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CHAPTER 11

TRADING FOR COTS COMPONENTS TO FULFILL
ARCHITECTURAL REQUIREMENTS

Luis IRIBARNE, JOSE MARIA TROYA, AND ANTONIO VALLECILLO

Abstract: Component-based development (CBD) moves organizations from application develop-
ment to application assembly, involving the use of third-party, prefabricated pieces (commercial
off-the-shelf components, COTS) and spiral development methodologies. Although a software
component market is still quite slow to develop, effective use of software components is slowly
becoming a valid technology for the building of software systems. Moreover, the complexity of the
applications is continuously growing, and the amount of the information about components is
becoming too large to be handled by human intermediaries. Therefore, automated trading of
components will play a critical role in CBD. This chapter underlines the need of linking three
areas of the COTS CBD: the documentation and specification of COTS components, the descrip-
tion of COTS-based software architectures, and the trading processes for COTS components. A
trading-based development method (TBDM), a three-tier method to build software applications as
an assembly of COTS software components, is presented. A sample implementation is illustrated.

Keywords: Component Trading, Automated Trading, Trading-Based Development Method, Com-
mercial Off-the-Shelf Components, Architecture

INTRODUCTION

In the last decade, component-based development (CBD) has produced a great interest due to the
development of plug-and-play reusable software, which has led to the concept of commercial off-
the-shelf (COTS) software components. Being currently more a purpose to achieve than a reality,
this approach moves organizations from application development to application assembly. Con-
structing an application now involves the use of prefabricated pieces, perhaps developed at different
times, by different people, and possibly with different uses in mind. The final goal is to be able to
reduce development times, costs, and effort, while improving the flexibility, reliability, and reusabil-
ity of the final application due to the reuse of software components already tested and validated.
This approach is challenging some of the current software engineering methods and tools. For
instance, the traditional top-down development method is not transferable to component-based
development. This method is based on successive refinements of the system requirements until a
suitable concrete component implementation of the final application is reached. In CBD, the
system designer has also to take into account the specification of predeveloped COTS compo-
nents available in software repositories, which must be considered even when building the initial
requirements of the system, incorporating them into all phases of the development process (Mili
et al. 1995; Robertson and Robertson 1999). Here, system architects, designers, and builders

200
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Figure 11.1  Fulfilling Components’ Abstract Specifications From Concrete Specifications
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must accept the trade-offs among three main concerns: user’s requirements, system architecture,
and COTS products (Garlan et al. 2002; Ncube and Maiden 2000).

Current solutions are usually based on spiral methodologies—see, for example, Nuseibeh
2001— which progressively develop detailed requirements, architectural specifications, and sys-
tem designs, by repeated iterations. These solutions are also related to the so-called gap analysis
(Cheesman and Daniels 2001), shown in Figure 11.1. Here, the abstract software architecture of
the system is first defined from the user’s requirements, which describe the specification of “ab-
stract components” and their relationships. These abstract components are then matched against
those “concrete components” available in software repositories. The matching process produces a
list of the candidate components that could take part in the application: both because they provide
some of the required services, and because they may fulfill some of the user’s (extrafunctional)
requirements such as price and security limitations. With this list, the system architecture is reexam-
ined in order to accommodate as many candidates from the list as possible. Then the system require-
ments are matched against those provided by the architecture, and revised if needed. Finally, wrappers
may be used to adapt the selected COTS components (hiding extra services not required, or adapt-
ing their interfaces for compatibility or interoperability reasons), and some glue language can be
used to compose and coordinate the component interactions (see Figure 11.1).

In this new setting, the real search and selection processes of COTS components have become
the cornerstone of any effective COTS development. These processes currently face serious limi-
tations, generally for two main reasons. First, the information available about the components is
not detailed enough for their effective selection. In this case, the black-box nature of COTS com-
ponents hinders the understanding of their internal behavior. Moreover, only functional proper-
ties of components are usually taken into account, while some other information crucial to
component selection is missing, such as protocol or semantic information (Vallecillo et al. 1999),
or nonfunctional requirements (Chung et al. 1999; Rosa et al. 2001).

Second, the search, selection, and evaluation criteria are usually too simplistic to provide prac-
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tical utility. These component searching and matching processes are delegated to traders (usually
based on human factors) that do not provide all the functionality required for an effective COTS
component trading in open and independently extensible systems (e.g., the Internet), as discussed
in Vasudevan and Bannon (1999).

There are at least two important issues in this perspective. The first one deals with a common
and standard documentation and specification of both abstract components described in software
architectures and those third-party components available in software repositories.

The second issue deals with the trading processes for COTS components. These processes
may implement partially (or fully) the functionality required in the software architecture, by con-
structing the list of candidate COTS components and calculating all their possible and different
combinations that fulfill partially (or fully) the architectural requirements from the assembly of
candidate components. As a result of a trading perspective, the alternative component combina-
tions of the software architecture could be shown to the system’s designer, who could decide
which of the alternatives better matches the original user’s requirements.

This chapter looks into these COTS-CBD areas. First, it looks into the documenting of COTS
components. COTS documents are useful for the search and selection tasks associated with the
trading service. Second, the chapter looks into software architectures with COTS components. In
this case, we think that the Unified Modeling Language-Real Time (UML-RT) is a suitable nota-
tion for COTS software architecture descriptions. Finally, to solve the gap analysis problem, we
propose two associated processes: COTStrader (Iribarne et al. 2001) and COTSconfig (Iribarne
et al. 2002). The COTStrader process is a tool that extends the Open Distributed Processing
(ODP) trading service (ISO/IEC 1997) to look for COTS components. The COTSconfig process
is a composition function that calculates all the possible component combinations from those
stored in the list of candidates generated by the trader. In this chapter, we explain the connection
of the above areas, mainly focusing on the trading service for COTS components. Accordingly,
the chapter presents a trader-based development method to fulfill architectural requirements. This
method is mainly focused on an experimental framework to test and justify the validity and the
usefulness of trading processes in CBD.

