β-Cyclodextrin-bearing Gold Glyconanoparticles for the Development of Site Specific Drug Delivery Systems

Ahmet Aykaç, Manuel C. Martos-Maldonado, Juan M. Casas-Solvas, Indalecio Quesada-Soriano, Federico García-Maroto, Luís García-Fuentes and Antonio Vargas-Berenguel*

Department of Chemistry and Physics, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.

Supporting Information (SI)

(22 Pages)

Table of Contents

Synthesis and characterization data for compounds 7-10	S2 - S5
Characterization data for compounds 1-3	S5
¹ H NMR, ¹³ C NMR and mass spectra for compounds 1-3 and 7-10	S6 – S20
UV spectra for the interaction of 2 nM AuNP 1 with 2 μ M Gal-3	S21
UV spectra for AuNPs 1 and 3 (2 nM) in the presence of 50 μ M BSA	S21
UV spectra for 75 µM MTX before and after five centrifugal filtrations	S22

S-(12,15,18,21-Tetraoxa-23-{4-[4'-O-(β-D-galactopyranosyl)-β-D-

glucopyranosyloxymethyl]-1*H*-1,2,3-triazol-1-yl{tricosanyl) thioacetate (7). (EtO)₃P·CuI (20 mg, 0.056 mmol) was added to a solution of 4 (127 mg, 0.284 mmol) and 5 (108 mg, 0.284 mmol) in dry DMF (5 ml) under N₂ atmosphere, and the mixture was stirred for 30 min at room temperature and then 8 hours at 60 °C. Solvent was then evaporated under reduced pressure and the crude was purified by column chromatography (EtOAc-Methanol 5:1) to yield compound 9 (198 mg, 0.235 mmol, 83 %) as a white solid. Mp: 219-226 °C (dec.); [α]_D +8 (c 0.1, H₂O); IR (KBr) v/cm⁻¹ 3230, 2900, 2851, 1630, 1560, 1558, 1408, 1380, 1301, 1044, 1022, 892, 770, 719, 650; ¹H NMR (300 MHz, CD₃OD) δ 8.12 (s, 1H, H-5-C₂HN₃), 5.00 (d, 1H, ²J = 12.4 Hz, C₂HN₃-CHO), 4.81 (d, 1H, ${}^{2}J = 12.4$ Hz, CHO-C₂HN₃ overlapped with CD₃OD), 4.62 (t, 2H, J = 5.0 Hz, CH₂N), 4.47 (d, 1H, J = 7.8 Hz, H-1), 4.41 (d, 1H, J = 7.3 Hz, H-1'), 4.00-3.71 (m, 8H, H-3,4,4',5',6,6,6',6'), 3.66-3.50 (m, 18H, CH₂OEG, H-2,2',3',5), 3.49 (t, 2H, J = 6.6 Hz, OCH₂(CH₂)₁₀), 2.89 (t, 2H, J = 7.3 Hz, CH₂S), 2.34 (s, 3H, CH₃CO), 1.63-1.54 (m, 4H, (CH₂)₂), 1.47-1.33 (m, 14H, (CH₂)₇); ¹³C NMR (75 MHz, CD₃OD) δ 197.6 (CO), 145.4 (C-4-C₂HN₃), 126.1 (C-5-C₂HN₃), 105.1 (C-1'), 103.4 (C-1), 80.6 (C-4), 77.0 (C-5'), 76.5 (C-5), 76.3 (C-3), 74.8 (C-3'), 74.6 (C-2), 72.5 (C-2'), 72.3, 71.5, 71.5, 71.5, 71.4, 71.1, 70.3 (CH₂OEG, OCH₂(CH₂)₁₀), 70.2 (C-4'), 63.0 (CH₂O- C₂HN₃), 62.5 (C-6'), 61.9 (C-6), 51.4 (CH₂N), 30.7, 30.7, 30.6, 30.6, 30.5, 30.2, 29.8, 29.7, 27.2 (CH₃CO, (CH₂)₉, CH₂S); MALDI-TOF-MS m/z calcd for $C_{36}H_{65}N_{3}O_{16}SNa 850.4$, found 850.5 (M + Na)⁺.

