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abstract: The introduced dispersal-foraging game is a combina-
tion of prey habitat selection between two patch types and optimal-
foraging approaches. Prey’s patch preference and forager behavior de-
termine the prey’s survival rate. The forager’s energy gain depends on
local prey density in both types of exhaustible patches and on leaving
time. We introduce two game-solution concepts. The static solution
combines the ideal free distribution of the prey with optimal-foraging
theory. The dynamical solution is given by a game dynamics describ-
ing the behavioral changes of prey and forager. We show (1) that each
stable equilibrium dynamical solution is always a static solution, but
not conversely; (2) that at an equilibrium dynamical solution, the for-
ager can stabilize prey mixed patch use strategy in cases where ideal
free distribution theory predicts that prey will use only one patch type;
and (3) that when the equilibrium dynamical solution is unstable at
fixed prey density, stable behavior cycles occur where neither forager
nor prey keep a fixed behavior.

Keywords: dispersal-foraging game, game dynamics, ideal free distri-
bution, optimal foraging.

Introduction

Although the foraging strategy of prey under predation
risk is well studied (e.g., Brown and Kotler 2004), the pred-
ator’s role is not as thoroughly investigated (Lima 2002).
This is in spite of the fact that predation is an interaction
between quite counterinterested species: prey and preda-
tor. We consider an optimal foraging predator (or forager)
and a prey dispersing among patches. In order to guaran-
tee that competition for food between prey does not mask
the effect of predation, we assume that this food compe-
tition can be neglected. Our aim is to introduce a game,
along with an appropriate solution concept, for this ecolog-
ical situation. We combine optimal-foraging theory with
the ideal free distribution (IFD), considering one forager
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individual and its one prey species dispersing in two differ-
ent patch types.
We start from two basic optimal-foraging models. In the

prey-choice model (Charnov 1976a), the forager chooses
among prey with different handling times and the zero-
one rule holds (when the more profitable prey is abundant,
the forager ignores the other prey type; when the first type
is less abundant, the forager uses both prey types). This
model is strictly based on the idea of Holling functional
response (Holling 1959): the handling times of different
prey have a crucial effect on the number of killed prey. In
the patch-use model (Charnov 1976b), the forager chooses
the leaving time from an exhausted patch, and Charnov’s
marginal-value theorem is valid (the forager leaves the
patch when its energy intake rate once in the patch matches
its energy intake rate from all patches). In this model, the
leaving time (which is the analog of the handling time in
the first Charnov model) is a strategy of the forager, and
so the functional response is slightly generalized, as it now
depends on the patch-leaving times as well as on the density
of prey. These twomodels combine to form a single optimal-
foraging model (Stephens and Krebs 1986; McNamara
et al. 1993) whose theory is mainly built on Holling type II
functional response (Stephens and Krebs 1986). At first
glance, the zero-one rule and Charnov’s marginal-value
theorem appear quite different. However, our basic intui-
tion is that both are consequences of one basic rule (see
“Forager’s Rule of Time Average Based on Nash Equilib-
rium”; McNamara 1982).
The IFD aims to understand species distribution in sev-

eral patches under the assumption that moving between
patches is time and energy free (Fretwell and Lucas 1969;
Křivan et al. 2008). The IFD is characterized as a distribu-
tion where individual fitnesses in all occupied patches are
equal and at least as high as those in any unoccupied patch
(e.g., Abrams et al. 2007). Although originally the IFD con-
sidered species’ fitness on the basis of the resource levels
in each patch, we assume that prey fitness is determined



112 The American Naturalist
by predation risk in the different types of patches (e.g.,
Cressman et al. 2004). In these models, the stability of the
IFD is determined by concavity or convexity. Specifically,
if the functional response at current prey density is concave
(e.g., either Holling II or Holling III with high prey den-
sity), then the prey use only one patch type. If the func-
tional response is convex (Holling III with small prey den-
sity), the prey use both types of patches (see, e.g., Cressman
and Garay 2009).

In our model, the optimal forager is pitted against the
prey’s optimal distribution. Since the predator and its prey
have counteracting interests, game theory is required to
find the common optimal behavior (Cressman and Garay
2011). Optimal-foraging theory and the IFD are based on
the assumption that the other species (i.e., prey and forager,
respectively) has fixed behavior. In the natural union of
these models, we seek a solution of this game so that both
models hold at the same time. This solution is strictly based
on the assumption that only one player can change its be-
havior at a time (see “Static-Solution Concepts Based on
the Nash Paradigm”).

However, the forager and its prey can adjust their be-
haviors to the opponent’s current strategy immediately
(e.g., Katz et al. 2010, 2013; Juliana et al. 2011). In other
words, in biology we cannot assume that only one player
changes its strategy while the other player’s strategy is
fixed. It may seem unimportant whether it is only one or
both players who can change strategy at a given time. But
mathematically, these cases are quite different, as we see
below. From the biomathematical perspective, it is then
reasonable to describe the changing behaviors of players
by a game dynamics in which players change strategy ac-
cording to an opponent’s strategy either one at a time or
simultaneously (see “Dynamic-Solution Concepts Based
on Game Dynamics”). Using behavior dynamics has three
theoretical consequences. First, from a game-theoretical
point of view, the game solution concept of Nash is slightly
generalized.

