is optimal since it is well known that for N ≥ 10,
λ = 2(N − 2), and f(u) = eu, there is the presence of the singular
H1

0 (B1(0)) stable weak solution: u∗ = −2 log |x|.

This paper is concerned with the limit problem (Qλ) as p goes to 1,
namely

(Pλ)

−div

(
Du

|Du|

)
= λf(u) in Ω,

u = 0 on ∂Ω.

Here Ω is an open bounded set with a Lipschitz boundary and λ is
a positive parameter. As for nonlinearity f , it satisfies the following
hypotheses:

(H)
f : [0,∞[→ [0,∞[ is an increasing and continuous function

with lims→∞ f(s) =∞ and f(0) > 0.

Note that (H) conditions are more relaxed than (Hp) conditions for
p-Laplacian problem (Qλ).

Regarding the 1-Laplacian ∆1 = div
(
Du
|Du|

)
, it has been discussed in

many articles in recent years. This singular operator has specific features
starting from the definition of solution (following [4, 5, 19]). This notion
of solution is introduced in Definition 2.1 below. One of the main interests
for studying equations involving the 1-Laplacian operator comes from the
variational approach to image processing developed in [40].

Our objective is to analyze problem (Pλ) checking if all the features of
Gelfand-type problems governed by the p-Laplacian operator still hold.
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Several aspects of this article are worth noting for their unexpected na-
ture. First of all, we are able to handle a general continuous increasing
function f , without requiring any kind of convexity, growth assumption,
or smoothness. Taking any of such functions, we make an exhaustive
study to the one-dimensional case (Theorem 3.2 and Proposition 3.3).
Further, for general domains and without restriction on dimension we

show the existence of a critical parameter λ∗ = h(Ω)
f(0) (h(Ω) being the

Cheeger constant of Ω) such that there are solutions when λ ≤ λ∗ and
nonexistence of a solution whenever λ > λ∗ (Theorem 4.3). In addition,
the minimal solutions correspond to the trivial ones.

Another unexpected aspect occurs in the radial setting (Section 5)
and refers to the bifurcation diagram (Figure 2). To be more precise, it
is well known that for p-Laplacian Gelfand problems (Qλ), in the unit

ball with f(u) = eu and dimensions p < N < p2+3p
p−1 , there exists a criti-

cal value λp = pp−1(N − p) for which the problem has countably many
bounded radial solutions; see Figure 4 ([22, 26], and also [31]). In our
setting, we also find a critical value λ = N−1

f(0) for which our problem

has a continuum of bounded solutions for every f satisfying (H) (The-
orem 5.2). Nevertheless, just one of them is a limit of p-Laplacian-type
problems. Concretely, we obtain too many solutions and so we won-
der which of them are limits of p-Laplacian problems. We can identify
these proper solutions through an extra condition (16) (Theorem 6.4). It
turns out that most bounded solutions to p-problems tend to unbounded
solutions, except for the minimal solutions that tend towards zero (The-
orem 6.5). Thus, from the point of view of bifurcation diagrams, in the
p-Laplace framework a curve is obtained that oscillates around λp, while
in the limit case the diagram has an asymptote in the axis λ = 0. It
is completely unexpected that bifurcation diagrams corresponding to
p-problems tend to a bifurcation diagram so close to zero. A further fea-
ture is that, for the 1-Laplacian, this diagram does not depend on the
dimension N ≥ 2.

This paper is organized as follows: In Section 2 we recall some prop-
erties of the space of functions of bounded variation as well as the con-
cept of solution to problem (Pλ). In Section 3 we deal with the one-
dimensional case. In Section 4 we study the case N ≥ 2, specifically the
existence of a critical value λ∗ as well as minimal solutions. Section 5 is
devoted to analyzing the radial case Ω = B1(0) when N ≥ 2. Finally, in
Section 6 we discuss the p-Laplacian problem. We compare the results
obtained with those of the p-Laplacian, taking limits when p tends to 1.
We end the section by giving estimates of the threshold λ∗p and its limit
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as p tends to 1 as well as the limit of minimal solutions to p-Laplacian
problems when p goes to 1.

2. Preliminaries

2.1. Notation. Throughout this paper, the symbol HN−1(E) stands
for the (N − 1)-dimensional Hausdorff measure of a set E ⊂ RN and |E|
for its Lebesgue measure. Moreover, Ω ⊂ RN denotes an open bounded
set with a Lipschitz boundary. Thus, an outward normal unit vector ν(x)
is defined for HN−1-almost every x ∈ ∂Ω.

We will denote by W 1,q
0 (Ω) the usual Sobolev space, of measurable

functions having weak gradient in Lq(Ω;RN ) and zero trace on ∂Ω. Fi-
nally, if 1 ≤ p < N , we will denote by p∗ = Np/(N − p) its Sobolev
conjugate exponent.

2.2. Functions of bounded variation. The natural space to study
problems involving the 1-Laplacian is the space of functions of bounded
variation, defined as

BV (Ω) = {u ∈ L1(Ω) : Du is a bounded Radon measure},

where Du : Ω → RN denotes the distributional gradient of u. In what
follows, we denote the distributional gradient by ∇u if it belongs
to L1(Ω;RN ). We recall that the space BV (Ω) with norm

‖u‖BV (Ω) =

∫
Ω

|Du|+
∫

Ω

|u|

is a Banach space which is nonreflexive and nonseparable.
On the other hand, the notion of a trace on the boundary of functions

belonging to Sobolev spaces can be extended to functions u ∈ BV (Ω), so
that we may write u

∣∣
∂Ω

, through a bounded operator BV (Ω) ↪→ L1(∂Ω),

which is also onto. As a consequence, an equivalent norm on BV (Ω) can
be defined (see [3]):

‖u‖ =

∫
Ω

|Du|+
∫
∂Ω

|u| dHN−1.

We will often use this norm in what follows.
We denote by Ju the set of all approximate jump points of u. For

every x ∈ Ju there exist two real numbers u+(x) > u−(x) which are the
one-sided limits of u at x.

In addition, the following continuous embeddings hold:

BV (Ω) ↪→ Lm(Ω), for every 1 ≤ m ≤ N

N − 1
,
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which are compact for 1 ≤ m < N
N−1 . The continuous embedding

BV (Ω) ↪→ L
N
N−1 (Ω) can be improved in the setting of Lorentz space:

BV (Ω) ↪→ L
N
N−1 ,1(Ω) (we refer to [2] for the embedding W 1,1(Ω) ↪→

L
N
N−1 ,1(Ω), and we remark that the extension to BV (Ω) is standard;

see [44]). For a detailed account on Lorentz spaces, we refer to [24]. Be-

sides this embedding, we will just need L
N
N−1 ,1(Ω) to be a Banach space

whose dual is the Marcinkiewicz (or weak Lebesgue) space LN,∞(Ω).
This is the space of all measurable functions u : Ω→ R satisfying

kN |{|u| > k}| ≤ C for all k > 0,

where C is a constant independent of k. It is straightforward that
LN (Ω) ⊂ LN,∞(Ω). The simplest instance of a function LN,∞(Ω)\LN (Ω)
is defined by u(x) = 1

|x| .

In this paper, we will use some functionals which are lower semicon-
tinuous with respect to the L1-convergence. Besides the BV-norm, we
also apply the lower semicontinuity of the functional given by

u 7→
∫

Ω

ϕ |Du|,

where ϕ is a nonnegative smooth function.
For further properties of functions of bounded variations, we refer

to [3] (see also [20, 44]).

2.3. L∞-divergence-measure vector fields. Following [4, 19], we
define the concept of solution to problem (Pλ) through a vector field z
which plays the role of Du

|Du| . Since we need to give a meaning to the

dot product of z and the gradient of a function of bounded variation
as well as the weak trace on ∂Ω of the normal component of z, the
Anzellotti theory is required. We remark that most of the solutions we
deal with are bounded, so that this theory applies. Nonetheless, we find
some unbounded solutions which cannot be studied within Anzellotti’s
theory. Therefore, we have to develop a slight extension of this theory,
which we introduce below.

