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Abstract

This is a selected overview of a research line initiated and mostly de-
veloped by the three authors over the last three decades. Applying the
state space paradigm of Mathematical Systems Theory, monitoring means
that from the observation (a transform) of an unknown state process, the
latter should be recovered. Since most of the dynamic models of pop-
ulation biology are nonlinear, for solving the monitoring problem, tools
of nonlinear analysis are applied in di�erent contexts. This approach to
monitoring has found di�erent applications ranging from population ecol-
ogy to radiotherapy, from stock estimation in �sheries to monitoring of
solar thermal heating systems.
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1 Introduction

In this paper we survey certain typical results from a research line initiated and
mostly developed by the listed coauthors over the last three decades. The re-
viewed results range from the very beginning [32] to a just submitted manuscript
[24].

Throughout this paper, by a population system we mean either a single
population where the individuals are classi�ed according to some equivalence
relation, or a community of several interacting populations, see Figure 1.

Figure 1: Combinations of both types provide more complex population systems.

The basic idea proposed at the beginning of the research line of monitoring
of population systems, was the application of the state space paradigm of Math-
ematical Systems Theory. In this framework, monitoring means that from a
transform (observed function) of an unknown state process, the latter should be
recovered. Intuitively, observability means that di�erent state processes imply
di�erent observed functions.

Of course, invertibility of the mentioned transformation obviously implies
observability. However, when the transformation in question is not invertible,
e.g. it is a projection (i.e. we observe only certain component(s) of the state
vector), the �movement� due to the dynamics may make it possible for us to
recover the state process from its projection.

Furthermore, in case of observability, under certain stability conditions, the
so-called observer design procedure makes it possible to e�ectively estimate the
unknown state process. Since most of the dynamic models of population biology
are nonlinear, for solving the monitoring problem, tools of nonlinear analysis are
applied in di�erent contexts, both to continuous-time and discrete-time dynam-
ics, see Figure 2. This approach to monitoring has found di�erent applications
ranging from population ecology to radiotherapy, from stock estimation in �sh-
eries to monitoring of solar thermal heating systems.

Considering Figure 3, we emphasize a su�cient condition for the observabil-
ity in the case of frequency-dependent dynamics should be weaker than in the
case when there is no invariant manifold.

Figure 4 shows a general control-observation system, in the present paper
however, for the sake of simplicity we deal only with monitoring (i.e. observa-
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Figure 2: In most cases there is a natural way to choose one of the types of
time-dependence.

Figure 3: In the frequency-dependent case, the observability problem is par-
ticular, since the simplex of frequency vectors is an invariant manifold for the
dynamics.

tion) of population systems without control. (For the control aspects of popu-
lation systems we can refer e.g. to our Remark 2 below.)

2 Monitoring of a frequency-dependent popula-

tion system

Let us suppose that in a large, panmictic Mendelian population, at an autosomal
locus alleles A1, . . . , An(n ≥ 2) determine a trait. In this model the genetic state
of the population is described in terms of the time-dependent relative allele
frequencies xi(i = 1, . . . , n). Let wi,j denote the �tness of genotype AiAj . Then
the dynamics of the genetic state of the population, also called Fisher's model
of natural selection, is

ẋi = xi

 n∑
j=1

wi,jxj −
n∑

k,l=1

wk,lxkxl

 i = 1, . . . , n (2.1)
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input (control)−−−−−−−−−−→
u(t)

state of the system
x(t) output (observation)−−−−−−−−−−−−−−→

y(t)

Figure 4: Control�observation or input-output system.

and the relative interior of the standard simplex
◦
Sn ⊂ Rn is positively invariant

for (2.1). Therefore, to check observability, an appropriate su�cient condition
was needed for the case of nonlinear systems with invariant manifold.

2.1 Observability of systems with invariant manifold

In general terms, let m,n ∈ N, f ∈ C1 (Rn,Rn), h ∈ C1 (Rn,Rm) and consider
observation system,

ẋ = f (x) (2.2)

y = h (x) . (2.3)

Assume that x∗ ∈
◦
Sn, f (x∗) = 0, h (x∗) = 0, and there exists T > 0 such

that any solution of the system (2.2), starting close enough to equilibrium x∗ is
de�ned on [0, T ].