Second, from the biological point of view, behavioral cy-
cles are possible in game dynamics, whereas static solu-
tions can predict only equilibrium outcomes. For instance,
in the classical battle-of-the-sexes game (Hofbauer and Sig-
mund 1998), behavioral cycles occur when the Nash equi-
librium (NE) is a mixed strategy. That behavioral cycles
based on changing population densities have an important
role in the study of species’ coexistence among patches is
also well known by many researchers (a partial list: Fryxell
and Lundberg 1994, 1998; Abrams andMatsuda 2004; Cress-
man et al. 2004; Abrams et al. 2007; Abrams 2010; Cressman
and Křivan 2013). The novelty of our article is the intro-
duction of a new game between the optimal forager and
its dispersing prey in a short enough timescale that changes
in prey density can be ignored (as is assumed in optimal-
foraging theory). The behavioral cycles that we find at fixed
density generalize those in cellular-automata models of spa-
tial predator-prey dynamics (e.g., Molina et al. 2013) when
the interaction is local and the system is not well mixed.
Finally, the dynamic-solution concept predicts that the

forager can stabilize prey mixed patch use in cases where
the static-solution concept (given by standard IFD theory
under the assumption that the forager does not change its
fixed mixed patch preference) predicts that prey use only
one patch. The reasoning is as follows; if prey use only
one type of patch, then an optimal forager, by changing
its behavior, will use only this type, too. Thus, prey sur-
vival rate is maximal in the other patch type, and so the prey
can use this patch type as a “refuge.” Thus, the prey will use
the second patch type as well (see “Results: Comparison of
the Two Solution Concepts”). This line of reasoning sug-
gests using experiments and/or field observations to check
which game-theoretic solution concept (i.e., static or dy-
namic) is valid.
In the next section, we introduce a mechanistic prey

dispersal and predator enter-and-leave game, called the
dispersal-foraging game (DFG). The two sections after the
DFG is introduced study its two solution concepts. We then
compare these solution concepts in “Results” before the fi-
nal discussion.
Dispersal-Foraging Game

To build the DFG model among different types of patches,
the possible behaviors (i.e., strategies) of both the forager
and its prey must be described, as well as the effects that
these behavioral choices have on individual fitnesses (i.e.,
payoffs). These concepts are based on the system habitat
and the foraging-time duration.
Habitat

Consider a system that consists of two types of patches,
with y1 (y2) the number of patches of type A1 (A2). We as-
sume that different types of patches are well mixed (in
particular, the different types are not geographically segre-
gated), and so, by a random walk, the forager encounters a
random series of patches with relative frequencies d1 p
y1=(y1 1 y2) and d2 p y2=(y1 1 y2) for the two types. The
reader may think of the prey occupying two host plant spe-
cies that are scattered randomly in a forest (i.e., each plant
is then a patch). The patch types then determine different
ecological conditions for the foraging process.
Foraging-Time Duration

Foraging-time duration is denoted by T. This time interval
T is considerably shorter than the reproduction time of
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prey. Furthermore, the forager is certain to survive but can
visit only a small percentage of the y1 1 y2 patches. In fact,
T is short enough that the strategic decisions taken by the
forager and the prey have constant fitness consequences
throughout this time interval (i.e., the consequences are in-
dependent of when the decisions occur). More details of
this are given in the following discussion of behaviors and
payoffs. We emphasize that this time independence is the
basic condition needed for the derivation of the payoff func-
tions.
Prey Behavior

To satisfy Charnov’s assumption that the forager’s energy
gain from a given patch is an increasing function of time
spent there, we assume that prey do not flee to other patches
during forager attacks. Before the forager arrives, prey oc-
cupy the patches. Let x denote the total number of prey
and s be the average patch-preference strategy of the whole
prey population (i.e., sx and (12 s)x prey are in patches of
type A1 and A2, respectively). For simplicity, assume that
the local prey density x1 in each type A1 patch is the same
(i.e., x1 p sx=y1) and that the prey density in each type A2

patch is exactly x2 p (12 s)x=y2 . In particular, we do not
consider random prey distribution within a given patch type
(e.g., Iwasa et al. 1981; Stewart-Oaten 1982).

Thus, the prey strategy, characterized by the choice 0≤
s≤ 1, is straightforward. The same cannot be said for the for-
ager. To emphasize the game-theoretic aspect of our model,
we make simplifying assumptions on its possible behaviors
in the next subsection.
Forager Behavior

The foraging process involves several steps. In the first
step, the forager spends time t0 finding a patch at an en-
ergy cost c. We assume that the forager does not visit the
same patch twice in time period T and that the patch en-
counter probabilities do not depend on the foraging strat-
egy (i.e., d1 and d2 are constant encounter probabilities with
patch A1 and A2, respectively).
Following the standard assumption in classical optimal-

foraging theory (e.g., Stephens and Krebs 1986, p. 17), as-
sume that, on finding a patch, the forager immediately
recognizes the patch type. The forager then makes two con-
ditional decisions: whether to enter the recognized patch
and how long to stay in the chosen patch. (1) For the “en-
ter” strategy, let pi ∈ ½0, 1� (ip 1, 2) denote the probabil-
ity of entering an encountered Ai patch (Charnov 1976a,
1976b). (2) For the “leave” strategy, let ti ≥ 0 (ip 1, 2) de-
note the time period spent by the forager once an Ai patch
is entered (Charnov 1976b).
We now have the possible behaviors of the forager and

its prey and are in a position to determine the forager’s fit-
ness by finding its expected energy intake during time T.
Specifically, the prey population has strategy s∈ ½0, 1� and
the forager’s strategy is (p, t), where p≔ (p1, p2)∈ ½0, 1�#½0,
1� and t ≔ (t1, t2)∈ ½0, T�#½0, T�. These are indicated in
the dispersal-foraging game tree of figure 1. This tree also
Figure 1: With fixed strategies of the “players,” the tree of the game contains all information to calculate the payoff of the forager. At the first
level, di denotes the probability that forager finds patch Ai, where the local density of prey xi(s) depends on the average patch preference (s) of
the whole prey population. At the second level, pi denotes the “enter” strategy of forager into patch Ai. This tree generates the activity dis-
tribution of forager. Each endpoint of the tree corresponds to one activity. One observer can collect the probability of each activity, the time
duration of each activity (depending on the forager’s leaving strategy ti), and the energy intake of each activity. On the basis of this infor-
mation, we can calculate the strategy-dependent functional response and so the net energy intake rate of forager.
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includes the information necessary to calculate fitness (see
also Cressman et al. [2014], who develop a general method
based on such decision trees).
Payoff Function for Forager