The rest of the chapter is organized in six sections. The first one describes a COTS document
and a simple example of a COTS-based application to illustrate the proposal. The second section
describes some features of a trading process for commercial components. The third section de-
scribes a three-tier method to build systems with commercial components. Tier one looks at
defining the system’s requirements using a software architecture. Tier two looks at searching and
selecting components that meet the architectural requirements using the trader service COT Strader.
And tier three looks at producing configurations of the software architecture (COTSconfig) from
those components found by the trading service. The fourth section describes the technology used
to develop the processes associated with the proposed method. Then, the fifth section describes
the related works. Finally, the sixth section contains some concluding remarks.

DOCUMENTING COTS COMPONENTS

COTS components are coarse-grained components that integrate several services and offer many
interfaces. Component capabilities and usages are specified by interfaces. An interface is “a ser-
vice abstraction defining the operations that the service supports, independently of any particular
implementation” (Szyperski 1998).

Interfaces can be described using many different notations, depending on the information that we
want to include, and the level of detail of the specification. In the Common Object Request Broker
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Architecture (CORBA), an interface consists of the supported object public attributes, types, and
methods. The Component Object Model (COM) follows a similar approach, but components may
have several interfaces, each one describing the signature of the supported operations. The CORBA
Component Model (CCM) also considers that component interfaces may describe not only the ser-
vices they support, but also the ones they require from other components during their execution.

The current approaches at the signature level use the Interface Definition Language (IDL) to
describe interfaces, which guarantee interoperability at this level among heterogeneous compo-
nents. Interfaces can be written in different languages using different object models, living in
different machines, and using different execution environments. Some IDL examples are those
defined by CORBA, COM, and CCM.

On top of the signature level, the semantic level deals with the “meaning”’—that is, the behav-
ior (Leavens and Sitaaman 2000)—of the operations, though much more powerfully than mere
signature descriptions. Behavioral semantics of components present serious difficulties when
they are applied to large software systems: the computational complexity of proving behavioral
properties of the components and applications hinders the interface’s practical utility.

The semantic level can usually be described by using formal notations that range from the
Larch family of languages (Dhara and Leavens 1996) using pre- and post-conditions and invari-
ants to algebraic equations (Goguen et al. 1996), or refinement calculus (Mikhajlova 1999).

Finally, the protocol level just deals with the components’ service access protocols, that is, the
partial order in which components expect their methods to be called, and the order in which they
invoke other methods (Vallecillo et al. 2000). This level, identified by Yellin and Strom (1997),
provides more powerful interoperability checks than those offered by the basic signature level.
Of course, it does not cover all the semantic aspects of components, but it is not weighed down
with the heavy burden of semantic checks. At the protocol level, the problems can be more easily
identified and managed, and practical (tool-based) solutions can be proposed to solve them.

At the protocol level, most of the current approaches enrich the IDL description of the compo-
nents’ interfaces with information about protocol interactions, using many different notations:
finite-state machines (Yellin and Strom 1997), Petri nets (Bastide et al. 1999), temporal logic
(Han 1999), or pi-calculus (Milner 1993).

An Example Using COTS Components

In order to illustrate our proposal, we will introduce a simple example that comes from the distrib-
uted Geographic Information Systems (GIS) arena. It consists of a common translation service
between spatial images, usually known as Geographic Translator Service (GTS). Briefly, a sender
component needs to send a formatted image to a receiver component, but instead of sending it
directly, the sender uses a translator service to deal with all issues related to the image format
conversion and compression. This simplifies both the sender and the receiver, taking away all
those format-compatibility issues from them.

The way the service works is shown in Figure 11.2. First, the Sender forwards a translation
request to the GTS, with the required service and its related information:

<image url="http:// . . . /download/”>
<name input="RiverIlmage” output="RiverImage”/>
<format input="DWG” output="DXF"/>
<compression input=".zip” output=".tar”’/>
</image>
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Figure 11.2 A Geographic Translator System (GTS) Example
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Following this request, the GTS component downloads a zip-compressed DWG image from the
http site. Then it generates a DXF image file with the same name and stores it in a buffer. After
that, GTS associates a unique identifier UUID to the translated DXF image. Finally, it returns the
identifier to the sender component, which gets the required image by pulling the converted file
from the GTS buffer.

For our discussion, we will just concentrate on the GTS subsystem. It uses a main component
called Translator that provides the target translation service (see Figure 11.6).

COTS Documents

Similarly to software components, a mechanism to document commercial components is very
useful in tasks of search, selection, evaluation, and assembly of components. For these processes,
it is very important to use complete, concise, and unambiguous specifications of components in
order to guarantee successful COTS software development.

A commercial component document (like an identity credential and a contract) could be used
by developers to describe particular issues of the target component to build. System architects
could also use this kind of information, recovered in a commercial component document, to
describe the components’ architectural requirements in the software architecture.

A COTS document is a Document Type Definition (DTD) template based on the World Wide
Web Consortium’s (W3C) XML Schema language, used to describe COTS components. Figure
11.3 shows an instance of an XML-based COTS document for a simple software component
called Translator, which translates between spatial image formats.

A COTS document deals with four kinds of information: functional, nonfunctional, packag-
ing, and marketing. This kind of information can help to determine the component require-
ments when describing the software architecture and can be used as the information type that a
trader manages.