Definition 1 For some k = 1, . . . n, a subset M ⊂ Rn is said a regular k-
dimensional submanifold, if there is an open set G ⊂ Rn and a function Φ ∈
C1

(
G,Rn−k

)
such that for every x ∈ G we have RΦ′(x) = Rn−k, and M =

Φ−1 (0) .

For the rest of this subsection we supposed that for some k = 1, . . . , n, a subset
M ⊂ Rn is a regular k-dimensional submanifold, positively invariant for system
(2.2), and x∗ ∈ M is an equilibrium of this system. In particular, the rela-

tive interior
◦
Sn ⊂ Rn of the standard simplex is a regular (n − 1)-dimensional

submanifold, positively invariant for system (2.1).

Definition 2 We shall say that observation system (2.2)-(2.3) is locally ob-
servable in M , near equilibrium x∗, on [0, T ], if there exists ε > 0 with the
property that

xi ∈ M, |xi (0)− x∗| < ε i = 1, 2
ẋi (t) = f

(
xi (t)

)
t ∈ [0, T ]

h ◦ x1 = h ◦ x2

 =⇒ x1 = x2.

Since for k < n, local observability in an invariant manifold is a weaker re-
quirement than the usual local observability, for the weaker case it is reasonable
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to �nd a weaker su�cient condition than the classical one, where there is no
invariant manifold [15].

Considering the linearization of observation system (2.2)-(2.3), de�ne

A = f ′ (x∗) , C = h′ (x∗) , and Q =


C
CA
...

CAn−1

 .

Now, denoting by Tx∗ (M) the tangent space of M at x∗, from [32] we recall the
following su�cient condition:

Theorem 1 Let Q correspond to the linearization of (2.2)-(2.3). Then transver-
sality condition Tx∗ (M) ∩ kerQ = {0} implies that observation system (2.2)-
(2.3) is locally observable in M , near equilibrium x∗, on [0, T ].

Remark 1 It is easy to see that Theorem 1 can be considered as an extension
of the su�cient condition well-known for observation systems without invariant
manifold. [15].

2.2 Application of the su�cient condition

Now we illustrate the application of Theorem 1 to the phenotypic observation
of the genetic state process in Fisher's model of selection. To this end, �rst
we need a so-called polymorphic equilibrium, that is, an allele frequency vector

x∗ ∈
◦
Sn of (2.1), where

(Wx∗)i = ⟨x∗,Wx∗⟩ i = 1, . . . , n.

The latter condition means that every allele has the same marginal (or potential)
�tness. Intuitively, if the marginal �tness of an allele Ai is higher than the
average �tness of the population, then the frequency of Ai will increase, and in
the opposite case this frequency will decrease.

Let us suppose that W is invertible, and ⟨W−11,1⟩ ≠ 0 holds with 1 =
(1, . . . , 1) ∈ Rn, and

x∗ =
W−11

⟨W−11,1⟩
> 0. (2.4)

Then x∗ is the unique polymorphic equilibrium, and hence also an interior
equilibrium of system (2.1).

Example 1 Consider a Fisher type 1-locus 3-allele selection model, i.e. sys-
tem (2.1) with n = 3, and suppose that a polymorphic equilibrium (2.4) exists.
Furthermore, between alleles A1, A2, A3 the dominance relationships are the fol-
lowing: both A1 and A2 are dominant over A3, while A1 and A2 are codominant.
In other words, denoting by AiAj the phenotype corresponding to genotype AiAj,
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we have A1A3 = A1A1, A2A3 = A2A2, A1A2 is a phenotype di�erent from the
previous ones, and the fourth phenotype is A3A3. (We note that for this geno-
type�phenotype correspondence a well-known example is the AB0 blood group
system.)

Now the frequencies of the four phenotypes, calculated from allele frequencies
xi are, respectively

A1A1 : x2
1 + 2x1x2;A2A2 : x2

2 + 2x2x3;A1A2 : 2x1x2;A3A3 : x2
3.

Assume that, instead of the time-dependent allelic state x, the time-dependent
frequency of phenotype A3A3 is observed. For observation system (2.2)-(2.3)
we de�ne f ∈ C1

(
R3,R3

)
and h ∈ C1

(
R3,R

)
as follows:

fi (x) = xi

 3∑
j=1

wi,jxj −
3∑

k,l=1

wk,lxkxl

 i = 1, 2, 3. (2.5)

h (x) = x2
3 − x∗2

3, (2.6)

and let w∗ be the equilibrium value of the mean �tness, w∗ =
∑3

k,l=1 wk,lx
∗
kx

∗
l .