Consider the space X (Ω) = {z ∈ L∞(Ω;RN ) : div z ∈ LN,∞(Ω)}.
For z ∈ X (Ω) and u ∈ BV (Ω), we define (z, Du) : C∞c (Ω) → R as a
distribution by:

(2) 〈(z, Du), ϕ〉 = −
∫

Ω

uϕ div z−
∫

Ω

u z∇ϕ, for all ϕ ∈ C∞c (Ω).

We point out that the first integral is well defined since u ∈ BV (Ω) ⊂
L

N
N−1 ,1(Ω) and div z ∈ LN,∞(Ω). This distribution was introduced in [6]
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for some pairs (z, u) satisfying certain compatibility conditions. For in-
stance, div z ∈ LN (Ω) and u ∈ BV (Ω) or div z ∈ L1(Ω) and u ∈
BV (Ω) ∩ L∞(Ω). In such cases, it is proved that (z, Du) is a Radon
measure with finite total variation. More precisely, it is seen that for
every Borel B set with B ⊆ U ⊆ Ω (U open) it holds that

(3)

∣∣∣∣∫
B

(z, Du)

∣∣∣∣ ≤ ∫
B

|(z, Du)| ≤ ‖z‖L∞(U)

∫
B

|Du|.

Taking advantage of the cases already dealt with, first using trunca-
tions Tk(u) and then letting k go to ∞, this inequality can easily been
extended to every u ∈ BV (Ω) and z ∈ X (Ω).

We recall the notion of weak trace on ∂Ω of the normal component
of z, denoted by [z, ν], where ν stands for the outer normal unitary vector
of ∂Ω. It is defined in [6] as an extension of the classical one, that is,

(4) [z, ν] = z · ν, for z ∈ C1(Ωδ;RN ),

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}, for some δ > 0 sufficiently small.
It satisfies [z, ν] ∈ L∞(∂Ω) and ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ).

In [6] a Green formula involving the measure (z, Du) and the weak
trace [z, ν] is established, namely:

(5)

∫
Ω

(z, Du) +

∫
Ω

udiv z =

∫
∂Ω

u[z, ν]dHN−1

for those pairs (z, u) considered in [6]. This formula also holds for z ∈
X (Ω) and u ∈ BV (Ω); to prove it, just use truncations again.

2.4. Definition of solution. Once we have the suitable theory of
L∞-divergence-measure vector fields, we are in a position to introduce
the definition of solution to our problem.

Definition 2.1. A function u ∈ BV (Ω) is said to be a solution to
problem (Pλ) if f(u) ∈ LN,∞(Ω) and there exists a vector field z ∈
L∞(Ω;RN ) satisfying

(1) ‖z‖∞ ≤ 1.
(2) − div z = λf(u) in D′(Ω).
(3) (z, Du) = |Du| as measures in Ω.
(4) [z, ν] ∈ sign(−u) HN−1-a.e. on ∂Ω.

We remark that since div z ∈ LN,∞(Ω), it follows that the theory of
the previous subsection applies. We point out that the unbounded radial
solutions we find always satisfy f(u) = N−1

λ|x| , so that f(u) ∈ LN,∞(Ω).

Notice that, in Definition 2.1, the field z plays the role of Du
|Du| owing

to ‖z‖∞ ≤ 1 and (z, Du) = |Du| holds.
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We point out that, in general, the boundary condition does not hold
in the sense of traces. Condition (4) is a weak form of the boundary
condition.

3. Unidimensional case

In this section, we consider a bounded open set Ω ⊂ R. Then Ω can be
expressed as a union of countably many pairwise disjoint open intervals,
that is: Ω = ∪n∈I ]an, bn[ with ]an, bn[ pairwise disjoint, here I denoting
either the set of all positive integers N or {1, 2, . . . , k}. Moreover, we
write L = maxn∈I(bn − an), so that there is n ∈ I which attains this
length: L = bn − an (observe that it need not be unique).

Therefore, problem (Pλ) becomes

(6)

−
(
u′

|u′|

)′
= λf(u) in Ω,

u = 0 on ∂Ω.

To begin with, a remark is in order. The identity

−z′ = λf(u)

yields z′ < 0 since the right hand side is positive. Thus, z is a decreas-
ing function. Moreover, since we search solutions such that f(u) be-
longs to L1(an, bn), the same identity implies z′ ∈ L1(an, bn). That is,
z is an absolutely continuous function and so (z, u′) denotes the usual
product zu′.

Lemma 3.1. Every solution u to problem (6) is constant on each inter-
val ]an, bn[.

Proof: Assume that there is a subset E ⊂ ]an, bn[ satisfying u′ E > 0.
It follows from condition zu′ = u′ that the restriction of z to E must
be 1. Since z is decreasing, this is not possible. A similar argument holds
if u′ E < 0. Therefore, u′(x) = 0 for all x ∈ ]an, bn[.

Theorem 3.2. Set λ∗ = 2
Lf(0) .

(1) If λ > λ∗, then problem (6) has no solution.
(2) If 0 < λ ≤ λ∗, then the trivial solution is the minimal solution to

problem (6).

Proof: (1) Assume that u is a solution to problem (6). By Lemma 3.1,
u must be constant on each interval ]an, bn[, say u(x) = An. Indeed, from
equation (6) it follows that z′(x) = −λf(An), so z(x) = −λf(An)x+ C
for some constant C. Bearing in mind the condition ‖z‖∞ ≤ 1, the
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steepest slope occurs when z(x) = 1
bn−an (−2x+an+bn). Then λf(An) ≤

2
bn−an , wherewith

f(0) ≤ f(An) ≤ 2

(bn − an)λ
.

Therefore, λ ≤ 2
(bn−an)f(0) for all n ∈ N and so λ ≤ 2

Lf(0) .

(2) It is straightforward that u = 0 is a solution with an associated
function given by z(x) = λf(0)

(
−x+ bn+an

2

)
for x ∈ ]an, bn[.

Proposition 3.3.

(1) If 0 < λ < λ∗, then there exist nontrivial nonnegative solutions.
(2) If λ = λ∗, then every solution vanishes on each interval whose

length is L.

Proof: (1) Fix 0 < λ < λ∗ and split the index set I = I1∪I2, with I1 6= ∅.
Then consider

u(x) =

f−1

(
2

(bn − an)λ

)
if x ∈ ]an, bn[ and n ∈ I1,

0 otherwise,

and

z(x) =


1

bn − an
(−2x+ an + bn) if x ∈ ]an, bn[ and n ∈ I1,

λf(0)

(
−x+

bn + an
2

)
otherwise.

It is easy to check that u is a solution to problem (6) with associated
function z.

Therefore, each choice of I1 generates a nontrivial solution.

(2) Consider an interval ]an, bn[ such that bn − an = L. Since the func-
tion z having the steepest slope is given by 1

bn−an (−2x + an + bn), it
follows that

λ∗f(u) = −z′ ≤ 2

bn − an
=

2

L
= λ∗f(0).

Thus, f(u) ≤ f(0) and so u = 0 by the increasing hypothesis on f .

Remark 3.4. Observe that, when I1 is an infinite set and f(s) = es, the
solution defined in the above proposition is not bounded since u(x) =
log
(

2
(bn−an)λ

)
and bn − an is arbitrarily small.

Next we apply the previous results to the case Ω =]− 1, 1[.



278 A. Molino, S. Segura de León

Corollary 3.5. Let Ω =] − 1, 1[. Then λ∗ = 1
f(0) and the solutions to

problem (6) are the following:

(1) (Minimal solutions) If 0 < λ ≤ λ∗, the minimal solution is the
trivial one.

(2) (Positive solutions) If 0 < λ < λ∗, a second solution is given by

u(x) = f−1

(
1

λ

)
with associated function z(x) = −x.

