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Non-intersecting squared Bessel paths and multiple orthogonal

polynomials for modified Bessel weights

A.B.J. Kuijlaars, A. Mart́ınez-Finkelshtein, and F. Wielonsky

Abstract

We study a model of n non-intersecting squared Bessel processes in the confluent case:
all paths start at time t = 0 at the same positive value x = a, remain positive, and are
conditioned to end at time t = T at x = 0. In the limit n→ ∞, after appropriate rescaling,
the paths fill out a region in the tx-plane that we describe explicitly. In particular, the
paths initially stay away from the hard edge at x = 0, but at a certain critical time t∗ the
smallest paths hit the hard edge and from then on are stuck to it. For t 6= t∗ we obtain the
usual scaling limits from random matrix theory, namely the sine, Airy, and Bessel kernels.
A key fact is that the positions of the paths at any time t constitute a multiple orthogonal
polynomial ensemble, corresponding to a system of two modified Bessel-type weights. As
a consequence, there is a 3×3 matrix valued Riemann-Hilbert problem characterizing this
model, that we analyze in the large n limit using the Deift-Zhou steepest descent method.
There are some novel ingredients in the Riemann-Hilbert analysis that are of independent
interest.

1 Introduction

Determinantal point processes are of considerable current interest in probability theory and
mathematical physics, since they arise naturally in random matrix theory, non-intersecting
paths, certain combinatorial and stochastic growth models and representation theory of large
groups, see e.g. Deift [22], Johansson [31], Katori and Tanemura [37], Borodin and Olshanski
[11], and many other papers cited therein. See also the surveys of Soshnikov [49], König [38],
Hough et al. [30], and Johansson [32].

A determinantal point process is characterized by a correlation kernel K such that for
every m the m-point correlation function (or joint intensities) takes the determinantal form

det [K(xj, xk)]j,k=1,...,m

We will only consider determinantal point processes on R.
As pointed out by Borodin [9] certain determinantal point processes arise as biorthogonal

ensembles, i.e., joint probability density functions on R
n of the form

P(x1, . . . , xn) =
1

Zn
det[fj(xk)]j,k=1,...,n det[gj(xk)]j,k=1,...,n (1.1)

for certain given functions f1, . . . , fn, and g1, . . . , gn. The correlation kernel is then given by

K(x, y) =

n∑

j=1

φj(x)ψj(y) (1.2)
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where φj , ψj , j = 1, . . . , n are such that

span{φ1, . . . , φn} = span{f1, . . . , fn}, span{ψ1, . . . , ψn} = span{g1, . . . , gn}

and they have the biorthogonality property

∫

R

φj(x)ψk(x) dx = δj,k.

The joint probability distribution function for the eigenvalues of unitary invariant ensem-
bles of random Hermitian matrices (1/Z̃n)e−Tr V (M)dM has the form (1.1) where

fj(x) = gj(x) = xj−1e−
1
2
V (x), j = 1, 2, . . . , n. (1.3)

Orthogonalizing the functions (1.3) leads to

φj(x) = ψj(x) = pj−1(x)e
− 1

2
V (x), j = 1, 2, . . . , n,

where pj−1 is the orthonormal polynomial of degree j − 1 with respect to the weight e−V (x)

on R. The kernel (1.2) is then the orthogonal polynomial kernel, also called the Christoffel-
Darboux kernel because of the Christoffel-Darboux formula for orthogonal polynomials, and
the ensemble is called an orthogonal polynomial ensemble [38].

Other examples for biorthogonal ensembles arise in the context of non-intersecting paths
as follows. Consider a one-dimensional diffusion process X(t) (i.e., a strong Markov process
on R with continuous sample paths) with transition probability functions pt(x, y), t > 0,
x, y ∈ R. Take n independent copies Xj(t), j = 1, . . . , n, conditioned so that

• Xj(0) = aj, Xj(T ) = bj, where T > 0, and a1 < a2 < · · · < an, b1 < b2 < · · · < bn are
given values,

• the paths do not intersect for 0 < t < T .

It then follows from a remarkable theorem of Karlin and McGregor [33] that the positions of
the paths at any given time t ∈ (0, T ) have the joint probability density (1.1) with functions

fj(x) = pt(aj , x), gj(x) = pT−t(x, bj), j = 1, . . . , n.

[Properly speaking the joint probability density function is first defined for ordered n-tuples
x1 < x2 < · · · < xn only. It is extended in a symmetric way to all of R

n.]
An important feature of determinantal point processes is that they seem to have universal

limits. By now, this is well-established for the eigenvalue distributions of unitary random
matrix ensembles. Indeed if Kn is the eigenvalue correlation kernel for the random matrix
ensemble (note the n-dependence of the potential)

1

Z̃n

e−n Tr V (M)dM

then we have under mild assumptions on V that

lim
n→∞

1

n
Kn(x, x) =: ρ(x)
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exists. In addition if V is real analytic, and if x∗ is in the bulk of the spectrum (i.e., ρ(x∗) > 0),
then (see [24])

lim
n→∞

1

nρ(x∗)
Kn

(
x∗ +

x

nρ(x∗)
, x∗ +

y

nρ(x∗)

)
=

sinπ(x− y)

π(x− y)
. (1.4)

Universality of local eigenvalue statistics is expressed by (1.4) in the sense that the sine kernel
arises as the limit regardless of V and x∗. The universality (1.4) is extended in many ways
and (as its name suggests) under very mild assumptions (see the recent works [43, 44]).

The limit (1.4) does not hold at special points x∗ of the spectrum where ρ(x∗) = 0.
However it turns out that Kn has scaling limits at such special points that are determined by
the macroscopic nature of x∗, and in that sense they are again universal (see e.g. [14, 15, 16,
17, 23]).

It is reasonable to expect that such universal limit results hold generically for non-
intersecting paths as well, although results are more sparse. For recent progress related
to discrete random walks, random tilings and random matrices with external source see
[3, 4, 5, 6, 7, 8, 47, 50].