For the application of Theorem 1, let us take M =
◦
S3, and based on (2.5)-

(2.6) calculate the corresponding Jacobians A = f ′ (x∗) and C = h′ (x∗) to get

ai,j = x∗
i (wi,j − 2w∗) (i, j = 1, 2, 3), C = [0, 0, 2x∗

3] , and Q =

 C
CA
CA2

. Now we

can apply Theorem 1 with M =
◦
S3, and Tx∗

(
◦
S3

)
=

{
z ∈ R3|z1 + z2 + z3 = 0

}
.

Hence a straightforward checking provides the following:

Theorem 2 Suppose that x∗
1 (w1,1 − w1,2) + x∗

2 (w2,1 − w2,2) ̸= 0 and w3,1 ̸=
w∗. Then observation system (2.2)-(2.3) as given by (2.5)-(2.6), is locally ob-

servable in
◦
S3, near equilibrium x∗, on [0, T ].

Remark 2 First we note that Theorem 1 was also applied to models of reaction
kinetics in [1]. Furthermore, for an outlook we also note that if some of the
�tness parameters are considered as control functions, we obtain a model of
arti�cial selection, where controllability is also an issue, see e.g. [31], [18], [21]
and [8].

Remark 3 We emphasize that observability only means that from the obser-
vation the underlying state process, in principle, can be uniquely recovered.
The next step in the modelling-methodological development was the e�ective
estimation of the state process, based on observer design, initially proposed by
[25] and further developed by [28]. As a matter of fact, this approach does
not deal with systems with invariant manifold, therefore we had to cope with
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this problem in [22], where the phenotypic selection process is described by an
evolutionary game. To avoid this complication, in the next section we recall
the monitoring of a density-dependent population system, using an appropriate
observer system.

3 Monitoring of a density-dependent population

model

In this section, �rst we show how a general scheme of [28] leads to an e�ective
estimation of an unknown state process: First �nd an equilibrium, then check its
Lyapunov stability, �nally, using the observed function, construct the so-called
observer system, the solutions of which asymptotically estimate the unknown
state process.

3.1 Local observability

Similarly to Section 2, letm,n ∈ N, f ∈ C1 (Rn,Rn), h ∈ C1 (Rn,Rm), x∗ ∈ Rn,
f (x∗) = 0, h (x∗) = 0; and consider observation system,

ẋ = f (x) (3.1)

y = h (x) . (3.2)

where (3.2) de�nes a transform of the state. Here it is again supposed there
exists a T > 0 such that any solution of system (3.1), starting close enough
to equilibrium x∗ is de�ned on [0, T ]. Since in typical density-dependent pop-
ulation models, invariant manifold is not an issue, we can apply the �straight�
observability concept, obtained from De�nition 1 by dropping the condition that
the involved solutions initially belong to an invariant manifold:

Definition 3 We shall say that observation system (3.1)-(3.2) is locally ob-
servable near equilibrium x∗ on [0, T ], if there exists ε > 0 with the property
that

|xi (0)− x∗| < ε i = 1, 2
ẋi (t) = f

(
xi (t)

)
t ∈ [0, T ]

h ◦ x1 = h ◦ x2

 =⇒ x1 = x2.

De�ning A = f ′ (x∗) and C = h′ (x∗), from [15] we recall

Theorem 3 If rankQ = n, then system (3.1)-(3.2) is locally observable at x∗

on [0, T ].
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3.2 Observer system

Definition 4 Given a function G ∈ C1 (Rn × Rm,Rn), we say that

ż = G (x, y) (3.3)

is a local (exponential) observer for system (3.1)-(3.2) at x∗, if for the joint
system (3.1)-(3.2)-(3.3) we have

i) x (0) = z (0) =⇒ x (t) = z (t) t ∈ [0,+∞),

ii) there exists a neighborhood V of x∗ such that x (0) , z (0) ∈ V =⇒
lim∞ (z − x) = 0(exponentially).

Now from [28] we recall

Theorem 4 Assume that an equilibrium x∗ of system (3.1) is Lyapunov stable
(in particular, solutions starting near x∗ are de�ned on [0,+∞)), and K is a
real n×m matrix, called gain matrix, such that A−KC is a stable matrix (i.e.
all its eigenvalues have negative real parts). Then system

ż = f (z) +K [y − h (z)] (3.4)

is a local exponential observer for observation system (3.1)-(3.2).

