Nonlinear Dyn
https://doi.org/10.1007/s11071-021-06731-6

®

Check for
updates

ORIGINAL PAPER

A general framework for modeling and dynamic simulation
of multibody systems using factor graphs

Jose-Luis Blanco-Claraco@® - Antonio Leanza -

Giulio Reina

Received: 20 January 2021 / Accepted: 12 July 2021
© The Author(s) 2021

Abstract In this paper, we present a novel general
framework grounded in the factor graph theory to solve
kinematic and dynamic problems for multibody sys-
tems. Although the motion of multibody systems is
considered to be a well-studied problem and various
methods have been proposed for its solution, a uni-
fied approach providing an intuitive interpretation is
still pursued. We describe how to build factor graphs
to model and simulate multibody systems using both,
independent and dependent coordinates. Then, batch
optimization or a fixed lag smoother can be applied to
solve the underlying optimization problem that results
in ahighly sparse nonlinear minimization problem. The
proposed framework has been tested in extensive sim-
ulations and validated against a commercial multibody
software. We release a reference implementation as an
open-source C++ library, based on the GTSAM frame-
work, a well-known estimation library. Simulations of
forward and inverse dynamics are presented, show-
ing comparable accuracy with classical approaches.

J-L. Blanco-Claraco ()

Department of Engineering, University of Almeria,
CIESOL. Campus de Excelencia Internacional
Agroalimentario, ceiA3, 04120 Almeria, Spain
e-mail: jlblanco@ual.es

A. Leanza
Department of Innovation Engineering, University of
Salento, via Monteroni, 73100 Lecce, Italy

G. Reina
Department of Mechanics, Mathematics, and Management,
Polytechnic of Bari, via Orabona 4, 70126 Bari, Italy

Published online: 28 July 2021

The proposed factor graph-based framework has the
potential to be integrated into applications related with
motion estimation and parameter identification of com-
plex mechanical systems, ranging from mechanisms to
vehicles, or robot manipulators.

Keywords Dynamics of mechanical systems -
Multibody systems - Motion state estimation - Factor
graph - Nonlinear optimization - Computational
mechanics

List of symbols

q(?), q(t), g(t) Vectorof generalized dependent coor-
dinates, velocities, and accelerations,
respectively.

z(t), z(t), Z(t) Vector of generalized independent
coordinates, velocities, and acceler-
ations, respectively.

®(q,1) Vector of constraint equations.

Dq Jacobian matrix of the constraints ®.
(O Partial derivatives of constraints &
with respect to time ¢.

Dyq: (d'>q)q Jacobians of ®4 and <i>q with respect

to q (third-order tensors).
b Constraint velocities.
c Constraint acceleration.
A Vector of Lagrangian multipliers.
C Active “branch” or “configuration” of

a mechanism.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-06731-6&domain=pdf
http://orcid.org/0000-0002-9745-285X

J. L. Blanco-Claraco et al.

Generalized forces for time step ¢.

Mass matrix for a mechanism (depen-

dent coordinates).

Reduced generalized forces vector.

Reduced mass matrix for a mecha-

nism (independent coordinates).

The R matrix, mapping increments

between independent and dependent

velocities.

Number of dependent coordinates in

q().

m Number of scalar constrain equations
in ®.

R The set of real numbers.

=@

A dlel

N

1 Introduction

Dynamic simulation of multibody systems mainly
refers to inverse and forward problems. Inverse dynam-
ics deals with the determination of the driving forces
that generate a given motion, as well as the constraint
reaction forces. The solution to the inverse dynam-
ics problem can be obtained for example using the
Newton—Euler (N-E) method [1] that results in effi-
cient recursive algorithms, e.g., Rigid Body Dynam-
ics Library (RBDL) [2] and similar methods [3]. Con-
versely, forward dynamics involves the motion estima-
tion of a multibody system over time under the given
applied forces and initial conditions. Therefore, in a
direct dynamic problem, the motion is the result of
the force system that generates it. From a mathemati-
cal perspective, forward dynamics is computationally
intensive as it entails the integration of a system of non-
linear ordinary differential equations. The most com-
mon formulations that deal with forward dynamic are
the Composite Rigid Body Algorithm (CRBA) [4] and
the Articulated Body Algorithm (ABA) [5]. However,
the above-mentioned methods are not suited for sys-
tems with closed loops like parallel robots, for which
more complex and expensive procedures are required to
solve both inverse and forward dynamics, as described,
for example, in [6]. Therefore, a single algorithm that
can solve all types of dynamics problems has not been
fully established. One notable effort is the work by
Rodriguez [7], who proposed a unified approach based
on Kalman filtering and on the concept of smoothing
to solve dynamics problems. This approach has been
further extended to solve the forward dynamic problem

@ Springer

of closed kinematic chains [8]. Another effort in defin-
ing a unifying framework has been given by [9], who
analyzed various algorithms for serial chain dynamics.
In [10], an attempt is proposed to unify the CRBA and
ABA derivation as two elimination methods to solve
forward dynamics. To the best of our knowledge, fac-
tor graphs have not been applied to solve the general
multibody kinematics and dynamics in the existing lit-
erature. The closest works are the preprints [11,12],
where factor graphs are indeed employed to solve kine-
matic and dynamic problems, although their proposed
graph structure is applicable to open-loop robot arms
only.

The present work proposes factor graphs as a uni-
fying graphical language to express kinematics and
dynamics for general multibody systems. As it will
be shown, classical problems such as direct and
inverse dynamics can then be easily solved as espe-
cial instances of those factor graphs. Moreover, this
new paradigm has the potential to develop novel and
advanced state estimators. Therefore, the main contri-
butions of this work are:

— a factor graph-based representation of dynamics
problems, which is a insightful visualization of the
underlying sparse relationship between all involved
variables,

— aunified method, which can solve inverse and for-
ward dynamics for either open or closed kinematic
chains,

— a flexible framework that can be expressed and
solved for both dependent and independent coor-
dinates.

The implementation described in this manuscript is
focused on planar mechanisms, although it is perfectly
suitable to spatial systems without any change at all at
the level of factor graph structures. Additionally, our
approach allows more powerful and flexible schemes
for state and parameter estimation to be implemented
in contrast with standard methods based on Kalman
filtering [13—17]. Such applications are left for future
extensions of this work to keep the present manuscript
focused on the key ideas on how to apply factor graphs
to multibody motion problems.

The proposed approach draws on the formalism of
graphical models, a powerful tool borrowing concepts
from statistics and graph theory [18, 19]. By addressing
the multibody simulation problem from the perspec-
tive of the variable structure, graphical models allow

A general framework for modeling and dynamic simulation

us creating efficient estimators for any combination of
observed and hidden variables, effectively unifying the
problems of kinematic and forward dynamic analysis
(predicting or estimating the trajectory of a MB sys-
tem), inverse dynamics, and parameter identification
(e.g., inertial properties of the bodies involved, external
disturbance forces, friction in the joints, etc.). All those
problems end up to be formulated as a sparse nonlinear
cost function built from a library of reusable “building
blocks” (the factors) on which efficient solvers can then
be applied. The framework is suitable for either offline
batch analysis or online real-time operation that repre-
sents another clear advantage of the proposed approach.

The rest of the paper is structured as follows. Sec-
tions 2 and 3 first provide the required background
on multibody dynamics and graphical models, respec-
tively. Next, Sect. 4 presents a methodology for the
application of Bayesian networks to multibody dynam-
ics problems, whereas Sect. 5 particularizes such net-
works as factor graphs for a number of practical
problems. Individual factors used in those graphs are
described in detail in Sect. 6. Numerical examples are
provided in Sect. 7, and we end sketching some con-
clusions in Sect. 8.

2 Review of multibody dynamics

In this section, fundamentals of multibody system
motion analysis are briefly recalled, whereas the inter-
ested reader can refer for more details to the wide
related literature, e.g., [20]. A multibody system is an
assembly of two or more bodies (or elements) con-
strained to each other to fulfill a given motion law.
In many practical applications, these elements may be
considered rigid and, throughout this paper, we will
work under this assumption even though the proposed
framework may be further extended to include body
flexibility.

One of the key decisions to take when modeling a
MBS is selecting the set of generalized coordinates that
will be used to represent it. Using independent coordi-
nates z allows one to deal with the lowest number of
parameters, i.e., the number of DOFs of the system.
A second choice is to adopt dependent coordinates
q, in a number larger than that of DOFs but able to
describe all multibody system points univocally. When
dependent coordinates are used, the corresponding set
of constraint equations must be included as well for a

complete system analysis. There are different kinds of
dependent coordinates [20]: Relative Coordinates, Ref-
erences Point Coordinates, Natural Coordinates, and a
combination of the previous ones (Mixed Coordinates).
Natural coordinates, mixed with relative coordinates
where needed will be assumed in this work.

In the remainder of this section, the MBS motion
equations are developed and expressed in terms of both
dependent and independent coordinates.

2.1 Dependent coordinates formulation

For any given MBS with f dofs, the use of n dependent
coordinates expressed by the vector q requires m =
n — f constraint equations, which form the following
set of equations

@ (q(),1) =0 e))

Thus, it is assumed that there are at least as many equa-
tions as there are unknown coordinates. To solve the
kinematic problem, the time derivative of Eq. (1) is
required, one time for velocity analysis and two times
for acceleration analysis, leading to the following set
of equations

dg(q(t), 1) g =—D, =b 2)
Dg(qt), 1) =D, — Pgg=c A3)

where (is the vector of dependent velocities, ®q €
R™>" the Jacobian matrix of Eq. (1) respect to q, and &,
the time derivative of constraint equations that is equal
to the null vector for time-independent constraints.