It is the aim of this paper to study a model of n non-intersecting squared Bessel processes
in the limit n → ∞. Recall that if {X(t) : t ≥ 0} is a d-dimensional Brownian motion, then
the diffusion process

R(t) = ‖X(t)‖2 =
√
X1(t)2 + · · · +Xd(t)2, t ≥ 0,

is the Bessel process with parameter α = d
2 − 1, while R2(t) is the squared Bessel process

usually denoted by BESQd (see e.g. [34, Ch. 7], [39]). These are an important family of
diffusion processes which have applications in finance and other areas. The well known Cox-
Ingersoll-Ross (CIR) model in finance describing the short term evolution of interest rates
or different models of the growth optimal portfolio (GOP) represent important examples of
squared Bessel processes [29, 48]. The Bessel process R(t) for d = 1 reduces to the Brownian
motion reflected at the origin, while for d = 3 it is connected with the Brownian motion
absorbed at the origin [36, 37].

A system of n particles performing BESQd conditioned never to collide with each other
and conditioned to start and end at the origin, can be realized as a process of eigenvalues of
a hermitian matrix-valued diffusion process, known as the chiral or Laguerre ensemble, see
e.g. [27, 35, 39, 51] and below. In this paper we consider the case where all particles start at
the same positive value a > 0 and end at 0. Of particular interest here is the interaction of
the non-intersecting paths with the hard edge at 0. Due to the nature of the squared Bessel
process, the paths starting at a positive value remain positive, but they are conditioned to
end at time T at 0. After appropriate rescaling we will see that in the limit n → ∞ the
paths fill out a region in the tx-plane. The paths start at t = 0 and initially stay away from
the hard edge at x = 0. At a certain critical time the smallest paths hit the hard edge and
from then on are stuck to it. The phase transition at the critical time is a new feature of the
present model. It is a new soft-to-hard edge transition.

We are able to analyze the model in great detail since in the confluent case the biorthogonal
ensemble reduces to a multiple orthogonal polynomial ensemble, as we will show in Subsection
2 below. The correlation kernel for the multiple orthogonal polynomial ensemble is expressed
via a 3 × 3 matrix-valued Riemann-Hilbert (RH) problem [6, 20].

We analyze the RH problem in the large n limit using the Deift-Zhou steepest descent
method for RH problems [26]. There are some novel ingredients in our analysis which we

3



feel are of independent interest. First of all, there is a first preliminary transformation which
makes use of the explicit structure of the RH jump matrix. It contains the modified Bessel
functions Iα and Iα+1 and we use the explicit properties of Bessel functions. A result of the
first transformation is that a jump is created on the negative real axis, see Section 3.

The multiple orthogonal polynomials for modified Bessel functions were studied before
by Coussement and Van Assche [18, 19]. We use their results to make an ansatz about an
underlying Riemann surface that allows us to define the second transformation in the steepest
descent analysis in Section 4. The use of the Riemann surface is similar to what is done in
[7, 42]. In the appendix we mention an alternative approach via equilibrium measures and
associated g-functions. The further steps in the RH analysis follow the general scheme laid
out by Deift et al. [24, 25] in the context of orthogonal polynomials. An important feature of
the present situation is that there is an unbounded cut along the negative real axis and we
have to deal with this technical issue in the construction of the global parametrix in Section
6. The construction of the local parametrices at the hard edge 0 also presents a new technical
issue, see Section 8.

The main results of the paper are stated in the next section.

2 Statement of results

2.1 Squared Bessel processes

The transition probability density of a squared Bessel process with parameter α > −1 is given
by (see [12, 39])

pα
t (x, y) =

1

2t

(y
x

)α/2
e−(x+y)/(2t)Iα

(√
xy

t

)
, x, y > 0, (2.1)

pα
t (0, y) =

yα

(2t)α+1Γ(α+ 1)
e−y/(2t), y > 0, (2.2)

where Iα denotes the modified Bessel function of the first kind of order α,

Iα(z) =

∞∑

k=0

(z/2)2k+α

k! Γ(k + α+ 1)
; (2.3)

see [1, Section 9.6] for the main properties of the modified Bessel functions. If d = 2(α+1) is
an integer, then the squared Bessel process can be seen as the square of the distance to the
origin of a d-dimensional standard Brownian motion.

If the starting points aj and the endpoints bj are all different, then (as explained in the
introduction) the positions of the paths at a fixed time t ∈ (0, T ) have a joint probability
density

Pn,t(x1, . . . , xn) =
1

Zn,t
det [pα

t (aj , xk)]j,k=1,...,n det
[
pα

T−t(xj, bk)
]
j,k=1,...,n

,

where Zn,t is the normalization constant such that

∫

(0,∞)n

Pn,t(x1, . . . , xn)dx1 · · · dxn = 1.
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This is a biorthogonal ensemble (1.1) with functions

fj(x) = pα
t (aj , x), gj(x) = pα

T−t(x, bj).

We are going to take the confluent limit aj → a > 0, and bj → 0. Then the biorthogonal
ensemble structure is preserved. In our first result we identify the functions fj and gj for this
situation.

