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(CNN). The use of this technology is commonly employed in indus-
try to improve productivity by means of product classi�cation [9]
Lie2020. This technology can be developed in di�erent program-
ming languages [15] [3]. One of the paradigms for its implementa-
tion are web services already trained with large data records, which
allow a better performance [22] because they are o�ered [4] as
SaaS (Software as a Service), allowing applications that consume
these resources and are integrated in a speci�c business logic [20].
For this reason, many companies are currently using classi�cation
models created by external providers [23] to create their own ap-
plications without the need to develop the internal logic of these
services.

Therefore, a classi�er system is useful in several types of tasks.
However, it is limited to the classi�cation of a single group of objects,
and these systems cannot be generalised to the classi�cation of
new objects. In order to extend the functionality of a classi�er
system, where multiple objects can be classi�ed using a single
system, a classi�cation architecture for Edge Computing based on
locally executed cognitive web services and deep neural networks
is proposed to extend the reconcentration options of web services
and reduce the response time. This proposal contributes to the
literature with an architecture for image recognition applicable in
industrial environments where low response times and adaptability
to various scenarios are required.

This document is divided into six sections. The �rst part is an
introduction to understand the state of research. The second part
presents some of the concepts of the state of the art. The third
section is followed by the design of the architecture in which each of
its components is analysed globally. The fourth section presents the
implementation of the architecture. The �fth section corresponds
to the validation tests of the architecture. Finally, the sixth section
is about conclusions and future work.

2 BACKGROUND AND FUNDAMENTALS
The most relevant technologies used in the design of the classi�ca-
tion architecture are listed below.

Web service: A web service provides solutions that can be con-
sumed by di�erent clients or other services, and can be accessed
via a web protocol [20] [21].

Edge Computing: A type of processing that directs computational
data, applications and services away from cloud servers to the edge
of a network. Developers can use edge systems to o�er services
closer to users [14].

Convolutional Neural Networks (CNN): A special type of multi-
layer neural network [8] named as convolution. CNNs have several
layers: the convolutional layer, the nonlinearity layer, the clustering
layer and the fully connected layer [2]. CNN has excellent perfor-
mance in machine learning problems, because they occupy image
data, computer vision and Natural Language Processing (NLP).

Transfer Learning: Within machine learning the training data
and the test data are taken from the same domain, resulting in the
feature space we have as input and the data distribution features
being the same [24].

ImageNet: A database of images organised according to theWord-
Net hierarchy, where each node in the hierarchy is represented by

hundreds and thousands of images. The project has been crucial in
the computer vision and deep learning research advancement [11].

Confusion matrix: A tool used in the �eld of arti�cial intelligence
to evaluate the performance of a supervised learning algorithm. The
matrix contains in its columns the number of predictions of each
class determined by the algorithm, while in its rows it represents
the instances in the real class, i.e. it relates the predictions of the
algorithm with the correct results that were shown or should have
been shown [19].

3 PROPOSED ARCHITECTURE
For a general purpose object classi�cation system, a three-layer
architecture was established: (a) a physical layer, (b) a logical layer
and (c) an application layer, as shown in Figure 1.

Figure 1: Classi�cation System Architecture Design.

The physical layer addresses the selection of the type of me-
chanical structure, sensors, actuators and hardware elements of the
system. The design of this layer sets the physical constraints for the
input of objects to the sorting process, and determines the speci�c
dimensions of the objects to be sorted.

The logic layer details the methodology used and the design
of the main algorithm for object classi�cation. Two features were
determined for the design of the algorithm: (i) identi�cation of
objects through the consumption of a cognitive web service, and (ii)
learning of new elements that are not possible to identify through
the remote web service. For the implementation of the �rst require-
ment, the Microsoft REST API with Azure Cognitive Services was
used. For the second feature, a learning model was de�ned using a
pre-trained network, eliminating the last part of the network and
replacing it with the new objects to be classi�ed. In this way, the
logical layer has a layout similar to the one shown in the Figure
2, based on a web service and the generation of an edge service.
By running the edge service out of the cloud, it takes advantage of
the bene�ts of an edge computing infrastructure [14] with the use
of the service in the cloud and processing on the microcomputer
locally.

