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Abstract

We consider polynomials which are orthogonal with respect to a nonstandard inner product. In fact, we
deal with Sobolev-type orthogonal polynomials in the broad sense of the expression. This means that the inner
product under consideration involves the Hahn difference operator, thus including the difference operators Dq

and∆ and, as a limit case, the derivative operator. In a previous work, we studied properties of these polynomials
from a theoretical point of view. There, we obtained a second-order differential/difference equation satisfied by
these polynomials. The aim of this paper is to present an algorithm and a symbolic computer program that
provides us with the coefficients of the second-order differential/difference equation in this general context. To
illustrate both, the algorithm and the program, we will show three examples related to different operators.

Keywords: Sobolev orthogonal polynomials, second-order difference equation, symbolic computation.
Mathematics Subject Classification (2020): Mathematics Subject Classification 2020: 33C47, 42C05, 34A05.

1 Introduction

In this paper we tackle the problem of computing symbolically the coefficients of the second-order differen-
tial/difference equation satisfied by the monic orthogonal polynomials Qn(x) with respect to the general discrete
Sobolev-type inner product

( f , g)S =

∫

f (x)g(x)ϱ(x)d x +MD( j)q,ω f (c)D( j)q,ωg(c), (1)

where ϱ(x) is a weight function on the real line, c is located on the real axis, M > 0, j is a nonnegative integer,
and Dq,ω is the operator introduced by Hahn [5, Eq. (1.3)] defined by

Dq,ω f (x) =

( f (qx +ω)− f (x)
(q− 1)x +ω

, if x ̸=ω0;

f ′(ω0), if x =ω0,
(2)
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where 0< q < 1, ω≥ 0, and ω0 =
ω

1−q , cf. [8, Eq. (2.1.1)]. Besides, following [1], we define

D(0)q,ω f := f , D( j)q,ω f := Dq,ωD( j−1)
q,ω f , j ≥ 1.

It is well known that this class of operators includes the q-difference operator Dq by Jackson when ω= 0, the
forward difference operator ∆ when q = 1 and ω= 1, and the derivative operator d

d x as a limit case when ω= 0
and q→ 1.

Theoretical backgrounds of this problem are established by [4, Theorems 4.1, 4.2]. In particular, it was shown
that the nonstandard orthogonal polynomials Qn(x) satisfy the second-order difference equation

σ1,c,n(x)D(2)q,ωQn(x) +σ2,c,n(x)Dq,ωQn(x) +σ3,c,n(x)Qn(x) = 0, n≥ 2, (3)

where σ1,c,n(x), σ2,c,n(x), and σ3,c,n(x) are explicitly known functions. Moreover, there exist two operators Φn

and bΦn, known as ladder operators, involving the operator of Hahn defined by (2) such that

ΦnQn(x) = ϕ
1,2
c,n (x)Qn−1(x), (4)

bΦnQn−1(x) = ϕ
3,4
c,n (x)Qn(x), (5)

where ϕ1,2
c,n (x) and ϕ3,4

c,n (x) can also be computed explicitly.
The study of second-order differential/difference equations and their solutions appear in several theoretical

and applied contexts. Thus it is worth studying how to compute explicitly the polynomial coefficients σ1,c,n(x),
σ2,c,n(x) and σ3,c,n(x) of (3). In this paper we present an algorithm highlighting its more important steps. Later,
the symbolic program will be built using the programming language Mathematica® 13.1.0.1 The corresponding
code is freely available at
https://w3.ual.es/GruposInv/Tapo/SODE.nb

The literature related to symbolic programs in the framework of Sobolev orthogonality is very recent. As far
as we know, the first paper is [10], where Mehler-Heine formulas are computed symbolically — cf.
https://notebookarchive.org/2022-06-amlp3fh, Notebook Archive (2022).

This paper is structured as follows. Section 2 is devoted to introducing theoretical results obtained in [4] as
well as an algorithm to obtain symbolically the coefficients of the second-order differential/difference equation
(3). In Section 3, we show how the program works for three examples related to different operators.