This last result is shown in Figure 1 below. There, the continuum
of solutions is illustrated for the Gelfand problem with the 1-Laplacian
operator in the unit ball with dimension one.

‖u‖∞

λ
0 λ∗

N = 1

Figure 1.

4. Existence and nonexistence of minimal solutions

Let N ≥ 2 and consider Ω ⊂ RN a bounded open set having a
Lipschitz continuous boundary. In this section a critical value is found,
λ∗ > 0, such that a minimal solution to problem (Pλ) exists if λ ≤ λ∗

and no solution exists if λ > λ∗. This result is proved as a consequence
of a criterion to show when the 1-Laplacian equation is solvable (see [34,
Theorem 4.2]). In fact, it has the following straightforward consequence.

Proposition 4.1. Consider the problem

(7)

{
−∆1u = µ in Ω,

u = 0 on ∂Ω,

with datum µ ∈W−1,∞(Ω).

(1) If ‖µ‖W−1,∞(Ω) < 1, then u ≡ 0 is a solution to problem (7).
(2) If ‖µ‖W−1,∞(Ω) > 1, then there is no solution to problem (7).
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A reminder is in order: The space W−1,∞(Ω) is the dual space of the

Sobolev space W 1,1
0 (Ω) and its norm is given by

(8) ‖µ‖W−1,∞(Ω) =sup

{
|〈µ, v〉W−1,∞(Ω),W 1,1

0 (Ω)|∫
Ω
|∇v| dx

: v ∈W 1,1
0 (Ω)\{0}

}
.

Applying it to the constant function µ ≡ 1, this expression becomes

‖χΩ‖W−1,∞(Ω) = sup

{ ∣∣∫
Ω
v dx

∣∣∫
Ω
|∇v| dx

: v ∈W 1,1
0 (Ω)\{0}

}

= sup

{ ∫
Ω
|v| dx∫

Ω
|∇v| dx

: v ∈W 1,1
0 (Ω)\{0}

}
.

(9)

On the other hand, following the arguments of [1, Corollary 3.4], it leads
to

(10) ‖χΩ‖W−1,∞(Ω) =sup

{ ∫
Ω
|v| dx∫

Ω
|Dv|+

∫
∂Ω
|v| dHN−1

: v∈BV (Ω)\{0}
}
.

Our aim is to connect this expression with the Cheeger constant,
which plays the role of the first eigenvalue of the operator −∆1 (see [29]).
Recall that the Cheeger constant of a domain Ω is defined as

h(Ω) = inf

{
P (D)

|D|

}
,

where the infimum is taken over all nonempty sets of finite perimeterD ⊂
Ω, and P (D) stands for the perimeter of D. As pointed out in [29], this
constant can be written as

h(Ω) = inf

{∫
Ω
|Dv|+

∫
∂Ω
|v| dHN−1∫

Ω
|v| dx

: v ∈ BV (Ω)\{0}

}
.

Going back to (10), it follows that h(Ω) = ‖χ
Ω
‖−1
W−1,∞(Ω). By the way,

as a consequence of (9), it is straightforward that

h(Ω) = inf

{∫
Ω
|∇v| dx∫

Ω
|v| dx

: v ∈W 1,1
0 (Ω)\{0}

}
.

In terms of the Cheeger constant, Proposition 4.1 can be written for
a constant datum λ as follows.
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Proposition 4.2. Consider the problem

(11)

{
−∆1u = λ in Ω,

u = 0 on ∂Ω.

(1) If 0 < λ < h(Ω), then u ≡ 0 is a solution to problem (11).
(2) If λ > h(Ω), then there is no solution to problem (11).

This result is the key to proving the following theorem on minimal
solutions to problem (Pλ).

Theorem 4.3. Fix N ≥ 2 and let Ω ⊂ RN be a bounded open set having

a Lipschitz continuous boundary. Set λ∗ = h(Ω)
f(0) , then

(1) If 0 < λ ≤ λ∗, then u ≡ 0 is a solution to problem (Pλ).
(2) If λ > λ∗, then there is no solution to problem (Pλ).

Proof: (1) Consider 0 < λ < λ∗. Applying Proposition 4.2 to λf(0), it
yields that u ≡ 0 is a solution to problem (Pλ). In order to prove that
u ≡ 0 is a solution for λ∗ as well, observe that since it is a solution for
any 0 < λ < λ∗, there exist zλ ∈ L∞(Ω;RN ) satisfying ‖zλ‖∞ ≤ 1 and
−div zλ = λf(0) in the sense of distributions. It follows from ‖zλ‖∞ ≤ 1
for all λ < λ∗ that there exists a sequence (λn)n and zλ∗ ∈ L∞(Ω;RN )
such that λn → λ∗ and

zλn ⇀ zλ∗ *-weakly in L∞(Ω;RN ).

Obviously, ‖zλ∗‖∞ ≤ 1. Furthermore, since∫
Ω

zλn · ∇v dx = λnf(0)

∫
Ω

v dx

holds for every v ∈W 1,1
0 (Ω) and every n ∈ N, it follows that∫
Ω

zλ∗ · ∇v dx = λ∗f(0)

∫
Ω

v dx

holds for every v ∈ W 1,1
0 (Ω). Therefore, −div zλ∗ = λ∗f(0) holds in

the sense of distributions and so u ≡ 0 is a solution to problem (Pλ)
with λ = λ∗.

(2) Take λ > λ∗ and assume that problem (Pλ) has a solution u. Then
λf(0) > h(Ω) and it follows that ‖λf(u)‖W−1,∞(Ω) > 1. Hence, Propo-
sition 4.1 implies that there is no solution to problem (Pλ), which is a
contradiction.

Remark 4.4. It is worth highlighting that since u ≡ 0 is a solution for λ∗,
then it is bounded without restriction on dimension N (Theorem 3.2 and
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Theorem 4.3). This is consistent with the results of [11, Theorem 1.3], in
which the authors establish that the extremal solution to problem (Qλ)

is bounded if N < p2+3p
p−1 , for every p > 1.

Remark 4.5. It is not surprising that the trivial function is a minimal
solution. After all, a minimal solution to p-Laplacian Gelfand problems
is obtained as the limit of the sequence recursively defined in W 1,p

0 (Ω)
by

u0 = 0,

−∆pun = λf(un−1), n ≥ 1.

In our case, the unique solution to problem

−∆1u = λf(0)

is the trivial solution, wherewith the sequence previously considered also
provides the minimal solution.

5. The radial case

This section is devoted to fully describing all the radial solutions to
problem (Pλ) when the domain is the unit ball, Ω = B1(0), of RN ,
N ≥ 2. The existence of bounded (regular) and unbounded (singular)
solutions will be shown. Recall that the Cheeger constant of the unit ball
is h(Ω) = N (see, for instance, [29]).

Next it is shown what the vector field z associated with a solution u
must be like. Assume that u is not constant in a radial zone, which we
describe as {ρ1 < |x| < ρ2} with 0 ≤ ρ1 < ρ2 ≤ 1. Then u(x) = g(|x|)
for a certain nonconstant smooth function g and consequently z(x) =
g′(|x|)x
|g′(|x|)||x| . The case g increasing on some interval is not possible since it

implies z(x) = x
|x| , so that λf(u) = −div z(x) = −N−1

|x| is negative; this

fact contradicts the search for nonnegative solutions. Hence, g must be
decreasing and so z(x) = − x

|x| in the whole radial zone {ρ1 < |x| < ρ2}.
Assume now that u is constant in a radial zone of B1(0) (either a

smaller ball or a ring). Then −div z = λf(u) must be constant and so
z = −Ax for some positive A. It is easy to find an estimate on A as
a consequence of condition ‖z‖∞ ≤ 1. In the case of u being nontrivial
and this zone reaching the boundary, the condition [z, ν] = −1 must be
fulfilled; thus A = 1 and z = −x.