The application layer is in charge of managing the system tools.
This layer is subdivided into: (i) View and (ii) Controller. The user
makes requests to the services from the View, and these are pro-
cessed and resolved in the Controller.
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Figure 2: Logical layer of the rating system architecture.

The Controller enables the use of the cloud service and the edge
service, as well as its connection to a cloud database. This �rst sec-
tion also manages the communication technologies and protocols
between the layers of the architecture. The View corresponds to
the system interfaces (Monitoring and Control). As illustrated in
Figure 3, the creation of two interfaces is proposed: a local interface
for supervision and control, and a remote web/mobile interface for
process supervision only.

Figure 3: Application layer block content.

4 EXPERIMENTAL SCENARIO
A test scenario for vegetable and fruit sorting has been considered
to validate the proposed architecture. In this sense, the architecture
of the sorter has been implemented as illustrated in Figure 4. It
shows the technologies, tools and protocols implemented in each
layer.

4.1 Logical layer
The logical layer of the architecture is based on two services: a cloud
service and an edge service. Both services work in order to obtain a
classi�cation algorithm for multiple objects in two classes de�ned
by a user. The �rst service requires the consumption of the cogni-
tive service o�ered by Microsoft Azure and its Computer Vision
API. The cognitive service allows the identi�cation and labelling

Figure 4: Classi�cation system architecture.

of objects within images. For the second service of learning and
generation of classi�cation models, a pre-trained network running
on the microcomputer is used.
a) Cloud service: Microsoft Azure is used as the cognitive service

provider. It is necessary to create a subscription for access to a
group of resources in order to consume the services, and to man-
age each resource individually. In this case, the cognitive service
Computer Vision is used, which is o�ered as a FaaS (Function
as a Service) of image tags to access the functionalities of the
API. It provides a list of tags in JSON format that are identi�ed
as relevant to the content of the image that is captured and pro-
vided to the system. These tags are used for the identi�cation
and classi�cation process.
The Listing 1 shows the implementation for calling this service.
The tag_image operation as FaaS allows access to the Computer
Vision API, which generates the list of relevant tags from the
content of the image that was entered. Two input methods are
supported: the �rst by uploading an image and the second by
specifying an image URL. A successful JSON response will be
returned. If the request fails, the response will contain an error
code and a message [17].

Listing 1: FaaS service requesting.
t ag_ image_ in_ s t r e am ( image , l anguage= ' en ' , mode l_ve r s i on=
' l a t e s t ' , cus tom_headers =None , raw= Fa l s e , c a l l b a c k =None ,
∗ ∗ o p e r a t i o n _ c o n f i g )

b) Local service: A CNN is generated following the work�ow rec-
ommended by Keras for tasks using transfer learning [13]. in
order to generate classi�cation models for objects that the cloud
service does not identify or identi�es incorrectly.
An instance of a base model is created, and the pre-trained values
are loaded. For the implementation, the ResNet50 architecture is
used as a pre-trained network and the values obtained by being
trained with Imagenet due to its accuracy of up to 92.1% and
reduced disk size of 98 MB [12]. Listing 2 shows in the code
snippet the implementation of the base model and the loading
of values.



MEDES ’22, October 19–21, 2022, Venice, Italy Cristian Chancusig, Sergio Tumbaco, Darwin Alulema, Luis Iribarne, and Javier Criado

Listing 2: Training Model.
r e sne t_mode l = S e q u e n t i a l ( ) p r e t r a i n ed_mode l =
t f . k e r a s . a p p l i c a t i o n s . ResNet50 ( i n c l u d e _ t o p = Fa l s e ,
i npu t_ shape =( img_height , img_width , 3 ) , o o l i n g =
' avg ' , we igh t s = ' imagenet ' )

It freezes all layers in the base model con�gured in the previous
step avoiding their retraining and modi�cation of their values.
Listing 3 shows the path of each layer of the network and its
freezing in its last layer.

