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1. Introduction

Throughout this note the symbol K is used to indistinctly denote the field R of the real
numbers or the field C of the complex numbers. We also incorporate the usual notations
D = {α ∈ K : |α| ≤ 1} and T = {α ∈ K : |α| = 1}.

Let X be a vector space over K and A a nonempty subset of X. The real affine subspace
generated by A is written as VA:

VA =

{
n

∑
j=1

tjaj : n ∈ N, tj ∈ R, aj ∈ A for all j ∈ {1, . . . , n},
n

∑
j=1

tj = 1

}
. (1)

Suppose A is convex. A nonempty, convex subset F of A is said to be a face of A if the
following condition is satisfied:

a, b ∈ A, t ∈ ]0, 1[ , (1− t)a + tb ∈ F ⇒ a, b ∈ F. (2)

A itself is a face of A. In addition, faces of A reduced to a single element, if any, are
called extreme points of A.

The dimension of (the nonempty, convex set) A is the dimension (over R) of VA, which
coincides with the dimension of the real subspace attached to VA; i.e., the only real subspace
M of X such that VA = a + M for any a ∈ A.

Given a nonempty subset A of a topological vector space X, the intrinsic boundary
of A is defined as the boundary of A relative to VA. Following the same argument, one
can define the intrinsic interior of A. On the other hand, the symbols co(A) and co(A)
represent the convex hull and the closed convex hull of the set A, respectively.

The notion of face is purely algebraic. However, if the ambient space is endowed with
a vector topology, we can adequately express some of its properties. In the following result
we cite two of them, incorporating their proof for the sake of completeness. Additional
information on the concepts covered in Propositions 1 and 2 can be found in [1].

Proposition 1. Let X be a Hausdorff topological vector space and A a nonempty convex subset
of X.

(i) Every face F of A, with F 6= A, is contained in the intrinsic boundary of A.
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(ii) If A is closed, so is every finite-dimensional face of A.

Proof. (i) Consider a point x0 ∈ A\F. If a is an element of the intrinsic interior of A, then
there exists δ ∈ R+ such that a± δ(x0 − a) ∈ A. Defining a0 = a− δ(x0 − a), it is readily
seen that a = 1

1+δ a0 +
δ

1+δ x0, hence a /∈ F.
(ii) Let F be a finite-dimensional face of A. Since the statement is clearly true if F

consists of a single point we can assume that the dimension n of F is non-zero. Thus,
there exist a0, a1, . . . , an ∈ F (affinely independent) such that VF, the real affine subspace
generated by F, is given by

VF = {t0a0 + t1a1 + · · ·+ tnan : t0, t1, . . . , tn ∈ R, t0 + t1 + · · ·+ tn = 1}. (3)

It is clear that VF is closed and F ⊂ VF ∩ A, hence it only lefts to prove that VF ∩ A ⊂ F.
To this end, fix an element x of VF ∩ A. Then there exist real numbers t0, t1, . . . , tn with
t0 + t1 + · · ·+ tn = 1 and

x = t0a0 + t1a1 + · · ·+ tnan. (4)

The point a = 1
n+1 (a0 + a1 + · · ·+ an) belongs to F and we can choose s ∈ ]0, 1[ small

enough that 1−s
n+1 + stj > 0 for every j ∈ {0, 1, . . . , n}. Taking into account that

(1− s)a + sx =
(

1−s
n+1 + st0

)
a0 +

(
1−s
n+1 + st1

)
a1 + · · ·+

(
1−s
n+1 + stn

)
an, (5)

and ∑n
j=0

(
1−s
n+1 + stj

)
= 1, we see that (1− s)a + sx ∈ F. To conclude that x ∈ F, it suffices

to remember that a, x ∈ A and that F is a face of A.

The extreme points of convex sets play an important role in functional analysis and
have a significant repercussion in other areas. A good source of information on this
matter is [2]. The more general notion of face of a convex set enjoys great presence in the
framework of the geometry and structure of Banach spaces, as can be seen in [3]. Mention
should also be made of the introduction in [4] of the so-called facial topology on the set of
extreme points of a convex, compact set in a Hausdorff locally convex space. Some recent
applications of this topology can be seen in [5,6].

It is also worth reviewing some results about the interaction between convexity
and topology.