S-{12,15,18,21-Tetraoxa-23-[4-(cyclomaltoheptaos-2^I-*O*-ylmethyl)-1*H*-1,2,3triazol-1-yl]tricosanyl} thioacetate (8). (EtO)₃P·CuI (10 mg, 0.028 mmol) was added to a solution of 4 (62 mg, 0.138 mmol) and 6 (162 mg, 0.138 mmol) in dry DMF (3 ml) under N₂ atmosphere, and the mixture was stirred for 30 min at room temperature and then 8 hours at 60 °C. Solvent was then evaporated under reduced pressure and the crude was purified by column chromatography (10:5:1 CH₃CN-H₂O-30 % v/v aq NH₃) to yield compound 8 (172 mg, 0.106 mmol, 77 %) as a white solid. Mp 213°-215 °C (dec.); $[\alpha]_{D}$ +47 (c 0.1, H₂O); IR (KBr) v/cm⁻¹ 3315, 2922, 2853, 1752, 1670, 1569, 1408, 1301, 1247, 1151, 1079, 1029, 946, 946, 853, 758, 704, 652, 623; ¹H NMR (300 MHz; DMSO-d₆) δ 8.09 (s, 1H, H-5-C₂HN₃), 5.94-5.90 (m, 2H, OH), 5.78-5.69 (m, 10H, OH), 4.90-4.78 (m, 9H, H-1^{I-VII}, CH₂O-C₂HN₃), 4.56-4.41 (m, 10H, OH), 3.82-3.79 (m, 3H, H-3^I, CH₂N), 3.62-3.46 (m, 43H, H-3^{II-VII},5^{I-VII},6^{I-VII},6'' ^{VII}, CH₂OEG, OCH₂(CH₂)₁₀), 3.36-3.30 (m, 18H, H-2^{I-VII}, 4^{I-VII} overlapped with HDO), 2.81 (t, 2H, ${}^{3}J=$ 7.2 Hz, CH₂S), 2.31 (s, 3H, CH₃CO), 1.50-1.44 (m, 4H, (CH₂)₂), 1.29-1.23 (m, 14H, (CH₂)₇); ¹³C-NMR (75 MHz; DMSO-*d*₆): δ 195.4 (CO), 143.6 (C-4-C₂HN₃), 124.5 (C-5-C₂HN₃), 102.0 (C-1^{I-VII}), 81.7-81.4 (C-2^I,4^{I-VII}), 73.2-71.7 (C-2^{II-VII},3^{I-VII},5^{I-VII}), 70.3, 69.8, 69.7, 69.6, 69.5, 68.8 (CH₂OEG, OCH₂(CH₂)₁₀), 64.4 (CH₂O-C₂HN₃), 60.0-59.7 (C-6^{I-VII}), 49.5 (CH₂N), 30.6 (CH₃CO), 29.2, 29.1, 29.0, 28.9, 28.8, 28.5, 28.4, 28.1, 25.6 ((CH₂)₉, CH₂S); MALDI-TOF-MS m/z calcd for C₆₆H₁₁₃N₃O₄₀SNa 1642.7, found 1642.9 (M + Na)⁺; calcd for $C_{64}H_{110}N_3O_{39}SNa \ 1600.6$, found 1600.9 $(M - C_2H_3O + Na)^+$.

Bis(12,15,18,21-tetraoxa-23-{4-[4'-O-(β-D-galactopyranosyl)-β-D-

glucopyranosyloxymethyl]-1*H*-1,2,3-triazol-1-yl}tricosanyl) disulfide (9). A solution of 7 (110 mg, 0.108 mmol) in aqueous 0.5 M KOH (5 ml) was stirred at room temperature for 16 h. Solvent was then evaporated under reduced pressure and the crude was purified by column chromatography (CH₃CN-H₂O 3:1) to yield **9** (93 mg, 0.057 mmol, 54 %) as a white solid. Mp 216-229 °C (dec.); $[\alpha]_D$ +47 (*c* 0.1, H₂O); IR (KBr) v/cm⁻¹ 3272, 2922, 2851, 1669, 1568, 1558, 1408, 1347, 1301, 1241, 1044, 1022, 892, 782, 709, 648, 620; ¹H NMR (300 MHz, D₂O) δ 8.10 (s, 2H, H-5-C₂HN₃), 4.96 (d, 2H, *J* = 12.6 Hz, CHO-C₂HN₃), 4.80 (bs, CHO-C₂HN₃ overlapped with HDO), 4.58-4.53 (m, 6H, H-1, CH₂N), 4.44 (d, 2H, *J* = 7.5 Hz, H-1'), 3.97-3.68 (m, 18H, H-2',3,4,4',5',6,6,6',6'), 3.63-3.52 (m, 28H, H-3',5, CH₂OEG), 3.44 (t, 4H, *J* = 6.2 Hz, OCH₂(CH₂)₁₀), 3.34 (t, 2H, *J* = 8.2 Hz, H-2), 2.69 (t, 4H, *J* = 6.7 Hz, CH₂S), 1.69 (bs, 4H, CH₂), 1.56 (bs, 4H, CH₂), 1.40-1.31 (m, 28H, (CH₂)₇); ¹³C NMR (75 MHz; D₂O) δ 143.5 (C-4-C₂HN₃), 125.4 (C-5-C₂HN₃), 102.9 (C-1'), 101.4 (C-1),78.4 (C-4), 75.3 (C-5'), 74.8 (C-5), 74.3 (C-3), 72.7 (C-3'), 72.5 (C-2), 71.0 (C-2'), 70.9, 69.9, 69.8, 69.7, 68.8 (CH₂OEG, OCH₂(CH₂)₁₀), 68.5 (C-4'), 61.8 (CH₂O-C₂HN₃), 61.0 (C-6'), 60.1 (C-6), 49.9 (CH₂N), 38.9 (CH₂S), 29.8, 29.7, 29.5, 29.3, 29.1, 28.6, 26.1 ((CH₂)₉); ESI-TOF-MS m/z calcd for C₆₈H₁₂₄N₆O₃₀S₂Na 1592.9, found 1592.8 (M + Na)⁺.