To solve the dynamic problem, external forces and
inertia forces need to be considered. From the classical
Newton’s law, one obtains the following set of differ-
ential equations that expresses the force equilibrium
equations

M{+ @4 A =Q)

where A is the vector of Lagrange multipliers, M is the
system mass matrix and vector Q contains the gener-
alized external forces. Since Eq. (4) is a system of n
equations in n + m variables, by adding the m Eq. (3)
one obtains the following system

BN .

Normally [20,21], this equation is solved for the
extended vector of unknowns that includes both, ¢ and

@ Springer

J. L. Blanco-Claraco et al.

A. In our framework, we are specifically interested in
the generalized accelerations q. Therefore, by applying
the block matrix inversion lemma (see 8) to Eq. (5)
and keeping the first row only, it leads to the following
equation of motion expressed in terms of dependent
coordinates:

i=(M"-M"o T oM ') Q
+ (Mo T e 6)

where we defined the auxiliary term I" (q) as the m x m
square symmetric matrix

=oM 0,7, @

introduced for convenience in subsequent derivations.

2.2 Independent coordinates formulation

Independent coordinates z, ensure the minimum num-
ber of variables, i.e., the number of DOFs. However,
multibody systems can be more difficult to analyze with
respect to dependent ones. First, the matrix R is intro-
duced as

. dq 0qoz .
9= =3, (Qz ®)

where the columns of R are f linearly independent
vectors that constitute a basis of the nullspace of ®yg.
Then, we express the independent velocities z as the
projection of the dependent velocities ¢ on the rows
of a constant matrix B that we assume satisfying the
condition of having f rows linearly independent from
each other and from the m rows of ®q

z=Bq ©)
By combining Eq. (2) with Eq. (9), one obtains

Dq | . b
[)a=[] ®
—1

. Dq b .
=[] [o] = oo i
The columns of matrix R are the partial velocities with
respect to the generalized coordinates z, and the term
Sb represents the partial velocities with respect to time.

By differentiating Eq. (9) and by taking into account

Eq. (3), one gets

c Dl . c ..

1= | B d=q=I[S R] 5 =Sc+RZ (12)

z

@ Springer

From Eq. (4), pre-multiplied by R

R'MG=R"Q (13)
and by substituting q in Eq. (12)
R'MRz =R' (Q — MSc) (14)

Introducing the reduced mass matrix M = RTMR
and force vector Q = R (Q — MSe), the following
equation of motion in terms of independent coordinates
can be finally obtained

— =

i=M Q (15)

3 Background on graphical models

A factor graph is a particular type of probabilistic
graphical model that can be used to describe the struc-
ture of an estimation problem [22]. Factor graphs have
found applications in many fields, for example in robot
perception [23], information theory [24], signal pro-
cessing [25], and in other areas of robotics, mostly
SLAM [26] and computer vision [27], state estimation
in legged robots [28], and kinematic motion planning
[29].

3.1 Dynamic Bayesian networks

It is instructive to start our discussion by considering a
Dynamic Bayesian Network (DBN), a type of graphi-
cal model where variables are represented as nodes and
directed edges stand for causal relationships [22,30].
The existence of directed edges in a DBN allows us
to encode an expert’s knowledge in causality relation-
ships between all involved variables in the graph.

The rules to convert a DBN into the kind of graphs
we are actually using in this work, factor graphs (FGs),
are discussed in Sect. 5. A relevant point regarding such
conversion is that one single DBN can be mapped into
different FGs depending on which subset of the original
DBN variables are known data and which unknowns are
required to be found. Let us remark that whereas a DBN
displays all variables as nodes, in a FG only unknown
variables are variable nodes.

3.2 Factor graphs

Factor graphs (FGs) are bipartite graphs comprising
two kinds of nodes: variable nodes and factor nodes.

A general framework for modeling and dynamic simulation

Variables are the unknown data to be estimated, and
factors represent any constraint (a cost function to be
minimized) or relationship between variables. A cru-
cial aspect of a FG is its sparsity: each factor node is
only connected to the variables that appear in its cost
function. Sparse graph optimization algorithms exist
with computational cost almost linear with the num-
ber of edges in a FG, as opposed to, for example, the
cubic cost of a naive implementation of Kalman Filter-
ing [31]. Incremental (e.g., [32]) and sliding window
(e.g., [33]) approaches exist as well, enabling the effi-
cient estimation of problems with thousands to millions
of variables [34-36].

Once a FG is formulated for a given problem,
estimating the most-likely value of all the unknowns
becomes a numerical nonlinear minimization problem,
for which very efficient algorithms exist. As a proba-
bilistic estimator, these optimal values can be assigned
an uncertainty. In general, retrieving the covariance X
of the estimated variables involves inverting the Hes-
sian of the linearized problem evaluated at the opti-
mal solution, such that ¥ = (JTAJ)~! with J the
sparse Jacobian of all constraints (factors) and A the
weight matrix representing our level of certainty about
each constraint. The matrix inversion operation is, in
general, very costly since it is cubic with the problem
dimension. However, optimized methods exist for the
kind of sparse problem at hand, see, for example, [37,
§B.4] or [32].

4 DBN for multibody dynamics

Since DBNs allow a human expert to specify the
causality relationships between variables, we propose
the two DBNs in Fig. 1 as the underlying structure of a
generic multibody system that is the basis for our pro-
posed framework. Note the use of discrete time steps
t, exactly as simulations are commonly done following
numerical integration schemes. A set of observations
or measurements o are available from sensors installed
on the system. Note, however, that the graphical model
formalism is flexible enough to allow each sensor to
be available at a different or even sampling rate. When
using this graphical model to achieve state estimation,
sensors may provide partial information on the system
dynamics, which will be then fused with the rest of
graph constraints over the system trajectory to reach
the most likely values of the estimated variables. In

(b) Model for independent coordinates formulation

Fig. 1 Dynamic Bayesian Network (DBN) models represent-
ing the causality relationship between the variables involved in
general multibody dynamics problems over discrete time steps ¢.
Notation: q, q, § are the dependent coordinates, z, Z, Z are inde-
pendent coordinates, 0 are sensor observations, C is the active
branch of the mechanism, and Q is the external forces. Dashed
boxes represent groups of variables for which input or output
directed edges affect all members. See Sect. 3 for a discussion

non-state estimation problems, the set of observations
o may be empty. Additionally, system parameters such
as masses, stiffness, or friction coefficients (constant or
variable over time) could be added as additional nodes,
although this possibility is left out of the scope of this
manuscript for the sake of conciseness.

From Fig. 1, some observations can be drawn:

— A central role in the DBN for independent coordi-
nates (Fig. 1b) is played by the independent coor-
dinates z, z, Z as they represent the degrees of free-
dom (d.o.f) that govern the evolution of the MBS.
This role is assumed by the dependent coordinate
variables q, q, q in Fig. 1a.

— The branch variable C, required uniquely in the
independent-coordinate formulation, allows us to
disambiguate between, e.g., the two possible con-

@ Springer

J. L. Blanco-Claraco et al.

figurations for a four-bar linkage if we are only
given the information about the crank angle. This
variable could be part of the unknowns to be esti-
mated, as already done in [38], although that work
did not use the more powerful FG representation
proposed here.

— Typically, nodes in a DBN are depicted as shaded
or unshaded depending of whether they are “hid-
den” or “observed” variables, respectively, e.g., see
[18,38]. The former are estimated from the lat-
ter. Since this work focuses on FGs instead, where
observed variables are subsumed into factor nodes
and unknowns become variable nodes [23], differ-
ent FGs will be generated from the same DBNs in
Fig. 1 for different multibody simulation problems;
hence, it is not convenient to establish such a dis-
tinction at the DBN level yet.

— Observations o (sensor readings) are a function of
(all, or a subset of) dependent coordinates. Typical
observations that may be useful in a MBD prob-
lem are measurements obtained from gyroscopes,
accelerometers, and load cells.

— External forces Q; act by means of modifying
accelerations §; or Z, according to the system
dynamics, expressed by Eq. (6) or Eq. (15), respec-
tively.