Since optimal-foraging theory postulates that the forager
maximizes its average net energy intake per unit time (Tu-
relli et al. 1982), forager payoff is taken as this intake rate.
When the forager enters an Ai patch, the net energy gain
from the prey, gi(xi, ti), depends on the local prey density
xi there and the amount of time ti that the forager spends
in this patch. Biologically reasonable properties of this func-
tion are that it is increasing in both xi and ti and that gi(xi,
0)p gi(0, ti)p 0 (Stephens and Krebs 1986).

For fixed behavior and encounter probabilities, figure 1
provides the activity distribution. For example, if the for-
ager encounters an A1 patch and enters it, this activity oc-
curs with probability d1p1, and so on. Since we assume that
the players’ strategies s∈ ½0, 1�, pi ∈ ½0, 1�, ti ≥ 0, the param-
eters di and x, and the gain functions gi (ip 1, 2) do not
change during time T, the expected time duration E(t) of
an activity chosen at random is given by

E(t)p t0 1 d1p1t1 1 d2p2t2. (1)

The corresponding calculation of the expected energy in-
take of an activity chosen at random simplifies to

E(G)p d1p1g1(s, x, t1)1 d2p2g2(s, x, t2)2 c, (2)

where c is the fixed energy cost of finding a patch. On the
basis of our basic condition that encounter (and thus activ-
ity) probabilities do not change during T, Garay and Móri
(2010), usingWald’s (1944) equality, show that the forager’s
expected payoff function is

W(s; p, t)≔
E(G)
E(t)

p
d1p1g1(s,x,t1)1 d2p2g2(s,x,t2)2 c

t0 1 d1p1t1 1 d2p2t2
(3)

(see “Derivation of Functional Response” in the appendix,
available online). This is the average net energy intake rate
of a randomly chosen activity (i.e., the average net energy
intake per average time duration of one activity). We em-
phasize that the basic condition holds under the assump-
tions of our patch model (i.e., no further simplifying as-
sumptions are needed), since the probability of finding a
patch does not depend on the forager’s strategy and the for-
ager never visits the same patch twice. Hence, the propor-
tions of patch types among visited and nonvisited patches
are the same and are also unchanged during T. We note that
if the energy unit is defined as the energy gain from one prey
and the cost c is negligible, then W is a functional response.
Clearly, staying longer in a given patch increases the
food gain from this patch type and also increases the ex-
pected time duration E(t), even though it decreases the
number of searches during T. The main point is that, from
equations (1) and (2), staying longer can change E(G) and
E(t) simultaneously, and so it is unclear whether such a
choice is to the forager’s benefit. Similar qualitative effects re-
sult from changing other strategies as well (even the prey
strategy!).
Payoff Functions for Prey

While the forager is trying to optimize its intake rate, prey
want to avoid being killed. For simplicity, assume that prey
are killed only by the forager (i.e., without the forager, each
prey is certain to survive in a given patch). If we further as-
sume that individual prey fitnesses in the two patch types
differ only through their interactions with the forager, then
the payoff of an individual prey can be measured by its sur-
vival probability (Garay and Varga 2011). To this end, let
a be the forager’s energy intake when one prey is killed.
(Here we ignore the possibility that there may also be an
energy cost of foraging, which is often assumed to increase
linearly with respect to time spent in the patch; Stephens
and Krebs 1986.) Thus, gi(s, x, ti)=a gives the average num-
ber of prey killed in an encountered Ai patch. Moreover, by
another application of Wald’s equality, the expected num-
ber of prey killed per unit time in Ai patches is

d1p1
t0 1 d1p1t1 1 d2p2t2

g1(s,x,t1)
a

,

and so the individual survival rate of prey in anAi patch (i.e.,
their payoff ) is

x1(s, x; p, t)p 12
d1p1

t0 1 d1p1t1 1 d2p2t2

g1(s,x,t1)
(axs=y1)

,

x2(s, x; p, t)p 12
d2p2

t0 1 d1p1t1 1 d2p2t2

g2(s,x,t2)
½ax(12 s)=y2� .