Proposition 2.1. In the confluent limit aj → a > 0, bj → 0, j = 1, . . . , n, the positions of

the non-intersecting squared Bessel paths at time t ∈ (0, T ) are a biorthogonal ensemble with

functions

f2j−1(x) = xj−1pα
t (a, x), j = 1, . . . , n1 := ⌈n/2⌉, (2.4)

f2j(x) = xj−1pα+1
t (a, x), j = 1, . . . , n2 := n− n1, (2.5)

gj(x) = xj−1e
− x

2(T−t) , j = 1, . . . , n. (2.6)

Proof. In the confluent limit aj → a, the linear space spanned by the functions y 7→ pα
t (aj , y),

j = 1, . . . , n, tends to the linear space spanned by

y 7→ ∂j−1

∂xj−1
pα

t (a, y), j = 1, . . . , n. (2.7)

Using the differential relations satisfied by the transition probabilities, (see e.g. [1] or [18, 19]):

∂

∂x
pα

t (x, y) =
1

2t
(pα+1

t (x, y) − pα
t (x, y)),

x
∂

∂x
pα+1

t (x, y) =
y

2t
pα

t (x, y) −
( x

2t
+ α+ 1

)
pα+1

t (x, y),

it is easily shown inductively, that the linear span of (2.7) is the same as the linear space
spanned by

y 7→ yj−1pα
t (a, y), j = 1, . . . , n1,

y 7→ yj−1pα+1
t (a, y), j = 1, . . . , n2

which are exactly the functions in (2.4), (2.5).
Next, the linear space spanned by the functions x 7→ pα

T−t(x, bj), j = 1, . . . , n, tends in
the confluent limit bj → 0 to the linear space spanned by the functions

x 7→ ∂j−1

∂yj−1

[
y−αpα

T−t(x, y)
]∣∣

y=0
. (2.8)

By (2.1) and (2.3) we have that

y−αpα
T−t(x, y) =

1

(2(T − t))α+1
e−(x+y)/(2(T−t))

∞∑

k=0

(xy)k

k! Γ(k + α+ 1)(2(T − t))2k

which is an entire function in y of the form

y−αpα
T−t(x, y) = e

− x
2(T−t)

∞∑

k=0

Pk(x)y
k

where each Pk(x) is a polynomial in x of exact degree k. Thus the linear space spanned by the
functions (2.8) is equal to the linear space spanned by the functions (2.6), which completes
the proof of the proposition.
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Remark 2.2. In the next subsection we will see how Proposition 2.1 allows us to identify
the ensemble of non-intersecting squared Bessel paths at any time t ∈ (0, T ) as a multiple
orthogonal polynomial ensemble. For the transition probability density of the (non-squared)
Bessel process the calculations as in the proof of Proposition 2.1 would not work and in
fact the positions of non-intersecting Bessel paths are not a multiple orthogonal polynomial
ensemble. This is the reason why we concentrate on squared Bessel paths.

Of course, by taking square roots we can transplant results on non-intersecting squared
Bessel paths to non-intersecting Bessel paths, see Remark 2.10 below.

2.2 Multiple orthogonal polynomial ensemble

According to Proposition 2.1 the biorthogonal ensemble in the confluent case is an example of
what we call a multiple orthogonal polynomial ensemble. A multiple orthogonal polynomial
ensemble in general may involve an arbitrary number of weights and an arbitrary multi-
index, but we will discuss here the case of weight functions ŵ0, ŵ1, ŵ2 and a multi-index
(n1, n2) where n1 + n2 = n and n1 = ⌈n/2⌉. We take functions

f2j−1(x) = xj−1ŵ1(x), f2j(x) = xj−1ŵ2(x)

and
gj(x) = xj−1ŵ0(x), j = 1, . . . , n,

and we use these functions for a biorthogonal ensemble (1.1). Note that in the squared Bessel
case, we have by Proposition 2.1 and (2.1) that (where we drop irrelevant constants)

ŵ1(x) = xα/2e−
x
2t Iα

(√
ax

t

)
(2.9)

ŵ2(x) = x(α+1)/2e−
x
2t Iα+1

(√
ax

t

)
(2.10)

ŵ0(x) = e
− x

2(T−t) (2.11)

The biorthogonalization process leads to bases φj , ψj , j = 1, . . . , n, and we may take them
so that

φj(x) = Aj−1,1(x)ŵ1(x) +Aj−1,2(x)ŵ2(x), ψj(x) = Bj−1(x)ŵ0(x),

where Aj−1,1 and Aj−1,2 are polynomials of degrees ⌈(j − 1)/2⌉ and ⌊(j − 1)/2⌋, respectively,
and Bj−1 is a monic polynomial of degree j − 1. The biorthogonality property is

∫
(Aj,1w1(x) +Aj,2w2(x))Bk(x) dx = δj,k, j, k = 0, . . . , n− 1, (2.12)

where we have put

w1(x) = ŵ0(x)ŵ1(x), w2(x) = ŵ0(x)ŵ2(x). (2.13)

The polynomials Aj,1 and Aj,2 satisfying (2.12) are called multiple orthogonal polynomials
of type I and the polynomials Bk are called multiple orthogonal polynomials of type II. The
correlation kernel

K̂n(x, y) =

n∑

j=1

φj(x)ψj(y) =

n−1∑

j=0

(Aj,1ŵ1(x) +Aj,2ŵ2(x))Bj(y)ŵ0(y)

6



is called a multiple orthogonal polynomial kernel. We will use the equivalent form (it is
equivalent since it gives rise to the same m-point correlation functions)

Kn(x, y) =
ŵ0(x)

ŵ0(y)
K̂n(x, y) =

n∑

j=1

(Aj,1w1(x) +Aj,2w2(x))Bj(y) (2.14)

which has a characterization through a RH problem, [6, 20]

Kn(x, y) =
1

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1

+ (y)Y+(x)




1
0
0




where Y is a solution of the following 3 × 3 matrix valued RH problem.

1. Y is analytic in C \ R.

2. On the real axis, Y possesses continuous boundary values Y+ (from the upper half plane)
and Y− (from the lower half plane), and

Y+(x) = Y−(x)




1 w1(x) w2(x)
0 1 0
0 0 1


 , x ∈ R. (2.15)

3. Y (z) has the following behavior at infinity:

Y (z) =

(
I + O

(
1

z

))

zn 0 0
0 z−n1 0
0 0 z−n2


 , z → ∞, z ∈ C \ R. (2.16)

If the weight functions are not defined on the whole real line (as it will be for the non-
intersecting squared Bessel paths: the case of interest in this paper), we have to supplement
the RH problem with appropriate conditions at the endpoints. The RH problem is an exten-
sion of the RH problem for orthogonal polynomials of Fokas, Its, and Kitaev [28] to multiple
orthogonal polynomials due to Van Assche et al. [52].