2 Theoretical Results and Algorithm

As was indicated in the previous section, {Qn}n≥0 is the sequence of monic orthogonal polynomials with respect
to the Sobolev-type inner product (1). We also denote by {Pn}n≥0 the sequence of monic orthogonal polynomials
with respect to the standard inner product

( f , g)ϱ =

∫

f (x)g(x)ϱ(x)d x .

Then,

(Pn, Pk)ϱ =

∫

Pn(x)Pk(x)ϱ(x)d x = hnδn,k, n, k ∈ N∪ {0},

1The program in previous versions of Mathematica®may not work properly — e.g. we found malfunctions in the version 13.0.0.
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where δn,k denotes the Kronecker delta and hn is the square of the norm of these polynomials. It is well known
that the polynomials Pn satisfy a three-term recurrence relation of the form:

x Pn(x) = Pn+1(x) +αnPn(x) + βnPn−1(x), n≥ 0, (6)

with initial conditions P−1(x) = 0 and P0(x) = 1. In addition, we know βn = hn/hn−1 for n ≥ 1. We have αn = 0
when the weight function ϱ is symmetric.

We assume that the polynomials Pn(x) satisfy the following relation:

A(x)Dq,ωPn(x) = Bn(x)Pn(x) + Cn(x)Pn−1(x), n≥ 1, (7)

where A(x) is a polynomial and Bn(x) and Cn(x) are certain functions. Notice that the relation (7) is very general.
In fact, it holds for general standard orthogonal polynomials with respect to inner products involving any of the
three operators Dq, ∆, and d

d x [6].
Then, we can define the ladder operators — viz. the lowering operator

Ψn := A(x)Dq,ω − Bn(x), n≥ 1,

so that
ΨnPn(x) = Cn(x)Pn−1(x), n≥ 1,

and the raising operator

bΨn := Bn−1(x) +
Cn−1(x)(x −αn−1)

βn−1
− A(x)Dq,ω, n≥ 2.

Note that the relation (6) yields

bΨnPn−1(x) =
Cn−1(x)
βn−1

Pn(x), n≥ 2.

As soon as the properties of the ladder operators are described [4, Theorem 4.1]), the second-order differen-
tial/difference equation for the polynomials Qn(x) can be obtained.

Theorem 2.1 (cf. G. Filipuk et al. [4]) The discrete Sobolev-type orthogonal polynomials, Qn(x), with respect to
(1) satisfy the second-order linear differential/difference equation (3) where the coefficients σ1,c,n(x), σ2,c,n(x) and
σ3,c,n(x) are explicitly known.

To built an algorithm providing the explicit functions involved in the relations (3)-(5), we follow the notation
in [4]. First of all, we must provide some data related to the discrete Sobolev-type inner product (1), i.e. c,
M , j, and the values q and ω according to the operator. Besides, we need certain properties of the orthogonal
polynomials Pn(x). More specifically, we assume that we know an explicit expression for the monic orthogonal
polynomials Pn(x), the square of their norms — i.e. hn, the coefficients of the three-term recurrence relation (6),
and the functions A(x), Bn(x) and Cn(x) in the relation (7). We remark that these explicit expressions are known
for all the orthogonal polynomials in the Askey scheme using their hypergeometric representations [8]. Thus the
steps of the algorithm are:

Step 1. Enter all the information described previously for the polynomials Pn(x) and the data of the inner product
(1).
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Step 2. Compute the functions

ρn, j,c =
D( j)q,ωPn(c)

1+MK ( j, j)n−1 (c, c)
, (8)

rc(x) =
j
∏

k=0

(x − qkc −ω[k]q), (9)

where [k]q is the basic q-number for q ̸= 0 and q ̸= 1 given by

[α]q :=
1− qα

1− q
, (10)

cf. [8, Eq. (1.8.1)], and Kn(x , y) are the kernel polynomials of the form

Kn(x , y) :=
n
∑

i=0

Pi(x)Pi(y)
hi

. (11)

Therefore,

K (k,ℓ)
n (x , y) :=

n
∑

i=0

D(k)q,ωPi(x) D(ℓ)q,ωPi(y)

hi
, k,ℓ ∈ N∪ {0}. (12)

Notice (8-10) must be computed adequately according to the operator chosen (Dq,ω, Dq, ∆, or d
d x ).