It is worth remarking that there is only one more setup, as shown in
the next result.
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Lemma 5.1. Let u be a solution to problem (Pλ) with associated vector
field z. If u is constant in one radial zone and nonconstant in another,
then there exists 0 < ρ < 1 such that u is constant in Bρ(0) and non-
constant in B1(0)\Bρ(0). Furthermore,

z(x) =


−x
ρ

if |x| < ρ,

− x

|x|
if ρ < |x| < 1.

Proof: Assume that there exist ε > 0 and ε < ρ < 1 satisfying

(1) u is not constant if ρ− ε < |x| < ρ,
(2) u is constant if ρ < |x| < ρ+ ε.

Then

(1) z(x) = − x
|x| if ρ− ε < |x| < ρ,

(2) z(x) = −Ax if ρ < |x| < ρ+ ε.

We deduce that A = 1
ρ to keep z continuous, avoiding singular measures

of div z. Hence, for ρ < |x| < ρ + ε, we have |z(x)| = |x|
ρ > 1, which

contradicts the condition ‖z‖∞ ≤ 1. Therefore, the only possible setup
is that stated in this lemma.

Theorem 5.2. Let N ≥ 2 and set λ∗ = N
f(0) and λ = N−1

f(0) . Then,

(1) For every 0 < λ < λ∗ there exists a constant nontrivial solution to
problem (Pλ).

(2) For every 0 < λ ≤ λ there exists an unbounded solution to prob-
lem (Pλ).

(3) For every 0 < λ ≤ λ there exist infinitely many bounded solutions
to problem (Pλ). More precisely, for each value α∈

]
f−1

(
N
λ

)
,+∞

[
,

we can find a solution satisfying ‖u‖∞ = α.
(4) If λ > λ, then every solution to problem (Pλ) is constant.

Moreover, only the solutions corresponding to λ = λ satisfy the Dirichlet
condition in the sense of traces.

Proof: (1) Fix 0 < λ < λ∗. Observe that if u is a constant nontrivial
solution, then z = −x, wherewith −div z = N . It follows from N =
λf(u) that u(x) = f−1

(
N
λ

)
.

Notice that for λ = λ∗, it follows that u(x) = f−1(f(0)), recovering
the minimal solution.
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(2) Fix 0 < λ ≤ λ and let u be a nonconstant solution. Assume that there
is no radial zone where u is constant. Then z(x) = − x

|x| and λf(u) =

−div z(x) = N−1
|x| . Therefore, u(x) = f−1

(
N−1
λ|x|

)
. It is obvious that u is

an unbounded solution.

(3) Fix 0 < λ ≤ λ and assume that u is a solution which is constant in
one radial zone and nonconstant in another. By Lemma 5.1, there exists
0 < ρ < 1 such that

z(x) =


−x
ρ

if |x| < ρ,

− x

|x|
if ρ < |x| < 1.

It is now straightforward from this expression that

u(x) =


f−1

(
N

λρ

)
if |x| < ρ,

f−1

(
N − 1

λ|x|

)
if ρ < |x| < 1.

Observe that u is a bounded solution satisfying ‖u‖∞ = f−1
(
N
λρ

)
. Since

0 < ρ < 1, it follows that ‖u‖∞ can take every value of the interval]
f−1

(
N
λ

)
,+∞

[
. Notice that u is a discontinuous solution.

(4) Let 0 < λ < λ∗. By Lemma 5.1, if there exists a nonconstant
solution to problem (Pλ), then there exists ε > 0 such that z(x) = − x

|x|
if 1 − ε < |x| < 1. It yields u(x) = f−1

(
N−1
λ|x|

)
if 1 − ε < |x| < 1. Thus,

N−1
λ|x| = f(u(x)) ≥ f(0) for all 1 − ε < |x| < 1, from where N−1

λ ≥ f(0)

follows. Therefore, λ ≤ N−1
f(0) = λ.

To check the last claim of Theorem 5.2, note that u(x) = 0 for |x| = 1
implies that f−1

(
N−1
λ

)
= 0 and as a consequence λ = λ.

The different types of bounded solutions established in Theorem 4.3
and Theorem 5.2 can be seen in Figure 2 below. Note that the blue-
colored zone corresponds to the discontinuous solutions with 0 < λ ≤ λ,
of type (3) of the previous theorem. When λ = λ = N−1

f(0) , the Dirichlet

condition in the sense of traces holds: u(x) = 0 for |x| = 1. We will
prove in Section 6 that the red-colored continuum corresponds to solu-
tions which are limits of solutions to the corresponding Gelfand problems
driven by the p-Laplacian.
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‖u‖∞

λ
0 λ∗λ

N ≥ 2

Figure 2.

Remark 5.3. When f is a bounded function some changes are necessary.
One important feature is that no unbounded solution can be found.
Consider that the image of f is the interval [f(0), A[. Then Theorem 5.2
becomes

(1) For every N
A < λ < λ∗ there exists a constant nontrivial solution

to problem (Pλ).
(2) For every N−1

A < λ ≤ λ there exist infinitely many bounded
solutions to problem (Pλ). More precisely, for each value α ∈]
f−1

(
N
λ

)
,+∞

[
, we can find a solution satisfying ‖u‖∞ = α.

(3) If λ > λ, then every solution to problem (Pλ) is constant.

6. Connection with Gelfand-type problems involving the
p-Laplacian operator

In this section we show when the Gelfand problem for the 1-Laplacian
can be seen as the limit of Gelfand problems for the p-Laplacian as p goes
to 1. Thus, in what follows, we assume (Hp) for all p close enough to 1.
We analyze the general case and two aspects of the convergence of radial
solutions.

We begin by introducing some notation. Let p > 1. We will write
(λ, u) ∈ Gp if λ > 0 and u ∈W 1,p

0 (Ω) is a solution to problem (Qλ).
We will write (λ, u) ∈ G if λ > 0, u ∈ BV (Ω), and there exist se-

quences (pn)n, (λn)n, and (un)n satisfying
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(1) pn → 1.
(2) λn → λ.
(3) un(x)→ u(x) a.e. in Ω.
(4) (λn, un) ∈ Gpn for all n ∈ N.

The next result shows that (λ, u) ∈ G implies that u is a solution to
problem (Pλ).

Proposition 6.1. Let (λp, up) ∈ Gp and assume that there exists g ∈
L1(Ω) satisfying f(up)up ≤ g for all p > 1. If λp → λ, then (up to
subsequences)

(1) up → u strongly in L1(Ω).
(2) f(up)up → f(u)u strongly in L1(Ω).
(3) f(up)→ f(u) strongly in L1(Ω).
(4) F (up)→ F (u) strongly in L1(Ω).
(5) Function u is a solution to problem (Pλ).

(6)

∫
Ω

ϕ|Du| = lim inf
p→1

∫
Ω

ϕ|∇u|p dx for all nonnegative ϕ ∈ C∞0 (Ω).

Proof: Only the case N ≥ 2 will be proved; the case N = 1 can be
handled with minor modifications. We only sketch the proof since it is
well known (see [5]). Observe that, taking up as a test function in the
p-problem (Qλ), the boundedness of the family (f(up)up)p implies that∫

Ω

|∇up|p dx ≤ λp
∫

Ω

g dx ≤ C

for some positive constant C which does not depend on p. Bearing in
mind that up

∣∣
∂Ω

= 0 and applying Young’s inequality, we deduce that

(up)p is bounded in BV (Ω). Hence, up to a subsequence, [3, Theo-
rem 3.49] yields

(1) up → u strongly in Lr(Ω) for all 1 ≤ r < N
N−1 .

(2) up(x)→ u(x) a.e. in Ω.

Moreover, as a consequence of our assumption f(up)up ≤ g, we also
obtain

(1) f(up)up → f(u)u strongly in L1(Ω).