In this paper we have by (2.9), (2.10), (2.11), and (2.13)

w1(x) = xα/2 exp

(
− Tx

2t(T − t)

)
Iα

(√
ax

t

)
,

w2(x) = x(α+1)/2 exp

(
− Tx

2t(T − t)

)
Iα+1

(√
ax

t

)
.

(2.17)

The weights are defined on [0,∞) so that the jump condition (2.15) only holds for x ∈ R+,
and the RH problem (2.15), (2.16) is supplemented with the following endpoint condition.

4. Y (z) has the following behavior near the origin, as z → 0, z ∈ C \ R+,

Y (z) = O




1 h(z) 1
1 h(z) 1
1 h(z) 1


 , with h(z) =





|z|α, if −1 < α < 0,
log |z|, if α = 0,

1, if 0 < α.
(2.18)

The O condition in (2.18) is to be taken entrywise.
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2.3 Multiple orthogonal polynomials for modified Bessel weights

We are fortunate that the multiple orthogonal polynomials associated with the weights (2.17)
were studied before by Coussement and Van Assche [18, 19]. They showed that all polynomials
Aj,1, Aj,2 and Bk exist so that the above RH problem has a unique solution and

detY (z) ≡ 1, for z ∈ C \ R+.

In addition Bk satisfies interesting recurrence and differential relations which they were able
to identify explicitly.

The type II multiple orthogonal polynomials Bk satisfy a four term recurrence relation

xBk(x) = Bk+1(x) + bkBk(x) + ckBk−1(x) + dkBk−2(x)

with recurrence coefficients that are obtained from [19, Theorem 9] after appropriate rescaling
and identification of parameters

bk =
a(T − t)2

T 2
+

2t(T − t)

T
(2k + α+ 1),

ck =
4at(T − t)3

T 3
k +

4t2(T − t)2

T 2
k(k + α),

dk =
4at2(T − t)4

T 4
k(k − 1).

In addition y = Bn is a solution of the third order differential equation [19, Theorem 11]

xy′′′ +

(
− Tx

t(T − t)
+ α+ 2

)
y′′

+

(
T 2

4t2(T − t)2
x+

(n− α− 2)T

2t(T − t)
− a

4t2

)
y′ − nT 2

4t2(T − t)2
y = 0. (2.19)

2.4 Time scaling and large n limit

We want to analyze the kernel Kn from (2.14) in the large n limit. To obtain interesting
results, we make the time variable depend on the number n of paths. Hence, we rescale the
time in an appropriate way, namely we replace the variables t and T

t 7→ t

2n
, T 7→ 1

2n
,

so that 0 < t < 1. Thus, the system of weights (2.17) now becomes n-dependent

w1(x) = w1,n(x) = xα/2 exp

(
− nx

t(1 − t)

)
Iα

(
2n

√
ax

t

)
,

w2(x) = w2,n(x) = x(α+1)/2 exp

(
− nx

t(1 − t)

)
Iα+1

(
2n

√
ax

t

)
.

(2.20)

Alternatively, we could have performed space scaling, putting T = 1 and replacing the position
variable x with 2nx and the starting position a with 2na.
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After the change of time parameters t 7→ t/(2n), T 7→ 1/(2n) the differential equation
(2.19) turns into (with x replaced by z)

zy′′′(z) +

(
(2 + α) − 2nz

t(1 − t)

)
y′′(z)

+

(
n2z

t2(1 − t)2
+
n(n− α− 2)

t(1 − t)
− an2

t2

)
y′(z) − n3

t2(1 − t)2
y(z) = 0, (2.21)

Expressing (2.21) in terms of the scaled logarithmic derivative ζ = y′/(ny) and keeping only
the dominant terms with respect to n as n → ∞, we arrive at the algebraic equation for
ζ = ζ(z),

zζ3 − 2z

t(1 − t)
ζ2 +

(
z

t2(1 − t)2
+

1

t(1 − t)
− a

t2

)
ζ − 1

t2(1 − t)2
= 0, (2.22)

which will play a central role in what follows. By solving for z, it may be written as

z =
1 − kζ

ζ(1 − t(1 − t)ζ)2
, k = (1 − t)(t− a(1 − t)). (2.23)

Proposition 2.3. For every t ∈ (0, 1) the three-sheeted Riemann surface associated with

(2.23) has four branch points at 0, ∞, p and q with p < q. There is a critical time

t∗ =
a

a+ 1
∈ (0, 1)

such that

Case 1: for t < t∗ we have 0 < p < q,

Case 2: for t > t∗ we have p < 0 < q,

Case 3: for t = t∗ we have p = 0 < q.

Note that the three cases correspond to k < 0, k > 0, and k = 0, respectively, where k is
the constant in (2.23). The proof of Proposition 2.3 follows from the discussion in Section 4.

In this paper we are going to analyze Case 1 and Case 2. In order to handle the two cases
simultaneously, we shall denote the real branch points by p− < p+ < q, where

p− = min(0, p), p+ = max(0, p).

Functions defined on the Riemann surface associated with (2.23) will play a major role
in the steepest descent analysis. There is an alternative approach based on an equilibrium
problem for logarithmic potentials and so-called g-functions. We briefly outline this approach
in the appendix of this paper.

2.5 Statement of results

We state our results for the kernel (2.14),

Kn(x, y) =
1

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1

+ (y)Y+(x)




1
0
0


 (2.24)
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where Y is the solution of the RH problem (2.15), (2.16), (2.18) with weights w1 and w2 as
in (2.20). Note that Kn depends on a > 0 and t ∈ (0, 1). In the following a will be fixed. To
indicate the dependence on t we occasionally write

Kn(x, y) = Kn(x, y; t).