Step 3. Compute all the necessary auxiliary functions to obtain the coefficients of the second-order differen-
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tial/difference equation (3). The theoretical development to obtain these functions was made in [4]. They are:

f1,c,n(x) = rc(x)−
Mρn, j,c

hn−1

 

j
∑

i=0

(q; q) jD(i)q,ωPn−1 (c)
∏i−1

k=0(x − qkc −ω[k]q)

(q; q)i(1− q) j−i

!

, (13)

g1,c,n(x) =
Mρn, j,c

hn−1

 

j
∑

i=0

(q; q) jD(i)q,ωPn (c)
∏i−1

k=0(x − qkc −ω[k]q)

(q; q)i(1− q) j−i

!

, (14)

f2,c,n(x) =
x − q jc −ω[ j]q

q j+1
�

x − q−1c −ω[−1]q
�

�

Dq,ω f1,c,n(x) + f1,c,n(qx +ω)
Bn(x)
A(x)

−g1,c,n(qx +ω)
Cn−1(x)
βn−1A(x)

−
[ j + 1]q

�

x − q jc −ω[ j]q
� f1,c,n(x)

�

, (15)

g2,c,n(x) =
x − q jc −ω[ j]q

q j+1
�

x − q−1c −ω[−1]q
�

�

Dq,ωg1,c,n(x) + f1,c,n(qx +ω)
Cn(x)
A(x)

+g1,c,n(qx +ω)
�

Bn−1(x)
A(x)

+
(x −αn−1)Cn−1(x)

A(x)βn−1

�

−
[ j + 1]q

�

x − q jc −ω[ j]q
� g1,c,n(x)

�

, (16)

f3,c,n(x) = −
g1,c,n−1(x)

βn−1
, (17)

g3,c,n(x) = f1,c,n−1(x) +
(x −αn−1)g1,c,n−1(x)

βn−1
, (18)

f4,c,n(x) = −
g2,c,n−1(x)

βn−1
, (19)

g4,c,n(x) = f2,c,n−1(x) +
(x −αn−1)g2,c,n−1(x)

βn−1
. (20)

Using (13-20), we construct the functions ϕi,ℓ
c,n(x) given by

ϕi,ℓ
c,n(x) :=

�

�

�

�

fi,c,n(x) fℓ,c,n(x)
gi,c,n(x) gℓ,c,n(x)

�

�

�

�

, i,ℓ ∈ {1, 2,3, 4}. (21)

They are the key to define the ladder operators

Φn := ϕ3,2
c,n (x) +ϕ

1,3
c,n (x)Dq,ω, (22)

bΦn := ϕ1,4
c,n (x)−ϕ

1,3
c,n (x)Dq,ω. (23)

So, we get (4)-(5).
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Step 4. Obtain the coefficients of the second-order linear difference equation (3) through these formulae:

σ1,c,n(x) = ϕ
1,3
c,n (x)ϕ

1,3
c,n (qx +ω)ϕ1,2

c,n (x), (24)

σ2,c,n(x) = ϕ
1,3
c,n (x)

�

ϕ1,2
c,n (x)

�

ϕ3,2
c,n (qx +ω) +Dq,ωϕ

1,3
c,n (x)

�

−ϕ1,2
c,n (qx +ω)ϕ1,4

c,n (x)−ϕ
1,3
c,n (x)Dq,ωϕ

1,2
c,n (x)

�

, (25)

σ3,c,n(x) = ϕ
1,2
c,n (qx +ω)

�

ϕ1,2
c,n (x)ϕ

3,4
c,n (x)−ϕ

1,4
c,n (x)ϕ

3,2
c,n (x)

�

+ϕ1,3
c,n (x)

�

ϕ1,2
c,n (x)Dq,ωϕ

3,2
c,n (x)−ϕ

3,2
c,n (x)Dq,ωϕ

1,2
c,n (x)

�

. (26)

We remark that the algorithm, and therefore the symbolic computer program, returns the desired coefficients
of (3) by entering only the information provided in Step 1. In this way, we can say that this information constitutes
the inputs of the symbolic program.