Proposition 2. Let A be a bounded, closed, convex set in a Hausdorff topological vector space X,
and B a compact, convex subset of X. Then, co(A ∪ B) is closed. Furthermore, if A is also compact,
then so is co(A ∪ B).

Proof. Since A and B are convex,

co(A ∪ B) = {(1− t)a + tb : t ∈ [0, 1], a ∈ A, b ∈ B}. (6)

Let {wλ}λ∈Λ be a convergent net of elements in co(A ∪ B), and w its corresponding
limit. Then, for every λ ∈ Λ, there exist tλ ∈ [0, 1], aλ ∈ A, and bλ ∈ B such that

wλ = (1− tλ)aλ + tλbλ. (7)

The compactness of the sets B and [0, 1] allows us to assume, considering subnets
if necessary, that {bλ}λ∈Λ and {tλ}λ∈Λ converge to a point b ∈ B and a scalar t ∈ [0, 1],
respectively.

If t = 1 the net {(1− tλ)aλ}λ∈Λ converges to zero and, therefore, {wλ}λ∈Λ converges
to b. Thus, w = b and it can be concluded that w ∈ co(A ∪ B) (in fact, w ∈ B).

Suppose now that t < 1. Using subnets if necessary, it can be assumed that tλ < 1 for
every λ ∈ Λ. That way, aλ = wλ−tλbλ

1−tλ
for each λ ∈ Λ. Hence, the net {aλ}λ∈Λ converges
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to w−tb
1−t and, taking into account that A is closed, the point a = w−tb

1−t belongs to A. Finally,
w = (1− t)a + tb and consequently, w ∈ co(A ∪ B).

Regarding the last assertion, if A is also compact, so is the set co(A ∪ B), as from (6) it
can be seen as the continuous image of a compact set.

The convex hull of every compact subset of a finite-dimensional topological vector
space is automatically compact. In infinite-dimensional spaces, the same cannot be said.
However, if the closure of the convex hull is considered, we find positive results. It is well
known, without going any further, that the closed convex hull of every compact subset of
a Banach space is also a compact set.

Let X be a normed space. The symbols BX and SX stand for the unit ball and unit
sphere of X, respectively:

BX = {x ∈ X : ‖x‖ ≤ 1}, SX = {x ∈ X : ‖x‖ ≤ 1}. (8)

According to Proposition 1, every proper face of BX is contained in SX , which applies
to the potential extreme points of BX in particular. Plus, if X is a finite dimensional normed
space, every face of BX is closed.

The last statement is not always true when it comes to infinite dimensional normed
spaces; in fact, the closure of a face might not even be a face. In the forthcoming section,
an example is provided based on a renorming of the space `1 of absolutely summable
sequences of (real or complex) scalars.

As it is well known, two norms ‖·‖ and ‖·‖0 on the same vector space X are said to be
equivalent if they induce the same topology on X. This occurs if, and only if, there exist
positive real numbers α and β such that

α‖x‖0 ≤ ‖x‖ ≤ β‖x‖0 for all x ∈ X. (9)

Therefore, two equivalent norms also share uniform properties and, in particular,
one of such norms is complete if and only if the other is. The properties not common to
two equivalent norms are of a geometric nature.

Given a normed space X, any other norm in the underlying vector space is called
a renorming of X. In Banach space literature, this concept usually includes the requirement
that the new norm is equivalent to the original one.

For an enlightening discussion of renormings in Banach spaces the reader is referred
to [7,8] and to the new monograph [9].

2. Main Results

The unit ball of certain Banach spaces contain faces which closure is not a face. We
illustrate this fact by equivalently renorming `1.

Henceforth, {en} will denote the canonical basis of `1. Then, for n, k ∈ N,

en(k) = 1, if k = n, en(k) = 0, if k 6= n. (10)

The sequences {un} and {vn} of vectors in `1 given by

u1 = e1 + e2, u2 = e1 − e2, un = en for every n ≥ 3. (11)

vn = n+1
n+2 e1 +

1
n+1 en+2 for every n ∈ N. (12)

will also be considered. In addition, we define v0 = e1 and

K = {αvn : α ∈ T, n ∈ N∪ {0}}. (13)

About the canonical basis {en} of `1, only the following elementary fact will be
necessary: the unique representation of any vector x ∈ `1 in such a basis is given by
x = ∑∞

n=1 x(n)en. We must mention, however, that this basis plays a fundamental role in



Mathematics 2023, 11, 193 4 of 11

numerous works related to the space `1. An outstanding exponent of this is the study of
the cone positive of `1 which can be seen in [10] and references therein.