Bis{12,15,18,21-Tetraoxa-23-[4-(cyclomaltoheptaos-2¹-O-ylmethyl)-1H-1,2,3-

triazol-1-yl]tricosanyl} disulfide (10). A solution of **8** (132 mg, 0.082 mmol) in aqueous 0.5 M KOH (10 ml) was stirred at room temperature for 16 h. Solvent was then evaporated under reduced pressure and the crude was purified by column chromatography (CH₃CN-H₂O 2:1) to yield compound **10** (91 mg, 0.056 mmol, 69 %) as a white solid. Mp 294°-296 °C (dec.); $[\alpha]_D$ +52 (*c* 0.1, H₂O); IR (KBr) v/cm⁻¹ 3349, 2919, 2859, 1664, 1456, 1406, 1356, 1299, 1137, 1080, 1028, 997, 941, 863, 756, 703, 639, 624; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.09 (s, 2H, H-5-C₂HN₃), 5.93-5.90 (m, 4H, OH), 5.76-5.70 (m, 20H, OH), 4.90-4.78 (m, 18H, H-1^{I-VII}, CH₂O-C₂HN₃), 4.58-4.40 (m, 20H, OH), 3.85-3.79 (m, 6H, H-3^I, CH₂N), 3.63-3.46 (m, 86H, H-3^{II-VII},5^{I-VII},6^{I-VII},6^{I-VII},6^{I-VII},CH₂OEG, OCH₂(CH₂)₁₀), 3.42-3.30 (m, 170H, H-2^{I-VII},4^{I-VII} overlapped with HDO), 2.72-2.66 (m, 4H, CH₂S), 1.65-1.55 (m, 4H, CH₂), 1.46 (t, 4H, ³*J* = 6.3 Hz, CH₂), 1.35-1.17 (m, 28H, (CH₂)₇); ¹³C NMR (75 MHz; DMSO-*d*₆) δ 143.5 (C-4-CH₂N₃), 124.4 (C-5-CH₂N₃), 102.0-101.7 (C-1^{I-VII}), 82.1-81.3 (C-4^{I-VII}), 79.3 (C-2^I), 73.4-71.7 (C-2^{II-VII},5^{I-VII},5^{I-VII}), 70.3, 69.9, 69.8, 69.7, 69.6, 69.5, 68.8 (CH₂OEG,

 $OCH_2(CH_2)_{10}$), 64.4 ($CH_2O-C_2HN_3$), 60.2-59.8 (C-6^{I-VII}), 49.4 (CH_2N), 37.9 (CH_2S), 29.2, 29.0, 28.9, 28.8, 28.6, 28.5, 27.7, 25.7 ((CH_2)₉); MALDI-TOF-MS m/z calcd for $C_{128}H_{220}N_6O_{78}S_2Na$ 3177.3, found 3177.2 (M + Na)⁺; calcd for $C_{64}H_{110}N_3O_{39}SNa$ 1600.6, found 1600.7 (M/2 + Na)⁺.

AuNP 1. ¹H NMR (500 MHz, D₂O) δ 8.10 (s, 1H, H-5-C₂HN₃), 4.96 (d, 1H, *J* = 12.5 Hz, CHO-C₂HN₃), 4.80 (bs, CHO-C₂HN₃ overlapped with HDO), 4.58 (t, 2H, *J* = 4.6 Hz, CH₂N), 4.55 (d, 1H, *J* = 7.9 Hz, H-1), 4.44 (d, 1H, *J* = 7.7 Hz, H-1'), 3.97-3.66 (m, 9H, H-2',3,4,4',5',6,6,6',6'), 3.63-3.51 (m, 14H, H-3',5, CH₂OEG), 3.45 (t, 2H, *J* = 6.3 Hz, OCH₂(CH₂)₁₀), 3.34 (t, 1H, *J* = 8.4 Hz, H-2), 2.69 (t, 2H, *J* = 6.8 Hz, CH₂S), 1.69 (bs, 2H, CH₂), 1.56 (bs, 2H, CH₂), 1.41-1.31 (m, 14H, (CH₂)₇).