As we have previously commented, the Hahn difference operator includes the q-difference operator Dq by
Jackson when ω = 0, the forward difference operator ∆ when q = 1 and ω = 1, and the derivative operator d

d x
as a limit case when ω = 0 and q → 1. In these cases, the functions (8)-(26) are substantially simplified. For
this reason and taking into account that these three operators are the most widely used ones in the framework
of the Sobolev orthogonality [11], three appendices were included in [4] where the explicit expression of these
functions in these special cases are given. Thus as we will see in the next section, the program will allow the user
to choose the operator. A flow diagram of the algorithm is given in Fig. 1.

3 Symbolic Computer Program with Examples

This section is devoted to showing the practical performance of the program. As we have commented in the pre-
vious section, the functions (8)-(26) (Steps 2-4 of the algorithm) are considerably simplified when we consider
one of these three operators: d

d x , ∆ or Dq. For this reason, when we run the program, it asks us which operator
we want to use. We can choose one of the three cases or the general operator Dq,ω. Thus running the program
we find the first dialog notebook, see Fig. 2. Next, the program will request the information indicated in Step 1
of the algorithm. Before getting the coefficients σ1,c,n(x), σ2,c,n(x), and σ3,c,n(x) of the second-order differen-
tial/difference equation (3), we must enter a value for n greater than 1. We remark that if we want to obtain
these coefficients for other values of n it is not necessary to run the program again, we only have to write σ1[n],
σ2[n], and σ3[n] with n ≥ 2 on the principal Mathematica notebook to get the corresponding coefficients. We
will show an example.

We are going to illustrate how the program works with three examples. Many other examples could be made
with only the knowledge of the information required in Step 1 of the algorithm.

3.1 The Jacobi case

We consider the inner product (1) with the Jacobi weight on [−1,1], i.e. ϱ(x) = (1− x)α(1+ x)β with α,β > −1.
Then, we have

( f , g)S =

∫ 1

−1

f (x)g(x)(1− x)α(1+ x)βd x +M f ( j)(c)g( j)(c). (27)
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Start: Choose between one of
the following operators

Dq,ω Dq ∆ d/dx

Enter ω Enter q Enter c, M and j

Enter the explicit expression of the polynomial Pn(x)

Enter hn, αn and βn

Enter A(x), Bn(x) and Cn(x)

Enter n

The program returns the coe�cients σ1,c,n(x), σ2,c,n(x)
and σ3,c,n(x) of the second-order linear di�erence equation

Figure 1: Flow diagram.

This inner product was used in [12] with j = 0 (Jacobi-Krall polynomials) or in a more general framework in
[9], where the authors obtained certain asymptotic properties of the orthogonal polynomials with respect to (27)
with c = 1.

We denote by
�

P(α,β)
n

	

n≥0 the sequence of monic Jacobi orthogonal polynomials with respect to the weight
ϱ(x). According to [8, Section 9.8]), these polynomials have the form

P(α,β)
n (x) =

2n(α+ 1)n
(n+α+ β + 1)n

2F1

�

−n, n+α+ β + 1
α+ 1 ;

1− x
2

�

, (28)
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Figure 2: The first dialog notebook.

where (a)k denotes the Pochhammer symbol [8, Eq. (1.3.1)]

(a)0 := 1 and (a)k :=
k
∏

i=1

(a+ i − 1), k = 1,2, 3 . . .

and r Fs denotes the hypergeometric function [8, Eq. (1.4.1)]:

r Fs

�

a1, . . . , ar
b1, . . . , bs

; z
�

:=
∞
∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
.