The first part describes the functional (i.e., computational) aspects of the services provided by
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Figure 11.3 A COTS Document Example

<COTScomponent name=“Translator’ xmins="http://www.cotstrader.com/COTS-
XMLSchema.xsd” . . . >

<functional>
<providedInterfaces>
<interface name="Translator’>

<description notation="CORBA-IDL">

interface Translator {
boolean translate(in string request, out string UDDI);
boolean get(in long UDDI, out string URL); };

</description>

<exactMatching href=" . . . /serviet/ CORBA.exact’/>

<behavior notation="“Larch-JML">
<description> . . . </description>

<exactMatching href=" . . . /servlet/LarchJML.exact’/>
<softMatching href=" . . . /servlet/LarchJML.soft"/>
</behavior>
</interface>

</providedinterfaces>
<requiredinterfaces>
<interface name="FileCompressor’s . . . </interface>
<interface name="ImageTranslator’> . . . </interface>
<interface name="XDR"> . . . </interface>
<interface name="XMLBuffer’s . . . </interface>
</requiredinterfaces>

<choreography>
<description notation="pi-protocols” href=* . . . /translatorProtocol.pi” >
<exactMatching href=". . . /servlet/Pl.exact’/> <softMatching href=*. . . /serviet/
Pl.soft”/>
</choreography>

</functional>
<properties notation=“W3C”">
<property name="“capacity”> <type>xsd:int</type> <value>20</value> </property>
<property name="isRunningNow”> <!—dynamic property—>
<type>xsd:bool</type> <value href="http:// . . . /servlet/GTS.running"/> </property>
<property name="keywords”> <type>xsd:string</type>
<value> spatial image, format, conversion, compression, GIS </value> </property>
</properties>
<packaging>
<description notation="CCM-softpkg” href=" . . . /Animplementation.csd”/>
</packaging>
<marketing>

<expirydate>2004—-2-11</expirydate> <certificate href=" . . . /card.pgp” />
<vendor>

<companyname> . . . </companyname> <address> . . . </address> . . .
</vendor>

</marketing>
</COTScomponent>
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the component, including both syntactic (i.e., signature) and semantic information. Unlike most
object services (which contain only an interface), functional definition will host the set of inter-
faces offered by the component, and the set of interfaces that any instance of the component may
require from other components when implementing its supported interfaces. The documentation
may also list the set of events that the component can produce and consume, as defined in compo-
nent models such as CCM, Enterprise JavaBeans (EJB), or Enterprise Distributed Object Com-
puting (EDOC) (OMG 2001).

Since we did not want to commit to any particular notation of expressing the functional infor-
mation contained in the XML templates, the “notation” attribute can be present in many fields of
a COTS document, with several predefined values. This attribute can be used by clients and
servers to agree with the values they want to use.

Behavioral information can be described directly in the document, or in a separate file by the
“href” attribute, or even omitted (behavioral information is optional; only signature information
is mandatory).

A third (optional) element called “choreography’’—commonly known as protocol information
(Canal et al. 2000; Vallecillo et al. 2000)—deals with the semantic aspects of the component that
globally describe its behavior and that cannot be captured by the semantics of the individual
interfaces. A protocol refers to the relative order in which the component expects its methods to
be called and the way it calls other components’ methods.

Syntactical (i.e., the interfaces), behavioral, and protocol descriptions can be referred to a
couple of (optional) procedures that will allow the trader to do the matchmaking programs. In this
example, LarchJML.exact is the name of a program that is able to decide whether two behavioral
descriptions A and B, written in Larch-JML (Leavens et al. 1999), satisfy that A can replace B.
Analogously, a second program, LarchJML.soft, is the one in charge of implementing the soft
matchmaking process.

The second part of the COTS component template describes nonfunctional aspects (e.g.,
Quality of Service (QoS), nonfunctional requirements, etc.) in a similar way to ODP, that is,
by means of service properties (ISO/IEC 1997). In order to deal effectively with nonfunc-
tional requirements, we use some principles taken from a qualitative approach called non-
functional requirements (NFR) Framework (Chung et al. 1999). This approach is based on
the explicit representation and analysis of nonfunctional requirements. Considering the com-
plex nature of nonfunctional requirements, we cannot always say that nonfunctional require-
ments are completely accomplished or satisfied. We have studied the importance of
nonfunctional information and how to include it into COTS documents (Iribarne, Vallecillo
et al. 2001).

The ODP way has been adapted to describe nonfunctional properties, that is, using “proper-
ties.” They are the usual way (name, type, and value) in which the nonfunctional aspects of
objects, services, and components are expressed in the literature. Dynamic properties can also be
implemented in this approach, indicating the reference to the external program that will evaluate
their current values. Keyword-based searches are allowed too, and they use the special “key-
words” property. Complex properties and traceability can also be considered in a COTS docu-
ment (see Iribarne, Vallecillo et al. 2001).

The third part contains the packaging information to download, deploy, and install the COTS
component that provides the required service. It includes implementation details, context and
architectural constraints, and so on. In this example, the CCM “softpackage” (OMG 1999) de-
scription style is used (see Figure 11.3). This information allows us to describe resources, con-
figuration files, the location of different implementations of the component for different operating



TRADING FOR COTS COMPONENTS TO FULFILL ARCHITECTURAL REQUIREMENTS 207

systems, the way those implementations are packaged, the resources and external programs they
need, and so on. '

Finally, some other nontechnical details of the service, and the component implementing it,
are described in the marketing section, which includes licenses, certificates, vendor information,
and so on.

TRADING FOR COTS COMPONENTS

Trading is a well-known concept for searching and locating services. In a trader-based architec-
ture, a client component that requires a particular service can query a matchmaking agent—called
the trader—for references to available components that provide the required kind of service.
Moreover, enhanced traders with quality-of-service (QoS) facilities can provide the means of
self-configuring multimedia applications. In this chapter, we will just concentrate on COTS com-
ponent trading. However, most of our discourse is also applicable to all disciplines in which
trading 1s required.

After analyzing specific characteristics of CBD in open systems, we present in Table 11.1 the
features and characteristics that traders should have in order to provide an effective COTS com-
ponent trading service in these open environments.

Existing traders mostly follow the ODP model (ISO/ITU-T 1996), and therefore they present
some limitations when their features are compared against the previous list of requirements in
Table 11.1. Based on the experience obtained from the existing industrial implementations of the
trading service (e.g., Distributed Object Group and IONA [2001]), and based on some closely
related works (e.g., Merz et al. [1994] and Vasudevan and Bannon [1999]), we can see that
current traders:

* use homogeneous object models only

use direct federation

do not allow service composition or adaptation

work with “exact” matches at the signature level only
do not allow multiple interfaces

are based on a push model only

L]

COTStrader, a trader that can overcome these limitations, is specifically designed to deal with
COTS components in open environments. COTStrader uses two kinds of templates to register
and look for components: a COTScomponent template similar to the “COTS Document” and a
COTSquery template, respectively.