AuNP 2. ¹H NMR (500 MHz, D₂O) δ 8.12 (s, 1H, H-5-C₂HN₃), 5.28 (bs, 1H, H-1¹), 5.06-5.04 (H-1^{II-VII}), 4.80 (bs, CH₂O-C₂HN₃, CH₂N overlapped with HDO), 4.07 (t, 1H, J = 7.0 Hz, H-3^I), 3.96-3.70 (m, H-3^{II-VII},5^{I-VII},6^{I-VII},6^{3I-VII}), 3.64-3.32 (H-2^{I-VII},4^{I-VII}, OCH₂(CH2)10, CH₂OEG), 2.60 (t, 2H, J = 5.6 Hz, CH₂S), 1.61-1.60 (m, 4H, (CH₂)₂), 1.46-1.26 (m, 14H, (CH₂)₇).

AuNP 3. ¹H NMR (500 MHz, D₂O) δ 8.14 (s, 1H, H^a-5-C₂HN₃), 8.10 (s, 3H, H^b-5-C₂HN₃), 5.30 (d, 1H, J = 3.0 Hz, H-1¹), 5.10-5.05 (m, 6H, H-1^{II-VII}), 4.95 (d, 6H, J = 13.6 Hz, CH^aO-C₂HN₃), 4.80 (bs, CH^aO-C₂HN₃, CH₂^bO-C₂HN₃ overlapped with HDO), 4.64 (t, 2H, J = 4.5 Hz, CH₂^aN), 4.58 (bs, 6H, CH₂^bN), 4.55 (d, 3H, J = 7.9 Hz, H-1), 4.43 (d, 3H, J = 7.7 Hz, H-1[']), 3.96-3.60 (m, 50H, H-2['],3,3^{I-VII},4,4['],5['],5^{I-VII},6,6,6^{I-VII},6^{I-VII},6['],6'), 3.65-3.58 (m, 98H, H-2^{I-VII},3['],5,4^{I-VII}, CH₂^{a,b}OEG, OCH₂^a(CH₂)₁₀), 3.44 (bt, 6H, OCH₂^b(CH₂)₁₀), 3.34 (t, 3H, J = 8.2 Hz, H-2), 2.68 (bs, 6H, CH₂^bS), 2.62 (t, 2H, J = 6.6 Hz, CH₂^aS), 1.69 (bs, 6H, CH₂^b), 1.65-1.61 (m, 2H, CH₂^a), 1.56 (bs, 6H, CH₂^b), 1.41-1.30 (m, 52H, (CH₂^{a,b})₇).

Fig S1¹H NMR spectrum (500 MHz, D₂O, 25 °C) for AuNP 1

Fig S2 ¹H NMR spectrum (500 MHz, D₂O, 25 °C) for AuNP 2

Fig S3 ¹H NMR spectrum (500 MHz, D_2O , 25 °C) for AuNP 3

Fig S4 ¹H NMR spectrum (300 MHz, CD₃OD, 25 °C) for compound 7

Fig S5 ¹³C NMR spectrum (75 MHz, CD₃OD, 25 °C) for compound 7

Fig S6 MALDI-TOF spectrum for compound 7

Fig S7 ¹H NMR spectrum (300 MHz, DMSO-*d*₆, 25 °C) for compound 8

Fig S8 ¹³C NMR spectrum (75 MHz, DMSO-*d*₆, 25 °C) for compound 8

Fig S9 MALDI-TOF spectrum for compound 8

Fig S10 ¹H NMR spectrum (300 MHz, D₂O, 25 °C) for compound 9

Fig S11 ¹³C NMR spectrum (75 MHz, D₂O, 25 °C) for compound 9

Fig S12 ESI-TOF spectrum for compound 9

Fig S13 ¹H NMR spectrum (300 MHz, DMSO-*d*₆, 25 °C) for compound 10

Fig S14 ¹³C NMR spectrum (75 MHz, D₂O, 25 °C) for compound 10

Fig S15 MALDI-TOF spectrum for compound 10

Figure S16 UV spectra for AuNP **1** (2 nM) in 10 mM phosphate buffer, pH 7.2, 20 mM NaCl in the absence (black line) and in the presence (orange line) of Gal-3 (2 μ M) after 5 hours of incubation at room temperature in the dark.

Figure S17 UV spectra for AuNP 1 (2 nM, left) and AuNP 2 (2 nM, right) in 10 mM phosphate buffer, pH 7.2, 20 mM NaCl in the absence (black line) and in the presence (orange line) of BSA (50 μ M) after 5 hours of incubation at room temperature in the dark.

Figure S18 UV spectra for 75 µM MTX in 10 mM phosphate buffer, pH 7.2, 20 mM NaCl before (black line) and after (orange line) five centrifugal filtrations.