The above observer design method has been applied to the monitoring of di�er-
ent Lotka-Volterra type population systems e.g. in [19]. Below, as an example,
we shortly present the observer design for a non-Lotka-Volterra type trophic
chain model, based on [34]. The considered trophic chain is of type resource
� producer � primary consumer, where the resource, the 0th trophic level can
be solar energy or inorganic nutrient (x0) with constant supply, the 1st trophic
level (producer) is a plant population (of density x1), the 2nd trophic level (pri-
mary consumer) is a herbivorous population (of density x2). With the obvious
meaning of the coe�cients

Q,α0, α1,m1,m2 > 0; k1, k2 ∈ (0, 1) ; β1, β2 ∈ [0, 1) ;

the ecological model is

ẋ0 = Q− α0x0x1 + β1m1x1 + β2m2x2 (3.5)

ẋ1 = x1 (−m1 + k1α0x0 − α1x2) (3.6)

ẋ2 = x2 (−m2 + k2α1x1) (3.7)

In [27] it was shown that for resource supplyQ high enough, there exists a unique
equilibrium x∗ > 0, and both in systems with no recycling (with β1 = 0 and
β2 = 0) and with partial recycling (i.e. at least one of inequalities 0 < β1 < 1
and 0 < β2 < 1 holds), x∗ is asymptotically stable, implying stable ecological
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coexistence of the system. Suppose that the resource (its deviation from its
equilibrium value) is observed:

h (x) = x0 − x∗
0. (3.8)

Then for the corresponding Jacobians we have

A =

−α0x
∗
1 −α0x

∗
0 + β1m1 β2m2

k1α0x
∗
1 0 −α1x

∗
1

0 k2α1x
∗
2 0

 , C = h′ (x∗) =
(
1 0 0

)
.

Now, for k1 large enough, with K =

k1
0
1

, matrix A−KC is stable. Therefore,

applying Theorem 4, an observer system can be constructed, as illustrated in
the following

Example 2 Let us consider the above model with parameter values Q = 10;α0 =
0.3;α1 = 0.1;β1 = 0.2;β2 = 0.3;m1 = 0.1;m2 = 0.4; k1 = 0.5; k2 = 0.5.
In this case the considered system (3.5)-(3.7) has a positive equilibrium x∗ =
(4.52, 8, 5.78), which is asymptotically stable. The observer system we obtain is

ż0 = 10− 0.3z0z1 + 0.2 · 0.1z1 + 0.3 · 0.4z2 + 10 [y − (z0 − x∗
0)]

ż1 = z1 (−0.1 + 0.5 · 0.3z0 − 0.1z2) (3.9)

ż2 = z2 (−0.4 + 0.5 · 0.1z1) + 1 [y − (z0 − x∗
0)] .

The respective solutions of the original system and the observer system are shown
in Figure 5.

Figure 5: Solution of the observer system, starting from z (0) = (2.9, 7.2, 1.8),
estimates the �unknown� solution of the original system (3.5)-(3.7), starting
from x (0) = (3, 7, 2).
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4 Further developments and outlook

4.1 Monitoring of frequency-dependent population sys-

tems

As a continuation of our results, �rst we report on the further developments on
observers for frequency-dependent population systems. First, in the Ph.D. thesis
[16] the results of subsection 2.2 have been extended to a selection-mutation
model, see also [21], [26] and [17]. In addition, in [16] the case when in a
single-locus sexual population, a phenotypic selection process is considered in
terms of an evolutionary game (see also [3]). In [22], similar sexual population
was studied using the standard continuous-time evolutionary game dynamics.
Here the observer design was adapted to a frequency-dependent case, where the
relative interior of the frequency simplex turned out to be long-term invariant
for the observer system. (The latter means that for the solution z of the observer
system, for t large enough, z(t) can be interpreted as a frequency vector.) For
a parametrized evolutionary game Hopf bifurcation was also obtained.

4.2 Monitoring of density-dependent population systems

In [35] the observability study (the su�cient condition for local observabil-
ity) was extended to the case when a changing environment is also included
in the model in terms of known time-dependent additive control functions in
the Malthus parameters and in the interaction coe�cients, in case of a one-
predator-two-prey system and a trophic chain.