The coefficients of the three-term recurrence relation (6) are given by

αn =
β2 −α2

(2n+α+ β)(2n+α+ β + 2)
, (29)

βn =
4n(n+α)(n+ β)(n+α+ β)

(2n+α+ β)2(2n+α+ β + 1)(2n+α+ β − 1)
, (30)

see e.g. [2, Eqs. (2.15), (2.18)] or [3, Page 211].
The square of the norm of P(α,β)

n (x) is

hn =
22n+α+β+1Γ (n+α+ 1)Γ (n+ β + 1)Γ (n+α+ β + 1)Γ (n+ 1)

Γ (2n+α+ β + 1)Γ (2n+α+ β + 2)
(31)

cf. [8, Section 9.8].
It follows from [2, Section 3] that

d
d x

P(α,β)
n (x) =

(n+ rn) P(α,β)
n (x)− βnRnP(α,β)

n−1 (x)

x − 1
+
βnRnP(α,β)

n−1 (x)− rnP(α,β)
n (x)

x + 1
,
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Figure 3: Entering a value for c.

where

rn = rn(α,β) :=
β −α− 2n− (α+ β + 2n+ 2)αn

4
,

Rn = Rn(α,β) :=
2n+α+ β + 1

2
.

Therefore, we deduce that the Jacobi polynomials P(α,β)
n (x) satisfy the relationship (7) with

A(x) = x2 − 1, Bn(x) = (x + 1)n+ 2rn, Cn(x) = −2βnRn,

cf. [2, Eqs.(2.9), (2.12)].
To apply the algorithm and the constructed program, we choose concrete values for the parameters in the

inner product (27). The choice for this example is

( f , g)S =

∫ 1

−1

f (x)g(x)(1− x)2(1+ x)4d x + 5 f (3)(1)g(3)(1).

Thus we possess all the information required in Step 1 of the algorithm and therefore we can run the Mathematica
program. Next, we describe in detail how to enter the data required in Step 1 into the program.

1. First, we choose the operator — Fig. 2. In this case, we click on d/dx.

2. We enter the values of the parameters c, M , and j. For this example, our choice is c = 1, M = 5, and j = 3.
The information is entered in the corresponding dialog notebooks — cf. Figs. 3, 6, and 7, respectively. After
entering any quantity we could want to modify it because we have made a mistake or for any other reason,
so we have included another dialog notebook where the user must confirm if the entered value is valid —
cf. Fig. 4. Otherwise, it can be modified in another dialog notebook. We show an example about this in Fig.
5.

It is important to remark that the program checks whether the required parameters are admissible. For
example, it is well known that the value of j must be a nonnegative integer. Thus if we enter a non-
admissible value, the program returns a warning message and requests a valid value. For example, if we
enter j = −3 we obtain the warning shown in Fig. 8. This checkup is done for other data such as M , or n,
among others.

9



Figure 4: A dialog notebook requiring confirmation about the entered value.

Figure 5: A dialog notebook asking for a new value for c. This box appears when clicking on “No” in the dialog
notebook shown in Fig. 4.

Figure 6: Entering a value for M .

Figure 7: Entering a value for j.

3. According to formula (28), the explicit expression of the monic Jacobi orthogonal polynomials is:

P(2,4)
n (x) =

2n(3)n
(n+ 7)n

2F1

�

−n, n+ 7
3 ;

1− x
2

�

.
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Figure 8: Dialog notebook when a non-admissible value of a parameter is entered.

Figure 9: The explicit expression of the Jacobi polynomial P(2,4)
n (x).

Then, using the commands of Mathematica® 13.1.0, we write the following expression into the correspond-
ing dialog notebook:
Power[2,n]Pochhammer[3,n]/Pochhammer[n+7,n]Hypergeometric2F1[-n,n+7,3,(1-x)/2]

as it appears in Fig. 9.

4. We provide the square of the norm of P(2,4)
n (x), i.e. in our case (31) gives

hn =
22n+7Γ (n+ 1)Γ (n+ 3)Γ (n+ 5)

(n+ 7)nΓ (2n+ 8)
.