(4)

It is important to point out here that there is an essen-
tial difference between prey and forager payoff functions,
xi and W, respectively. Specifically, whereas the forager’s
payoff does not depend on another forager’s strategy, and
so the forager optimizes its behavior, given prey strategy
s, the survival rate of a given prey type depends on the strat-
egies used by other prey; that is, for the prey, we have a pop-
ulation game (Broom and Rychtar 2013).
The above prey and predator behaviors, together with

their payoff functions, define the DFG as a union of the
IFD and Charnov’s two models of optimal-foraging the-
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ory. The assumptions underlying the DFG and these com-
ponents are identical. More precisely, if we fix the predator
behavior, then we get back the IFD from the DFG, and if
we fix the prey behavior, we get back the optimal-foraging
model from the DFG. Now the theoretical problem arises,
What is the solution concept for the DFG? We investigate
two possibilities in the next two sections: respectively, when
prey and their predator cannot change their strategies at
the same time and when these strategies change simulta-
neously.
Static-Solution Concepts Based on the Nash Paradigm

The Nash equilibrium (NE) is a solution concept for games
involving two (or more) players, in which no player can
gain by changing his own strategy while the other player
keeps his strategy fixed. Following the Nash paradigm, let
us assume that either only prey or only the forager can
change its strategy at a particular time. Then, the strategy
pair s* and (p*, t*) is a static solution if conditions (5) and
(6) hold.
Solution for Prey

With forager strategy fixed at (p*, t*), the prey are engaged
in a single-species habitat-selection game (Cressman et al.
2004). As stated in the introduction, s* is an IFD (as intro-
duced by Fretwell and Lucas [1969] before its connection
with evolutionary game theory was recognized) if (1) prey
payoffs in all occupied patches are the same and (2) this
payoff is at least as high as that in any unoccupied patch.
That is,

xi(s*, x, p*, t*)≥xj(s*, x, p*, t*) (5)

for all i, jwhenever a patch of typeAi is occupied.With pred-
ator strategy fixed at (p*, t*), condition (5) is equivalent to
s* being an NE of the prey habitat-selection game, as shown
by Cressman and Křivan (2006). That is, an IFD s* is an
NE.

When the IFD definition is applied to our two-patch
model, prey may use both patch types at the IFD if the sur-
vival rate is the same in both. In general, however, equality
in survival rate of prey does not imply that the forager’s
gains from different patches are also equal. For instance,
the prey patch preference does not take into account vary-
ing searching costs of the forager in different patches.
Solution for Forager

When prey strategy is fixed at s*, the predator is faced with
an optimization problem, since its payoff depends only
on its own strategy. The NE is then the classical optimiza-
tion solution (p*, t*) (Stephens and Krebs 1986), called the
optimal-foraging strategy. That is, for any other strategy
(p, t), we have

W(s*; p*, t*)≥W(s*; p, t). (6)

The static-solution concept that combines conditions (5) and
(6) seems natural, since it simply unifies, under the Nash
paradigm, the IFD concept from the prey habitat-selection
game with the forager optimal-foraging strategy.
In the appendix, “Dynamical Characterization of Static

Solution of theDFG” provides insight into the stability prop-
erties of the static-solution IFD concept for the prey. We
find that if both gain functions are convex in s (like Holling
III at small prey density), then there is a unique mixed IFD
and it is an evolutionarily stable strategy (ESS). Thus, prey
use both patch types. On the other hand, if both gain func-
tions are concave in s (like Holling II), then there is at least
one IFD that is also an ESS, with all prey using only one
patch type. There may also be a mixed IFD, but this cannot
be an ESS, since it is not stable.
For the remainder of this section, we further examine

the static-solution concept for the forager.
Forager’s Rule of Time Average Based on Nash Equilibrium

Let us consider the problem as generally as possible in the
context of optimal-foraging theory. Denote by j1 ∈ S1 and
j2 ∈ S2 the strategy choices of two players. In our case, player
1 (the forager) has a multidimensional strategy set S1, and
player 2 is the prey. The forager optimizes its energy intake
rate. Formally, to define this rate, we have to consider two
functions: T(j1, j2) is the average time duration, and G(j1,
j2) is the average energy intake when the players use the
strategy pair (j1, j2). The payoff function of the forager is
then G1(j1, j2) ≔ G(j1, j2)=T(j1, j2). Since we concentrate
here on the NE behavior of the forager, the payoff function
G2 for the second player can be arbitrary and its strategy
fixed at j*

2 . If the optimal-foraging behavior j*
1 is unique

(e.g., the inequality in eq. [6] is strict), then the forager’s pay-
off decreases whenever its strategy changes, while the other
player’s strategy is fixed (formally, G1(j*

1 , j*
2) > G1(j1, j*

2)
for j1 ( j*

1). In game-theoretic terms, (j*
1 , j*

2) is a strict NE
with respect to the behavior of player 1.
If the forager changes its strategy, there are two conse-

quences: intake changes by DG(j1)≔ G(j1, j*
2)2G(j*

1 , j*
2),

and time duration changes by DT(j1) ≔ T(j1, j*
2)2T(j*

1 ,
j*
2), simultaneously. In “Rule of Time Average for Forager
in the appendix, an elementary proof shows that (j*

1 , j*
2) is

a strict NE (with respect to forager behavior) if and only if

DG(j1)T(j*
1 , j*

2)<DT(j1)G(j*
1 , j*

2) (7)
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for any other forager strategy j1. In particular, if there is no
difference in time duration between strategies j1 and j*

1 (i.e.,
DT(j1)p 0), then the energy intake must be higher at the
strict NE. We note that equation (7) is a version of Mc-
Namara’s (1982, p. 274) potential function: “the expected
future gain on a patch minus the expected loss due to lost
time: time which could be spent on other patches foraging
at mean rate.” From equation (7), we have two rules.