The most interesting set in this section is the following:

B0 = co
(

B`1 ∪ K ∪Tu1 ∪Tu2
)
. (14)

As it can be readily seen, B`1 ⊂ B0 ⊂ 2B`1 and hence the set B0 is absorbing. Moreover,
B0 is convex and radially compact (for each x ∈ `1\{0} the set {t ∈ R : t ≥ 0 and tx ∈ B0}
is compact). As a consequence, Minkowski’s functional, ‖·‖0, of B0 is a norm in `1 which
unit ball is exactly B0. Using the previous chain of inclusions we can see that both norms
are equivalent:

‖x‖0 ≤ ‖x‖1 ≤ 2‖x‖0 for all x ∈ `1. (15)

To reach our goal, an appropriate description of B0 will be required. To that end, the
set co(K) (a subset of B0) will be studied in first place.

Lemma 1. Let x ∈ `1. The following three statements are equivalent:

(i) x ∈ co(K).
(ii) x(2) = 0 and the following series are convergent with∣∣∣∣∣x(1)− ∞

∑
k=1

(k+1)2

k+2 x(k + 2)

∣∣∣∣∣+ ∞

∑
k=1

(k + 1)|x(k + 2)| ≤ 1. (16)

(iii) For every n ∈ N∪ {0}, there exists a scalar rn such that

∞

∑
n=0
|rn| ≤ 1 and x =

∞

∑
n=0

rnvn. (17)

Proof. The set M given by the elements x of `1 such that the series ∑(k + 1)|x(k + 2)|
converges is a (dense but not total) subspace of `1. For each x ∈ M, the series

∑ (k+1)2

k+2 x(k + 2) (18)

is (absolutely) convergent and, as it can be seen, the linear maps

x 7→∑ (k+1)2

k+2 x(k + 2) and x 7→∑(k + 1) x(k + 2) , from M to R, (19)

are not continuous. It is clear that the set A containing the elements x of `1 for which the
statement (ii) holds is contained in M. It will be shown that A is closed in `1. A relevant
property to achieve the equivalence of the first two statements (A = co(K)).

In light of the aforementioned observations regarding M and its associated functionals,
suppose that {xn} is a sequence in A converging to x0 ∈ `1 and let n, m be natural numbers.
Then, xn(2) = 0 and
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∣∣∣∣xn(1)−
m
∑

k=1

(k+1)2

k+2 xn(k + 2)
∣∣∣∣+ m

∑
k=1

(k + 1)|xn(k + 2)|

=

∣∣∣∣∣xn(1)−
∞
∑

k=1

(k+1)2

k+2 xn(k + 2) +
∞
∑

k=m+1

(k+1)2

k+2 xn(k + 2)

∣∣∣∣∣
+

m
∑

k=1
(k + 1)|xn(k + 2)|

≤
∣∣∣∣xn(1)−

∞
∑

k=1

(k+1)2

k+2 xn(k + 2)
∣∣∣∣

+
∞
∑

k=m+1

(k+1)2

k+2 |xn(k + 2)|+
m
∑

k=1
(k + 1)|xn(k + 2)|

≤
∣∣∣∣xn(1)−

∞
∑

k=1

(k+1)2

k+2 xn(k + 2)
∣∣∣∣+ ∞

∑
k=1

(k + 1)|xn(k + 2)|

≤ 1.