Noting that

f(up) = f(up)χ{up≤1} + f(up)χ{up>1}

≤ f(1) + f(up)upχ{up>1} ≤ f(1) + g,

a further consequence is

(1) f(up)→ f(u) strongly in L1(Ω).
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Yet another consequence is

(1) F (up)→ F (u) strongly in L1(Ω),

which follows from the monotonicity of f , in fact:

F (s) =

∫ s

0

f(σ) dσ ≤ f(s)s for all s ≥ 0.

On the other hand, we may apply the procedure of [33, Theorem 3.5]
to obtain a bounded vector field z such that ‖z‖∞ ≤ 1 and

(1) |∇up|p−2∇up ⇀ z weakly in Ls(Ω) for all 1 ≤ s <∞.

The above convergences are enough to pass to the limit in the p-problems
and get

−div z = λf(u) in D′(Ω).

In order to check that (z, Du) = |Du| as measures, fix ϕ ∈ C∞0 (Ω)
such that ϕ ≥ 0 and take ϕup as a test function in (Qλ). Then∫

Ω

ϕ|∇up|p dx = −
∫

Ω

up|∇up|p−2∇up · ∇ϕdx+ λp

∫
Ω

f(up)upϕdx

and, by Young’s inequality,∫
Ω

ϕ|∇up| dx ≤
1

p

∫
Ω

ϕ|∇up|pd x+
p− 1

p

∫
Ω

ϕdx

= −1

p

∫
Ω

up|∇up|p−2∇up · ∇ϕdx+
λp
p

∫
Ω

f(up)upϕdx

+
p− 1

p

∫
Ω

ϕdx.

Owing to the lower semicontinuity on the left hand side and the conver-
gences we have already proved on the right hand side, we may pass to
the limit and obtain∫

Ω

ϕ|Du| ≤ lim inf
p→1

∫
Ω

ϕ|∇up|p dx

= −
∫

Ω

uz · ∇ϕdx+ λ

∫
Ω

f(u)uϕdx

= −
∫

Ω

uz · ∇ϕdx−
∫

Ω

uϕdiv z dx

=

∫
Ω

ϕ(z, Du).
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Since
∫

Ω
ϕ(z, Du) ≤

∫
Ω
ϕ|Du| always holds, due to ‖z‖∞ ≤ 1, we deduce

that the above inequalities become identities. Therefore,
∫

Ω
ϕ|Du| =∫

Ω
ϕ(z, Du) and

∫
Ω
ϕ|Du| = lim infp→1

∫
Ω
ϕ|∇up|p dx hold for every ϕ ∈

C∞0 (Ω).
The boundary condition follows by applying the usual method.

Remark 6.2. It is straightforward that Proposition 6.1 holds if λp → λ
and (‖up‖∞)p is bounded. As a consequence of assertion (1) of Proposi-
tion 6.1, we then obtain that u ∈ L∞(Ω) and ‖u‖∞ ≤ lim infp→1 ‖up‖∞.

6.1. A necessary condition to obtain the solution as a limit
of p-Laplacian type solutions. From now on, we will focus on the
case N ≥ 2 and Ω = B1(0), the unit ball, and radial solutions will be
analyzed. However, we include N = 1 in Theorem 6.4. Observe that
regular solutions are radially decreasing (see [18]). In this framework,
solutions to (Qλ) for p > 1 must satisfy the following quasilinear elliptic
equation:

(12)


r1−N (rN−1|v′|p−2v′)′ + λf(v) = 0, r in (0, 1),

v > 0, r in (0, 1),

v(1) = 0,

with v(r) = u(|x|). We point out that v ∈ C([0, 1]) is a solution of (12)
if and only if v is a solution of the integral equation

(13) v(r) =

∫ 1

r

[
λ

tN−1

∫ t

0

sN−1f(v(s)) ds

] 1
p−1

dt

which satisfies v′(r) < 0 in (0, 1) and v′(0) = 0. Observe that ‖v‖∞ =
v(0) := α > 0.

To solve problem (12), the following system must be analyzed:

(14)


|v′|p−2v′ = w,

w′ = −N − 1

r
w − λf(v),

v(0) = α, w(0) = 0,

where α > 0 is chosen in such a way that we get v(1) = 0. It is then
convenient to consider an energy functional:

(15) E(v, w) =
1

p′
|w|p

′
+ λF (v),

whose derivative along trajectories is given by

d

dr
E(v, w) = −N − 1

r
|w|p

′
= −N − 1

r
|v′|p.
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Proposition 6.3. Let (v, w, λ) = (vp, wp, λp) be a solution to (14), and
assume that λp → λ1 and (‖vp‖∞)p is bounded.

Then, up to a subsequence, the following properties hold.

(1) (vp)p converges strongly in Ls((0, 1); rN−1 dr) to v1, for every 1 ≤
s <∞.

(2) (wp)p converges weakly in Ls((0, 1); rN−1 dr) to w1, for every 1 ≤
s <∞. Furthermore, w1 ∈ L∞(0, 1) with ‖w1‖∞ ≤ 1.

(3) (f(vp)vp)p converges strongly in Ls((0, 1); rN−1 dr) to f(v1)v1, for
every 1 ≤ s <∞.

(4) (f(vp))p converges strongly in Ls((0, 1); rN−1 dr) to f(v1), for ev-
ery 1 ≤ s <∞.

(5) (F (vp))p converges strongly in Ls((0, 1); rN−1 dr) to F (v1), for ev-
ery 1 ≤ s <∞.

(6) v1 ∈ BV (σ, 1) for every σ > 0.
(7) w1 is Lipschitz continuous in (σ, 1) for every σ > 0.
(8) −w′1 − N−1

t w1 = λ1f(v1) in the sense of distributions.
(9) |v′1| = (w1, v

′
1) as measures.

(10) The identity

(16) λ1
dF (v1)

dr
= −N − 1

r

∣∣∣∣dv1

dr

∣∣∣∣
holds in the sense of distributions.

Proof: The proof is similar to (but easier than) the proof of [41, Propo-
sition 16], so we do not provide all the details. The idea in order to
see (1)–(5) is to apply Proposition 6.1 in a radially symmetric setting
and pass to polar coordinates.

Proof of (6): In Proposition 6.1 we have the estimate
∫
B1(0)

|∇up(x)|pdx≤
C, with C nondependent on p. If we fix σ > 0, this estimate also holds
over

B1(0)\Bσ(0).

Then Young’s inequality implies∫
B1(0)\Bσ(0)

|∇up(x)| dx ≤ 1

p

∫
B1(0)\Bσ(0)

|∇up(x)|p dx+
p− 1

p
|B1(0)|

≤ C + |B1(0)|.

Thus the lower semicontinuity of the total variation yields∫
B1(0)\Bσ(0)

|Du1| ≤ lim inf
p→∞

∫
B1(0)\Bσ(0)

|∇up| dx ≤ C + |B1(0)|.
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Passing to polar coordinates, it leads to

σN−1

∫ 1

σ

|v′1| ≤
∫ 1

σ

rN−1|v′1| ≤ C ′,

wherewith v1 is a function of bounded variation in (σ, 1).

Proof of (7) and (8): To show that equality (8) holds in the sense of
distributions, we choose a test ψ ∈ C∞0 (0, 1), fix 0 < a < b < 1 in such
a way that suppψ ⊂ (a, b), and consider ϕ defined as

(17) ϕ(x) =

ψ(|x|) 1

|x|N−1
, x 6= 0,

0, x = 0.

Bearing in mind the identity −div z = λf(u), we obtain

λ

∫
B(0,1)

f(u(x))ϕ(x) dx =

∫
B(0,1)

z(x) · ∇ϕ(x) dx

=

∫
B(0,1)

w1(|x|)ψ′(|x|) dx

|x|N−1

−
∫
B(0,1)

N − 1

|x|
w1(|x|)ψ(|x|) dx

|x|N−1
.