In order to import (or get) a service from the repository, the client uses a COTSquery docu-
ment, which contains the selection criteria that must be used by the trader to look for services
(COTS components). Using this kind of document, the trader covers the repository, looking for
similar COTS documents. The trading process returns a list of candidate documents, accomplish-
ing the search criteria fixed in the client query document. Figure 11.4 shows a COTSquery ex-
ample of searching one (or more) Translator component(s).

As we can see here, a COTSquery template consists of five main parts. The main features of
the required service can be directly described into the document or even with an additional
COTScomponent document referred inside the “COTSdescription” part, in the COTSquery docu-
ment. This COTScomponent document is the one used by the trader to match it with the candidate
document being analyzed.
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Table 11.1

Features of a Trading Process for Commercial Components

Features

Description

Heterogeneous

Federation

Search engines

Softmatches

Extensible
and scalable

Compose
and adaptation

Multiples
interfaces

Subtyping

Store and
forward

Push and pull

Heuristics
and metrics

Delegation

A trader should not restrict itself to a particular component or object model, but it
should be able to deal with different component models and platforms, such as
CORBA, EJB, COM, .NET, etc.

Cooperating traders can federate using different strategies. The direct federation
approach requires the traders to directly communicate (and know about) the
ones they federate with. In the repository-based federation, multiples traders
read and write to the same service offer repository.

Traders may superficially resemble search engines, but perform more structured
searches. In a trader, the matchmaking heuristics need to model the vocabulary,
distance functions, and equivalence of classes in a domain-specific property
space.

Traditional exact matches between imports and exports are very restrictive in
real situations, in which more relaxed matching criteria should be used. There-
fore, partial matches should be allowed when building the list of candidate
components.

Component behavior, NFRs, QoS, marketing information, and semantic data
should also be considered. The information managed by the trader should be
able to be extended by users in an independent way, and still the trader should
be able to use all its functionality and capabilities.

Current traders focus on one-to-one matches between client requests and
available service instances. A compositional trader should also consider one-to-
many matches, in which composing several available services, which together
provide the services, can also fulfill a client request.

Components simultaneously offer several interfaces and, besides the services,
should be defined in terms of sets of interfaces. This fact has to be specially
considered when integrating components, since conflicts may appear between
components offering common interfaces.

Current traders organize services in a service type hierarchy in order to carry
out the service matching process. Central to type matching is the notion of type
subtyping (or type conformance). Subtyping needs to be defined in order to cope
with syntactic and semantic information, protocols, QoS, etc.

If a trader cannot fully satisfy a request, either it automatically replies back to the
client with a denial (automatic behavior) or it stores the request and postpones
the reply until a suitable service provider is found (store and forward).

In a push model, exporters directly contact the trader to register their services
with it. Bots and search engines, used to enhance current COTStrader, use a

push model, crawling the Web looking for services and “pushing” them into the
traders.

Users should be able to specify heuristic functions and metrics when looking for
components, especially in the case of soft matchmaking.

If traders cannot resolve requests they should be able to delegate them to other
(smarter) traders. Delegation of the complete request or just parts of it is
desirable.
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Figure 11.4 A Query Template Example

<COTSquery name="TranslatorQuery”>
<COTSdescription href=“http:// . . . /Translator.xml”/>
<functionalMatching>
<interfaceMatching> <exactMatching href=* . . . /serviet/exactmat’/> </
interfaceMatching>
<choreographyMatching> <softMatching/> </choreographyMatching>
</functionalMatching>
<propertyMatching>
<constraints notation="XQuery”> (capacity <= 17) </constraints>
<preferences notation="ODP”>random</preferences>
</propertyMatching>
<packagingMatching notation="XQuery”>
description/notation =“CCM-softpkg” and description/implementation/os/
name="“WinNT”
</packagingMatching>
<marketingMatching notation="XQuery”>vendor/companyname=“IBM"</
marketingMatching>
</COTSquery>

The other four parts of the COTSquery document describe the selection criteria to be used. In
the functional part, the client may specify whether the matchmaking process should be exact or
soft, and optionally the matchmaking program to be used (the program originally stated in the
target COTS component description is ignored) (Zaremski and Wing 1995). For example, in the
query template shown in Figure 11.4, we can see how a soft matching action is only desired at a
protocol (choreography) level, whereas at the syntactical level an exact matching action and a
program are desired by the client.

If a client does not offer a soft or exact matching program in the query document, the trader
looks for it inside the document of the candidate component (candidate document) that is being
analyzed from the trader’s repository. Otherwise, the trader looks for default matching programs
related to it. The candidate document is refused by the trader if an exact matching was required
and no program was found. The candidate document is included in the candidate list (to be re-
turned) if a soft matching was required, but no program was found.

Property-based matching is done in the usual way by ODP traders, using constraints and
preferences. Constraints are boolean expressions consisting of service property values, con-
stants, relational operators (<, >=, =, !=), logical operators (not, and, or), and parentheses,
which specify the matching criteria to include a component in the trader’s list of candidates
for the current search. We have used the notation defined in the W3C’s XML QueryAlgebra
proposal to write the expression. On the other hand, the preferences can sort out the list of
candidates according to a given criterion using terms like “first,” “random,” “min(expr)” and
“max(expr),” where expris a simple mathematical expression involving property names (ISO/
ITU-T 1996).