(20)

Taking limits when n→ ∞ in the previous inequality,∣∣∣∣∣x0(1)−
m

∑
k=1

(k+1)2

k+2 x0(k + 2)

∣∣∣∣∣+ m

∑
k=1

(k + 1)|x0(k + 2)| ≤ 1. (21)

Since this last inequality holds for any m ∈ N, we get that x0 ∈ M. On the other hand,
the sequence {xn(2)} converges to zero (it is, indeed, the null sequence). Thus, one can
assume that x0(2) = 0. By taking limits in (21), with m→ ∞,∣∣∣∣∣x0(1)−

∞

∑
k=1

(k+1)2

k+2 x0(k + 2)

∣∣∣∣∣+ ∞

∑
k=1

(k + 1)|x0(k + 2)| ≤ 1. (22)

Therefore, x0 ∈ A and the latter is a closed set.
(i)⇒ (ii). It is all about testing the inclusion co(K) ⊂ A and, since A is closed, it can

be reduced to co(K) ⊂ A. To that purpose, given x ∈ co(K), we can find a natural number
m and scalars r0, r1, . . . , rm, satisfying ∑m

k=0|rk| = 1 and x = ∑m
k=0 rkvk. Then,

x = r0e1 +
m
∑

k=1
rk

(
k+1
k+2 e1 +

1
k+1 ek+2

)
=

(
r0 +

m
∑

k=1
rk

k+1
k+2

)
e1 +

m
∑

k=1

rk
k+1 ek+2.

(23)

From this equality, we get

x(1) = r0 +
m

∑
k=1

rk
k+1
k+2 , x(2) = 0, x(k + 2) = rk

k+1 for all k ∈ {1, . . . , m}, (24)

x(k) = 0 for every k > m + 2. (25)

The convergence of the series ∑(k + 1)|x(k + 2)| (and hence the convergence of

∑ (k+1)2

k+2 x(k + 2)) is clear. Furthermore,∣∣∣∣x(1)− ∞
∑

k=1

(k+1)2

k+2 x(k + 2)
∣∣∣∣+ ∞

∑
k=1

(k + 1)|x(k + 2)|

=

∣∣∣∣r0 +
m
∑

k=1
rk

k+1
k+2 −

m
∑

k=1

(k+1)2

k+2
rk

k+1

∣∣∣∣+ m
∑

k=1
(k + 1)

∣∣∣ rk
k+1

∣∣∣ = m
∑

k=0
|rk| = 1.

(26)

Therefore, x ∈ A.
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(ii)⇒ (iii). Define

r0 = x(1)−
∞

∑
k=1

(k+1)2

k+2 x(k + 2), rk = (k + 1) x(k + 2) for all k ∈ N. (27)

According to the hypothesis, ∑∞
k=0|rk| ≤ 1. On the other hand,

∞
∑

k=0
rkvk =

(
r0 +

∞
∑

k=1
rk

k+1
k+2

)
e1 +

∞
∑

k=1

rk
k+1 ek+2

= x(1) e1 + x(2) e2 +
∞
∑

k=1
x(k + 2) ek+2 =

∞
∑

k=1
x(k) ek = x,

(28)

where it has been used that x(2) = 0.
(iii) ⇒ (i). For each natural number n, let yn = ∑n

k=0 rkvk. Given k ∈ N ∪ {0}, put
rk = |rk|ξk, with ξk ∈ T. Taking into account that

yn =
n
∑

k=0
|rk|ξkvk

=
1−∑n

k=0|rk |
2 (−ξ0 v0) +

(
|r0|+

1−∑n
k=0|rk |
2

)
ξ0 v0 +

n
∑

k=1
|rk|ξkvk

(29)

it can be ensured that yn ∈ co(K). Since ‖yn − x‖1 → x, we conclude that x ∈ co(K).

The previously announced and still pending description of the set

B0 = co
(

B`1 ∪ K ∪Tu1 ∪Tu2
)

(30)

begins with the following considerations:
The set K is compact, and so is its closed convex hull. On the other hand,

co(Tu1 ∪Tu2) = co(Du1 ∪Du2) (31)

and, by the last part of Proposition 2, the set C = co(Tu1 ∪Tu2) is also compact. For the
same reason, the set

B = co(co(K) ∪ C) (32)

is compact (and convex). Furthermore, from the first part of the already mentioned propo-
sition, the set co

(
B`1 ∪ B

)
is closed. Since co(K), C and B`1 are contained in B0, so is

co
(

B`1 ∪ B
)
, which provides the inclusion co

(
B`1 ∪ B

)
⊂ B0.