“1Rule of time average.” If the forager’s strategy change
increases the time duration (i.e., DT(j1) > 0), then the av-
erage intake rate G(j*

1 , j*
2)=T(j*

1 , j*
2) at the NE is greater

than the ratio of the change in intake to the change in time
duration. Formally,

G(j*
1 ,j*

2)
T(j*

1 ,j*
2)
>

DG(j1)
DT(j1)

(8)

for all j1 with DT j1ð Þ > 0.
“2Rule of time average.” If the forager’s strategy change

decreases the time duration (i.e., DT j1ð Þ< 0), then the av-
erage intake rateG j*

1 ,j*
2ð Þ=T j*

1 ,j*
2ð Þ at the NE is less than the

ratio of the change in intake to the change in time duration.
Formally,

G j*
1 ,j*

2ð Þ
T j*

1 ,j*
2ð Þ <

DG j1ð Þ
DT j1ð Þ (9)

for all j1 with DT(j1)< 0.
In the following two remarks, we show that the zero-one

rule and Charnov’s marginal-value theorem are valid at the
forager’s NE (p*, t*) of the dispersal-foraging game. These
results follow from considering NE behavior with respect
to p* and t*, respectively, assuming that prey behavior is
fixed at the NE strategy s*.

Remark 1 (Zero-One Rule). If the forager encounters an Ai-
type patch, it is faced with the question, Use or do not use
this patch? That is, it must decide on p*i . If it does use the
patch, it spends time t*i there. A straightforward calcula-
tion shows that changing its strategy to pi results in DG(pi,
t*i )=DT(pi, t*i )p gi(s*, x, t*i )=t*i . Since this is independent
of the choice of pi, the rule of time average (eq. [8]) yields

p*i p 1 if 
gi(s*,xi,t*i )

t*i
> W(s*, p*, t*). (10)

That is, an encountered patch Ai is used with probability 1 if
the resultant energy intake rate once in this patch is greater
than the forager energy intake rate from all patches. Simi-
larly, p*i p 0 if the inequality in equation (10) is reversed.
This is the well-known zero-one rule (Charnov 1976a) that
a given patch type is either always entered when encoun-
tered or never entered.
Remark 2 (Marginal-Value Theorem). Consider a forager
who has spent ti in an Ai patch (thus p*i p 1) and has col-
lected energy gi(s*, x, ti) from it. Now the forager’s question
is, Leave this patch or not? If the forager spends extra time
in this used patch, an easy calculation shows that DTp
diDti and DGp di½gi(s*, x, ti 1Dti)2 gi(s*, x, ti)�. Using
equation (8), we find that the forager does not leave if ( gi(s*,
x, ti 1Dti)2 gi(s*, x, ti))=(Dti) > W(s*; p*, t*), which im-
plies Charnov’s well-known marginal-value theorem:

d
dti

gi(s*, x, t*i )pW(s*; p*, t*) (11)

(Charnov 1976b). That is, the forager leaves the patch at
that time when its energy intake rate once in the patch
matches its energy intake rate from all patches.
Dynamic-Solution Concept Based on Game Dynamics

The above static-solution concept (see also “Dynamical
Characterization of Static Solution of the DFG” in the ap-
pendix) is based on the assumption that only one player
can change its strategy at a time. There are three problems
with this approach. The first is that it assumes that there is
a separation of timescales between behavioral changes by
prey compared to those by the predator. In biology, there
is no general reason for ruling out that these counterinter-
ested agents change their strategies on the same timescale.
Second, random perturbation cannot be excluded in biol-
ogy, and so no “player” keeps its strategy unchanged. Third,
forager and prey can adjust their behaviors to the oppo-
nent’s current strategy immediately (see, e.g., Katz et al.
2010, 2013; Juliana et al. 2011). Hence, solutions given by
the Nash paradigm have to be examined to see whether they
correspond to the expected outcome of the real biological
system. This situation can be treated by a game dynamics
that describes the behavior changes of prey and forager,
leading to the following concept.
Game-dynamics solution concept: a strategy pair (or a be-

havior cycle) is a dynamic solution if it is locally asymptot-
ically stable with respect to a game dynamics describing the
behavior changes of prey and forager. Since the DFG is a
mixture of evolutionary and classical games, we must com-
bine two different types of game dynamics. For the prey
species we use the replicator dynamics (Hofbauer and Sig-
mund 1998; Garay 2003), whereby the proportion of prey
in a given patch increases if and only if prey have higher
payoff in this patch:

_sp s(12 s)½x1(s, x; p, t)2x2(s, x; p, t)�. (12)

From “Dynamical Characterization of Static Solution of the
DFG,” in the appendix, an IFD s* will be stable with respect
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to equation (12) at fixed (p, t) if and only if it is an ESS of
the prey habitat-selection game.

Second, we focus on the dynamic stability of the for-
ager’s NE behavior, when the prey strategy is fixed at s.
Since there is only one forager, the classical adaptive dy-
namics cannot be applied (specifically, adaptive dynamics
is based on either population structure [Dieckmann and
Law 1996; Vincent and Brown 2005] or relative advantage
[Hofbauer and Sigmund 1998]). For this reason, we use the
following partial adaptive dynamics (Garay 2002), which
moves the foraging strategy in the direction of higher pred-
ator payoff:

_p1 p p1(12 p1)
∂W(s,p1,p2,t1,t2)

∂p1
, (13)

_p2 p p2(12 p2)
∂W(s,p1,p2,t1,t2)

∂p2
, (14)

_t1 p t1
∂W(s,p1,p2, t1,t2)

∂t1
, (15)

_t2 p t2
∂W(s,p1,p2,t1,t2)

∂t2
. (16)

In “Dynamical Characterization of Static Solution of the
DFG,” in the appendix, we show that optimal-foraging be-
havior (p*, t*) at fixed s corresponds exactly to a locally as-
ymptotically stable rest point under this predator dynamics.