Once the model of the dynamics MBS has been
expressed as a graphical model, the time evolution of
the system can be obtained by converting the graph
into a maximum-a-posteriori (MAP) estimation prob-
lem. To this aim, one could write down the joint prob-
ability distribution p(¢) of all the involved variables
¢ = {90:> Go:r» Go:r» 00, Qo:r} for time steps O to ¢
exploiting the conditional probability encoded by the
DBN (refer to, e.g., [18,22]), which for dependent coor-
dinates (i.e., Fig. 1a) becomes:

t t
P(@®) = p(qo)p(do) (]‘[p(Qi)> (]‘[p0ilai, di, §)

i=0 i=1

P(i1qi, 4i, Qi) p(qilqi—1, §i—1) p(Qi |Gi -1, lel))
(16)

where each conditional probability term in Eq. (16),
taking negative logarithms and up to an irrelevant pro-
portionality constant, becomes a factor in this alterna-
tive form of an overall cost function c¢(¢) to be mini-
mized:

@ Springer

'
(@) = fprior (Q0) fprior (o) (H Sprior (Qz))

i=0

t
(H Jobs(0;, q;, Qi iii)ffyn(('ii, q, 9, Q)

i=1
fei(qi»(h’—laQi—l)fei(Qiaiii—lsqi—l)> (17

A fundamental feature of graphical models is how
they enable factorizing functions of all problem vari-
ables such as c(¢) o« —log p(¢) into the product of
a large number of smaller functions (in terms of the
number of variables involved in each expression) called

factors in Eq. (17), which are discussed individually

in Sect. 6. This is what keeps the estimation problem
tractable even for hundreds of thousands of variables,
something intractable for estimators in the family of the
Kalman filter not exploiting the sparsity of the problem
structure. Note that the goal of an estimator is searching
for the optimal set of unknowns ¢* that maximize the
likelihood of all observed data according to the model,
that is:

¢* = arg max p() = argmin c(¢) (18)

Depending on the division of the DBN variables into
observed and unknowns, we would arrive at different
factorizations since factors are considered to be func-
tions of the unknowns only. For example, if all variables
in one given cost factor in Eq. (17) are known data,
it just evaluates to a constant which can be absorbed
by the proportionality relationship c(¢) o« —log p(¢)
and hence can be ignored. A graphical representation of
the remaining relevant factors leads us to factor graphs
themselves.

5 Factor graphs for multibody dynamics

The conversion from DBN to FG is known to be achiev-
able as follows, without the need to explicitly writing
down probabilistic equations like Eq. (16)-Eq. (17):

Every Bayes net [DBN] node splits in both a
variable node and a factor node in the corre-
sponding factor graph. The factor is connected
to the variable node, as well as the variable nodes
corresponding to the parent nodes in the Bayes
net. If some nodes in the Bayes net are evidence
nodes, i.e., they are given as known variables, we

A general framework for modeling and dynamic simulation

Fig. 2 Factor graphs for the forward dynamic simulation prob-
lem using dependent generalized coordinates. Circle nodes are
problem unknowns; solid square nodes are factors. See discus-
sion in Sect. 5.1

omit the corresponding variable nodes: the known
variable simply becomes a fixed parameter in the
corresponding factor. [23, p. 12]

Applying these rules to the DBN reflecting the struc-
ture of variables involved in the dynamic simulation
of multibody systems with dependent coordinates in
Fig. 1a, we derive next the FGs for a couple of prac-
tical problems depending on which are the known
and unknown variables. Factors will be only briefly
discussed here regarding their purpose and meaning,
whereas their detailed implementations are described
in Sect. 6.

5.1 FG for forward dynamics in dependent
coordinates

In forward dynamics simulation, we are given a known
initial state of a mechanical system (position qo and
velocity), their geometric and inertial properties, and
the external forces that act on it (Q;,i = 0, ..., N). For
simplicity, we assume no sensors are installed in the
system since this problem instance does not need them,
but predicting sensor outputs could be also possible
adding the corresponding nodes and factors.

The resulting FG when using dependent coordinates
is shown in Fig. 2, and it involves the following factor
nodes (or plain factors):

— fprior: Factors imposing a given a priori knowl-
edge about the attached variables, e.g., initial con-
ditions. Prior factors can be defined for both, posi-
tion and velocity.

- f [fc: Factor for position constraints in dependent
coordinates. It ensures the fulfillment of mechani-
cal holonomic constraints by keeping the state vec-

tor q on the manifold ®(q, t) = 0; hence, this fac-
tor is repeated for each position node q;. It could
be omitted for qq if the enforced pose imposed by
the prior factor is known to be a correct mechanism
position complying with ®(-) = 0; alternatively,
the prior factor can be made to affect a minimum
number of variables in qg (the number of degrees
of freedom), leaving f I‘fc in charge of recalculating
the rest of the generalized coordinates. This factor,
on its own, solves the so-called position problem
[20] in multibody dynamics.

- ffC: Factor for velocity constraints in dependent
coordinates, enforcing generalized velocities ¢ to
remain on the manifold ®qq + ®; = 0.

- ijn : Factor for the dynamics equation of motion: it
links external forces (known data in this FG, hence
not reflected as variable nodes) with the instan-
taneous acceleration . It also depends on q and
q since acceleration is always a function of them
too. Note in the graph how acceleration for each
timestep depends on position and velocity of the
same timestep only.

— f1i: Trapezoidal numerical integrator factor is
used twice per timestep: to integrate velocities
into positions, and accelerations into velocities.
Implicit integrators as the trapezoidal one are often
employed in MBS simulations for their stabil-
ity. However, the Euler integrator version is also
devised (see Sect. 6), since explicit integrators are
commonly used in real-time applications as well.

5.2 FG for forward dynamics in independent
coordinates

Alternatively, one could devise a FG implementation
for the forward dynamics problem when using inde-
pendent coordinates, leading to the graph depicted in
Fig. 3. In this case, the following factors are used:

— fprior: Inthis case, they are used to impose both, an
initial known dynamic state (zg, Zg) and approxi-
mated initial values for the full vector of dependent
coordinates qq. The latter may be required to solve
ambiguities in closed kinematic topologies, e.g., a
four bar linkage, where knowing the minimum set
of independent variables still leaves more than one
feasible kinematic configuration.

— feq: An equality factor, used to impose a soft con-
straint between state vectors consecutive in time.

@ Springer

J. L. Blanco-Claraco et al.

Fig. 3 Factor graph model for the forward dynamic simula-
tion problem using independent generalized coordinates. Circle
nodes are problem unknowns; solid square nodes are factors. See
discussion in Sect. 5.2

The rationale behind this factor is to impose a soft
constraint, which can be easily violated (its weight
is small in comparison to all other factors) but still
provides a solid starting point for nonlinear numer-
ical solvers to exploit the fact that mechanism coor-
dinates cannot vary abruptly between consecutive
time steps. This factor is particularly important to
solve ambiguities in mechanisms with more than
one branch, exactly as argued by the end of the for-
mer paragraph.

- f éyn: The independent coordinate version of f jyn
discussed above, it implements the dynamics equa-
tion of motion.

= Jfpe> fi.: Like their dependent coordinate coun-
terparts in the former section, these factors keep
the position and velocity vector within their cor-
responding constraint manifolds. Note how, in this
case, the factors not only affect q and ¢ coordinates,
but their independent coordinate versions z and z
too, respectively. These factors actually correspond
to the so-called position problem and velocity prob-
lem in multibody mechanics [20].

5.3 FG for inverse dynamics in dependent coordinates

Another problem that can be formalized as a FG
is inverse dynamics, as shown in Fig. 4. The problem
consists of specifying a desired trajectory over time for
the set of degrees of freedom of a mechanism, then

@ Springer

Fig. 4 Factor graph for the inverse dynamics problem using
dependent generalized coordinates. See discussion in Sect. 5.3

solving for the required forces and torques to generate
such trajectory. The most relevant factors here are:

— fprior: Different prior factors are used to define
initial known values for the dynamic state (qo, qo)
and to enforce a value of zero in all components of
the generalized force vectors Q; where it is known
that no external force is acting. In other words, the
latter factors are required to leave only part of Q;
as an unknown, e.g., for those degrees of freedom
where a motor is exerting a torque.

- fl dyn’ : Similar to the dynamics equation factor f¢ dyn
discussed above, but with the force Q; as an addi-
tional variable. Note that f jyn (see Sect. 5.2) also
used a value for Q;, but it was treated as a known
constant, whereas for f dyn the Q; are unknowns
and as such the factor provides a Jacobian of the
error term with respect to them as well.

From all discussed problems so far, inverse dynam-
ics is the hardest to solve for nonlinear iterative solvers
from initial values that are far from the optimum. There-
fore, itrequires a proper initialization strategy to enable
numerical nonlinear solvers to cope with it effectively,
as discussed in the experiments section later on.

6 Factors definition

In a factor graph, factors establish the relations between
variables. This section provides an insightful practical
guide to those factors MBS problems are made of.
Each factor defines an error e(x) between pre-
dicted and measured data. To apply nonlinear optimiza-
tion algorithms (e.g., Gauss—Newton or Levenberg—
Marquardt), the Jacobian of such error with respect
to all involved variables x is required. DBN variables

A general framework for modeling and dynamic simulation

whose values are known do not become FG nodes and
hence are constant parameters of factors. The goal of
the optimization is to search for the best values of all
variables x* taking the weighted sum of error functions
(one per factor) as close to zero as possible:

X' =argmin) llei (03 (19)
1

where | e; (x) II% is a form of whitening already integrat-
ing the probabilistic noise model (or weight) of each
factor. The most common model, used in the present
work, is the assumption of additive zero mean Gaussian
noise n ~ A/ (0, X) with covariance matrix X. Taking
the negative logarithm of the corresponding probabil-
ity density can be shown to give us the nonlinear least-
squares problem in Eq.(19), where

1
lex)|I3 = 5e(x>TAe(x> (20)

with information matrix A = X£~!. Larger information
values in A (or smaller variances in X) imply that the
factor must be considered with a higher weight during
the optimization in comparison to other factors with
smaller information values (or larger variances). Note
that each component of multidimensional x vectors
may have a different weight for a given single factor,
e.g., as proposed in the priors over external forces in
Sect. 5.3. The interested reader is deferred to [23] for
a more in-depth discussion on this topic.