Passing to polar coordinates and simplifying, this identity becomes

λ

∫ 1

0

f(v1(r))ψ(r) dr =

∫ 1

0

w1(r)ψ′(r) dr −
∫ 1

0

N − 1

r
w1(r)ψ(r) dr.

That is, the distributional derivative of w1 satisfies

w′1 = −λf(v1)− N − 1

r
w1.

As a direct consequence, w′1 ∈ L∞(σ, 1) for all σ > 0 and so condition (7)
also holds.

Proof of (9): Before checking assertion (9), observe that v1 is a function
of bounded variation and w1 satisfies that its derivative is bounded on
each interval (σ, 1). Thus, the one-dimensional pairing (w1, v

′
1) has sense

there.
To see (9), consider ψ ∈ C∞0 (0, 1) and define ϕ ∈ C∞0 (B1(0)) as above.

It follows from the identity |Du| = (z, Du) as measures that∫
B(0,1)

ϕ|Du| =
∫
B(0,1)

ϕ(z, Du)

= −
∫
B(0,1)

uϕ div z dx−
∫
B(0,1)

u z · ∇ϕ dx.
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Performing the same manipulations as above, we obtain∫ 1

0

ψ|v′1| = λ

∫ 1

0

v1(t)ψ(r)f(v1(r)) dr+

∫ 1

0

v1(r)ψ(r)w1(r)

(
N − 1

r

)
dr

−
∫ 1

0

v1(r)w1(r)ψ′(r) dr

= −
∫ 1

0

v1(r)ψ(r)w′1(r) dt−
∫ 1

0

v1(r)w1(r)ψ′(r) dr

=

∫ 1

0

ψ(w1, v
′
1),

as desired.

Proof of (10): Consider a nonnegative ψ ∈ C∞0 (0, 1) and define now ϕ ∈
C∞0 (B1(0)) by

ϕ(x) =

ψ(|x|)N − 1

|x|N
, x 6= 0,

0, x = 0.

Recall that we have proved∫
B(0,1)

ϕ|Du| = lim inf
p→1

∫
B(0,1)

ϕ|∇u(x)|p dx.

Considering a further subsequence, if necessary, and passing to polar
coordinates, we deduce∫ 1

0

N − 1

r
ψ(r)|v′1| = lim

p→1

∫ 1

0

N − 1

r
ψ(r)|v′p|p dr.

Now, note that on the right hand side we have the derivative of the
functional E = Ep defined in (15). Thus∫ 1

0

N − 1

r
ψ(r)|v′p|p dr =

∫ 1

0

ψ(r)

(
−dEp
dr

)
dr

=

∫ 1

0

ψ′(r)Ep dr

=
1

p′

∫ 1

0

ψ′(r)|wp(r)|p
′
dr+λp

∫ 1

0

ψ′(r)F (vp(r)) dr.
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Hence, ∫ 1

0

N − 1

r
ψ(r)|v′1| = lim

p→1

1

p′

∫ 1

0

ψ′(r)|wp(r)|p
′
dr

+ lim
p→1

λp

∫ 1

0

ψ′(r)F (vp(r)) dr.

(18)

To compute the first integral on the right hand side, recall again that
we have seen the existence of a constant C > 0 satisfying∫

B(0,1)

|∇up|p dx ≤ C for all p > 1.

Performing our usual manipulations, we achieve a uniform bound for

the family
∫ 1

0
rN−1|wp(r)|p

′
dr. As a consequence, if 0 < a < b < 1

satisfies supp(ψ) ⊂ (a, b), then the family
∫ b
a
|wp(r)|p

′
dr is also uniformly

estimated, owing to the inequality

aN−1

∫ b

a

|wp(r)|p
′
dr ≤

∫ b

a

rN−1|wp(r)|p
′
dr.

Therefore, there is a certain C1 > 0 such that∫ 1

0

|ψ′(r)||wp(r)|p
′
dr ≤ C1 for all p > 1.

Then, we arrive at

lim
p→1

1

p′

∫ 1

0

|ψ′(r)||wp(r)|p
′
dr ≤ lim

p→1

p− 1

p
C1 = 0.

Going back to (18), we conclude that∫ 1

0

N − 1

r
ψ(r)|v′1| = lim

p→1
λp

∫ 1

0

ψ′(r)F (vp(r)) dt

= λ1

∫ 1

0

ψ′(r)F (v1(r)) dr.

Therefore, identity (10) is proved.
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Observe that it follows from conditions (6)–(9) of Proposition 6.3 that
the limit (v, w, λ) = (v1, w1, λ1) is a solution to the limit system

v′

|v′| = w,

w′ = −N − 1

r
w − λf(v),

v(0) = α, w(0) = 0,

where α = limp→1 αp. Moreover, the extra condition (16) holds. Thus,
defining u(x) = v(|x|) and z(x) = w(|x|) x

|x| , we deduce that u is a

radial solution to (Pλ) satisfying (16). Therefore, if (λ, u) ∈ G, then
(16) holds. So this condition becomes the key to discerning if a solution
to problem (Pλ) comes from solutions to p-problems.

Theorem 6.4. Assume that N ≥ 1. Radial solutions to problem (Pλ)
which satisfy (16) are continuous.

As a consequence, for every 0 < λ < λ∗ there exist exactly two bounded
solutions, namely:

(1) The trivial solution u(x) = 0.
(2) The constant solution u(x) = f−1

(
N
λ

)
.

Furthermore, assuming that N ≥ 2, the unbounded solution u(x) =
f−1

(
N−1
λ|x|

)
, which exists for every 0 < λ ≤ λ, also satisfies condi-

tion (16).

Proof: The one-dimensional case is just Corollary 3.5 since any constant
solution satisfies condition (16). So, henceforth we consider N ≥ 2.

Fix λ and assume that u(x) = v(|x|) is a discontinuous solution to
problem (Pλ). We are checking that it does not satisfy condition (16) in
the discontinuity set {|x| = ρ}, with 0 < ρ < 1. In this set, condition (16)
reads as

λ(F (v+(ρ))− F (v−(ρ))) = −N − 1

ρ
|v+(ρ)− v−(ρ)|

=
N − 1

ρ
(v+(ρ)− v−(ρ))

(19)

since v is decreasing.
On account of Theorem 5.2, v is given by

v(r) =


f−1

(
N

λρ

)
if r < ρ,

f−1

(
N − 1

λr

)
if ρ < r < 1.
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Hence, we have v+(ρ) = f−1
(
N
λρ

)
and v−(ρ) = f−1

(
N−1
λρ

)
. Applying

the mean value theorem to F in the interval [v−(ρ), v+(ρ)], we find
ξ ∈ ]v−(ρ), v+(ρ)[ such that

F (v+(ρ))− F (v−(ρ)) = f(ξ)(v+(ρ)− v−(ρ)).

Thus, N−1
λρ < f(ξ) < N

λρ and so identity (19) does not hold.

6.2. Asymptotics for the critical value λ∗p and minimal solu-
tions wλ(p) on the unit ball as p approaches 1. In this subsec-
tion we compare the critical value λ∗ and trivial minimal solutions ob-
tained by the 1-Laplacian problem in the radial case with the limit to the
p-Laplacian results. Specifically, for Ω = B1(0) and N ≥ 1 we will show
that the critical value λ∗p to problem (Qλ) converges to λ∗ = N

f(0) when p

tends to 1, which is exactly the critical value obtained for problem (Pλ)
(Theorem 3.2 and Theorem 5.2). Furthermore, wλ(p), minimal solutions
of problem (Qλ) tend to trivial solutions. We recall that these trivial so-
lutions correspond to minimal solutions of problem (Pλ) established in
Theorem 3.2 and Theorem 4.3, so the limit of minimal solutions is also
a minimal solution. Nevertheless, we are not able to see that extremal
solutions tend to the trivial solution; we only succeed in some specific
cases, namely: f(u) = eu and f(u) = (1 + u)m, when m > e−1.