However, it is important to emphasize that the above
combined predator-prey dynamics describes the way the
counterinterested “players” (prey population and forager)
simultaneously change their strategies according to the op-
ponents’ current strategies. The game-dynamics solution
is then a locally asymptotically stable rest point (s*, p*,
t*) of equations (12)–(16). In cases where such a rest point
does not exist but a stable behavior cycle emerges, this cy-
cle is also considered a solution to the game dynamics.
Results: Comparison of the Two Solution Concepts

To compare the static- and dynamic-solution concepts, we
concentrate on the situation when both patches are used by
prey and by forager. That is, we assume that p1 p p2 p 1
and consider the rest points (s*, t*1 , t*2) of equations (12),
(15), and (16) with 0< s* < 1, and t*1 , t*2 both positive.
The combined dynamics is then

_sp s(12 s)½x1 2 x2�,

_t1 p
t1d1

E(t)

�
d
dt1

g1 2W

�
,

_t2 p
t2d2

E(t)

�
d
dt2

g2 2W

�
.

(17)
It is clear that, if (s*, t*1 , t*2) is a dynamic solution of the
DFG, then s* a static solution for the prey (i.e., it satisfies
inequality [5] because x1 p x2 at (s*, t*1 , t*2)). However, as
we see in the next two sections, which use Holling type III
and II functional responses, with respect to prey density
in each patch type, the converse is not true. These results
rely on the convexity/concavity of the gain gi(xi(s), ti) in
patch i as a function of patch density xi(s) and as a function
of patch-leaving time ti.
As a partial summary of the results we obtain, if gi(xi(s),

ti) is convex in xi(s) at s* and locally concave in t1 and t2 at
(t*1 , t*2), then s* is stable (i.e., an ESS) for the prey dynamics
(eq. [12]) and (t*1 , t*2) is stable for the predator adaptive dy-
namics (eqq. [15], [16]). Global concavity in t1 and t2 im-
plies that (t*1 , t*2) is the optimal-foraging behavior when
prey strategy is fixed at s*. On the other hand, if gi(xi(s),
ti) is concave in xi(s), then s* is unstable for the prey dy-
namics (eq. [12]). These dynamic-stability results assume
that only one player changes its strategy at a time, whereas
the dynamic-solution concept allows both predator and prey
to change strategies at the same time. The consequences of
this are examined in the next two subsections.
Holling III Gain Functions

If the energy gain gi(xi(s), ti) is a convex function of patch
density xi(s) for ip 1, 2, as occurs for Holling III functional
responses when prey density in patch type i is low, then prey
payoff is a decreasing function of its density in each patch
(i.e., gi(xi(s), ti)=xi(s) is an increasing function of xi(s)). In
this case, Fretwell and Lucas (1969) show that there will
be a unique IFD. In fact, Cressman and Křivan (2006) prove
that this IFD is an ESS. Intuitively, if the forager’s strategy
does not change, then the stability of the prey rest point is
guaranteed by the following: if the local prey density de-
creases in patch A1 and increases in patch A2, then the indi-
vidual survival rate in patch A1 increases and that in patch
A2 decreases, and vice versa. In other words, if a prey indi-
vidual moves to the other patch, then its survival rate de-
creases. The IFD is then a stable equilibrium of the prey dy-
namics (eq. [12]) for fixed patch-leaving times t1 and t2 of
the predator. For high prey density in both patch types, this
is no longer the case, as we see in the next subsection, on
Holling II gain functions.
For the predator dynamics, we have an optimization

problem in the patch-leaving times t1 and t2 (see “Dynam-
ical Characterization of Static Solution of the DFG,” in the
appendix). Since both leaving times t*1 and t*2 are positive,
local asymptotic stability with respect to perturbations in
the predator population (i.e., stability under the predator dy-
namics of eqq. [15], [16]) is equivalent to the predator gain
functions gi(xi(s), ti) in both patches being concave in the
leaving times at the equilibrium (s*, t*1 , t*2) (i.e., gi(xi(s), ti)
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is locally concave in ti for ip 1, 2). Conversely, if these gain
functions are globally concave in patch-leaving time, then a
stable rest point of the predator dynamics corresponds to
optimal-foraging behavior.

Gain functions of the form gi(xi, ti)p aix2
i ti=(x2

i 1 aixiti 1
ai) with ai positive are typical Holling III functional re-
sponses in prey density xi (i.e., convex in the local prey den-
sity xi when xi is small, becoming concave for larger xi) that
increase to the saturated consumption level of aiti at high
prey density. They are also globally concave in leaving time
ti, with all prey consumed if the predator stays in this patch
type sufficiently long. Thus, if (s*, t*1 , t*2) is a rest point of
the dynamical system (17), then the prey NE s* is an ESS
for small values of x but not an ESS for large values of x
when the forager strategy is fixed at (t*1 , t*2), as shown in fig-
ure 2a. In fact, for the parameters chosen in this figure, there
are two interior ESSs (blue curves) for large x. These, how-
ever, are not associated with equilibria of the DFG, since the
equilibrium forager strategy corresponding to these values
of s is not (t*1 , t*2).

There is consistency with these NE results and the sta-
bility of (s*, t*1 , t*2) under equation (17), in that the game-
dynamics solution is a stable equilibrium for small values
of x and a stable limit cycle for large x (fig. 2b). That is, this
bifurcation diagram is qualitatively what is expected, in that
the static-solution concept (s*, t*1 , t*2) is locally asymptoti-
cally stable for small x and unstable for large x. However,
the transition value of x from stability to instability of s*

(found numerically to be xp 1.3 in fig. 2a) is different from
the transition value of xp 1.66 from stability to instability
of (s*, t*1 , t*2) in figure 2b. Specifically, for intermediate total
population size x, we find that (s*, t*1 , t*2) is stable under
equation (17) even though the static prey solution would
be unstable without the stabilizing effect of the forager’s be-
havior. In these cases, there is a discrepancy between the
static-solution concept and the game-dynamics solution.