In the following, note the use of the superscripts f¢
and f! for factors with differentiated implementations
for dependent and independent coordinates, respec-
tively.

6.1 fprior: Prior factor

Prior factors f},,or (X) Over a variable x are the only
unary factor used in our proposed graphs. They repre-
sent a priori belief (hence the name) about the state of
a given variable.

Since the problems addressed in this manuscript use
variables that are either (a) state vectors with gener-
alized coordinates of planar mechanisms, or (b) their
velocities or (¢) their accelerations, all variables can be
treated as vectors in the group of real numbers; hence,
the error function e(-) of this factor for a vector of
dimensionality d has a simple form:

fprior error function: e(-) =X — X (21a)

Variables: x (21b)

Fixed parameters: Xq (21¢)
. e

Jacobian: — =1y (21d)
ox

where xq is the “desired” value for the variable x.

6.2 f.i: Euler integrator factor

The graphs proposed in former sections work over tem-

poral sequences of variables, sampled at a fixed sample

rate fy = 1/At. Imposing the continuity of ordinary
differential equations in discrete time can be done by
means of numerical integration, of which the Euler inte-
grator is the simplest instance.

Given two consecutive samples for time steps ¢ and
t + 1 of a given variable x and its time derivative X at
time #, the Euler integrator factor f,; (shown in Fig. 5a)
can be defined as:

fei error function: e(:) = x;41 — X, — Atx, (22a)

Variables: X;, X;+1, X; (22b)
Fixed parameters: At (22¢)
0 ad
Jacobians: 2 _ —I; ¢ =1
th 8Xt+]
d
2 Ay (22d)
8Xt

where the state space is assumed to be R,

6.3 f;i: Trapezoidal integrator factor

Another well-known numerical integration scheme fol-
lows the Trapezoidal Rule. Given two consecutive sam-
ples for time steps ¢ and 7 + 1, both for a given variable
x and its time derivative X, the trapezoidal integrator
factor f;;, shown in Fig. 5b, can be defined as:

fi error function: e(-)
At At

=Xi+1 — Xy — TXI - TXHI (23a)
Variables: X;, X;+1, X, X¢+1 (23b)
Fixed parameters: At (23¢)
0 a
Jacobians: g€ _ -1 ¢ - I,
th 8X;+1
ae At ae At
=T =T
8Xt 2 8Xt+1 2
(23d)

@ Springer

J. L. Blanco-Claraco et al.

O OO (o)
.
&) O @)

(a) Euler integration.
gration.

(b) Trapezoidal inte-

(C) Position
constraints

(d) Velocity con-

straints

Fig.5 a-bNumerical integration factors discussed in Sects. 6.2-6.3. Factors used to enforce q and ¢ to remain within their corresponding
manifolds: ¢ holonomic position constraints, (b) velocity constraints (see Sects. 6.4-6.5)

Asmentioned in Sect. 5.1, this integrator is preferred
for its better accuracy in comparison with the Euler
method.

6.4 f gcz Factor for position constraints in dependent
coordinates

This factor, depicted in Fig. 5c, ensures the fulfill-
ment of mechanical holonomic constraints of Eq. (1).
As explained in Sect. 2.1, modeling a mechanism in
dependent coordinates leads to a number of constraint
equations largest or equal to the number of generalized
coordinates.

This factor has the following general form:

f;fc error function: e(-) = ®(q;) (24a)

Variables: q; (24b)

Fixed parameters: Mechanism model (24¢)
a

Jacobians: —— = ®q (q) (24d)
aq;

where both ® and ®¢ can be automatically built out of
pre-designed blocks (see Appendix III), according to a
formal description of the topology of the mechanical
system and the specific joints connecting each pair of
adjacent bodies. In particular, since each physical con-
straint becomes one or more entries in the ® (q) vector,
each such constraint fully determines the correspond-
ing rows in the Jacobian ®4(q), easing its automated
construction from the elemental expressions exposed
in Appendix III.

@ Springer

6.5 ffcz Factor for velocity constraints in dependent
coordinates

Velocity constraint factors further improve the quality
of MBS simulation. These kind of factors are modeled
by Eq. (2) and depend on both, q and q, as illustrated
in Fig. 5d. Its definition is as follows:

fvdc error function: e(-)

= Bg(@)A DT Pya)ds (25a)

Variables: q;, q; (25b)
Fixed parameters: Mechanism model (25¢)
0 00)
Jacobians: o€ = M
aqr 0q;
de
— = 25d
oq, q(qr) (25d)

where we assumed that no constraint depends explicitly
on time; hence, ®;(q,) can be safely neglected. Again,
each row in the Jacobians comes from exactly one con-
straint in the definition of the mechanical system, with
most common cases described in Appendix III.

d gd i i :
6.6 fayn> Siayn a4 Sy figyn: Factors for dynamics

These factors minimize the error between the actual
acceleration estimates (¢ and Z) and the correspond-
ing equations of motion Egs. (6) and (15) for depen-
dent and independent coordinates, respectively. To deal
both forward and inverse dynamics, this factor connects
the generalized positions, velocities, and accelerations
with the forces (Qy) for each single time step ¢. In the
case of forward dynamics, both the variable Q; and the
edge connecting it to the factor are dropped, becoming
Q; an internal known parameter to the factor. For this

A general framework for modeling and dynamic simulation

reason, two factors for forward and inverse dynamics
must be defined independently:

— Forward dynamics
For dependent coordinates:

ijn error function: e(-) = q(q;, q;) — q; (26a)

Variables: qr, 4, G (26b)
Fixed parameters: (masses, external forces)
(26¢)
. oe 94(qs, q;) Oe
Jacobians: — = —— 2 — — —
qr aq, 04,
9 8ii(qy, ¢
de _ 94(@r. 40 (264)
04, 0q;

and for independent coordinates:

féynerror function: e() = Z(z;, z;) —Z, (27a)

Variables: z;, 7, Z; (27b)
Fixed parameters: (masses, external forces)
(27¢)
0 0Z(z;, 7 d
Jacobians: 2 = M f‘? =-1
Z; 8Zt 8Z,
D BE.2) @74)
aZ; aZt
— Inverse dynamics
For dependent coordinates:
ijn error function: e(-)
= q(qr, qr, Q1) — s (28a)
Variables: q;, q;, qr, Q; (28b)
Fixed parameters: (masses) (28¢)
5 9ii(q,. .
Jacobians: 2 _ M (28d)
0q, 0q;
3 96 (q,. G,
_.e _ q(qy flt Q) (28¢)
0q; 0qr
a
- (281)
04,
3 96, 4.
¢ _ a9, 4., Qo) (28¢)
0Q, 0Q;
and for independent coordinates:
féyn error function: e(-)
=iz, 2, Q) — % (29a)
Variables: z,,%;, %, Q; (29b)
Fixed parameters: (masses) (29¢)
Je 9iz,. 1,
Jacobians: — = M (294d)
8Z, 8Z[

oe _ ai(zl"ilﬂ QZ)

= 29

3% 3%, (29)
oe

—=-1 (291)
8Zt

oe 0Z(z;, 7, Qy)

- == (29¢)
Q; 9Q; £

Refer to Egs. (6) and (15) for the evaluation of
the error functions Eqs. (28a) and (29a), respectively.
Since inverse dynamics problems seek the generalized
forces in a small subset of components of the vector Q
(i.e., those actuated with motors) given known values
of positions q and velocities (, in our implementation
we opted for implementing only the Jacobians with
respect to Q;, that is, Egs. (28g) and (29g). Devising
closed-form expressions for these Jacobians, reported
in Appendix IV, is another contribution of this work.

Not defining the other Jacobians and assuming they
are zero amount to disregarding the information on ¢
and q directly inferred by the external forces Q;, which
is a reasonable assumption in practice. Note that indi-
rect information on q and q is never lost via their time
dependency on accelerations, which are indeed taken
into account in this factor.

6.7 f 1’, .- Factor for position constraints in independent
coordinates

Figure 3 shows three sets of factors linking depen-
dent coordinates (position, velocities, and accelera-
tions) with their corresponding degrees of freedom, that
is, with their counterparts in independent coordinates.
The first one of these factor is f 1’; .» in charge of impos-
ing the simultaneous fulfillment of: (a) position con-
straints in ®(q), and (b) that independent coordinates
z are integrated into its corresponding positions within
q. Therefore, its error function and Jacobians read:

f]’, . error function: e(q;, ;)
_ |: @(q)]
qt({ldxs}) — (m+d)x1
Variables: q;, z; (30b)

Fixed parameters: {idxs},

(30a)

constant distances, angles, etc. (30c)

0
Jacobians: — = |:CD‘1 (qt):|
94 Tidxs (m+d)xn
3_6 — I:Omxdi| (30d)
oz i J s ayxa

@ Springer

J. L. Blanco-Claraco et al.

where {idxs} = {y1, 2, ..., y4} stands for the fixed
sequence of indices of each z coordinate inside the n-
vector q and the coefficients I; ; of the binary matrix
I; 4.5 are defined as 1if j = y;, or as 0 otherwise, where
i=1,.,dand j =1, .., n.