To emphasize the dependence of the branch points on t we may write p(t), q(t), p−(t), and
p+(t).

Theorem 2.4. Under the rescaling described above, the following hold.

For every t ∈ (0, 1), the limiting mean density of the positions of the paths at time t

ρ(x) = ρ(x; t) = lim
n→∞

1

n
Kn(x, x; t)

exists, and is supported on the interval [p+(t), q(t)] ⊂ [0,∞). The density ρ satisfies

ρ(x) =
1

π
|Im ζ(x)| , p+(t) ≤ x ≤ q(t), (2.25)

where ζ = ζ(x) is a non-real solution of the equation (2.23).

From Theorem 2.4 it follows that as n→ ∞, the non-intersecting squared Bessel processes
fill out a simply connected region in the tx-plane given by

0 < t < 1, p+(t) < x < q(t).

This region can be seen in Figure 1.
From the definition of p+(t) and q(t) as branch points of the Riemann surface for (2.22)

it may be shown that x = p+(t), x = q(t) are solutions of the algebraic equation

4ax3 + x2(t2 − 20at(1 − t) − 8a2(1 − t)2) − 4x(1 − t)(t− a(1 − t))3 = 0. (2.26)

The locus of this algebraic curve in 0 < t < 1, x > 0 gives us the boundary curve. Observe
that it depends only on a, and is independent from the parameter α.

There are some peculiar features of the boundary curve, which may be checked by direct
calculation that we leave to the reader.

Corollary 2.5. For every a > 0 we have the following.

(a) The lower boundary curve x = p+(t) is positive for t < t∗ = a/(a+ 1) and it is zero for

t ≥ t∗. At t = t∗ it has continuous first and second order derivatives.

(b) The upper boundary curve x = q(t) has a slope

q′(1) = −4

at t = 1 which is independent of the value of a.

(c) The upper boundary curve x = q(t) is concave if a ≤ 1. It is not concave on the full

interval [0, 1] if a > 1.

(d) The maximum of the upper boundary curve x = q(t) is a+ 1.

10
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Figure 1: Numerical simulation of 50 rescaled non-intersecting BESQ2 with a = 1 (top) and
a = 5 (bottom). Bold line is the boundary of the domain described in Theorem 2.4.

By continuity the results of Theorem 2.4 and Corollary 2.5 continue to hold for a = 0,
which is the case of non-intersecting squared Bessel bridges [35].

Remark 2.6. The numerical experiments leading to Figure 1 have been carried out exploiting
the connection of the non-intersecting squared Bessel paths with the matrix-valued Laguerre
process, as described in [36, 39]. Indeed, let α ∈ N∪{0} and bjk, b̃jk, 1 ≤ j ≤ n+α, 1 ≤ k ≤ n,
be independent one-dimensional standard Brownian motions. Consider the (n+α)×n matrix-
valued process M(t) = (mjk) with entries mjk(t) = bjk(t) + i b̃jk(t) and define the n × n
symmetric positive definite matrix-valued process, called the Laguerre process, by

Ξ(t) = M(t)∗M(t) , t ∈ [0,+∞) ,

where M(t)∗ denotes the conjugate transpose of M(t). Then the process of eigenvalues of
Ξ(t) and the noncolliding n-particle system of BESQd, with d = 2(α + 1), are equivalent in
distribution.
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Finally, in the non-critical case t 6= t∗ we find the usual scaling limits from random matrix
theory, namely the sine, Airy, and Bessel kernels.

Theorem 2.7. Let t 6= t∗. Then for x∗ ∈ (p+(t), q(t)), we have

lim
n→∞

1

nρ(x∗)
Kn

(
x∗ +

x

nρ(x∗)
, x∗ +

y

nρ(x∗)

)
=

sinπ(x− y)

π(x− y)

uniformly for x and y in compact subsets of R.

Theorem 2.8. Let t 6= t∗. Then for some constant c > 0,

lim
n→∞

1

cn2/3
Kn

(
q(t) +

x

cn2/3
, q(t) +

y

cn2/3

)
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)

x− y
.

If t < t∗, then for some constant c > 0,

lim
n→∞

1

cn2/3
Kn

(
p+(t) − x

cn2/3
, p+(t) − y

cn2/3

)
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)

x− y
.

Theorem 2.9. Let t > t∗. Then for some constant c > 0, and x, y > 0,

lim
n→∞

1

cn2
Kn

( x

cn2
,
y

cn2

)
=
(y
x

)α/2 Jα(
√
x)
√
yJ ′

α(
√
y) −√

xJ ′
α(
√
x)Jα(

√
y)

2(x− y)
.

In the bulk we find the sine kernel, at the soft edges we find the Airy kernel, and at the
hard edge 0 we find the Bessel kernel of order α. Note that the factor (y/x)α/2 in the Bessel
kernel is not important since it will not influence the determinantal correlation functions.
This observation also explains why totally symmetric results are obtained if we reverse the
process and study n non-intersecting BESQd paths starting at the origin and ending at a
positive value a. Indeed, (y/x)α/2 is the only factor in the transition probabilities (2.1) that
is not symmetric in its variables.

At t = t∗ there is a transition from the Airy kernel to the Bessel kernel. This is when the
non-intersecting squared Bessel paths first hit the hard edge. The soft-to-hard edge transition
is different from previous ones considered in [10, 15]. We will treat this transition in a separate
publication.

Observe also that neither the boundary of the domain filled by the scaled paths, nor the
behavior in the bulk or at the soft edge depends on the parameter α related to the dimension
d of the BESQd. This dependency appears only in the interaction with the hard edge at
x = 0. A possible interpretation may be that α is a measure for the interaction with the hard
edge. It does not influence the global behavior as n→ ∞, but only the local behavior near 0.