Finally, the packaging and marketing information is matched using expressions that relate the
values of the COTSdescription query in the appropriate tags (“<packaging>" or “<marketing>"). In
this example, the W3C’s QueryAlgebra notation is used again to build the “select” expressions.
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Figure 11.5 The TBDM Architecture
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PROCESSES FOR A TRADING-BASED DEVELOPMENT METHOD

To assess the usefulness of the trading process for CBD, it has been integrated into a method to build
COTS-based systems by automating most of the search and selection activities. In order to produce
systems with commercial components, architects, designers, and builders must accept the trade-
offs among three main concerns: user requirements, system architecture, and COTS products.

In this section, we will introduce all the processes dealing with a trading-based development
method (TBDM), that is, a software development proposal to build COTS-based systems that
require the use of quick prototypes of the system’s software architecture. This method tries to
solve an important problem at design level, known as gap analysis in the CBD literature
(Cheesman and Daniels 2001). The main purpose is to approach the architectural design re-
quirements of the components and those related with particular implementations available in
the market of software components (i.e., commercial components). Some important tasks, tools,
and methods, very common in requirements engineering (requirement elicitation, analysis, speci-
fication, and validation), are beyond the scope of this chapter, which is rather focused on the
design level.

Figure 11.5 shows the schema of all connected tasks that conform to the automated method.
The process initially describes the software architecture (SA) of the system, which defines its
high-level structure, exposing its organization as a collection of interacting components (step 1).
The SA decomposes the application requirements into a hierarchical criteria set, which usually
includes component functionality, extrafunctional requirements, architectural constraints, and
other nontechnical factors such as vendor guarantees and legal issues.
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Subsequently, the process continues by extracting the component requirement information
from the SA (step 2). This step produces a list of abstract services, which can easily be expressed
by means of COTScomponent documents (i.e., abstract documents).

Using this information (i.e., the list of COTScomponent documents), the next step begins with
the activities of component selection. In this case, the COTStrader can be queried to look for
those COTS components that provide the desired requirements (step 3.1). The trader returns a list
of candidate components to each abstract document. A candidate list contains the collection of
those particular documents (i.e., COTS documents of existing implemented components) that
match with the information of the abstract document being considered.

The process keeps on trying to build the system from these lists of candidate components. The
COTSconfig process (step 3.2) carries out this purpose by calculating a list of all possible combi-
nations between the candidate components. A valid component combination represents a closed
configuration of the system that partially (or fully) solves the abstract component requirements of
SA. A closed configuration does not require any external component to work, that is, all services
required by its constituent components are provided by a component in the configuration. There-
fore, a new process deals with the closing of configurations (step 3.3).

Finally, a list of all closed configurations is shown to the system designer (step 4), so that a
decision can be made as to (1) the best configuration that matches the user requirements, (2)
which components are still missing and hence need to be developed, and (3) the extent to which
the initial software architecture should be changed (and whether it is worth changing) in order to
accommodate to the COTS components found. The selection, validation, evaluation, and adapta-
tion of configuration activities are beyond the scope of this chapter. Instead, we focus on the
assessment of the usefulness of integrating a COTS trader with CBD methodologies (e. g., Capa-
bility Maturity Model (CMM) or Rational Unified Process (RUP) approaches using software
components).

The following sections describe these steps in more detail, and the Geographic Translation
Service example is used to illustrate the trader-based development method. The discussion that
follows will refer to Figure 11.5.

Describing the Software Architecture

Complex software systems require expressive notations to represent their architecture. In general,
the software architecture defines its high-level structure, exposing its organization as a set of
interacting components.

Traditionally, specialized architecture description languages (ADL) have been used to provide
a formal description of the structure and the behavior of an application’s architecture (Medvidovic
and Taylor 2000). The formality and the lack of visual support of most ADLs, however, have
encouraged the quest for more user-friendly notations. In this respect, the Unified Modeling Lan-
guage (UML) notation is clearly the most promising candidate, since it is familiar to developers
and, to a certain extent, nontechnical people, it offers a close mapping to implementations, and it
has commercial tool support.

The problem is that the current definition of UML does not offer a clear way of encoding and
modeling the architectural elements typically found in the architectural description languages as
discussed by Garlan et al. (2002) and Medvidovic et al. (2002), for instance. Until the new UML
2.0 is released (which is expected to support component-based development and run-time archi-
tectures of applications), the only widely accepted proposal for documenting software architec-
tures available now is probably UML-RealTime (UML-RT) (Selic and Rumbaugh 1998).
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Figure 11.6 The GTS Software Architecture in the UML-RT Notation

=]
S

_| +transProv GTS Component

:ProtTrans~ +;Fiiac@mpresTr
+/Translator ‘ :ProtComp~ /fC:FileCompressor
:ProtTrans~ +FileCompressor Aol s
r —ProtComp__—
' +flmageTranslator
ProtTransimg +/imageTranslator
= pn

ftrans: Translator W

:ProtTransimg~ | -'
‘_‘_\_\_‘_‘“_\_\_‘?

fiT:lmageTranslator

+(XMLBuffer
:ProtBuffer ,——‘
| +IXMLBuffer +/XDR HFORXDR |
:ProtBuffer~ ProtXdr~ |

fxmlBuf +/Element +Document +Element
XMLBuffer rotElem ‘ProtDocur ProtElem

+/Document ~—_

‘ProtDocum
+/Document —L}
‘ProtDocum
{ fdom:DOM

+/Element
ProtElem~

UML-RT is a visual modeling language with formal semantics for specifying, visualizing,
documenting, and automating the construction of complex, event-driven, and distributed real-
time systems. UML-RT uses some graphical notations to describe the software architecture, such
as capsules (i.e., components), ports (i.e., provided and required interfaces), protocols (i.e., cho-
reography), and connectors (to bind components through the ports).

Figure 11.6 shows the GTS software architecture using the UML-RT notation. This figure
represents the first stage (step 1) of the TBDM method (shown in Figure 11.5).

As we can see, a general capsule is used to describe the whole software architecture. A UML-
RT capsule can be composed of one or more capsules (i.e., components in our case). Please notice
that the GTS software architecture capsule represents the GTS component capsule in Figure 11.2.