Using again the commands of Mathematica® 13.1.0, we enter
(Power[2,2n+7]Gamma[n+3]Gamma[n+5]Gamma[n+1])/(Pochhammer[n+7,n]Gamma[2n+8])

as it appears in Fig. 10.

5. Now, it is necessary to provide the coefficients in the three-term recurrence relation (6). First, we begin

with αn. For this example, from (29) we have αn =
3

(n+ 3)(n+ 4)
. Then, we enter the expression like in

Fig. 11.

6. Next, we enter the coefficients βn in the three-term recurrence relation. For this case, from (30) we have

βn =
n(n+ 2)(n+ 4)(n+ 6)
(n+ 3)2(2n+ 5)(2n+ 7)

, which is shown in Fig. 12.

It only remains to enter the functions A(x), Bn(x), and Cn(x) satisfying the relationship (7).
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Figure 10: The square of the norm of P(2,4)
n (x).

Figure 11: The coefficients αn in the three-term recurrence relation (6).

Figure 12: The coefficients βn in the three-term recurrence relation (6).

7. For this example, we know that A(x) = x2 − 1. Then, Fig. 13 shows the corresponding dialog notebook.

8. In this case, Bn(x) =
n2 x + 3nx + n

n+ 3
, and it is entered as we can see in Fig. 14.

9. Finally, we enter Cn(x) = −
n(n+ 2)(n+ 4)(n+ 6)
(n+ 3)2(2n+ 5)

as it is shown in Fig. 15.

10. A last datum is necessary to run the program: we must enter a value for n. For this example, we have

12



Figure 13: A(x).

Figure 14: Bn(x).

Figure 15: Cn(x).

chosen n= 6 as we can see in Fig. 16.

We have already entered all the information required in Step 1 of the algorithm. Then, the program returns
the coefficients σ1,c,n(x), σ2,c,n(x) and σ3,c,n(x) of the second-order differential equation (3) as we can see in Fig.
17.

As we have mentioned at the beginning of this section, we could want to obtain the expression of the coef-
ficients of the second-order differential equation (3) for other values of n. Then, it is enough to enter σ1[n],
σ2[n], and σ3[n] into the principal Mathematica notebook for a desired n and the program returns them. An
example with n= 8 is shown in Fig. 18.
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Figure 16: A value for n.

Figure 17: The Jacobi case: Coefficients of the second-order differential equation (3) with α = 2, β = 4, c = 1,
M = 5, j = 3, and n= 6.

Figure 18: An example of how to obtain σ1,c,8(x), σ2,c,8(x), and σ3,c,8(x) from the principal Mathematica note-
book.

Remark 3.1 Notice that the program accepts the value M = 0 as a valid (or an admissible) value. In this case, the
inner product (27) yields a standard inner product and the corresponding orthogonal polynomials are the classical
Jacobi polynomials. Therefore, we have obtained the coefficients of the second-order differential equation of the
classical Jacobi orthogonal polynomials with α = 2, β = 4, and n = 6, cf. [8, Eq. (9.8.6)]. Thus running the
program with M = 0, we obtain the results shown in Fig. 19.

This occurs in a similar way for all the cases when we take M = 0 in the inner product (1).

3.2 The Meixner case

In this example we consider the forward operator ∆. In particular, we take the Meixner weight function on
(0,+∞), i.e. ϱ(x) = (β)x

x! α
x with β > 0 and 0< α < 1. Thus the inner product (1) is transformed into

14



Figure 19: The Jacobi case: Coefficients of the classical second-order differential equation with M = 0, α = 2,
β = 4, and n= 6.

( f , g)S =
∞
∑

x=0

f (x)g(x)
(β)x

x!
αx +M∆( j) f (c)∆( j)g(c).