6.8 fi.: Factor for velocity constraints in independent
coordinates

This factor ensures the fulfillment of the velocity con-
straints for independent coordinates:

flfc error function: e(qy, q;, Z)
_ |: (bq((lt)(.lt i|
qt({id'xs}) - il (m+d)x1
Variables: q;, q;, Z (31b)

(31a)

Fixed parameters: {idxs},

constant distances, angles, etc. (31c)

Jacobians: de _ |:<I>qq((h)('lti|
aq; Oaxn Jsdyxn
E _ |:q>q(Qt)i|
09, L Liax Jiuiayun
de [0’“”’} (31d)
0z, L | vayxa

where the tensor vector product ®qqq; results in the
2-D matrix d>q (see Eq. (40a)) which can be sys-
tematically built row by row from a description of
the mechanism from the building blocks described in
Appendix III.

6.9 fi.: Factor for acceleration constraints in
independent coordinates

This factor ensures the fulfillment of the acceleration
constraints for independent coordinates:

f,fc error function: e(q;, q;, G, Z;)

_ [éq @4 + %(g»dz] (322)
ql ({lde}) —Z (m+d)x1
Variables: qy, qr, s Z (32b)
Fixed parameters: (constant distances,
angles, etc.) (32¢)
Jacobians: ﬁ _ |:(<Dq)q(qr)(]t + q’qq(‘]t)iit]
aq, 0dxn (m+d)xn

E _ |:2d)qq(ch)(lt:|
3(], 0d><n (m+d)><n

@ Springer

E _ |:<Dq((It):|
G, Liax (m+d)xn
% i | onrayxa

where the tensor vector products (qu)q(q,)q,, Dyqdr»
and 2®gyqq, = 2®4 can be systematically built as
described in Appendix III.

7 Test cases validation

Firstly, a four-bar linkage is employed to exemplify
the implementation and the performance of the pro-
posed FG-based framework. The mechanism is shown
in Fig. 6a, where two revolute joints, P, and P>, can
move in the motion plane, whereas A and D are fixed.

Geometric and inertial properties are summarized in
Fig. 6b. The motion of the mechanism has been simu-
lated using the commercial MBS environment Adams
/ View from MSC.Software with a fixed-step integra-
tor at 1/10 of the time step used in the factor graph;

P,:|x,, yz)
1 (o]
P (Xp Y1] 2
(¢]
3
1
A o b
o O
(a)
Ll 1.0 [m]
Lo 2.0 [m]
L3 \/ﬁ [m]
mi 1.0 [kg]
mo 2.0 [kg]
ms 4.0 [kg]
L4 %miL? [kg m?]
(b)

Fig. 6 a First planar mechanism used in the numeric simulations
described in Sect. 7. b Table of mechanism properties (length and
mass) for each link. Inertias /; are given with respect to the center
of mass of each link, placed at its center

A general framework for modeling and dynamic simulation

hence, its results can be considered the ground truth
for comparison purposes.

A companion open-source reference C++ imple-
mentation! of the proposed factor graph approach has
been released along with the paper, together with tools
to easily define and simulate mechanisms via human-
friendly YAML files, as in the example of Listing 1.

Note that all factor closed-form Jacobians have been
thoroughly validated by means of unit tests against
numerical finite differences.

7.1 Forward dynamic simulation

Free motion of the four-bar mechanism under the sole
effect of gravity (¢ = 9.8 m/s?) has been simulated,
with an initial crank angle 0 (refer to Fig. 6a) of zero
and null initial velocities.

The FG in Fig. 2 using dependent coordinates has
been implemented and then solved numerically in an
incremental fashion using a fixed lag smoother, when
only the factors of the last Ny, time steps (the win-
dow length) up to time ¢ are considered, with discrete
time ¢ ranging from O up to 5 seconds with steps of
dt = 1 ms. A Levenberg—Marquardt nonlinear iterative
solver algorithm has been selected for these runs, with
a maximum number of iterations of 15. Note, however,
that virtually all calls to the optimizer required only 3
to 5 iterations until convergence.

Figure 7a, b shows the time history of the depen-
dent generalized coordinates of points P and P, and
their corresponding velocities, respectively, obtained
from both, the proposed FG-based approach and from
MSC Adams. Both series accurately coincide; hence,
a more detailed comparison is in order in Fig. 7c, d,
where the differences in q and q are reported between
the proposed FG-based method and the ground truth.
Similar good agreement (omitted for brevity’s sake) is
obtained when adopting the independent coordinates
FG, as explained in Fig. 3, thus verifying our two pro-
posed schemes. The noise models used in all factors
involved are summarized in Table 2, whose absolute
values are not relevant and have no special physical
meaning, since all that matters is their relative weight
with respect to each other. Note that FG optimal solu-
tions are robust against changes in those noise models

! Software available online in https:/github.com/MBDS/
multibody-state-estimation.

TAAVL 1.2

A four bars mecahnism
Degrees of freedom in g=[x1 y1 x2 y2]"T
Modeled in Natural coordinates:

#
2:(a3,q4)
-+—-—-- 0
| (>0, yb)
|
|
-o———-- + 1:(ql,a2)
(xa,ya)
#
parameters:
L: 1.0 # length [m]
xb: 4.0
points:
#0 (="a")
- {x: 0, y: 0, fixed: true}
#1
-{xL y 0}
#2
- {xt L, y: 2L }
#3 (="B")

- { xt xb, y: 0, fixed: true }
planar_bodies:
#0
- points: [0, 1]
length: L
mass: 1.0
10: (1/3)#massxlength”2
cog: [0.5xlength, 0.0]
#1
- points: [1, 2]
length: 2L
mass: 2.0
10: (1/3)#massxlength”2
cog: [0.5xlength, 0.0]
#3
- points: [2, 3]
length: auto
mass: 4.0
10: (1/3)#massxlength”2
cog: [0.5xlength, 0.0]

Listing 1: YAML definition of the four-bar mechanism
in Figure 6, used as an input to our reference imple-
mentation.

by at least one order of magnitude; hence, there is no
need for fine tuning those parameters. The fulfillment of
the constraints |® (q)| over time, illustrated in Fig. 8, is
ensured by means of the addition of position constraint
factors to the FG.

In order to quantify the accuracy and computational
cost of both schemes (dependent and independent-

@ Springer

https://github.com/MBDS/multibody-state-estimation
https://github.com/MBDS/multibody-state-estimation

J. L. Blanco-Claraco et al.

x1
1 T T
_ ., P MSC.ADAMS|
B\ : , ™
1 L e A L L BV L L
05 1 15 2 25 3 35 4 45 5

05 T T T T T T
=0 e ZEN MSC.ADAMS|
Eos I /\ \, Ours
3 v 1 b 1 L L 1 o
0 05

1 15 2 25 3 35 4 45 5

N] ! s MEC.ADAMS
P\ \M - NN A H

\ . L \‘
1 15 25 35 4 5

t\me [s]

(a) Comparison of q series.

Errorin q [m]

|
0 0.5 1 15 2 25 3 35 4 4.5 5
time [s]

(C) Error in q.

Fig.7 Simulation-based validation of the proposed FG approach
to forward dynamics for a four-bar linkage under the effects of
gravity. Generalized coordinates (a) and velocities (b) are shown
for our approach (using a fixed-lag smoother with N,, = 2, time
step of 1 ms) and for MSC.ADAMS as ground truth. ¢ and d show

x1077

Fig. 8 Evolution over time of the L, norm of the constraints
vector ®(q) for the forward dynamics experiment for the four-
bar linkage

based FGs) and to explore the importance of the fixed
lag window length parameter N,, for this problem, the
root mean square error (RMSE) of the overall q tra-
jectories is shown in Table 1 for window sizes varying
from 2 to 10 time steps, together with the average exe-
cution time for each simulation time step measured in a
single thread of an Intel(R) Core(TM) i7-8700 CPU @

@ Springer

MSC.ADAMS)

= UF\ T T A T T T e T "

€ o \ o — urs

E s ,

= o L L 1 s’ 1 1 \ \ N

& \
\/ \ Ou rs

tlme [s]
dxz

2
MSC.ADAMS)
0 /_\/ ours
2 f . I . { . 1 I
0 0.5 1 15 2 3 35 4 4.5 5

25
time [s]
dy2

y:
5 T T T T T T T T
- 4 . T MSC ADAMSH
T 0}\J-’ \ \ \ Ours
= f I I I I { I
0 05 1 15 2 3 35 4 45 5

2.5
time [s]

[m/s]
how

[m/s]

(b) Comparison of ¢ series.

Error in dq [m/s]

time [s]

(d) Error in ¢.

the error as the difference between ground truth and the output
of the proposed FG-based method. Overall RMSE for this case
is &~ 0.0031 m and ~ 0.026 m/s for q and q, respectively. See
discussion in Sect. 7.1

3.20GHz. Three conclusions can be drawn from these
data: (i) both schemes, dependent and independent
coordinates, seem to provide comparable accuracy, (ii)
the dependent coordinates FG is more efficient (which
comes at no surprise since it has less variables and fac-
tors than the independent coordinate version), and (ii)
using large window lengths does not help increasing
the accuracy of the estimation. This latter point can
be explained by the fact that the present experiments
focus on forward dynamics only, not estimation from
noisy sensor measurements, a case where it should be
expected that larger windows lead to better results. This
topic, however, falls out of the scope of the present
paper, and it should be studied in the future. Finally,
please note a summary of the noise models employed
in this experiment is shown in Table 2.