The e�ective estimation of a state process from an observation, as presented
in subsection 3.2, was applied in [11]. In �shery, for a sustainable management,
a reserve area is often separated. In the considered �shing e�ort model, a single-
species population dynamics is considered, where one subpopulation lives in a
reserve area, the other part of the population in a free area for �shing, and there
is a two-way migration between the two areas. The biomass harvested in the
unreserved area in unit time is the observation, and the observer system provides
a deterministic estimate of the stock in the reserve area. (In the studied case,
our approach provided a better estimate of the stock than the global observer
of [12]).

In [9] special ecological interaction chains are studied that are of the type
resource�producer�primary user�secondary consumer. They turn out to be of
verticum type; intuitively, they consist of a sequence of �subsystems� to which
the observation problem can be decomposed. (See also [20] and [9]).

A further issue concerning observer design, is that it may be applied to esti-
mate the unknown e�ect of an abiotic change in the environment of a population
system. In [11] already cited above, it is also supposed that there is an unknown
change in the migration rates (depending on an abiotic factor) of the form of ad-
ditional terms c1w and c2w, respectively, where constants c1 and c2 are known.
Then completing the �shery model with a further, trivial di�erential equation
ẇ = 0, to the extended system the observer design method of [28] can also be



88 VARGA ET AL.

applied. The solutions of the obtained observer system not only estimate the
state process (the stock in both areas), but also approximate the unknown value
of the parameter w. We also note that similar parameter estimation was applied
in [6] and [5].

Robust observer design method was proposed in [23]. In the usual observer
design, as recalled in subsection 3.2, a gain matrix K must be found that guar-
antees that the solutions of the corresponding observer system approach the
unknown solution of the original system at exponential rate. In [23] multi-
species population systems displaying stable coexistence are considered, where
the asymptotic stability is obtained by the stability of the Jacobian A of the
right-hand side of the system dynamics at an equilibrium. Let us suppose that
the stable matrix A is sign-stable in the sense that it remains stable whenever
we change its entries without violating its sign pattern sgn ai,j . Under the condi-
tion of sign-stability of A we have shown that in the process of observer design
the same gain matrix can be applied even if, in the meanwhile, due to some
changes in the environment, certain interactions su�er a quantitative change.
We note that sign-stability can be checked in terms of the signed directed graph
associated with the above matrix A. The proposed robust observer design is
illustrated with examples of a trophic chain and a Lotka-Volterra type system
with vertical structure.

We also mention that in [10], for competitive Lotka�Volterra systems, an iter-
ative scheme was proposed for the construction of an observer system. Further-
more, for control-observation systems shown in Figure 4, in [30] a new nonlinear
system inversion method was applied for the reconstruction of time-dependent
abiotic environmental changes, from the observation of certain indicator species.

Finally, we recall some further applications from the research line of mon-
itoring by observer design. In [4], observer design was applied in the �eld of
radiotherapy, for the case when the total number of cells is observed, without
distinction between healthy and a�ected cells. The constructed observer system
made it possible to estimate the population of both the healthy and the a�ected
cells. A quite di�erent application �eld was in engineering of solar thermal heat-
ing systems. In [13] with some modi�cation of the methodology of subsection
3.2, a real-time version of the state observer design for solar thermal heating
systems was proposed, estimating some unmeasured state variables. Based on
real data, the proposed state estimation method was also applied to a concrete
solar heating system.

Furthermore, in [14] a global nonlinear state observer was constructed for a
solar domestic water heating system. Global here means that the solution of
the observer system can start from any initial state.

4.3 Monitoring of discrete-time density-dependent popu-

lation models

There is a discrete-time analogue of the observer design presented in subsection
3.2, for its description we refer to [29]. In [7] the monitoring problem of the
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Euler discretization of the classical continuous-time Lotka�Volterra predator-
prey model was studied. By and large, the observer design can be carried out
similarly to the continuous case, but the parallel between the two cases is not
straightforward. In the submitted paper [24] the monitoring problem of a Leslie
type, discrete-time, age-speci�c but nonlinear population model is considered,
where the time-dependent size of certain age class(es) is observed, and the time-
dependent total age distribution should be recovered (see Figure 1 above). This
issue (also its version to be developed, where instead of age classes, development
stages are involved) is obviously important in population ecology. Of course,
monitoring of multi-species versions of these models would also be interesting.

Finally, we note that surveys [33], [35] and [2] were interim reports on the
current state of art of the research line of monitoring of population systems.
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