Listing 3: Training stage.
for l a y e r in p r e t r a i n ed_mode l . l a y e r s :
l a y e r . t r a i n a b l e = F a l s e

A new 3-layer model is created and added to the pre-trained base
model. The multidimensional input is �attened by the Flatten
layer. A Relu activation function is added due to its good be-
haviour with images and great performance with CNN. Finally,
a Softmax function is added for probability representation and
generation of 2 classes as outputs. Listing 4 shows the generation
of this new model.

Listing 4: Model generation.
r e sne t_mode l . add ( p r e t r a i n ed_mode l )
r e sne t_mode l . add ( F l a t t e n ( ) )
r e sne t_mode l . add ( Dense ( 5 1 2 , a c t i v a t i o n = ' r e l u ' ) )
r e sne t_mode l . add ( Dense ( 2 , a c t i v a t i o n = ' so f tmax ' ) )

To make use of this new model, it is compiled and trained with
a new dataset. Listing 5 shows the training of the model using
the �t function.

Listing 5: Model training
r e sne t_mode l . compile ( o p t im i z e r = ' adam ' , l o s s = ' c a t e g o r i c a l _
� c r o s s e n t r o py ' , m e t r i c s =[ ' ac cu ra cy ' ] )
r e sne t_mode l . f i t ( t r a i n _ d s , v a l i d a t i o n _ d a t a = va l_ds ,
epochs =7 )

4.2 Application layer
This layer addresses two blocks within the system architecture, the
Controller, which is responsible for using the services generated in
the logic layer and integrating them into the system. It addresses
the monitoring and control interfaces of the system. Two interfaces
are generated for the project: a web interface for control and super-
vision, which is executed locally, and a web/mobile interface only
for supervision executed remotely.
a) Controller: The core of the system bases its programming struc-

ture on the Django framework illustrated in Figure 5. It starts
with a request from a client via a web browser to the server. The
View is in charge of handling the user requests that are sent
between the templates and the model. The model manages the
data, stores and sends the information requested by the user [6].
Within the programming structure, two applications are gener-
ated with Django, a “Cloud-Service” and a “LocalService”, both
with their respective models, views and templates. The �rst ap-
plication highlights the call to the Azure API and its integration
into the system by de�ning a function within the views. The List-
ing 6 below shows the API call and the storage of the prediction
labels in a list.

Listing 6: Classi�cation services.
with open ( addre s sF , mode= ' rb ' ) a s image_s t ream :
t a g s _ r e s u l t _ r emo t e = c v _ c l i e n t . t ag_ image_ in_ s t r e am ( image_

Figure 5: Project structure used by the Django framework.

stream , l anguage= " es " )
i f ( len ( t a g s _ r e s u l t _ r emo t e . t a g s ) == 0 ) :
a v i s o = "No � o b j e c t s � d e t e c t e d . "

e l se :
for t ag in t a g s _ r e s u l t _ r emo t e . t a g s :
tagsOb . append ( t ag . name . c a p i t a l i z e ( ) )
t agConf . append ( round ( t ag . c on f i d en c e ∗ 1 0 0 , 2 ) )
global l i s t aO b
l i s t aO b = tagsOb

return tagsOb , tagConf

For the application of the Remote service, the Listing 7 shows
the capture of images as data for the generation of two reposi-
tories that in turn will serve as data sets for the creation of the
classi�cation models.

Listing 7: Remote service.
e l i f " btnCapEn " in r e q u e s t . POST :
global bandFr , idCam
bandFr=True
camera = cv2 . V ideoCapture ( idCam ) ,
img = camera . r ead ( )
camera . r e l e a s e ( )
i f ( S e l e cR e s == " Ob j e t � 1 " ) :
global contImOb1 , contImOb2 , d i r F o t oR e s
contImOb1 = contImOb1+1
d i rDa t a = " Pa thSaveP i cOb j 1 . j pg "
contImOb2 = 0
cv2 . imwr i t e ( d i rDa ta , img )

e l se :
contImOb2 = contImOb2+1
d i rDa t a = " Pa thSaveP i cOb j 2 . j pg " "

� � cv2 . imwr i t e ( d i rDa ta , � img )
� � contImOb1 � = � 0
� � l i s t D a t a � = � os . l i s t d i r ( d i rCarpDa ta )

Once the data has been captured, the integration of the Edge
service into the structure is presented. By means of Listing 8,
a training function is generated, which feeds the prediction
model already trained with the image captured through the
tools provided by OpenCV.