7.2 Inverse dynamics simulation

The FG proposed in Fig. 4 for inverse dynamic cal-
culation is firstly put at test with the same four-bar

A general framework for modeling and dynamic simulation

Table 1 RMSE for q trajectories estimated by the dependent
coordinates (DC) and independent coordinates (IC) factor graphs
(FG) with respect to ground truth for the simulation described in

the text for different window lengths of the fixed lag smoother
estimator, together with the execution time of each time step

Ny, (time steps) DC FG IC FG
RMSE (mm) Time RMSE (mm) Time

2 3.11773 1.4 ms 3.14719 2.8 ms
3 3.11807 1.6 ms 3.14719 33 ms
4 3.11818 1.8 ms 3.14719 3.7 ms
5 3.11822 2.1 ms 3.14719 4.2 ms
6 3.11823 2.3 ms 3.14719 4.7 ms
7 3.11824 2.5 ms 3.14719 5.5 ms
8 3.11824 2.8 ms 3.14719 6.1 ms
9 3.11824 3.0 ms 3.14719 6.4 ms
10 3.11824 3.2 ms 3.14719 7.2 ms

Table 2 Noise models (covariance matrices) employed in the
forward dynamics simulations

Factor Noise model
fprior ((10) 10_10 I
Sprior(Qo) diag({1073if ¢(i) € z, 1 otherwise}
fri 10_3 In
ijn’ f(;yn 1073 I”
foes £k 10731,
11;(," vic 107 Lnta
feq 1021,

Most covariances represent isotropic models (those including the
identity matrix I), while those having different weights for each
coordinate are defined as diag(- - -), a diagonal matrix with the
given diagonal values

mechanism described above. Here, the crank angle 6
trajectory over time is specified as an arbitrary smooth
curve, and the goal is to solve for the unknown torque
at the crank (point A) that would be required to balance
gravity and inertial forces as accurately following the
prescribed path.

In this case, we use a Levenberg—Marquardt nonlin-
ear solver on the FG in Fig. 4 in batch mode, as oppo-
site to filtering or fixed-lag smoother mode. However,
the position problem is strongly nonlinear, preventing
solvers to easily find the global optimal of the whole
FG in Fig. 4 for arbitrary initial values for all vari-
ables. Instead, we propose attacking the inverse dynam-
ics FG in the following four stages (running the batch

optimizer once after each stage), which ensure that the
global optimum is always easy to find by the nonlinear
solver:

Stage 1: Include q variables, prior factors for the
desired trajectory (fprior), position constraint fac-
tors (fl‘fc), and soft equality factors (f¢,).

— Stage 2: Add variables q, q, and numerical integra-
tion factors f;;.

Stage 3: Add velocity constraint factors (ffc).

— Stage 4: Add generalized force variables Q and

inverse dynamics factors (fi”[l,w)-

Numerical results for this approach are shown in
Fig. 9 for the four-bar mechanism, where the trajec-
tories prescribed and actually followed by the mecha-
nism crank are depicted in Fig. 9a for both the proposed
approach and the commercial software MSC ADAMS.
Both methods successfully solve the inverse dynamics
problem by finding the torque sequence in Fig. 9b. In
this case, both our method and MSC lead to an excel-
lent stable following error, less than 1073 degrees, as
shown in Fig. 9c.

Secondly, we evaluated the inverse dynamics FG
formulation against MSC.ADAMS on a more com-
plex mechanism: a planar parallel robot featuring two
degrees of freedom, based on [39]. It is controlled via
two motors (unknown torques) at joints numbered as #1
and #12 in Fig. 10, and the goal is for the end-effector
body to describe an “L’-like trajectory. Figure 1la
shows the reference trajectory of the end-effector point
#6, with a detailed view in Fig. 11b. As can be seen in

@ Springer

J. L. Blanco-Claraco et al.

Fig. 9 Evaluation of the —ra
inverse dynamics test with 120 - _e-MSC
the four-bar mechanism 100 L -B-Reference
controlled with a torque at
the input crank. Refer to = 80 e
discussion in Sect. 7.2 ﬁ 60 | R
>
40 - f
20 .
0 1 1
0 1 2 3 4 5 6 7 8 9

t[s]

(a) Crank angle reference and simulated trajectories.

Torque [N m]

0- 0o [deg]

the latter, the trajectory is accurately honored near the
corner with a maximum following error of ~ 0.02 mm.
Unlike the case of the four-bar mechanism above, the
fact that the reference trajectory is given for a coordi-
nate (the end-effector) that does not match where actua-
tors are implies that inverse kinematics must be solved
first to obtain the desired trajectories (angles 8; and
6,) for the two motors at joints #1 and #12, respec-
tively. The reference and the achieved trajectories for
our method are represented in Fig. 11c. Regarding the
inverse dynamics results themselves, the torques com-
puted by MSC.ADAMS and our approach are plotted

@ Springer

3 4 5 6 7 8 9
t[s]

(C) Tracking error of the crank angle.

in Fig. 12. It is noteworthy that our approach achieves
a smoother solution, finding optimal transitions with
finite jerk (i.e., acceleration derivative) in contrast with
the more noisy and unrealistic acceleration obtained
from MSC, which would be more problematic to trans-
fer into an actual physical device.

A summary of relevant data to evaluate the compu-
tational cost of these inverse dynamics experiments is
found in Table 3.

A general framework for modeling and dynamic simulation

Table 3 Summary of

Mechanism Generalized coordinates Trajectory data points CPU time
performance parameters for
the inverse dynamics Four bar linkage 5 2000 53
experiments

Parallel robot 22 1000 15.9s

Fig. 10 Second mechanism used as a benchmark for the pro-
posed methods: a parallel planar robot with two degrees of free-
dom, modeled as 11 bodies with 14 points. The robot is actuated
via two motors in points #1 and #12. Kinematic chain based on
[39]

8 Conclusions and future works

This work has settled the theoretical bases for formu-
lating kinematics and dynamics problems from com-
putational mechanics in the form of factor graphs and
demonstrated the validity of our reference open-source
implementation. The results showed the practical fea-
sibility of the proposed approach and its accuracy in
comparison with a commercial MBS software based
on classical approaches. One additional advantage of
our formalism lies at its excellent suitability to design

state observers and parameter identification systems for
arbitrary mechanical systems, ranging from robots to
vehicles. This aspect will be part of future works.

Funding Open Access funding provided thanks to the CRUE—
CSIC agreement with Springer Nature.

Availability of data and material Not applicable.

Declarations

Conflict of interest The authors declared that they have no con-
flict of interest.

Code availability Open source implementation available in
https://github.com/MBDS/multibody-state-estimation.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix I. Block matrix inversion lemma
This lemma implies that:
-1
A B A B
o) - ¢ o) @
where
1 1 p) ! 1
A=A +A" B(D—CA* B) CA~
-1
B=_A"'B (D - CA*IB)
-1
¢=— (D _ CA’lB) CcA~!

D= (D - CA*lB)_1

@ Springer

https://github.com/MBDS/multibody-state-estimation
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J. L. Blanco-Claraco et al.

,35 . 4
-3.9998 - §
4l j -3.9999 .

End
4r &
45+ . S

-4.0001 F §

sl i
Start -4.0002 F i
-4.0003 - 7

551 i

15 1 05) 05 p 15 -0.5004 -0.5003 -0.5002 -0.5001 -05 -0.4999 -0.4998 -0.4997

X X

6 6

(a) Reference and actual trajectory for point ”6”. (b) Detail of the trajectory near the corner.

0F ‘ ‘E--E—EI-—E—-a-‘a--n-ﬂ--a—a-‘a--ﬂ—ﬂ--ﬂ—a+ﬁ--=r-w T =
-g-87
a8 —FG@o
-20 -l ! M
PRS- oS A R O N U N U L U O s s FG 9,
e 2
¥y
g -g-Reference 6
40 g 11
(g-a-8-8 -@-Reference 92
-60 7
= -80 - 7
o)
k=3
=-100 - -
-120 7
i M

25 3 3.5 4 4.5 5
t[s]

(C) Reference and actual angles at the two motor joints.

Fig. 11 Inverse dynamics results for the pick-and-place parallel robot mechanism. The reference (black dotted) and FG-based (solid
blue) trajectories for point #6 are shown in (a)—(b). The reference angles for the two motors are shown in (c)

Appendix II. Tensor notation definitions and useful C=AB
expressions { Conventional notation: Cj = Zj 4A,‘ j B ik (34)
Einstein convention: Cly=A";B/y

Order of a tensor: Number of indices to index all its

components, i.e., scalars, vectors, and matrices are Oth-, Transpose rule: We have that A”; = (AT)/;.

Ist-, and 2nd-order tensors, respectively. Jacobian: g_x’ assuming x and y are a row and a
Einstein convention: Superscript indices imply read- column vector,yrespectively, becomes:

ing elements up—down; subscript indices imply reading

left-right. Summation works over the repeated index or 0x 0x; j

indices. Example with a common matrix product: @ - 3_),/ = A (35

The standard derivative chain rule: Applied to vec-
tor variables x and z, using an intermediary variable y,

@ Springer

A general framework for modeling and dynamic simulation

-80

-90

-100

—

110

-120

Torque [N m

-130

-140

-150
0

25
t [s]

(a) Computed torque 71.