Remark 2.10. By taking square roots we can transplant Theorems 2.4 and 2.7–2.9 to the case
of non-intersecting Bessel paths. The correlation kernel for the positions of non-intersecting
Bessel paths, starting at

√
a and ending at 0 is

2
√
xyKn(x2, y2)

where Kn is the kernel (2.24) as before. It is then easy to show from Theorems 2.7 and 2.8
that the scaling limits are again the sine kernel in the bulk and the Airy kernel at the soft
edges. At the hard edge however, Theorem 2.9 gives the scaling limit

(y
x

)α
√
xy

x+ y

Jα(x)yJ ′
α(y) − xJ ′

α(x)Jα(y)

x− y
.
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The proofs of Theorems 2.4, 2.7, 2.8, and 2.9 are given in Section 10. They follow from
the steepest descent analysis of the RH problem for Y . The steepest descent analysis itself
takes most of the paper, see Sections 3–9.

Since we will be dealing extensively with 3×3 matrices we find it useful to use the notation
Eij to denote the 3×3 elementary matrix whose entries are all 0, except for the (i, j)-th entry,
which is 1. Thus

(Eij)k,l = δi,kδj,l (2.27)

for i, j, k, l ∈ {1, 2, 3}. The following properties can be easily checked and will be used without
comment.

Lemma 2.11. (a) For i, j, k, l ∈ {1, 2, 3},

EijEkl =

{
Eil, if j = k ,

O, otherwise.

(b) If c ∈ C and i, j ∈ {1, 2, 3}, i 6= j, then I + cEij is invertible, and

(I + cEij)
−1 = I − cEij .

3 First transformation of the RH problem

We apply the Deift-Zhou method of steepest descent to the RH problem (2.15), (2.16), (2.18)
with weights w1 and w2 given by (2.20) and with indices n1 and n2 as follows:

n1 =

{
n/2, if n is even,

(n+ 1)/2, if n is odd,
n2 =

{
n/2, if n is even,

(n − 1)/2, if n is odd.
(3.1)

The steepest descent analysis has certain new features that have not appeared in the literature
before.

A possible approach was suggested by Van Assche et al. in [52], since the system of weights
(2.20) is a Nikishin system [46]. This means (in this case) that

w2(x)

w1(x)
= x

∫ 0

−∞

dσn(u)

x− u
, (3.2)

where σn is a discrete measure on the negative real line, see [19, Theorem 1], with masses at
the point

− (t jα,k/(2n
√
a))2, k = 1, 2, . . . , (3.3)

where jα,k, k = 1, 2, . . ., are the positive zeros of the Bessel function Jα. The approach of [52]
would involve a preliminary transformation

X = Y

(
I − w2

w1
E23

)
(3.4)

which would result in a jump condition

X+ = X− (I + w1E12) (3.5)
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on R+. Since w2
w1

has poles on the negative real line, the third column of X has poles on the
negative real line, which could be described by residue conditions as in [4]. We might then
continue as in [4] by turning the residue conditions into jump conditions. However we will
not follow this approach and we will not use the transformation (3.4).

Instead, our first transformation is based on the special properties of the modified Bessel
functions. We introduce the two functions

y1(z) = z(α+1)/2Iα+1(2
√
z), y2(z) = z(α+1)/2Kα+1(2

√
z), (3.6)

where Kα+1 denotes the modified Bessel function of the second kind, see [1, Section 9.6] for
its main properties. The functions y1 and y2 are defined and analytic in the complex plane
with a branch cut along the negative real axis. The jumps on R− can be computed from the
formulas 9.6.30 and 9.6.31 of [1]. We have

y1+(x) = e2iαπy1−(x), x < 0,

y2+(x) = y2−(x) − iπeiαπy1−(x), x < 0.
(3.7)

From the expressions for the derivatives of the modified Bessel functions, see [1, formulas
9.6.26], we deduce that

y′1(z) = zα/2Iα(2
√
z), y′2(z) = −zα/2Kα(2

√
z). (3.8)

The relations (3.6) and (3.8) imply that the weights w1 and w2 defined by (2.20) can be
expressed in terms of the function y1 and its derivative y′1 as

w1(x) = τ−α exp

(
− nx

t(1 − t)

)
y′1(τ

2x),

w2(x) = τ−α−1 exp

(
− nx

t(1 − t)

)
y1(τ

2x).

(3.9)

where we have put

τ = τn =
n
√
a

t
.

We also need the following wronskian relation, see formula 9.6.15 of [1],

y1(z)y
′
2(z) − y′1(z)y2(z) = −z

α

2
, z ∈ C \ R−. (3.10)

Now, we are in a position to define the first transformation of the RH problem (2.15)–
(2.18). The aim of the first transformation is to modify the jump matrix in order to have
only one remaining weight on R+, as in (3.5), which is also simpler than the weights w1 and
w2. Indeed, relations (3.9) and (3.10) allow to remove the modified Bessel functions from the
jumps, replacing them by a simple power function. The price we have to pay for the simpler
jump on R+ will be a new jump appearing on R− and on two contours ∆±

2 that are taken as
in Figure 2. We take ∆+

2 as an unbounded contour in the second quadrant asymptotic to a
ray arg z = θ for some θ ∈ (π/2, π) as z → ∞, and meeting the real axis at the point p− ≤ 0.
Its mirror image in the real axis is the contour ∆−

2 . The contours ∆±
2 are the boundary of

a domain containing the interval (−∞, p−) and we refer to this domain as the lens around
(−∞, p−).
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Figure 2: Contour for the first transformation.

We define for z ∈ C \ R,

X̃(z) = C1Y (z)




1 0 0
0 1 0
0 0 τ






1 0 0
0 2y2(τ

2z) −z−αy1(τ
2z)

0 −2y′2(τ
2z) z−αy′1(τ

2z)






1 0 0
0 τ−α 0
0 0 −2πiτ−α


 , (3.11)

where C1 is the constant matrix

C1 =








1 0 0

0 1 i4(α+1)2−1
16τ

0 0 1







1 0 0

0 (2πτ)−1/2 0

0 0 i(2πτ)−1/2


 , if n is even,




1 0 0

0 1 0

0 −4α2−1
16τ 1







1 0 0

0 (2πτ)−1/2 0

0 0 i(2πτ)−1/2


 , if n is odd.