To get the other inclusion, first we notice that B`1 ∪ K ∪ Tu1 ∪ Tu2 ⊂ B`1 ∪ B, and
hence B0 ⊂ co

(
B`1 ∪ B

)
, since the set co

(
B`1 ∪ B

)
is closed (and convex). It has just been

proved that
B0 = co

(
B`1 ∪ B

)
. (33)

Lemma 2. Given x0 ∈ B0, there exist sequences of scalars {αn} and {βn} such that

x0 =
∞

∑
n=1

αnun +
∞

∑
n=1

βnvn and
∞

∑
n=1
|αn|+

∞

∑
n=1
|βn| ≤ 1, (34)

where {un} and {vn} are the sequences defined in (11) and (12).

Proof. Equality (33) and definitions it requires will be taken into account to complete the
proof. By virtue of the convexity of the sets B`1 and B, one can find y ∈ B`1 , z0 ∈ B and
t ∈ [0, 1] satisfying x0 = (1− t)y + tz0. In a similar way, there exist x ∈ co(K), z ∈ C
and s ∈ [0, 1] such that z0 = (1− s)x + sz. Furthermore, z = (1− ρ)αu1 + ρβu2 for some
ρ ∈ [0, 1] and α, β ∈ D. Consequently,

x0 = (1− t)y + t(1− s)x + ts(1− ρ)αu1 + tsρβu2 . (35)
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According to Lemma 1, x = ∑∞
n=0 rnvn, where v0 = e1, rn ∈ K for every n ∈ N∪ {0},

and ∑∞
n=0|rn| ≤ 1. On the other hand, y = ∑∞

n=1 y(n) en and ∑∞
n=1|y(n)| ≤ 1. It is now

clear that

x0 =
∞

∑
n=1

αnun +
∞

∑
n=1

βnvn , (36)

{αn} and {βn} being the sequences of scalars defined by

α1 =
(1− t)(y(1) + y(2)) + t(1− s)r0

2
+ ts(1− ρ)α (37)

α2 =
(1− t)(y(1)− y(2)) + t(1− s)r0

2
+ tsρβ (38)

αn = (1− t) y(n) for all n ≥ 3 (39)

βn = t(1− s) rn y(n) for all n ∈ N. (40)

It is not hard to check that ∑∞
n=1|αn|+ ∑∞

n=1|βn| ≤ 1.

There is now enough coverage to prove that B0 contains faces which closure is not
another face of B0.

Theorem 1. Let {vn} be the sequence defined in (12). Then, the set

F = co({vn : n ∈ N}) (41)

is a face of B0, although F is not.

Proof. Let x0 ∈ F. Then, there exists a natural number m and scalars t1, . . . , tm ∈ [0, 1] such
that t1 + · · ·+ tm = 1 and

x0 = t1v1 + · · ·+ tmvm (42)

It is convenient to show that (42) is the only representation of x0 that satisfies the
constraints described in the previous lemma. Indeed, if

x0 =
∞

∑
n=1

αnun +
∞

∑
n=1

βnvn , s.t.
∞

∑
n=1
|αn|+

∞

∑
n=1
|βn| ≤ 1, (43)

it is clear that

α1 + α2 +
∞

∑
n=1

βn
n+1
n+2 =

m

∑
k=1

tk
k+1
k+2 (44)

α1 − α2 = 0 (45)

αk+2 +
βk

k+1 = tk
k+1 for all k ∈ {1, . . . , m} (46)

αk+2 +
βk

k+1 = 0 for each natural number k > m. (47)

From (46) and (47) is readily seen that

k+1
k+2 αk+2 +

βk
k+2 = tk

k+2 for all k ∈ {1, . . . , m} (48)
k+1
k+2 αk+2 +

βk
k+2 = 0 for each natural number k > m. (49)

By adding (44), (45), (48) and (49), one reaches the inequality

1 =
m
∑

k=1
tk = α1 + α2 +

∞
∑

n=1

n+1
n+2 αn+2 +

∞
∑

n=1
βn

≤ |α1|+ |α2|+
∞
∑

n=1

n+1
n+2 |αn+2|+

∞
∑

n=1
|βn|.

(50)
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The condition ∑∞
n=1|αn|+ ∑∞

n=1|βn| ≤ 1 implies that αn+2 = 0 for all n ∈ N. By virtue
of (46), βk = tk for every k ∈ {1, . . . , m} and hence α1 = α2 = 0 = βk for each k > m.