T
220 [" qé-_‘d’"

210 ..ﬁ* -e9-MSC ToH

200 - & 1

-
©
o

T

%

e

|

g
\

Torque [N m]
a
T

_

2]

o
T

150 |- 0,9«0'0'@-'9'0..0,

140 o f’-qi -
|

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

(b) Computed torque 7.

Fig. 12 Inverse dynamics results for the pick-and-place parallel robot mechanism (continuation)

@ Springer

J. L. Blanco-Claraco et al.

can be put in tensor notation as:

O _ x| _0my A A =
ay 0zk ni Xng 8yj dzk —_
nixnjnjxng
axi dy;
— Ziﬁ (36)
7 3yj 0Zk

Chain rule for derivatives of matrices with respect
to a vector: It gives us the third-order tensor:

0A dA"; dA'; 0
oa_ 94y _ 24w (37)
0z 0z oy 0zk
S —’ ——— S
ni XnjxXng ni XnjXng npXng

where it becomes clear that we must sum over the /
indices, that is, converting the Einstein notation above
into a conventional summation:

0A 0A 0
_ Z Vi (38)
0z ay 0z
1 —_—— =~

ni xnjxny XNk

Product of a third-order tensor and a vector: Given
a third-order tensor T = T; K and a vector v = Vg, 1ts
product reads:

Tv:T;’kvk=ZT;’kvk (39)
k

Appendix II1. Equations for planar multibody sys-
tems

In the following, we summarize the equations imple-
mented in our open-source library to model typical
mechanical constraints of planar mechanisms. These
equations are the building blocks of the errors and Jaco-
bian matrices associated with the factors described in
Sects. 6.4-6.5. An open-source implementation of all
these equations is provided in the C++ toolkit men-
tioned in Sect. 7.

Since each constraint contributes only a few scalar
components to ® (typically only one for planar mecha-
nisms), the following uses the superscript ® to reflect
the k-th row in the corresponding vector or matrix, with
k being arbitrarily determined by the order in which
constraints are enumerated when defining a mecha-
nism. Furthermore, for the sake of notation clarity, q
should be understood in the following sets of equa-
tions as the subset of the actual q that contains only
those generalized coordinates that are directly involved
in the constraint, i.e., the provided Jacobians should be

@ Springer

expanded with columns of zeros as needed at the posi-
tion of non-relevant coordinates.

In addition to the specific formulas for each con-
straint, the following terms appear in factor Jacobians
but are generic so they apply to all constraints:

L T C N P 0
Py = = g q+ %7
= @4 q (40a)

d bk

aqq(q) = ®gq* (From Eq. (40a)) (40b)
I (Pe* (@4q . .
% = 0g" § = Pj(q) (40c)
3 (og" (@a)
— - Dq (40d)

Constant distance

This constraint is typically used to model rigid solids.
Given the coordinates of any pair of points i and j of a
rigid body, such that (x;, y;) € qand (x;, y;) € q, this
constraint ensures a fixed distance L between them.
Each such constraint contributes with the following
rows in different vectors and matrices defining the
multibody system:

o (q) = (xj —xi) + (v; —3) — L2 =0 (4la)
O (@) =12 (xi —x;) 2(yi—))

C2(x = x) 2(y; — i)l (41b)
D (q) =2 (& —x;) 2(5i —)
C2(x—x) 2(y — i)l (41c)
DGk
aq
_[awgt st adgt aq>q’<}

Dgq (@) =

0x1 ay oxa Iy

Xi Yoo XjooYj
2 0 -2 07 @
k
=0 2 0 -2 &g (41d)

-2 0 2 0| g
L0 =2 0 2J o4

(D)5 (@) = 044 (41e)
Dog (@i =2 (% — ;) 2(5 —¥))
C2(x% =x) 209 - i)l (41f)

A general framework for modeling and dynamic simulation

Fixed pinned slider constraint

This constraints model a point P(x, y) enforced to
move along aline defined by two fixed points A(x 4, y4)
and B(xp, yp). By exploiting the properties of the sim-
ilar triangles, one obtains:

Dk (q) = (xp —x4) (v — ya) +

—(yp —ya) (x —x4) (42a)
g (@) = [~(v8 — ya) (x5 —x4)] (42b)
5 (q) =012 (42¢)
Dyq* (q) = 022 (42d)

Mobile pinned slider constraint

A more general version of the former constraint, where
the point P(x, y) is a now moving along a line defined
by two mobile points A(x;, y;) and B(x;, y;). In this
case:

DR (q) = (xj —x)(y — yi) — (yj —) (x — x7)

(43a)
O (@ =[y—y; xj—x yj—y
S x—xj y—yi xi—x] (43b)
dy@ =03 —y *—x yj—
CX =X Y=y X —X] (43c)
(quk(Q)
Xy Xy Xj Y
0 0 0 1 0 =19 o
0 0 -1 0 1 0] ®g
_10 —1 0 0 0 1 ©q§ (434d)
1 0 0 0 -1 0] ®g
0 1 0 -1 0 0| ®
-1 0 1 0 0 0dog
(Dg)5(@ = 66 (43¢)
Cqq" (@G = [5i —§; & —% Jj—F
X=X V- X —X] (43f)

Absolute orientation of planar link

Another special kind of constraints is that one needed
when defining relative coordinates, such as the absolute

angle of alink, e.g., amechanism input crank, or a vehi-
cle wheel position. The relative angle discussed in this
section is called absolute since it is defined as the angle
6 between a body comprising a pair of points (x;, y;)—
(xj,yj), at a fixed distance L, and the horizontal axis
of the global frame of reference.

For this constraint, with the ordering of relevant
coordinates being q = [x; y; x; y; 017, two sets of
equations exist to avoid degeneracy. The first ones are
used when | sin(8)| > 1/\/5:

@k (q) = x; — x; — Lcos(®) =0 (44a)
@4 (@) =[-1 0 1 0 Lsin(0)] (44b)
dk(@ = [0 000 Lbcos®)] (44c¢)
YoV Xjo 6
0 0 0 0 0 oyt
. 0 0 0 0 0 Ok
Pgg@={0 0 0 0 0 q,ql?i
0 0 0 0 0 ook
0 0 0 0 Lcos(®d dgt
(44d)
(Dq)g(@
YooY XjoYj 6 ‘
0 0 0 O 0 ok
0O 0 0 0 0 @%2
=lo 0 0 o0 0 ci>§3
0 0 0 0 0 ok,
0 0 0 0 —LBsin() ci>§5
(44e)
D" (@iG=[0 0 0 0 Licos(®)] (44f)

(D) (@d = [o 000 —L§sin (9)] (44g)
and the following alternative ones are used otherwise:
ok (q) = y; — yi — Lsin(®) =0 (45a)
df(@ =10 —1 01 —Lcos®)] (45b)
i@ = [000 0 Lisin®)] (45¢)

&
&

y

~.

coco
S
=
DO =

Dgq (@) =

cocoocoo%
o
o
~

S O O O O
S O O OO

0
0
0
0
0

Lsin ()4 @gt

@ Springer

J. L. Blanco-Claraco et al.

(Pq)g(@
XioYio Xj o Yj 0
0 0 0 0 0 ok
0 0 0 0 0 ok,
=lo 0 0o o 0 Gk, (@Se)
0 0 0 0 0 Bk,
0 0 0 0 Lbcos(9) cbgs
Dy (@G =[0 0 0 0 Liisin(®)] (45¢)

(cbq){;(q)q:[o 000 Lézcos(e)] (45g2)

Appendix IV. Jacobians for inverse dynamics fac-
tors

For the convenience of the reader, we repeat here
Eq. (6), whose Jacobians are sought:

i.6.Q = (M~ —M o, T oM ") Q
0)
+ (M—lcqur—l) c (46)

—

where the dimensions of each element the subsequent
0dq
0
R™*nX1 (third-order tensor), ' € R™*™ M e R"*",
and Q € R"*!. The derivative of Eq. (46) with respect
to generalized forces Q is straightforward and valid for
both, time-variant and time-invariant constraints, since
it only affects the term @:

34(q,4.Q
Q
Note that this expression is only applicable to sys-
tems without relative coordinates, since they would
render M semidefinite, invalidating its inverse. Fortu-
nately, in practical inverse dynamics applications we
normally do not need the full Jacobian with respect to
all components in Q, but only the subset of actuated
degrees of freedom. Therefore, it is enough to use:

derivations are: q € R"*!, ®y € R™, c

M -M o, T oM™ (47)

2i(q.4, Q) | OYw—arxn)
0Q N :

0%Z(z, 7, Q)

Q

@ Springer

0Z(z, z, Q)
0Q
placed at the corresponding indices of Q that are exter-

nally actuated.