Observe that, in cases where stable behavior cycles emerge
as the game-dynamics solution, neither prey nor forager
keep a fixed behavior; instead, each replies to the actual be-
havior of the other. Furthermore, as can be shown numer-
ically, the average prey behavior over one behavioral cycle
is different from the equilibrium value s*, an outcome that
contrasts with known results (Hofbauer and Sigmund 1998)
for population density cycles in predator-prey interactions
based on Lotka-Volterra models and for the behavioral cy-
cles of the classical battle-of-the-sexes game.
Holling II Gain Functions

Now suppose that prey payoff is an increasing function of
its density in each type of patch (e.g., gi(xi(s), ti) are con-
cave functions of xi(s) for ip 1, 2, as occurs for Holling II
functional responses). Then prey survival in patch type i
is at a maximum if all prey are in this patch. Thus, there
is at least one IFD with all prey in the same patch type,
and this is also an ESS (see “Dynamical Characterization
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Figure 2: Trajectories of the game dynamics for typical Holling III
gain functions of the form gi(xi, ti)p aix2

i ti=(x2
i 1 aixiti 1 ai), where

a1 p 0.3 and a2 p 0.5. a, Prey replicator dynamics, with predator
strategy fixed at (t*1 , t*2), as a function of x. The interior equilibrium
s* is globally stable until xp 1.3 (solid blue curve) and then becomes
unstable for x > 1.3 (dashed red curve), in which case the prey evolve
to different mixed equilibria of equation (12) (i.e., the solid blue
curves) that are locally asymptotically stable but do not correspond
to rest points of dynamical system (17). b, For x< 1.66, trajectories
of equation (17) approach the equilibrium (s*, t*1 , t*2) on the solid
black curve with mixed NE s*. For larger x, the trajectories approach
a stable limit cycle (i.e., one of the solid blue curves) and the equilib-
rium (s*, t*1 , t*2) is unstable (indicated by one of the points on the solid
red curve). Thus, for intermediate values of x (i.e., 1.3< x< 1.66), (s*,
t*1 , t*2) is stable even though s* is an unstable NE of the prey habitat-
selection game. Other parameters: y1 p y2 p 1, ap 0.5, t0 p 0.4,
d1 p d2 p 1=2, and cp 0.
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of Static Solution of the DFG” in the appendix). There may
also be a second ESS with all prey in the other patch type.
In this latter case, there will be a third IFD with prey in
both patch types (corresponding to Ai), but this will not
be an ESS since, intuitively, concavity means that, at this
IFD, if a prey moves to the other patch, then its survival
rate increases. That is, although the IFD with prey in both
patch types is an NE, it is not stable with respect to per-
turbations in the prey population (i.e., it is not stable under
the prey dynamics of eq. [12]). This phenomenon is dis-
cussed by Fretwell and Lucas (1969) and raises the ques-
tion whether such an s* should be considered an IFD (see
“Dynamical Characterization of Static Solution of the DFG”
in the appendix).

Gain functions of the form gi(xi, ti)p aixiti=(xi 1 aiti 1
1) with ai positive are typical Holling II functional responses
in prey density xi (i.e., globally concave in xi) that increase
to the saturated consumption level of aiti at high prey den-
sity. Thus, if (s*, t*1 , t*2) is a rest point of the dynamical sys-
tem (17), then the prey NE s* is not an ESS when the for-
ager strategy is fixed at (t*1 , t*2) (see fig. 3a). In fact, for the
parameters chosen in this figure, there are two ESSs, both
of which have all prey in one patch type. On the other hand,
as in “Holling III Gain Functions,” these gain functions are
globally concave in leaving time ti, with all prey consumed
if the predator stays in this patch type sufficiently long. That
is, (t*1 , t*2) is a stable rest point of the predator dynamics
when prey strategy is fixed at s*.

From the above discussion, we expect (s*, t*1 , t*2) to be un-
stable under equation (17). However, as seen in figure 3b,
(s*, t*1 , t*2) is in fact stable under equation (17) (i.e., it is a
game-dynamics solution) for large total population size x.
This example shows more clearly than figure 2 that a game-
dynamics equilibrium solution may not be a stable static
solution for the prey population (i.e., s* may not be stable
for eq. [12]). We can say that forager behavior stabilizes
the mixed prey distributions, since if the forager’s strategies
are fixed then the prey population will use only one patch.
Discussion