The +/transProv:ProtTrans~ port represents the boundary that communicates both the sender
and receiver components with the inner part of the GTS capsule. This port connects directly with
the +/translator:ProtTrans~ dual port, which is a part of the /trans: Translator component.

The GTS software architecture is composed of six components (i.e., capsules). The main com-
ponent is /trans:Translator, which requires four additional components:

1. a file compressor called /fC:FileCompressor

2. a translator of spatial images called /iT:ImageTranslator

3. a component for intermediate representation of data called /xXDR:XDR
4. a buffer called /xmlBuf:XMLBuffer

The GTS subsystem also requires two document object model (DOM) interfaces called Docu-
ment and Element. They are used by the XDR and XMLBuffer components to support XML
formats. These interfaces are available in software packages such as IBM XML4J or Sun JAXP.
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Figure 11.7 A Capsule Describing the Component Requirements
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In the GTS software architecture, only an instance of the base component DOM is used, but
Document and Element ports are duplicated to handle both /XDR:XDR and /xmiBuf: XMLBuffer
components.

Moreover, there is some important information that must be recovered inside a capsule. This
information, which is recovered by UML notes and tagged values inside a capsule (i.e., compo-
nent), is related with that included in a COTS document. For example, Figure 11.7 shows the
internal requirements imposed on the ImageTranslator component. To simplify, we just represent
the signature level of interfaces and nonfunctional information, but the remaining information of
a COTS document can be represented in a similar way.

The signature level of interfaces can be described by some particular IDL notations. Specifi-
cally, the CORBA IDL notation is used to describe interfaces. This description is directly in-
cluded inside a UML note and connected with the corresponding port (a UML-RT port refers to
interfaces). Also, an external tagged value—which is connected with the IDL note—determines
the notation type to describe the interface’s signature level (e.g., notation n = “CORBA IDL”).

Properties are also described in a separate note. A property description begins with the “<<prop-
erty>>" stereotype name. Next, the property description is indicated with a particular notation.
As the interface shows, the description notation is represented by using an external tagged value.
For example, the ImageTranslator capsule describes three properties in separate notes. It uses an
external tagged value (notation = “OCL”) connected with each property note. A “—" symbol is
used to separate several parts in a property description note: (1) the “<<property>>" stereotype
header; (2) the declaration of those types by the object constraint language (OCL) property de-
scription; and (3) the body of the property description.

Once the software architecture is drawn—using the Rational Rose RealTime package in our
case—the information about the components, the services they offer and require, and their prop-
erties is extracted from the UML-RT diagram (i.e., capsule information, as we have discussed).

This process represents the second stage (step 2) of the TBDM method (Figure 11.5).

For that purpose, we have a process that parses the files produced by Rational Rose RealTime
and generates a list of COTS documents (1.e., COTSdocument templates) with the description of
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Figure 11.8 A Template List of COTS Components
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the components found in the software architecture. Figure 11.8 shows the list of six
COTScomponent templates generated for the GTS software architecture (shown in Figure 11.6).

In addition to this, we have a generic tool that processes XML Metadata Interchange (XMI)
files and produces the COTScomponent templates, since we did not want to commit to any par-
ticular tool or graphical notation.

Looking for COTS Components (Trading)

Besides obtaining the architectural needs, the next stage of the TBDM method looks over the
component search and selection activities (step 3.1). This stage deals with the trader process
(COTStrader). The trader generates a list of candidate components from the repository when it is
queried with a client component template to be searched. In our case, the trader service is queried
just six times using those document templates with the architectural requirements. These were
extracted from the software architecture in the previous step. This search process will generate a
list of candidate components for each query requested.

The trading service was described in the “Trading for COTS Components” section. As we
could see there, the matching operations, which look for COTS components and generate a list of
candidate components, start with soft matches (basically, just by looking for keywords). As the
software architecture gets progressively refined, these initial soft matches get more and more
exact in each iteration (see again Figure 11.5). Typical (and increasingly stronger) levels of match-
ing are keywords, marketing and packaging information (operating systems, component models,
etc.), quality properties, interface names, interface operations, and behavioral and semantic infor-
mation. Although the latter level of matching is very useful in theory, our experience shows that
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it is difficult to go beyond the level of looking for quality properties. Software vendors do not
even include the names of the interfaces that provide their services, or mention their semantics.

Building Alternative Implementations

As previously discussed, the trading service produces a list of candidate components (i.e., candi-
date list) that fulfills the architectural requirements. A separate process (COTSconfig) generates
the collection of all possible combinations of components from those in the list of candidate
components (step 3.2).

Although a configuration should resolve partially (or fully) the architectural requirements, not
all of them are really valid to build the system. A COTS software component is identified by two
sets of incoming and outgoing information flows, basically at the syntactic, semantic, and proto-
col level (i.e., services), which are referred to as two collections of provided and required ser-
vices. Nevertheless, a component combination (configuration) with multiple services may generate
some problems, such as service gaps and overlaps. Gaps happen when none of the components in
a configuration provides any of the services required by the software architecture. On the con-
trary, overlaps happen when two or more components in the same configuration provide the same
service. The aim is to find those configurations without service gaps or service overlaps.

Here below, we will discuss an algorithm that generates valid configurations. In order to ex-
plain this algorithm, we will use a particular component notation, focused only on the provided
and required services of the component (i.e., on the functional information), but not on the prop-
erties, packaging, or marketing information of a COTS component (as there is no influence in a
configuration). In relation to the functional information, the algorithm considers the services
independently of its information level (i.e., the syntactic, semantic, or protocol level).

To simplify the discussion of the configuration algorithm, let us now consider a component
C by two sets of services C = (P,R), where P is the set of supported (or provided) services (P =
{P,,...,P,}), and R is the set of required services, R = {R,, . .., R,,}. For simplicity, we are
writing C.P and C.R to refer to both sets of services. At the signature level, P;s and R;s represent
standard interfaces (e.g., CORBA or COM interfaces) composed just of a set of public at-
tributes and methods. At the protocol level, P; and R; describe a “role.” At the semantic level,
they correspond to a description of an interface decorated with semantic information (e.g., with
pre- and postconditions).