Listing 8: Edge service.
image = cv2 . imread ( d i r e c c i o n F )
image_ r e s i z e d = cv2 . r e s i z e ( image , ( img_height , img_width ) )
image = np . expand_dims ( image_ r e s i z ed , a x i s =0 )
pred = mode l o _ f i n a l . p r e d i c t ( image )
v a l P r e d i c =np . amax ( np . mu l t i p l y ( pred , 1 0 0 ) )
v a l P r e d i c =np . f l o a t 6 4 ( v a l P r e d i c ) . i t em ( )
v a l P r e d i c =round ( v a l P r e d i c , 2 )
p r e d i c c i onR = c la s s_name [ np . argmax ( pred ) ]

For communication between the data captured by the physical
sensors of the system and the action commands sent from the
interface, the Web Sockets communication protocol is used (List-
ing 9). The �le “routing.py” is created, in which the URLs for
WebSocket connections to the consumer are added [16].

Listing 9: Physical component services.
ws_u r l p a t t e r n s = [
path ( 'ws / redAzure / ' , WSConsumerAzure . a s _ a s g i ( ) ) ,
pa th ( 'ws / r edRe sne t / ' , WSConsumerResnet . a s _ a s g i ( ) ) ]
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(a) (b)

(c)

Figure 6: Interface sections for data entry, control and supervision of the system: (a) Monitoring and display of results, (b)
Con�dence graphs, and (c) Controls

The Redis channel is con�gured (Listing 10), in order to enable
communication.

Listing 10: Physical component services.
CHANNEL_LAYERS= {
' d e f a u l d ' : {
'BACKEND ' : ' c h a nn e l s _ r e d i s . co r e . Red i sChanne lLayer ' ,
'CONFIG ' : {
' hos t ' : [ ( ' 1 2 7 . 0 . 0 . 1 ' ) ]

} } }

b) View: The local and remote interfaces were generated from tem-
plates for both services. For the local web interface, with the
control and monitoring function, the following sections are gen-
erated:
• Capture and prediction of the objects to be classi�ed in the
cloud service.

• Folder creation and data capture for the training of the classi-
�cation models in the local service.

• Command controls for start, pause and stop of the system.
• Video Stream of the process, data and system prediction result
graphs.

• Graphs of the con�dence level vs. the number of classi�ed
objects.

Figure 7: Layout of elements of the system model theme.

4.3 Physical layer
A conveyor belt type structure is used for Cyber-Physical System,
which allows the objects to be fed in serially. Under the guidance
and design and construction considerations mentioned in [7] a
standard light conveyor belt was implemented. The belt runs on
two end pulleys, a driving pulley and a idler pulley, as illustrated in
Figure 7. The wheelbase is assumed to be 64 cm, the belt width is
assumed to be 10.5 cm. The main pulley shall be connected to the
engine and shall be located on the left and inlet side of the system.

The electronic sensors and actuators are distributed as shown in
Figure 7. The object enters from the left side until it is detected by
the �rst motion sensor FC51 to stop the belt, captures the image
with the Rev 1.3 camera, predicts its result and continues until
it is sorted by one of the two gates adapted to servomotors. It is
detected at the output by the second motion sensor, concluding the
sorting cycle. Figure 8 shows the layout of the prototype already
implemented.

Figure 8: Real distribution of the elements implemented in
the model of the clasi�cation system.
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(a) (b)

Figure 9: Validation of the trained classi�cation model for 50 training and validation images and 7 training epochs: (a)
Performance, (b) Loss function.

5 VALIDATION
Three types of tests were carried out to validate the implemented ar-
chitecture: functional tests, load tests and usability tests. Functional
tests are intended to determine the performance of the classi�er
and its services, and are therefore evaluated by calculating the per-
formance parameters of classi�cation models and using confusion
matrices. On the other hand, load tests are aimed at evaluating
the performance of the server hosting the remote interface. It will
be possible to de�ne its access limitations by simulating di�erent
scenarios created in Gatling. Finally, the usability tests employ a
usability scaling system to measure how user-friendly the classi�-
cation system is through its use by various users.