Replacing the definitions of M and Q into Eq. (15)
for the convenience of the reader, the dynamics equa-
tion for independent coordinates reads:

where the rows of , defined below, are

— = -1
i=M 'Q= (RTMR) RT (Q—MSe) (49)
The Jacobian with respect to Q is therefore simply:

9 22,Q) _ 17
T_M R (50)

References

1. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics.
Springer, Berlin (2009)

2. Raitoharju, M., Piché, R.: On computational complex-
ity reduction methods for Kalman filter extensions. IEEE
Aerosp. Electron. Syst. Mag. 34(10), 2-19 (2019)

3. Naets, E., Pastorino, R., Cuadrado, J., Desmet, W.: Online
state and input force estimation for multibody models
employing extended Kalman filtering. Multibody Syst. Dyn.
32(3), 317-336 (2014)

4. Walker, M.W,, Orin, D.E.: Efficient dynamic computer sim-
ulation of robotic mechanisms. J. Dyn. Syst., Measurement
Control 104(3), 205-211 (1982). https://doi.org/10.1115/1.
3139699

5. Featherstone, R., Orin, D.: Robot dynamics: equations and
algorithms. In: Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No.OOCH37065),
vol. 1, pp. 826-834 vol.1 (2000). https://doi.org/10.1109/
ROBOT.2000.844153. ISSN: 1050-4729

6. Wang, J., Gosselin, C.M.: A new approach for the dynamic
analysis of parallel manipulators. Multibody Syst. Dyn. 2(3),
317-334 (1998)

7. Rodriguez, G.: Kalman filtering, smoothing, and recursive
robot arm forward and inverse dynamics. IEEE J. Robot.
Autom. 3(6), 624-639 (1987)

8. Rodriguez, G.: Recursive forward dynamics for multiple
robot arms moving a common task object. IEEE Trans.
Robot. Autom. 5(4), 510-521 (1989)

9. Jain, A.: Unified formulation of dynamics for serial rigid
multibody systems. J. Guidance, Control, Dyn. 14(3), 531—
542 (1991)

10. Ascher, U.M., Dinesh, P.K., Cloutier, B.P.: Forward dynam-
ics, elimination methods, and formulation stiffness in robot
simulation. Int. J. Robot. Res. 16(6), 749-758 (1997)

11. Xie, M., Dellaert, F.: Batch and Incremental Kinody-
namic Motion Planning using Dynamic Factor Graphs.
arXiv:2005.12514 [cs] (2020)

12. Xie, M., Dellaert, F.: A Unified Method for Solving Inverse,
Forward, and Hybrid Manipulator Dynamics using Factor
Graphs. arXiv:1911.10065 [cs] (2020)

https://doi.org/10.1115/1.3139699
https://doi.org/10.1115/1.3139699
https://doi.org/10.1109/ROBOT.2000.844153
https://doi.org/10.1109/ROBOT.2000.844153
http://arxiv.org/abs/2005.12514
http://arxiv.org/abs/1911.10065

A general framework for modeling and dynamic simulation

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Cuadrado, J., Dopico, D., Barreiro, A., Delgado, E.: Real-
time state observers based on multibody models and the
extended Kalman filter. J. Mech. Sci. Technol. 23(4), 894—
900 (2009)

Loeliger, H.A., Dauwels, J.,Hu, J., Korl, S., Ping, L., Kschis-
chang, F.R.: The factor graph approach to model-based sig-
nal processing. Proc. IEEE 95(6), 1295-1322 (2007)

Orin, D.E., McGhee, R., Vukobratovi, M., Hartoch, G.:
Kinematic and kinetic analysis of open-chain linkages utiliz-
ing Newton-Euler methods. Math. Biosci. 43(1-2), 107-130
(1979)

Reina, G., Paiano, M., Blanco-Claraco, J.: Vehicle param-
eter estimation using a model-based estimator. Mech. Syst.
Signal Process. 87(4), 227-241 (2017)

. Sanjurjo, E., Naya, M.A., Blanco-Claraco, J.L., Torres-

Moreno, J.L., Giménez-Ferndndez, A.: Accuracy and effi-
ciency comparison of various nonlinear Kalman filters
applied to multibody models. Nonlinear Dyn. 88(3), 1935—
1951 (2017)

Bishop, C.: Pattern Recognition and Machine Learning.
Springer, New York (2006)

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale,
P.: Keyframe-based visual-inertial odometry using nonlinear
optimization. Int. J. Robot. Res. 34(3), 314-334 (2015)
Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.:
Imu preintegration on manifold for efficient visual-
inertial maximum-a-posteriori estimation. In: Proceedings
of Robotics: Science and Systems. Rome, Italy (2015).
https://doi.org/10.15607/RSS.2015.X1.006

Shabana, A.A.: Dynamics of Multibody Systems. Cam-
bridge University Press, Cambridge (2005)

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard,
J.J., Dellaert, F.: isam2: Incremental smoothing and mapping
using the Bayes tree. Int. J. Robot. Res. 31(2), 216-235
(2012)

Dellaert, F., Kaess, M.: Factor graphs for robot perception.
Found. Trends Robot. 6, 1-139 (2017)

Worthen, A.P., Stark, W.E.: Unified design of iterative
receivers using factor graphs. IEEE Trans. Inf. Theory 47(2),
843-849 (2001)

Loeliger, H.A.: An introduction to factor graphs. IEEE Sig-
nal Process. Mag. 21(1), 28-41 (2004)

Grisetti, G., Kiimmerle, R., Stachniss, C., Burgard, W.: A
tutorial on graph-based slam. IEEE Intell. Transp. Syst. Mag.
2(4), 31-43 (2010)

Felis, M.L.: Rbdl: An efficient rigid-body dynamics library
using recursive algorithms. Auton. Robots 41(2), 495-511
(2017)

Hartley, R., Mangelson, J., Gan, L., Jadidi, M.G., Walls,
J.M., Eustice, R.M., Grizzle, JJW.: Legged robot state-
estimation through combined forward kinematic and prein-
tegrated contact factors. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1-8. IEEE
(2018)

Sugiarto, I., Conradt, J.: Discrete belief propagation net-
work using population coding and factor graph for kine-
matic control of a mobile robot. In: 2013 IEEE International
Conference on Computational Intelligence and Cybernetics
(CYBERNETICSCOM), pp. 136-140. IEEE (2013)

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Sim-
ulation of Multibody Systems: the Real Time Challenge.
Springer, Berlin (1994)

Qin, T., Li, P,, Shen, S.: Vins-mono: A robust and versa-
tile monocular visual-inertial state estimator. IEEE Trans.
Robot. 34(4), 1004-1020 (2018)

Jensen, E.V.: An Introduction to Bayesian Networks. UCL
press, London (1996)

Strasdat, H., Davison, A.J., Montiel, J.M., Konolige, K.:
Double window optimisation for constant time visual slam.
In: 2011 International Conference on Computer Vision, pp.
2352-2359. IEEE (2011)

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless,
B., Seitz, S.M., Szeliski, R.: Building Rome in a day. Com-
mun. ACM 54(10), 105-112 (2011)

Koller, D., Friedman, N.: Probabilistic Graphical Models:
Principles and Techniques. MIT press, Cambridge (2009)
Pastorino, R., Richiedei, D., Cuadrado, J., Trevisani, A.:
State estimation using multibody models and nonlinear
Kalman filters. Int. J. Non-Linear Mech. 53, 83-90 (2013)
Triggs, B., McLauchlan, PF., Hartley, R.I., Fitzgibbon,
A.W.: Bundle adjustment—-a modern synthesis. In: Triggs,
B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms:
Theory and Practice, pp. 298-372. Springer, Berlin (2000)
Blanco, J.L., Torres-Moreno, J.L., Giménez-Fernandez, A.:
Multibody dynamic systems as Bayesian networks: applica-
tions to robust state estimation of mechanisms. Multibody
Syst. Dyn. 34, 103-128 (2015)

Huang, T., Li, M., Li, Z., Chetwynd, D.G., Whitehouse,
D.J.: Planar parallel robot mechanism with two translational
degrees of freedom (2006). US Patent 7,090,458

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

@ Springer

https://doi.org/10.15607/RSS.2015.XI.006

	A general framework for modeling and dynamic simulation of multibody systems using factor graphs
	Abstract
	1 Introduction
	2 Review of multibody dynamics
	2.1 Dependent coordinates formulation
	2.2 Independent coordinates formulation

	3 Background on graphical models
	3.1 Dynamic Bayesian networks
	3.2 Factor graphs

	4 DBN for multibody dynamics
	5 Factor graphs for multibody dynamics
	5.1 FG for forward dynamics in dependent coordinates
	5.2 FG for forward dynamics in independent coordinates
	5.3 FG for inverse dynamics in dependent coordinates

	6 Factors definition
	6.1 fprior: Prior factor
	6.2 fei: Euler integrator factor
	6.3 fti: Trapezoidal integrator factor
	6.4 fdpc: Factor for position constraints in dependent coordinates
	6.5 fdvc: Factor for velocity constraints in dependent coordinates
	6.6 fddyn, fdidyn and fidyn, fiidyn: Factors for dynamics
	6.7 fipc: Factor for position constraints in independent coordinates
	6.8 fivc: Factor for velocity constraints in independent coordinates
	6.9 fiac: Factor for acceleration constraints in independent coordinates

	7 Test cases validation
	7.1 Forward dynamic simulation
	7.2 Inverse dynamics simulation

	8 Conclusions and future works
	Appendix I. Block matrix inversion lemma
	Appendix II. Tensor notation definitions and useful expressions
	Appendix III. Equations for planar multibody systems
	Constant distance
	Fixed pinned slider constraint
	Mobile pinned slider constraint
	Absolute orientation of planar link

	Appendix IV. Jacobians for inverse dynamics factors
	References