The GTS example will be used to explain the configuration algorithm. We are supposing that
the COTStrader process has generated the list of eight candidate components shown in the right
column of Figure 11.9. For the algorithm, Cy(A) refers to the candidate list, B refers to the trader
repository, and A refers to the software architecture. On the left column, we are show the six
components of the GTS subsystem (see Figure 11.6).

For simplicity, we are using just two characters to name components and services. For ex-
ample, the FileCompressor component will be written as FC, and a service as Pr.. Both C, and C,
candidate components require two external services, R;; and R, respectively. The first one rep-
resents a Tool interface, containing a collection of methods to transform spatial images (e.g.,
sizing, rotation, rolling, and so on). The second one represents a Filter interface, containing a
collection of methods with some special effects on spatial images (e.g., noise effect, thresholding,
edge detect, shading, segmentation, and so on). If these components are then considered for a
configuration, this must be closed first in order to produce a working application. The last step of
the process deals with this task (step 3.3 in Figure 11.5), closing the configurations with regard to
the repository B.
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Figure 11.9 The Components of the GTS Architecture Against the Candidate List

Component name GTS architecture Cg(GTS): Candidate
components
FileCompressor FC={Pyc} C1={PgL,Ppo}
ImageTranslator IT={Pir} Co={PEr,Ppo.RrL}
XDR XD= {P)(D,RE_L,RDC.} Cg={Ppc}
XMLBuffer BF= {PB F,REL,RDO } C4= {Ppc,RE[_,RDo}
DOM DM= {PEL,PDQ} C5={Prr}
Translator TR= {PTR,RFC,RIT;RXD,RBF} C5= {P[T,PFC ,RFL}

C7={Prr.Pr,REL,Rp0}
Cs={Pxp,ReL,Rpo}

The configuration algorithm (i.e., COTSconfig process) tries to build a set (S) with all the
possible configurations obtained from the candidate list C4(A), which was previously generated
by the trading process (i.e., COTStrader process). Figure 11.10 shows a backtracking algorithm
that implements this process. It produces—from the set of candidates, Cx(A), and from the appli-
cation A—the set S of valid configurations (line 11). The initial invocation of the algorithmis § =
£, Sol = £, and configs(1,S0l,S). Each configuration (line 9) is generated by trying all candi-
dates, incorporating those interfaces C,.P; not yet included in A, and discarding those already
considered (lines 8 and 10). When the algonthm finishes, S contains all configurations. Because
of the way in which the algorithm works, no service gaps or overlaps may occur, and therefore, it
produces some valid configurations.

The complexity of this algorithm is O(L2"), where n is the number of interfaces offered by all
candidate components in Cy(A), and L is the complexity of the substitutability operator used (i.e.,
at the signature level, protocol level, or semantic level operator). To reduce the exponential com-
plexity, we could change the algorithm into a “branch and bound” one, which uses some upper
bounds to prune many of the options in the exploration tree, thereby improving notably the ex-
ecution time of the algorithm.

Once all configurations have been generated, we need to close them in order to get a “com-
plete” application (step 3.3). The closure process of a given configuration can be carried out by
applying any of the existing algorithms that calculate the transitive closure of a set (i.e., a configu-
ration) with regard to another bigger set (in this case, the repository). Therefore, we may need to
invoke the COTStrader again to look for those external services until we get a closed configuration.

Figure 11.11 shows some results of the GTS example, generated by the configuration algo-
rithm from the candidate list, shown in Figure 11.9. Here, only twenty-four configurations are
valid, although other discarded configurations are shown for completeness. Columns 2 to 9 (la-
beled C,—Cg indicate the services provided by the components in each combination. Column 10
(labeled configurations) describes the configuration, hiding the appropriate service too (e.g., we
represent the hiding services as “Cy—{Pp,}”). Columns 11 and 12 (labeled Res. and Cd) indicate
whether the configuration respects the application’s structure and whether it is a closed configu-
ration, respectively. As for that, an application is closed if all services required by its constituent
components can be served internally, that is, without requiring external services from the compo-
nents outside the application. Note that valid configurations may not be closed. Although they do
not contain gaps with reference to the original services specified in the architecture, configura-
tions may still contain a COTS component that requires some external services not contemplated
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Figure 11.10 Obtaining All Valid Configurations

1 function configs(i,Sol,S)

2 /1 17 17 size(Cp(A)) traverse the repository

3 // Sol is the configuration being built

- /'S contains the set of all valid configurations A

5 if 1 ? size(Cp(A)) then

6 for j :=1 to size(C;.P) do // all service in C;

7 // we try to include C;.P; service in Sol

8 if {C;.P;} ? Sol.P =0 then // C;.P; { EMBED Equation.3 }
9 Sol := Sol { EMBED Equation.3 }{C;.P;};

10 if A.P{ EMBED Equation.3 }Sol.P then //Is Sol a
11 S =S { EMBED Equation.3 }Sol; // if so, it
12 else // but if there are still service gaps . . .

13 configs(i,Sol,S); // searchin C; . . .

14 Endif

15 Sol := Sol — {Ci.Pj};

16 endif

17 endfor

18 configs(i+1,S0l,S); // Next in Cp(A).

19 endif

20 endfunction

in the original design. This situation is not common in real applications. For instance, if we install
a software component in our computer, we will soon realize that it needs another additional (and
apparently unrelated) component, which should be installed for the application to work.

The “respect” and “closure” concepts, together with the collection of operators used by the
configuration algorithm, are defined in Iribarne et al. (2002).

For instance, configuration 1 contains all candidate components, except C,, C,, and Cj, and
each component provides just one interface, except C,, which offers two. This configuration is
closed and it respects the application structure. Given the twenty-four configurations, five of
them are closed, and twenty respect the structure.

Now it is a decision of the system’s designers to select the configuration that best suits their
requirements from this list of valid configurations or to revisit the original architecture.