5.1 Funcionality test
The generated model is evaluated with a data set of 50 images, 25
per class and a total of 7 phases, obtaining the results presented in
Figure 9.a, in which for the validation and training data the accuracy
tends to one.

On the other hand, the loss function tends to values of zero in the
validation and training data for the generated model as illustrated
in Figure 9.b. This is the value needed for training of 50 images and
7 phases.

The classi�er is based on the Cloud service and Edge service,
so performance tests are determined for both services. Five tests
are performed for the Cloud service to validate its classi�cation
performance with objects according to their shape, texture and
colour. For the local service, tests are performed with objects that
have been misidenti�ed by the Cloud service.

a) Cloud Service: Three test groups are set up to evaluate the perfor-
mance of the cloud service. Tests with objects with similar shape
and di�erent shape. For Test 1 apples are used with pears, for
test 2 fruits are used with vegetables. For the second group with
objects of di�erent texture, glass objects are used with plastic
objects. For the third group with di�erent coloured objects, red
objects are used with blue and yellow objects with green.

A confusion matrix is generated with balanced evaluation data
with 10 objects for each of the classes, with a total of 20 objects
in each test. This is how the calculation of metrics for measuring
the performance of classi�cation models is performed. The val-
ues obtained for each case are detailed in Table 1. For the tests
performed with the shape of the objects with the apple�pear
and fruit-vegetable groups, the percentage of accuracy remained
at 95% and the F-value also at 95%, establishing that the perfor-
mance of the classi�cation model works correctly for objects
with similar characteristics to those presented in the tests.
For the test performed with the plastic-glass texture, an accuracy
value of 90% and an F-value of 90% were obtained, concluding
that the classi�cation model presented by the cloud service has
a performance that is considered adequate for the classi�cation
system.
Finally, for the colour tests performed for the red-blue and
yellow-green groups, accuracy and F-value values of 100% were
achieved, determining that the cloud service classi�cation model
works correctly to identify colours.

Table 1: Performance Parameters for the Cloud Service Rat-
ing Model (AC:Accuracy,ER: Error rate, SE: Sensitivity, SP:
Speci�city, PR: Precision).

A
C
[%

]

ER
[%

]

SE
[%

]

SP
[%

]

PR
[%

]

V
PN

[%
]

F-
Va

lu
e
[%

]

Shape Test 1 95 5 100 90 91 100 95
Test 2 95 5 100 90 91 100 95

Texture Test 3 90 10 90 90 90 90 90
Test 4 100 0 100 100 100 100 100

Color Test 5 100 0 100 100 100 100 100

b) Service in Local: Tests are performed on objects that the cloud
system could not identify correctly. Green and red apples that
are colour-independent are labelled as apples only, the group of
pearl and red onions that are indistinctly labelled as onions only.
Finally, passion fruit with “granadilla” are both identi�ed as
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passion fruit. For these three groups their classi�cation models
obtained the values detailed in Table 2. The accuracy value and
the F-value remained at 95%, only variations existed between the
sensitivity and precision values. For the classi�cation system,
the classi�cation priority of object one compared to object two
is not relevant, therefore, only the F-value and accuracy are kept
in consideration. It is concluded that the classi�cation models
generated for the three tests work correctly in the system.

Table 2: Performance parameters for the local service classi-
�cation model (AC:Accuracy, ER: Error rate, SE: Sensitivity,
SP: Speci�city, PR: Precision).

A
C
[%

]

ER
[%

]

SE
[%

]

SP
[%

]

PR
[%

]

V
PN

[%
]

F-
Va

lu
e
[%

]

Test 1 95 5 100 90 91 100 95
Test 2 95 5 90 100 100 91 95
Test 3 95 5 100 90 91 100 95

5.2 Load tests
This is done using a Gatling script based on the Scala language. The
requests that can be sent are established, as this is a supervision
page that does not have various functionalities, so in this case there
are two requests that represent the number of buttons that the user
can press to navigate among windows. In Figure 10, it can be seen
that 200 requests have been made to the server and it has responded
successfully to all of them. The response time of these requests was
less than 800 ms, indicating that the server is functioning correctly.