(3.12)

Note that, in view of the wronskian relation (3.10), the determinant of the fifth matrix in
the right-hand side of (3.11) is equal to τ2α. Then it is easy to see that det X̃(z) ≡ 1. The
matrix X̃(z) is analytic in C \R since the matrix Y (z) is analytic in C \R+ and y1(τ

2z) and
y2(τ

2z) are analytic in C \ R−. Now define

X(z) = X̃(z) (3.13)

for z outside the lens around (−∞, p−), and

X(z) = X̃(z)
(
I ∓ e±απiz−αE23

)
(3.14)

for z in the part of the lens bounded by ∆±
2 and (−∞, p−). [Recall that Eij is used to denote

the elementary matrix (2.27).]
From (3.9), (3.10), the jump relations (3.7), and the fact that Y (z) is the solution of the

RH problem (2.15)–(2.18), one derives the jump relations (3.15)–(3.18) below. As z → 0, we
note the following behavior

y1(z) ∼
1

Γ(α+ 1)
zα+1, y2(z) ∼

1

2
Γ(α+ 1),

y′1(z) ∼
1

Γ(α)
zα, y′2(z) ∼





−1
2Γ(α), α > 0,

1
2 log(z), α = 0,
−1

2Γ(−α)zα, α < 0,
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which is a consequence of the known behavior of the modified Bessel functions near 0, see
formulas 9.6.7–9.6.9 of [1]. This shows that X̃(z) has the same kind of behavior as Y (z) at
the origin. The behavior of X(z) near the origin is then also the same, except in case p− = 0
and α ≥ 0, see (3.14). The result is that X(z) is the solution of the following RH problem:

Proposition 3.1. The matrix-valued function X(z) defined by (3.11), (3.13), and (3.14) is

the unique solution of the following RH problem.

1. X(z) is analytic in C \ (R ∪ ∆±
2 ).

2. X(z) possesses continuous boundary values on (R ∪ ∆±
2 ) \ {0} denoted by X+ and X−,

where X+ and X− denote the limiting values of X(z) as z approaches the contour from

the left and the right, according to the orientation on R and ∆±
2 as indicated in Figure 2,

and

X+(x) = X−(x)
(
I + xαe

− nx
t(1−t)E12

)
x ∈ R+, (3.15)

X+(x) = X−(x)




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ (−∞, p−), (3.16)

X+(x) = X−(x) (I + |x|αE32) x ∈ (p−, 0), (3.17)

X+(z) = X−(z)
(
I + e±απiz−αE23

)
z ∈ ∆±

2 . (3.18)

3. X(z) has the following behavior near infinity:

X(z) =

(
I + O

(
1

z

))


1 0 0

0 z(−1)n/4 0

0 0 z−(−1)n/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2





zn 0 0

0 z−n/2e−2n
√

az/t 0

0 0 z−n/2e2n
√

az/t


 , (3.19)

uniformly as z → ∞, z ∈ C \ R.

4. X(z) has the same behavior as Y (z) at the origin, see (2.18), either if p− < 0 or if

z → p− = 0 outside the lens around (−∞, p−). If p− = 0 and z → 0 in the lens around

(−∞, p−), then

X(z) =





O




1 |z|α 1
1 |z|α 1
1 |z|α 1


 if α < 0,

O




1 log |z| log |z|
1 log |z| log |z|
1 log |z| log |z|


 if α = 0,

O




1 1 |z|−α

1 1 |z|−α

1 1 |z|−α


 if α > 0.

(3.20)
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Proof. Statements in items 1, 2 and 4 are proved by straightforward calculations. It only
remains to check the asymptotic behavior at infinity given in item 3. This follows from the
asymptotic expansions

y1(z) =
1

2
√
π
z

α
2
+ 1

4 e2
√

z

(
1 − 4(α + 1)2 − 1

16
√
z

+
(4(α + 1)2 − 1)(4(α + 1)2 − 9)

512z
+ O

(
1

z3/2

))
,

y′1(z) =
1

2
√
π
z

α
2
− 1

4 e2
√

z

(
1 − 4α2 − 1

16
√
z

+
(4α2 − 1)(4α2 − 9)

512z
+ O

(
1

z3/2

))
,

(3.21)
as z → ∞, | arg z| < π, and

y2(z) =

√
π

2
z

α
2
+ 1

4 e−2
√

z

(
1 +

4(α+ 1)2 − 1

16
√
z

+
(4(α + 1)2 − 1)(4(α + 1)2 − 9)

512z
+ O

(
1

z3/2

))
,

y′2(z) = −
√
π

2
z

α
2
− 1

4 e−2
√

z

(
1 +

4α2 − 1

16
√
z

+
(4α2 − 1)(4α2 − 9)

512z
+ O

(
1

z3/2

))
,

(3.22)
as z → ∞, | arg z| < 3π. These formulas are consequences of the corresponding asymptotic
expansions of the modified Bessel functions, see formulas (9.7.1)–(9.7.4) of [1].