We start by considering the initial value problem (12):

(20)


r1−N (rN−1|u′|p−2u′)′ + λf(u) = 0, r in (0, 1),

u > 0, r in (0, 1),

u(0) = α > 0, u′(0) = 0.

Then, there exists a unique solution (λ, u) for every α = ‖u‖∞ > 0 and
λ can be parameterized in the following way:

(21) λ(α) = αp−1

(∫ 1

0

(
t1−N

∫ t

0

sN−1f(u(s)) ds

) 1
p−1

dt

)1−p

.

Moreover, the associated bifurcation diagram is a continuum of solu-
tions (λ, u) ∈ [0,∞[× C([0, 1]), which depends on the dimension N .

In particular, if we take f(u) = eu, the graph of the continuum of

solutions is classified into three groups: (1) N ≤ p, (2) p < N < p2+3p
p−1 ,

and (3) N ≥ p2+3p
p−1 (see [26]). Letting p go to 1, only the first two cases

can be considered. Regarding the first case (N ≤ p), there are exactly two
solutions for each λ ∈ (0, λ∗p) and one solution for λ = λ∗p. This behavior
of the solutions is reflected in Figure 3 (see below). It is noteworthy to
compare it with Figure 1, which corresponds to the limit case N = p = 1.
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On the other hand, if we take into account the second case
(
p < N <

p2+3p
p−1

)
, there is a continuum of solutions which oscillates around the

line λ(p) = pp−1(N−p) with the amplitude of oscillations tending to zero,
such as ‖u‖∞ →∞, as can be seen in Figure 4 below. Observe that the
bound λ(p) plays a leading role in this second case (for which the problem
has infinitely many nontrivial solutions). Something similar happens in
the limit case for p = 1 (Figure 2). Observe that λ(p) → N − 1 when
p→ 1. It should be noted that for the problem (Pλ) there are infinitely
many nontrivial solutions with Dirichlet conditions on the boundary (in
the sense of the traces) as long as λ = N−1

f(0) (Theorem 5.2).

‖u‖∞

λ
0 λ∗(p)

N ≤ p

Figure 3.

‖u‖∞

λ
0 λ∗(p)λ(p)

p < N < 3p+p2

p−1

Figure 4.

The bifurcation diagrams above show different features in each case de-
pending on dimension N . However, regarding minimal solutions (repre-
sented in the previous diagrams in blue) we will show below that they
tend to trivial solutions. We stress that this fact occurs regardless of the
dimension N and for any nonlinearity f satisfying hypotheses (Hp).

Theorem 6.5. Fix N ≥ 1, let p > 1 be small enough, and denote
by {wλ(p)}λ∈[0,λ∗p] the increasing branch of positive minimal solutions to

problem

(22)

{
−∆pu = λf(u) in B1(0),

u = 0 on ∂B1(0),

where λ∗p is the critical value such that there is no bounded solution
for λ > λ∗p, and f satisfies (Hp). Then,

(1) λ∗p → N
f(0) , as p→ 1.

(2) ‖wλ̃(p)‖∞ → 0, as p→ 1 and for every λ̃ ∈
[
0, N

f(0)

[
.
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Proof: Firstly, we note that, if we fix N ≥ 1, there exists 0 < δ(N) < 1

such that N < p2+3p
p−1 for every p ∈ (1, 1 + δ(N)). This ensures the

existence of minimal solutions, wλ(p), up to the critical value λ = λ∗p
([11, Theorem 1.3]). So from now on we assume that 1 < p < 1 + δ(N).

Proof of (1): To begin with, observe that by (21) we obtain

λ∗p ≥ λ(α)

= αp−1

(∫ 1

0

(
t1−N

∫ t

0

sN−1f(u(s)) ds

) 1
p−1

dt

)1−p

≥ αp−1

(∫ 1

0

(
t1−N

∫ t

0

sN−1f(α) ds

) 1
p−1

dt

)1−p

= N

(
p− 1

p

)1−p
αp−1

f(α)
.

Since this inequality holds for all positive α, we obtain

(23) λ∗p ≥ N
(

p

p− 1

)p−1

max
α∈[0,∞[

αp−1

f(α)
.

Denote by Fp(α) := αp−1

f(α) . Obviously, Fp ∈ C1 is nonnegative with

Fp(0) = 0 and Fp(α) → 0 when α → ∞ (since f1/p−1(s) is superlin-
ear). Then, Fp has its maximum in some αp ∈ ]0,∞[ (i.e., Fp(αp) =
maxα∈[0,∞[ Fp(α)). Moreover, F ′(αp) = 0 implies

(24)
αpf

′(αp)

f(αp)
= p− 1.

Now, we claim the sequence {αp}p is bounded. Looking for a contradic-
tion, we assume that there exists a (not relabeled) subsequence αp →∞
as p → 1, and we now show that this fact is in contradiction with (24).
First, observe that

(25) lim
s→∞

inf
sf ′(s)

f(s)
= γ > 0,

otherwise there exists s0 > 0 such that

sf ′(s)

f(s)
< ε, for all s ≥ s0,
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holds for every 0 < ε < min{p−1, γ}. This implies that f(s)
sε is decreasing

for s ≥ s0 since (
f(s)

sε

)′
=
f ′(s)sε − f(s)εsε−1

s2ε

=
f(s)

sε+1

(
sf ′(s)

f(s)
− ε
)
< 0,

for all s ≥ s0. The fact that function s 7→ f(s)
sε is decreasing for s ≥ s0

is in contradiction with the fact that f1/p−1 is superlinear (because ε <
p− 1). Then, if αp →∞ as p→ 1 and by using (25) and (24) we obtain
the following contradiction:

0 < γ = lim
s→∞

inf
sf ′(s)

f(s)
≤ lim
p→1

αpf
′(αp)

f(αp)
= lim
p→1

(p− 1) = 0.

Hence, we have checked that the sequence {αp}p is bounded. Thus, tak-
ing limits in Fp(α) ≤ Fp(αp) when p→ 1, we obtain that F1(α) ≤ F1(α)
for all α ≥ 0, with

F1(α) =


0 if α = 0,

1

f(α)
if α > 0.

Therefore, F1(α) = supα≥0 F1(α) = 1
f(0) . As a consequence,

lim
p→1

max
α∈[0,∞[

αp−1

f(α)
= lim
p→1

Fp(αp) = F1(α) =
1

f(0)
.

Thus, by (23), we obtain the following lower bound:

(26) λ∗p ≥ N
(

p

p− 1

)p−1

Fp(αp)→
N

f(0)
, p→ 1.

On the other hand, in order to establish an upper bound to λ∗p, we take
into account the following inequality from the proof of [13, Theorem 1.4]:

(27) λ∗p ≤ max{λ1(p), λ1(p)Fp(αp)},

where λ1(p) is the principal eigenvalue of the p-Laplacian in Ω = B1(0).
Next we prove that it actually holds that

λ∗p ≤ λ1(p)Fp(αp).
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To this end, we fix p, denote by wλ(p) the minimal solution to (22), and

take K > Fp(αp)
1/(1−p), so it follows that uλ(p) := Kwλ(p) is a solution

to

(28)

{
−∆puλ(p) = λKp−1f̃(uλ(p)) in B1(0),

uλ(p) = 0 on ∂B1(0),

where f̃(s) = f
(
s
K

)
. Note that f̃ is also under the hypotheses of (Hp).

It follows, by the change of variable α = Kt, that

F̃p(αp) := max
α∈[0,∞[

αp−1

f̃(α)
= max
t∈[0,∞[

(tK)p−1

f(t)
= Kp−1Fp(αp).

Finally, using inequality (27) in (28) and the last equality, we get

λ∗pK
p−1 ≤ max{λ1(p), λ1(p)F̃p(αp)} = max{λ1(p), λ1(p)K

p−1Fp(αp)}

and then

λ∗p ≤ max

{
λ1(p)

Kp−1
, λ1(p) Fp(αp)

}
.