Figure 10: Simulation of 200 requests to the server.

A scenario has been simulated in which the number of users
accessing the page increases for 60 seconds. The maximum number
of users is 4000. After �nishing the tests, the results of the tests
are shown in the table 3. It can be seen that the server responds
e�ciently with users under 1000. However, as the number of users
increases, the number of requests fails.

5.3 Usability testing
In order to verify the user-friendliness of the local and remote
interface, the System Usability Scale (SUS) was used, which has

Table 3: Simulation results for load tests.

User Total
Requests

Maximum
[Req/s]

Success
[%]

Failure
[%]

Response
t<800 ms

[%]

Response
t>1200 ms

[%]
100 200 15 100.0 0.0 92.0 8.0
200 400 8 100.0 0.0 100.0 0.0
500 1000 20 100.0 0.0 99.0 0.0
1000 2000 68 99.0 1.0 49.0 39.0
4000 8000 133 94.0 6.0 1.0 91.0

10 standardised questions. Ten users were tested and were able to
use the application individually, because the local page displayed
controls a single system. However, for access to the public page
there was no problem with more than 2 users logging in at the same
time. The answers to the questions asked can be seen in the table 4.
Prior to use, a brief explanation of the operation of the system was
given and it was noted that there were no problems in the use of
the system. At the end of the tests, the SUS scores and the average
value of 90.5/100 were obtained, which means that the system is
acceptable in terms of usability, ful�lling what was expected.

Table 4: SUS results.

U.
Qn.

Qn1 Qn2 Qn3 Qn4 Qn5 Qn6 Qn7 Qn8 Qn9 Qn10 Score
SUS

U1 4 1 5 1 4 1 5 1 5 1 95
U2 3 3 3 2 3 3 5 3 5 2 65
U3 4 1 5 1 5 1 5 1 5 1 97.5
U4 5 1 5 1 5 1 5 1 5 1 100
U5 4 1 4 1 5 1 4 2 5 1 90
U6 5 1 5 1 4 1 4 2 5 2 90
U7 4 1 5 1 4 1 5 2 5 1 92.5
U8 4 1 5 1 4 1 5 1 4 1 92.5
U9 5 1 4 1 5 1 4 2 5 2 90
U10 5 1 4 1 4 1 5 2 5 1 92.5

Average 90.5

6 CONCLUSIONS AND FUTUREWORK
The classi�cation model employed by the Cloud service presents
accuracy and F-value values between 90% and 100%, determining
that the performance of its classi�cation process within the system
is correct for groups in which the objects to be classi�ed belong
to a more general category. Likewise, the classi�cation models
generated by the local service show accuracy and F-value values of
95%, concluding that the performance is adequate when the objects
to be classi�ed belong to more speci�c categories or with more
distinctive characteristics.

The Django framework used for the programming project en-
abled the integration of the system’s tools and services. At the same
time, the use of the Heroku platform as a service (PaaS) allowed the
Django application to be deployed on a cloud server, generating a
public link for access to the remote web/mobile interface for system
monitoring. The use of the Google FireBase platform and its Cloud
Storage services for image storage and RealTime as a database gave
the system the capacity to store information and synchronise data
in the control and supervision interfaces.

Future work includes: (i) Bringing the task of generating classi�-
cation models to the cloud, thereby expanding the data set that can
be input, as well as the phases used for training. (ii) Furthermore,
we propose the use of techniques such as Web Scraping to access
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the Google Colab platform and the use of virtual machines to gen-
erate the model and download it to the microcomputer, ensuring
that it is only necessary to load it and use it in the system; (iii)
The local interface is executed within a local server generated by
Django, and the idea is to take it to a server in the cloud and have
access to control the machine from a remote location. (iv) Finally,
it is proposed to extend the system by increasing the number of
classes for each classi�cation model, for which it will be necessary
to modify both the services and the mechanical structure.
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