To see that F is a face of B0, take t ∈ ]0, 1[ and x, x′ ∈ B0 such that (1− t)x + tx′ ∈ F.
Put x0 = (1− t)x + tx′. Using the representations

x =
∞

∑
n=1

αnun +
∞

∑
n=1

βnvn and x′ =
∞

∑
n=1

α′nun +
∞

∑
n=1

β′nvn, (51)

with ∑∞
n=1|αn|+ ∑∞

n=1|βn| ≤ 1 and ∑∞
n=1|α′n|+ ∑∞

n=1|β′n| ≤ 1, we have that

x0 =
∞

∑
n=1

(((1− t)αn + tα′n))un +
∞

∑
n=1

((1− t)βn + tβ′n)vn. (52)

On the other hand, x0 can be expressed as in (42) and, from what has been proven,

(1− t)αn + tα′n = 0 for every natural number n, (53)

(1− t)βn + tβ′n = 0 for all n > m, (54)

(1− t)βk + tβ′k = tk for each k ∈ {1, . . . , m}. (55)

Thus,

1 = (1− t)
m

∑
k=1

βk + t
m

∑
k=1

β′k ≤ (1− t)
m

∑
k=1
|βk|+ t

m

∑
k=1

∣∣β′k∣∣ ≤ 1 (56)

and, necessarily,

βk = |βk| and β′k =
∣∣β′k∣∣ for every k ∈ {1, . . . , m}. (57)

In the same way, ∑m
k=1|βk| = ∑m

k=1
∣∣β′k∣∣ = 1. Accordingly, αn = α′n = 0 for all n ∈ N,

and βn = β′n = 0 for each n > m. Therefore, we conclude that x, x′ ∈ F.
Last, to prove that F is not a face of B0, it is enough to bear in mind that e1 ∈ F (since

‖vn − e1‖1 → 0), e1 = u1+u2
2 , and, however, u1, u2 /∈ F. Indeed,

∥∥x− uj
∥∥

1 ≥ 1 for each
x ∈ F and j ∈ {1, 2}.

In contrast with the previous results, the natural norm of `1 has greater synergies with
its underlying topological properties. Indeed, it will be proven that the closure of a face of
B`1 is also a face of this set.

For every x ∈ `1, the support of x is defined as supp(x) = {n ∈ N : x(n) 6= 0}.
This concept can be easily extended to an arbitrary nonempty subset of `1 as follows:
supp F =

⋃
x∈F supp(x).

From now on, F stands for any proper face of B`1 .

Lemma 3. Let x, y ∈ F and m ∈ supp(x) ∩ supp(y). Then x(m)
|x(m)| =

y(m)
|y(m)| .

Proof. Given that x+y
2 ∈ F it is readily seen that ‖x + y‖1 = 2. Therefore,

∞

∑
n=1
|x(n) + y(n)| =

∞

∑
n=1
|x(n)|+

∞

∑
n=1
|y(n)| (58)

and consequently |x(n) + y(n)| = |x(n)|+ |y(n)| for every n ∈ N. Taking into account
also that x(m) 6= 0 6= y(m), there is a real number t > 0 satisfying x(m) = t y(m). Thus,

x(m)
|x(m)| =

t y(m)
|t y(m)| =

y(m)
|y(m)| .
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Given n ∈ supp F, there exists x ∈ F such that x(n) 6= 0. The preceding lemma allows

us to define the scalar φ(n) = x(n)
|x(n)| , as the quotient is not dependent on the choice of x (for

x ∈ F, n ∈ supp(x)). If we define φ(n) = 0 for each n ∈ N \ supp F, the any x ∈ F satisfies:

∞

∑
n=1

x(n)φ(n) =
∞

∑
n=1
|x(n)| = 1. (59)

Clearly, φ ∈ `∞ and ‖φ‖∞ = 1. Supposing φ̂ is the element of `∗1 induced by φ (i.e.,
φ̂(x) = ∑∞

n=1 φ(n)x(n) for all x ∈ `1), it is readily seen that the set

Fφ = {x ∈ B`1 : φ̂(x) = 1} (60)

is a closed face of B`1 and, as it has already been remarked, F ⊂ Fφ .

Theorem 2. Under the previous notations, F = Fφ . In particular, F is a face of B`1 .