We denote by {Mn(x;β ,α)}n≥0 the sequence of monic orthogonal polynomials with respect to (38). It is
known [8, Section 9.10] that these polynomials have the form

Mn(x;β ,α) = (β)n
� α

α− 1

�n

2F1

�

−n,−x
β

; 1−
1
α

�

. (32)

Moreover, it follows from [8, Section 9.10] that

αn =
n+α(n+ β)

1−α
, (33)

βn =
αn(n+ β − 1)
(α− 1)2

, (34)

hn =
αn(β)nn!

(1−α)β (α− 1)2n
. (35)

On the other hand, according to [6, Eq. (6.4.15)], we have

∆ eMn(x;β ,α) =
n

β + x
eMn(x;β ,α)−

n
α(β + x)

eMn−1(x;β ,α), (36)

where eMn(x;β ,α) = γn xn + . . . are the Meixner orthogonal polynomials with the leading coefficient

γn =

�

1− 1
α

�n

(β)n
, (37)

cf. [6, Eq. (6.1.7)]. Then, using (36) and (37), we get

(x + β)∆Mn(x;β ,α) = nMn(x;β ,α) +
n(n+ β − 1)

1−α
Mn−1(x;β ,α).
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Thus the polynomials Mn(x;β ,α) satisfy the relation (7) with

A(x) = x + β , Bn(x) = n, Cn(x) =
n(n+ β − 1)

1−α
.

To run the program, we choose certain parameters in the inner product (38). In particular,

( f , g)S =
∞
∑

x=0

f (x)g(x)
(4)x
x!

�

1
3

�x

+ 30∆(2) f (0)∆(2)g(0). (38)

In fact, it clear that we can proceed similar to the Jacobi case — i.e. giving all the data required in Step 1 of the
algorithm. However, in order to avoid unnecessary repetitions, we only outline the data entry process.

1. In this case we click on the ∆, the forward operator, in the corresponding dialog notebook cf. Fig. 2.

2. We enter consecutively the values c = 0, M = 30, and j = 2.

3. According to (32), we have

Mn(x; 4, 1/3)(x) = (4)n

�

−1
2

�n

2F1

�

−n,−x
4 ;−2

�

.

We can use the Mathematica® commands to enter the above expression into the program
Power[-1/2,n]Pochhammer[4,n]Hypergeometric2F1[-n,-x,4,-2].

4. The square of the norm of Mn(x; 4, 1/3)(x) is given by (35), i.e. hn =
3n+4n!(4)n

22(n+2)
. We enter this term as

Power[3,n+4]n!Pochhammer[4,n]/Power[2,2(n+2)].

5. Next, we enter the coefficients of the three-term recurrence relation (6) given by (33-34). For this example,
we have αn = 2n+ 2 and βn =

3
4 n(n+ 3).

6. Now, we enter consecutively the coefficients in the relationship (7). They are A(x) = x +4, Bn(x) = n, and

Cn(x) =
3
2

n(n+ 3).

7. Finally, we choose a value for n. In this example, we take n= 8 and the program returns the coefficients of
the second-order difference equation (3) as we can see in Fig. 20.

3.3 The Stieltjes-Wigert case

We consider the Stieltjes-Wigert weight function on the positive semiaxis:

ϱ(x) = (2π ln(1/q))−1/2 exp
�

�

ln
�

xq−1/2
��2
/(2 ln q)

�

, 0< q < 1.

Then, the inner product (1) is transformed into

( f , g)S =

∫ ∞

0

f (x)g(x)(2π ln(1/q))−1/2 exp
�

�

ln
�

xq−1/2
��2
/(2 ln q)

�

d x

+MD( j)q f (c)D( j)q g(c). (39)
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Figure 20: The Meixner case: Coefficients of the second-order difference equation (3) with α= 1/3, β = 4, c = 0,
M = 30, j = 2, and n= 8.

We denote by {Sn(x; q)}n≥0 the sequence of monic Stieltjes-Wigert orthogonal polynomials with respect to (39).
The explicit expression of these polynomials is given in [7, Section 4] and [8, Section 14.27], so that

Sn(x; q) = q−n2
(q; q)n

n
∑

k=0

(−1)n−kqk2
x k

(q; q)k(q; q)n−k
, (40)

where (a; q)k is a q-analogue of the Pochhammer symbol (a)k — cf. [8, Eq. (1.8.3)],

(a; q)0 := 1 and (a; q)k :=
k
∏

i=1

�

1− aqi−1
�

, k = 1,2, 3, . . .

