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Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada,

18071-Granada, Spain

E-mail : jfmena@ugr.es

Juan Carlos NAVARRO-PASCUAL1)
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Abstract Given a normed space X it can be easily proven that every extreme point in BX∗ , the unit

ball of X∗, is the restriction of an extreme point in BX∗∗∗ . Our purpose is to study when the restrictions

of extreme points in BX∗∗∗ are extreme points in BX∗ . Namely, we characterize L1-preduals satisfying

the aforementioned property.
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1 Introduction

In the sequel, X and Y will be real or complex normed spaces. As usual, BX and EX will stand
for the unit ball of X and the set of extreme points of BX , respectively. We will denote by
L (X, Y ) the space of all the linear continuous operators from X into Y and, as usual, L (X, K)
will be written in X∗. Elements in EL(X,Y ) will be called extreme operators. For any T in
L(X, Y ), T ∗ will denote its adjoint. If x∗ ∈ EX∗ , there is x∗∗∗ ∈ EX∗∗∗ whose restriction to X

coincides with x∗, that is, x∗∗∗ ◦ JX = x∗, where JX is the canonical imbedding from X into
X∗∗. Nevertheless, the restriction of an element in EX∗∗∗ does not always belong to EX∗ (see
Theorem 2.5 and Corollary 2.6).

The aim of this paper is to study conditions on a normed space X ensuring that

x∗∗∗ ◦ JX ∈ EX∗ , for all x∗∗∗ ∈ EX∗∗∗ ,

that is,

(JX)∗(EX∗∗∗) ⊆ EX∗ .

This last property has been introduced by Blumenthal, Lindenstrauss and Phelps in [1] for an
operator between normed spaces. We recall it in the following definition.
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Definition 1.1 (Nice operators) Let X and Y be normed spaces. An operator T in L(X, Y )
is said to be nice if T ∗ (EY ∗) ⊆ EX∗ .

It is easy to prove that every nice operator is extreme. Nice operators have been widely
studied because they are very useful for studying extreme operators. It is well known that JX ,
the canonical imbedding of a normed space X in its bidual, is always an extreme operator in
L (X, X∗∗) (see [2]). Up to date, only L-spaces (L1(μ) for some measure μ) and C-spaces (C(K)
for some compact Hausdorff space K) have been considered in order to prove that its canonical
injection is nice (see [2, Remark following Proposition 3.4]). The main goal of this paper is
to characterize Banach spaces with nice canonical imbedding in a well-known class which we
introduce below.

Definition 1.2 (L1-preduals) An L1-predual is a Banach space X such that X∗ is isometri-
cally isomorphic to L1(μ) for some measure μ.

Our results generalize those obtained in [2] for L-spaces and C-spaces. As a consequence,
we will get examples of classical Banach spaces whose canonical imbedding is not nice.

2 Results

The fact that L-spaces have nice canonical injection will be obtained as a consequence that
these spaces belong to the class which we introduce below.

Definition 2.1 (L-summands) Let X be a Banach space. A linear projection P : X → X is
called an L-projection if it satisfies

‖x‖ = ‖Px‖ + ‖x − Px‖ for all x ∈ X.

The range of an L-projection is called an L-summand. When JX (X) is an L-summand in X∗∗,
we say that X is an L-summand in its bidual.

L-spaces and preduals of a von Neumann algebra are suggestive general examples of Banach
spaces which are L-summands in its bidual (see [3]).

Theorem 2.2 Let X be a Banach space which is an L-summand in its bidual. Then JX is a
nice operator.

Proof If X is an L-summand in X∗∗, then there exists a closed subspace Z of X∗∗ such
that X∗∗ = JX (X)

⊕
1 Z. Hence, we have X∗∗∗ = JX (X)◦

⊕
∞ Z◦, and from here we deduce

EX∗∗∗ = EJX(X)◦ +EZ◦ , so J∗
X (EX∗∗∗) = J∗

X(EZ◦). Now, it is easy to prove that the restriction
of J∗

X to Z◦ is a surjective linear isometry from Z◦ onto X∗, so J∗
X(EZ◦) = EX∗ and we conclude

that JX is a nice operator. �
Theorem 2.2 generalizes the result mentioned above about L-spaces, which says that if X

is an L-space, then JX is nice. Moreover, we can use this theorem to obtain the next corollary.

Corollary 2.3 The canonical imbedding of the predual of a von Neumann algebra is a nice
operator.

The predualization of the concept of L-summand gives us the following definition.