Proof. Fix m ∈ supp F. Hence there is x ∈ F such that x(m) 6= 0. If |x(m)| = 1, then
x(n) = 0 for any n ∈ N\{m} and it implies that x = x(m)em = x(m)

|x(m)| em , leading to the

conclusion x(m)
|x(m)| em ∈ F. Similarly, if |x(m)| < 1, define ym = ∑n∈N\{m}

x(n)
1−|x(m)| en . By

definition, x(m)
|x(m)| em , ym ∈ B`1 (in fact, ‖ x(m)

|x(m)| em‖1 = ‖ym‖1 = 1). Consequently, taking into
account that F is a face of B`1 and

x =
∞
∑

n=1
x(n)en = x(m)em + ∑

n∈N\{m}
x(n)en

= |x(m)| x(m)
|x(m)| em + (1− |x(m)|) ym ,

(61)

one can conclude that x(m)
|x(m)| em ∈ F.

As the inclusion F ⊂ Fφ has already been proved, it only remains to check that Fφ ⊂ F.
Take x an arbitrary element of Fφ . We have that

∞

∑
n=1

x(n)φ(n) = 1 =
∞

∑
n=1
|x(n)| . (62)

Select any m ∈ supp(x). If |x(m)| = 1, it follows from the previous identities that
x(m)φ(m) = |x(m)|. On the other hand, if |x(m)| < 1, a scalar αn satisfying |αn| = 1 and
x(n) = |x(n)|αn can be considered for each natural number n. In light of (62),

x(m)φ(m) + ∑
n∈N\{m}

x(n)φ(n) = 1 (63)

which can also be written as,

|x(m)| αmφ(m) + (1− |x(m)|) ∑
n∈N\{m}

|x(n)|
1− |x(m)|αnφ(n) = 1. (64)

From the strict convexity of K, it is easily obtained that αmφ(m) = 1. As a consequence,
|x(m)|αmφ(m) = |x(m)| and again x(m)φ(m) = |x(m)|. In particular, φ(m) 6= 0 (equiva-

lently m ∈ supp F) and φ(m) = x(m)
|x(m)| . Note that the inclusion supp(x) ⊂ supp F is also

given by the previous argument.



Mathematics 2023, 11, 193 10 of 11

Back to the initial part of the proof, x(n)
|x(n)| en ∈ F for every n ∈ supp(x). Finally,

decomposing x as

x =
∞

∑
n=1

x(n)en = ∑
n∈supp (x)

|x(n)| x(n)
|x(n)| en (65)

one gets that x ∈ co
{

x(n)
|x(n)| en : n ∈ supp(x)

}
and hence x ∈ F.

Last, an example of a nonclosed face of B`1 is introduced. Let us consider the set

C =

{
x ∈ B`1 :

∞

∑
n=1

x(n) = 1

}
, (66)

which is a closed face of B`1 . Given that en ∈ C for each natural number n, suppC = N.

If x ∈ C and n ∈ supp(x) we have that x(n)
|x(n)| =

en(n)
|en(n)| = 1, and then x(n) = |x(n)|. This

equality also holds whenever n ∈ N\supp(x).
In order to finalise this example, we will show that the set

F =

{
x ∈ B`1 :

∞

∑
n=1

x(n) = 1 and supp(x) is finite

}
(67)

is a face of B`1 satisfying F = C. Observe, as a consequence, that F is not closed. First of all,
F is a convex set contained in C. In addition, given x, y ∈ B`1 and t ∈ R, with 0 < t < 1,
such that (1− t)x + ty ∈ F, there is m ∈ N satisfying the following condition:

n ∈ N, n > m⇒ (1− t)x(n) + ty(n) = 0. (68)

Taking into account that C is a (closed) face of B`1 , x, y ∈ C and x(n) = |x(n)|,
y(n) = |y(n)| for any n ∈ N. Thanks to (68) we get that x(n) = y(n) = 0 for every natural
number n > m. That way, x, y ∈ F and we have shown that F is a face of B`1 . As en ∈ F for

each n ∈ N, supp F = N and its corresponding sequence φ is given by φ(n) = en(n)
|en(n)| = 1

for all n. Consequently,

F = Fφ =
{

x ∈ B`1 : φ̂(x) = 1
}
= C. (69)
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