The dispersal-foraging game (DFG) is the union of optimal-
foraging theory and the IFD, where a prey’s payoff function
is its survival rate and the forager’s payoff is the number of
prey killed per unit time. We studied two different solution
concepts for the DFG. The static NE concept is an equilib-
rium (s*, t*1 , t*2) that is a straightforward union of require-
ments that s* be an IFD of the prey habitat-selection game
and that, at this IFD, thepredator adopts its optimal-foraging
behavior. The dynamic concept looks for a stable solution
of the game dynamics (either an asymptotically stable rest
point or a stable cycle of eq. [17]). A fundamental difference
between these static- and dynamic-solution concepts is that
the Nash assumption (i.e., only one player can change its
strategy at a time) implicitly precludes the possibility of be-
havior cyclic solutions.
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Figure 3: Trajectories of the game dynamics for typical Holling II
gain functions of the form gi(xi, ti)p aixiti=(xi 1 aiti 1 1), where
a1 p 0.9 and a2 p 0.8. a, Prey dynamics, with predator strategy
fixed at (t*1 , t*2), as a function of x. The interior equilibrium s* is un-
stable (dashed red curve), and the prey evolve to all be in one patch
(i.e., the blue lines that are locally asymptotically stable). b, Bifurca-
tion diagram with respect to total prey population size x for the game
dynamics of equation (17). For small values of x, trajectories of equa-
tion (17) approach a stable limit cycle (i.e., one of the solid blue curves).
In particular, the equilibrium (s*, t*1 , t*2) on the dotted red curve with
mixed NE s* is not stable (which is consistent with the instability
of s* for the static prey solution concept in a). On the other hand,
for larger values of x, trajectories of equation (17) approach the stable
equilibrium (s*, t*1 , t*2) on the solid black curve, a result that is unex-
pected from the static-solution concept. Other parameters: y1 p y2 p
1, ap 0.8, t0 p 0.4, d1 p d2 p 1=2, and cp 0.
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The game-theoretic NE condition is especially impor-
tant when applied to the predator’s behavior. Specifically,
we showed how this leads to the rule of time averages: the
optimal predator behavior involves those activities that en-
sure larger time average intake than the time average of all
activities. Both the zero-one rule and Charnov’s marginal-
value theorem of optimal-foraging theory then follow di-
rectly from our rule of time averages. Furthermore, since
the static solution is a rest point of the combined predator-
prey game dynamics, there are cases when both solution con-
cepts give the same prediction; that is, when the NE is locally
asymptotically stable with respect to the game dynamics.

However, we have also shown that the two solution con-
cepts can be quite different. As an important example, when
both gain functions are concave in patch prey density (like
Holling II), the static solution predicts that prey use only
one patch type, whereas the game-dynamics solution pre-
dicts mixed habitat use (see fig. 3b, where the combined dy-
namics leads to either a stable equilibrium or a stable limit
cycle). The intuitive reason for this outcome is that, when
prey use only one patch type, the forager consequently also
concentrates on this patch. This leads to the other patch be-
coming a prey “refuge” because of the forager’s behavior,
and so prey start to use this patch as well. Similar discrep-
ancies between the two solution concepts arise for Hol-
ling III gain functions (see fig. 2). In practice, the dynamical
solution can guarantee that the prey use both patch types
more often than classical approaches based on the IFD.

We also emphasize that the behavioral cycles we observe
in our models based on prey IFD and predator optimal for-
aging occur at fixed density. This shows not only that we
should expect cycling in predator-prey population sizes
over long periods of time but also that game-theoretic rea-
soning predicts that individual behavior often cycles over
short time intervals when population size can be assumed
to be fixed. Our observations illustrate that total prey den-
sity displays a “ behavior bifurcation effect” in the sense that
by increasing density, stable behavior equilibrium becomes
stable behavior cycles (fig. 3), or vice versa (fig. 2). This phe-
nomenon is parallel to the “paradox of enrichment” known
in population ecology (Rosenzweig 1971), where increasing
the carrying capacity of prey causes a bifurcation. It should
also be noted that, although the bifurcations from stable
equilibrium behavior to stable cyclic behavior that we ob-
served use total prey density as the bifurcation parameter,
bifurcations occur in other model parameters as well.

We recall some biological considerations and examples
that serve to justify our dynamic-solution concept. First,
we agree with Lima (2002, p. 74) that “some failures of stan-
dard optimal diet theory” (Sih and Christensen 2001) and
standard IFD theory (e.g., Julliar 2000) “might be explica-
ble in terms of a predator-prey game.” The dynamic con-
cept provides new insights into these prey-predator systems,
where prey behavior and the forager’s strategies together de-
termine a high killing rate and neither optimal-foraging the-
ory nor the IFD fit the observations. These issues also arise
in applied ecology. Specifically, it is generally acknowledged
that optimal-foraging theory and the IFD are important for
biological control of pests (Mills and Wajnberg 2008). The
utilization of phytoseiid predatory mites as biological con-
trol agents is widespread (Vila and Cabello 2014). However,
the dispersion of spider mites (e.g., Tetranychus urticae) be-
tween patches is not an IFD, since reproductive success var-
ies between habitats (Julliar 2000). At the same time, pred-
atory mites of the Phytoseiidae (Acari) have not adapted
to optimal foraging (Konakandla 2006; Gontijo et al. 2010;
Maeda 2010; van der Hammen et al. 2012). In the following
two examples, the above pest-predator system exists with
habitat heterogeneity. First, in the United States, apple or-
chards in Utah, whose total ground vegetation cover was
at least 50%, had predatory mite populations that sufficed
to keep pest mites below their damaging levels (Alston
1994). Second, spider mites (Tetranychus kanzawai) in de-
ciduous fruit tree orchards in Japan usually overwinter on
ground vegetation. In the spring, they first increase their
populations on the vegetation and thenmove onto fruit trees.
The predator Phytoseiulus persimilis, released onto ground
cover, may eliminate spider mites before they migrate onto
fruit trees (Takahashi et al. 1998; Takafuji and Amano
2001). In similar situations, whether game theory leads to a
deeper understanding of predation, especially whether sta-
ble behavior cycles should occur when optimal-foraging
theory and/or the IFD does not predict observed behavior,
can be tested by field trials.
Finally, Holling II functional responses are very common

in nature (e.g., Hassell et al. 1976), and so the shape of the
gain function used in figure 3 is quite realistic. In this case,
prey use only one patch type at a classic IFD/ESS, whereas
the forager can stabilize the prey’s mixed habitat use at the
game-dynamics solution. The existence of such examples is
a strong argument to justify the dynamic-solution concept.
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