Definition 2.4 (M -ideals) Let X be a Banach space. A closed subspace Y of X is called an
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M -ideal if Y ◦ is an L-summand in X∗. When JX (X) is an M -ideal in X∗∗, we say that X is
an M -ideal in its bidual.

Again, the main reference is [3]. There are several spaces which are M -ideals in its bidual,
the compact operators on a Hilbert space being a representative example.

Theorem 2.5 Let X be a Banach space which is a proper M -ideal in its bidual. Then the
canonical imbedding is not a nice operator.

Proof Provided X is an M -ideal in X∗∗, we have X∗∗∗ = JX∗ (X∗)
⊕

1 JX (X)◦ (see [3,
Proposition III.1.2]). Then, if we consider x∗∗∗ ∈ EJX(X)◦ ⊆ EX∗∗∗ , we obtain J∗

X (x∗∗∗) = 0 /∈
EX∗ , thus JX is a non-nice operator. �

Taking into account that c0 (Γ) is an M -ideal in its bidual [3, Examples III.1.4], we obtain
the following result.

Corollary 2.6 Let Γ be an infinite set and X = c0 (Γ). Then the canonical injection JX is a
non-nice operator.

We introduce now a class of Banach spaces which can be defined by certain properties of
intersection of balls (see [4, Theorem 2.2] for details) and which includes L-spaces and C-spaces
[5, Example 6].

Definition 2.7 (Property (E)) Let X be a normed space such that EX is nonempty. We will
say that X satisfies Property (E) if |x∗ (x)| = 1 whenever x∗ ∈ EX∗ and x ∈ EX .

For Banach spaces with Property (E), we give a sufficient condition for getting that the
canonical injection is nice.

Proposition 2.8 Let X be a Banach space which satisfies Property (E) and such that BX =
co(EX). Then JX is nice.

Proof By [6, Proposition 2.1], we have |x∗∗∗ (JXx)| = |(J∗
Xx∗∗∗) (x)| = 1 whenever x ∈ EX

and x∗∗∗ ∈ EX∗∗∗ , and so, |x∗∗ (J∗
Xx∗∗∗)| = 1 whenever x∗∗ is in JX(EX)

w∗
and x∗∗∗ is in

EX∗∗∗ . Now [2, Lemma 5.1] allows us to get that |x∗∗ (J∗
Xx∗∗∗)| = 1 whenever x∗∗ ∈ EX∗∗ and

x∗∗∗ ∈ EX∗∗∗ and we conclude that J∗
Xx∗∗∗ ∈ EX∗ for all x∗∗∗ ∈ EX∗∗∗ . �

It suffices to take into account that the unit ball of L1 (μ) has extreme points if and only if,
μ has atoms to see that the known fact that L-spaces have nice canonical injection cannot be
deduced from the above proposition and that the condition appearing in it is not necessary for
getting that JX is nice. One can ask if Property (E) is enough to get nice canonical imbedding.
We will see below that this is not the case.

Corollary 2.6 allows us to give an example of a Banach space X having Property (E) such
that the canonical imbedding JX is a non-nice operator.

Example 2.9 Let Y be a Banach space with Property (E), and let us define X := Y
⊕

1 c0.
Then X has Property (E) and JX is a non-nice operator.

We start by showing that X has Property (E). As an immediate consequence of the definition
of X, we have X∗ = Y ∗ ⊕

∞ �1. Let x be in EX and x∗ be in EX∗ . Then we deduce that x ∈ EY ,
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and there exist y∗ in EY ∗ and z∗ in E�1 such that x∗ = y∗ + z∗, thus we have

|x∗ (x)| = |(y∗ + z∗) (x)| = |y∗ (x)| = 1,

because Y has Property (E).

Now, we see that JX is a non-nice operator. It is immediate to prove that JX = JY + Jc0

and hence J∗
X = J∗

Y + J∗
c0

. Moreover, we have X∗∗∗ = Y ∗∗∗ ⊕
∞ �∗∞ and

EX∗∗∗ =
{
y∗∗∗ + z∗∗∗ : y∗∗∗ ∈ EY ∗∗∗ , z∗∗∗ ∈ E�∗∞

}
.

Finally, let y∗∗∗ be in EY ∗∗∗ and z∗∗∗ be in E�∗∞ such that J∗
c0

z∗∗∗ /∈ E�1 (Jc0 is a non-nice
operator). Then, we have x∗∗∗ = y∗∗∗ + z∗∗∗ ∈ EX∗∗∗ , but

J∗
Xx∗∗∗ = J∗

Y y∗∗∗ + J∗
c0

z∗∗∗ /∈ EX∗

and we conclude that JX is a non-nice operator.