It is well known [7, Section 4] that both the expression of the coefficients of the three-term recurrence relation
for these polynomials and of the square of their norms have the form

αn =
�

1+ q− qn+1
�

q−2n−1, (41)

βn = (1− qn)q−4n+1, (42)

hn = (q; q)nq−2n2−n. (43)

It follows from [7, Eqs. (4.7), (4.8)] that the monic Stieltjes-Wigert orthogonal polynomials satisfy the fol-
lowing equation:

DqSn(x; q) =
(1− qn)(x + q−n)
(1− q)x2

Sn(x; q) +
qn

(1− q)x2
(1− qn)q1−4nSn−1(x; q).

Therefore, the coefficients of (7) are

A(x) = (1− q)x2, Bn(x) = (1− qn)
�

x + q−n
�

, Cn(x) = q1−3n (1− qn) .

Now, like in the previous cases, we choose the values for the parameters in (39). We take c = −1, M = 6,
q = 1/2, and j = 1. So, we are considering the nonstandard inner product

( f , g)S =

∫ ∞

0

f (x)g(x)(2π ln(2)−1/2 exp
�

�

ln
�

x(1/2)−1/2
��2
/(2 ln(1/2))

�

d x

+ 6D(1)q f (−1)D(1)q g(−1).

We are ready to provide the necessary data to run the program. Next, we summarize the process.
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Figure 21: Dialog notebook where q is required.

1. First, we choose the operator. In this case, we click on the Dq the q-difference operator, in the corresponding
dialog notebook — cf. Fig. 2.

2. Furthermore, the algorithm needs the value of the parameter q which is entered in a new dialog notebook.
Then, we enter q = 1/2 as is shown in Fig. 21.

3. As in the previous cases, we enter consecutively the values c = −1, M = 6, and j = 1.

4. From (40),

Sn(x; 1/2)(x) = 2n2
�

1
2

;
1
2

�

n

n
∑

k=0

2−k2
(−1)n−k x k

�

1
2 ; 1

2

�

k

�

1
2 ; 1

2

�

n−k

.

The Mathematica®commands help us enter this expression, so we can write in the dialog notebook:
Power[2,n n]QPochhammer[1/2,1/2,n]Sum[(Power[2,-k k]Power[-1,n-k]
Power[x,k])/(QPochhammer[1/2,1/2,k]QPochhammer[1/2,1/2,n-k]),{k,0,n}]

5. The square of the norm of Sn(x; 1/2)(x) is given by (43). For these concrete values it is 22n2+n
�

1
2

;
1
2

�

n
.

We enter it into the program as:
Power[2, n (2 n + 1)] QPochhammer[1/2, 1/2, n]

6. The coefficients of the three-term recurrence relation (6) are given by (41-42). In this example, they are
αn = 2n (3 2n − 1) and βn = 23n−1 (2n − 1).

7. Next, we enter consecutively the coefficients in the relationship (7). These functions are A(x) = x2

2 , Bn(x) =
�

1−
�

1
2

�n��

x +
�

1
2

�−n�

, and Cn(x) =
�

1
2

�1−3n �
1−

�

1
2

�n�
.

8. Finally, we choose a value for n. On this occasion, we take n = 4 and the program returns the coefficients
of the second-order q-difference equation (3) as it is shown in Fig. 22.

These three examples show how to run the program to obtain the coefficients of a second-order differen-
tial/difference equation satisfied by Sobolev-type orthogonal polynomials with respect to the inner product (1).
We note that the program can be used with many other weight functions ϱ(x).
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Figure 22: The Stieltjes-Wigert case: Coefficients of the second-order difference equation (3) with c = −1, M = 6,
j = 1, q = 1/2, and n= 4.
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