It is important to observe that the process described here has been defined for complete appli-
cations. However, it could also be used for some parts of an application. In this way, we could
allow the designer to decide which parts of the whole application to implement with COTS com-
ponents from the repository, applying the process just to the selected parts.

On the other hand, the application of gap analysis is an important feature to assess the differ-
ence between stated requirements and existing components, making a compromise to the require-
ments in order to deliver the solution in a faster and cheaper way (Cheesman and Daniels 2001).

TECHNOLOGY USED

All the processes described in the trader-based development method have been implemented in
Java. Rational Rose RealTime has been used to describe the software architecture, which adopts
Bran Selic’s original UML-RT version. The W3C’s XML 1.0 and XML Schema notations have
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been used to write the COTScomponent documents and develop the template schemas (the gram-
mar of a COTS document), respectively. The COTStrader service has been implemented by using
the IONA’s ORB ORBacus and IBM XML4J, and the latter implements the trader repository.

A Web client and some servlets (working on the Apache Tomcat WebServer and under a
Linux/Redhat platform) have also been implemented to support trading service from the Web site
of our trading-based development method (www.cotstrader.com).

Finally, well-known formalizations have been used to implement certain parts of the proposal: for
example, the object constraint language notation to describe the properties of a COTS template, and
Leavens’ JML notation (Leavens et al. 1999) to describe the semantic specification of COTS compo-
nent interfaces (the “behavior” tag in Figure 11.3). Finally, a subset of the pi-calculus notation (Milner
1993) has been used to describe protocols (the “choreography” tag in Figure 11.3).

RELATED WORK

The contributions presented in this chapter are related to two main research lines: research based
on component acquisition and research based on the building of systems from commercial com-
ponents.

Component Acquisition

Component acquisition is related to the component search and selection processes from software
repositories. These studies take into account architecture requirements (also known as applica-
tions engineering) and the component specifications available in well-known software reposito-
ries (also known as domain engineering).

Several studies focus on component acquisition. Here, we are underlining three of them. First,
Rolland (1999) proposes a technique that captures requirements through transition diagrams (called
maps) based on four basic models: the “as-is model, “to-be” model, COTS model, and integrated
match model. This approach, however, does not propose any particular way of specifying COTS
components, nor does it give any indication of how to carry out the syntactic and semantic
matchmaking process between components.

Second, Goguen et al. (1996) present and discuss a set of criteria for searching and selecting
components from a repository. However, this technique deals only with components that offer
simple interfaces, and therefore the problems of service gaps and overlaps do not appear.

Finally, Seacord et al. (2001) propose a process to identify component ensembles that satisfy
the specification of system requirements focused on a knowledge basis of the integration rules of
the system. This technique does not make use of a trading model, as discussed in the section titled
“Trading for COTS Components.”

Building COTS-Based Systems

Another related research line deals with processes aimed at developing software applications with
commercial components. First, Seacord et al. (2001) propose some processes for the identifica-
tion of components, focusing on the knowledge of the integration rules of the system. This pro-
posal lacks a concrete way of documentin g commercial components; however, it is one of the few
works that deal with real examples of commercial components. This work is developed in the
COTS-Based Systems (CBS) Initiative at the Software Engineering Institute (SEI) at Carnegie
Mellon University (Pittsburgh, Pennsylvania).
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Second, the Concepts to Appliccation in System-Family Engineering (CAFE) and Engineering
Software Architecture and Platforms System Families (ESAPSb) projects (available at www.esi.es/
Cafe and www.esi.es/esaps) can be cited. Although there are several lines of interest, we emphasize
the work of Cherki et al. (2001). The authors describe a platform called Thales for the building of
software systems based on COTS parts. This proposal also makes use of Rational tools to define the
software architecture, and a diagram of classes prevails instead of UML-RT, as carried out in the
trader-based development method. This work also lacks trading processes for COTS components.

CONCLUSION

CBD deals with the building of software systems by searching, selecting, adapting, and integrating
COTS software components. Although a software component market has been quite slow to de-
velop, we are perceiving how the effective use of software components is slowly becoming a valid
technology for the building of software systems (e.g., Componentsource is successfully selling and
licensing many components every month). Moreover, the complexity of the applications is continu-
ously growing, and the amount of information available is becoming too large to be handled by
human intermediaries. Therefore, automated trading processes seem to play a critical role in CBD.

In the present chapter, a trading-based development method (TBDM) has been proposed to
build software applications as an assembly of COTS software components. This work is due in
part to the need of linking three areas of COTS component-based development: (1) the documen-
tation and specification of COTS components, (2) the description of software architectures with
COTS components, and (3) the trading processes for COTS components.

To document COTS components, we have first proposed the use of XML document templates
(called COTScomponent) for the specification of commercial components. In the case of software
architectures, we think that the UML-RT notation is suitable to describe software architectures with
COTS components. Finally, we have discussed that the current trading processes are not sufficient to
support COTS components, given that there is no connection with existing software architectures.
TBDM, an automated method to build COTS systems, solves this problem. It mainly uses two func-
tions (or stages): (1) the COTStrader function, a tool that extends the ODP trading service to look for
COTS components, and (2) the COTSconfig function, a tool that generates combinations of compo-
nents (called configurations) from those in the candidate list—found previously by the COTStrader
function. The configurations are taken as solutions that fulfill the architectural requirements of those
abstract components defined in the software architecture of the system. The software architecture’s
description represents an early stage of the TBDM method, which uses the UML-RT notation.

As a future line, metrics and heuristics should be considered so that the trader can generate
ordered sequences of candidate components based on certain criteria established by the user or
the administrator of the trader community. A connection with other traders should also be imple-
mented to search or register components in a federated trading. Finally, a COTS trader should
also be in accordance with some Web services technologies, integrating it with WebServices
Definition Language (WSDL) documents, the Universal Description, Discovery, and Integration
(UDDI) repositories, and the Semantic Web.
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