In Corollary 2.6, we obtain L1-preduals whose canonical imbedding is a non-nice operator.
We are going to characterize those L1-preduals with nice canonical imbedding. In order to
prove our result, we will need the following proposition.

Proposition 2.10 Let X and Y be Banach spaces and T : X → Y a linear isometry. Then
EX∗ ⊆ T ∗ (EY ∗) . In particular EX∗ ⊆ J∗

X (EX∗∗∗) .

Proof For x∗ ∈ EX∗ , let us define K = {y∗ ∈ BY ∗ : T ∗(y∗) = x∗} . It is easy to see that K is
a nonempty w∗-closed face of BY ∗ . So there is some extreme point in K which is in EY ∗ and
this finishes the proof. �

From the above proposition we get a result from which it can be easily deduced [6, Propo-
sition 2.1].

Corollary 2.11 ([2, Proposition 3.5]) Let X be a Banach space. Then

J∗
X (EX∗∗∗) ⊆ EX∗

w∗
.

Proof Let us denote K = EX∗
w∗

and Y = C(K). Let us define T : X → Y by

T (x)(x∗) = x∗(x).

Then T is a linear isometry and so T ∗∗ is a linear isometry from X∗∗ into Y ∗∗. Proposition 2.10
gives us EX∗∗∗ ⊆ T ∗∗∗ (EY ∗∗∗) and from here J∗

X (EX∗∗∗) ⊆ (J∗
X ◦ T ∗∗∗) (EY ∗∗∗) . Now

J∗
X ◦ T ∗∗∗ = (T ∗∗ ◦ JX)∗ = (JY ◦ T )∗ = T ∗ ◦ J∗

Y

and therefore,

J∗
X (EX∗∗∗) ⊆ T ∗ (J∗

Y (EY ∗∗∗)) ⊆ T ∗ (EY ∗) .

Where in the last inclusion we have used that JY is nice which is a consequence of [7, Theo-
rem 1.3] together with the fact that Y ∗∗ is C(H) for convenient extremally disconnected compact
Hausdorff space H (see [8]). Finally, it can be easily checked that T ∗ (EY ∗) ⊆ K. �

Taking into account Proposition 2.10 and Corollary 2.11, we get the following corollary.
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Corollary 2.12 Let X be a Banach space such that EX∗∗∗ is w∗-closed. Then

J∗
X (EX∗∗∗) = EX∗

w∗
.

As a result, JX is a nice operator if and only if, EX∗ is w∗-closed.

To state our main result, we will need a previous definition.

Definition 2.13 Let K be a compact Hausdorff space and Σ : K → K a continuous map such
that Σ2 = Id, where Id is the identity map, and such that Σ has no fixed points. We will denote
CΣ (K, R) the (real) Banach space of all the continuous maps f in K such that fΣ = −f with
the uniform norm.

Theorem 2.14 Let X be a real or complex L1-predual. The following assertions are equiva-
lent :

i) The canonical imbedding JX is a nice operator.
ii) EX∗ is w∗-closed.
If X is a real space, the above assertions are equivalent to the following :
iii) There is a compact Hausdorff space K such that X = CΣ (K, R) .

Proof To prove the equivalence between i) and ii), we are going to see that X satisfies the
hypothesis of Corollary 2.12. If X∗ is an L-space, then its dual X∗∗ is a C (K0) -space (see, for
example, [8]), for appropriate compact Hausdorff space K0, and hence X∗∗∗ = C (K0)

∗, thus
EX∗∗∗ = EC(K0)

∗ , which is w∗-closed. The third equivalence in the real case is deduced from
the classification of L1-preduals made by Lindenstrauss and Wulbert in [9] (see also [10]). �

Finally, taking into account that the space of real-valued, continuous affine functions defined
on a simplex space is always an L1-predual, we deduce the following result.

Corollary 2.15 Let K be a simplex, and X = A (K, R) the space of real-valued continuous
affine functions defined on K with the supremum norm. The following are equivalent :

i) JX is a nice operator.
ii) The extreme points of K are closed.
iii) X is a C-space.

Proof i) ⇒ ii) By Theorem 2.14, EX∗ is w∗-closed, and [11, Theorem 3.2] gives this implica-
tion.

ii) ⇒ iii) It is an easy consequence of [12, Theorem II.7.5].
iii) ⇒ i) This is known. �
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