Taking into account that it holds for anyK > Fp(αp)
1/(1−p), we establish

the following upper bound of λ∗p:

(29) λ∗p ≤ λ1(p) Fp(αp)→
N

f(0)
, p→ 1,

where we have used that λ1(p) → h(B1(0))=N when p→ 1, h(B1(0)) be-
ing the Cheeger constant for the unit ball ([29]).

Proof of (2): Fix 0 < λ̃ < N
f(0) . Due to the previous lower bound (26),

there exists p0 > 1 small enough such that λ̃ < λ∗p for every p ∈ ]1, p0[.

This ensures the existence of minimal solutions, wλ̃(p), to (22) with λ = λ̃

and 1 < p < p0.
We argue by contradiction and suppose there exists a sequence {pn} ⊂

]1, p0], with pn → 1, such that ‖wλ̃(pn)‖∞ → β ∈ ]0,∞] when n → ∞.

Now, we fix κ > 0 satisfying

(30) κ < min{β, f−1(N/λ̃)}.

Since the branch of minimal solutions to (22) is positive and increasing

with respect to λ, there exists a sequence {λn}n with 0 < λn ≤ λ̃ such
that

(31) ‖wλn(pn)‖∞ = κ, for every n ≥ n0.
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On the other hand, by (13) we get

‖wλn(pn)‖∞ =

∫ 1

0

[
λn
tN−1

∫ t

0

sN−1f(wλn(pn)(s)) ds

] 1
pn−1

dt

≤ f(‖wλn(pn)‖∞)
1

pn−1

∫ 1

0

[
λn
tN−1

∫ t

0

sN−1 ds

] 1
pn−1

dt

=

(
λnf

(
‖wλn(pn)‖∞

)
N

) 1
pn−1

pn − 1

pn
.

Replacing this inequality by (31) and taking into account (30) and

that λn ≤ λ̃, it follows that

κ <

(
λn

λ̃

) 1
pn−1 pn − 1

pn
→ 0, as pn → 1,

which is a contradiction since we had fixed κ > 0.

Note that inequalities (26) and (29) provide us with λ∗p estimates
for specific nonlinearities. In particular, in the following corollary we
provide such estimates for the typical exponential and potential-type
nonlinearities.

Corollary 6.6. Let p > 1 and N ≥ 1. Consider λ∗p(f) the critical value
to problem (22) for f(u) = eu or f(u) = (1+u)m with m > p−1. Then,
the following estimates hold:

(1) N
(p
e

)p−1

≤ λ∗p(eu) ≤ N
(p
e

)p−1 Γ
(
p+ 1 + N(p−1)

p

)
Γ(p+ 1)Γ

(
2 + N(p−1)

p

) ,

(2)
Npp−1(m− p+ 1)m−p+1

mm
≤ λ∗p((1 + u)m)

≤ Npp−1(m− p+ 1)m−p+1

mm

Γ
(
p+ 1 + N(p−1)

p

)
Γ(p+ 1)Γ

(
2 + N(p−1)

p

) ,

where Γ(z) =
∫∞

0
tz−1e−t dt is the Gamma function.

Proof: In [8] the authors give the estimate from above for the first eigen-
value of the p-Laplacian operator on the unit ball:

λ1(p) ≤ N
(

p

p− 1

)p−1 Γ
(
p+ 1 + N(p−1)

p

)
Γ(p+ 1)Γ

(
2 + N(p−1)

p

) .
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In order to prove (1), it is enough to observe that

Fp(αp) = max
α∈[0,∞[

αp−1

eα
=

(
p− 1

e

)p−1

,

where by replacing in (26) and (29) we get the desired inequalities. Anal-
ogously, to prove (2) we use that

Fp(αp) = max
α∈[0,∞[

αp−1

(1 + α)m
=

(p− 1)p−1(m− p+ 1)m−p+1

mm
.

In the following result we establish that, for certain reaction
terms f(u), extremal solutions u∗p to (22) tend to zero.

Proposition 6.7. Let Ω = B1(0) (N ≥ 1) and let u∗p be the solution

to (22) with λ = λ∗p for f(u) = eu or for f(u) = (1 +u)m with m > e−1.
Then, ‖u∗p‖∞ → 0 when p→ 1.

Proof: In the case f(u)=eu, by Corollary 6.6, λ∗p(e
u)≤N

(
p
e

)p−1
G(p,N),

where G(p,N) :=
Γ(p+1+

N(p−1)
p )

Γ(p+1)Γ(2+
N(p−1)

p )
. Observe that for N ≥ 1 we ob-

tain G(1, N) = 1. Moreover, we recall that Γ′(z) = Γ(z)ψ(z), where

ψ(z) =
∫∞

0

(
e−t

t −
e−zt

1−e−t
)
dt is the Digamma function which satisfies

ψ(2) = 1−γ, γ being the Euler–Mascheroni constant. Then, we get that

∂G(p,N)

∂p

=
Γ
(
p+ 1 + N(p−1)

p

)
ψ
(
p+ 1 + N(p−1)

p

)(
1 + N

p2

)
Γ(p+ 1)Γ

(
2 + N(p−1)

p

)
Γ(p+ 1)2 Γ

(
2 + N(p−1)

p

)2
−

Γ
(
p+ 1 + N(p−1)

p

)
Γ(p+ 1)ψ(p+ 1)Γ

(
2 + N(p−1)

p

)
Γ(p+ 1)2 Γ

(
2 + N(p−1)

p

)2
−

Γ
(
p+ 1 + N(p−1)

p

)
Γ(p+ 1)Γ

(
2 + N(p−1)

p

)
ψ
(
2 + N(p−1)

p

)
N
p2

Γ(p+ 1)2 Γ
(
2 + N(p−1)

p

)2 .
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As a consequence,

lim
p→1+

∂G(p,N)

∂p
= (1− γ)(1 +N)− (1− γ)− (1− γ)N = 0,

where we have used that Γ(2) = 1. Therefore

lim
p→1+

∂

∂p

((p
e

)p−1

G(p,N)

)

= lim
p→1+

[(p
e

)p−1
(

log p− 1

p

)
G(p,N) +

(p
e

)p−1 ∂G(p,N)

∂p

]
= −1.

In conclusion, the function p 7→
(
p
e

)p−1
G(p,N) is decreasing and less

than 1 in a neighborhood of p = 1. Thus, there is δ > 0 such that

λ∗p(e
u) ≤ N

(p
e

)p−1

G(p,N) < N, 1 < p < 1 + δ.

Therefore, if we take λ̃ = λ∗p in the proof of (2) from Theorem 6.5 and
argue in the same way as there, then we will prove that ‖wλ∗p‖∞ =

‖u∗p‖∞ → 0 as p→ 1.
Similarly, taking f(u) = (1 + u)m, by Corollary 6.6,

λ∗p((1 + u)m) ≤ N pp−1(m− p+ 1)m−p+1

mm
G(p,N).

Note that in this case

lim
p→1+

∂

∂p

(
pp−1(m− p+ 1)m−p+1

mm
G(p,N)

)

= lim
p→1+

pp−1(m− p+ 1)m−p+1

mm

×
[(

log
p

m− p+ 1
− 1

p

)
G(p,N) +

∂G(p,N)

∂p

]
= − logm− 1 < 0,

since m > e−1. Thus,

λ∗p((1 + u)m) < N, 1 < p < 1 + δ,

for some δ > 0. Finally, reasoning as before, we arrive at the desired
result.
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Remark 6.8. Note that, when proving that the extremal solution u∗p
tends to zero, in our method it is essential that λ∗p <

N
f(0) for p small

enough close to 1. Unfortunately this method is not general. For instance,
if we choose f(u) = 1 + u2, then it is not possible to show that λ∗p < N
since now our upper bound (29) is increasing near p = 1.
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