It follows from (3.21) and (3.22) that

A(z) :=

(
1 0
0 τ

)(
2y2(τ

2z) −z−αy1(τ
2z)

−2y′2(τ
2z) z−αy′1(τ

2z)

)(
τ−α 0
0 −2πiτ−α

)
(3.23)

=
√
πτzσ3/4

[(
1 i
1 −i

)
+

D1

z1/2

(
1 −i
i −1

)
+
D2

z

(
1 i
i 1

)
+ O(z−3/2)

]
zασ3/2e−2τ

√
zσ3

as z → ∞, | arg z| < π, where D1 and D2 are diagonal matrices

D1 =
1

16τ

(
4(α + 1)2 − 1 0

0 −i(4α2 − 1)

)
,

D2 =
1

512τ2

(
(4(α + 1)2 − 1)(4(α + 1)2 − 9) 0

0 −i(4α2 − 1)(4α2 − 9)

)

and σ3 =
(

1 0
0 −1

)
is the third Pauli matrix. Thus

A(z) =
√
πτzσ3/4

[(
1 0
0 −i

)
+
D1σ2

z1/2
+
D2

z
+ O(z−3/2)

](
1 i
i 1

)
zασ3/2e−2τ

√
zσ3 (3.24)

where σ2 =
(

0 −i
i 0

)
. Now D2

z commutes with zσ3/4 since both are diagonal matrices. We also
have

zσ3/4D1σ2

z1/2
= D1

(
0 −i

iz−1 0

)
zσ3/4.

The result is that (3.24) leads to

A(z) =
√
πτ

[(
1 0
0 −i

)
+D1

(
0 −i
0 0

)
+ O(z−1)

]
zσ3/4

(
1 i
i 1

)
zασ3/2e−2τ

√
zσ3

=
√

2πτ

(
1 −i4(α+1)2−1

16τ
0 −i

)
(
I + O(z−1)

)
zσ3/4 1√

2

(
1 i
i 1

)
zασ3/2e−2τ

√
zσ3 (3.25)
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as z → ∞, | arg z| < π.
Now if n is even we use (2.16) with n1 = n2 = n/2, see (3.1), along with (3.23), (3.25) in

(3.11)–(3.13) to find that (3.19) holds as z → ∞ in the region exterior to ∆±
2 . The asymptotics

is uniform in that region.
If n is odd then n1 = n/2 + 1/2 and n2 = n/2 − 1/2, see (3.1). Then we need to analyze

z−σ3/2A(z) with A given by (3.23). A computation similar to the one that led to (3.25) gives
us

z−σ3/2A(z) =
√

2πτ

(
1 0

4α2−1
16τ −i

)(
I + O(z−1)

)
zσ3/4 1√

2

(
1 i
i 1

)
zασ3/2e−2τ

√
zσ3

and (3.19) follows as well, taking into account the different formula (3.12) for the case n is
odd.

The asymptotic formulas (3.21) are not valid uniformly up to the negative real axis. The
special combination y1 − 1

πie
απiy2 however, does have the asymptotics (3.21) uniformly for

π/2 < arg z ≤ π and y1 + 1
πie

−απiy2 has the asymptotics (3.21) uniformly for −π ≤ arg z <
−π/2. This can be seen from the formulas that connect the various Bessel functions (combine
formulas 9.1.3-4, 9.1.35, 9.6.3-4 of [1])

y1(z) −
1

πi
eαπiy2(z) = z(α+1)/2H

(1)
α+1(2

√
ze−πi/2),

y′1(z) −
1

πi
eαπiy′2(z) = zα/2H(1)

α (2
√
ze−πi/2),

y1(z) +
1

πi
e−απiy2(z) = z(α+1)/2H

(2)
α+1(2

√
zeπi/2),

y′1(z) +
1

πi
e−απiy′2(z) = zα/2H(2)

α (2
√
zeπi/2),

where H
(1)
α and H

(2)
α are the Hankel functions, and the asymptotic expansions (see [1, 9.2.7-

10]) of the Hankel functions in the upper and lower half-planes, respectively. Hence

y1(z) ∓
1

πi
e±απiy2(z)

=
1

2
√
π
z

α
2
+ 1

4 e2
√

z

(
1 − 4(α + 1)2 − 1

16
√
z

+
(4(α + 1)2 − 1)(4(α + 1)2 − 9)

512z
+ O

(
1

z3/2

))
,

y′1(z) ∓
1

πi
e±απiy′2(z)

=
1

2
√
π
z

α
2
− 1

4 e2
√

z

(
1 − 4α2 − 1

16
√
z

+
(4α2 − 1)(4α2 − 9)

512z
+ O

(
1

z3/2

))
,

(3.26)
uniformly as z → ∞ in the region bounded by ∆±

2 and the negative real axis. Using the
asymptotics (3.22) and (3.26), and the definition (3.14) of X(z) in the regions bounded by
∆±

2 and the negative real axis, we obtain by the same calculations that (3.19) holds uniformly
as z → ∞ in these regions as well.

This completes the proof of Proposition 3.1.
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4 The Riemann surface and the second transformation of the
RH problem

The Riemann surface R for the algebraic equation (2.22) plays an important role in the next
transformation of the RH problem. We repeat it here in the form (2.23)

z =
1 − kζ

ζ(1 − t(1 − t)ζ)2
, k = (1 − t)(t− a(1 − t)). (4.1)

There are three inverse functions to (4.1), which we choose such that as z → ∞,

ζ1(z) =
1

z
+

(1 − t)(t+ a(1 − t))

z2
+ O

(
1

z3

)
, (4.2)

ζ2(z) =
1

t(1 − t)
−

√
a

tz1/2
− 1

2z
− t+ 4a(1 − t)

8
√
az3/2

− (1 − t)(t+ a(1 − t))

2z2
+ O

(
1

z5/2

)
, (4.3)

ζ3(z) =
1

t(1 − t)
+

√
a

tz1/2
− 1

2z
+
t+ 4a(1 − t)

8
√
az3/2

− (1 − t)(t+ a(1 − t))

2z2
+ O

(
1

z5/2

)
. (4.4)

Here, as in the rest of the paper, all fractional powers are taken as principal branch, that is,
positive on R+, with the branch cut along R−. The behavior of these functions for real values
of z can be deduced from Figure 3 which shows the graph of z = z(ζ), ζ ∈ R, and which also
indicates the branches of the inverses ζ = ζk(z) for real z.

It is straightforward to check that the discriminant of equation (2.22) is equal (up to a
non-vanishing factor depending only on t) to the polynomial in the left hand side of (2.26). Its
three roots along with the point at infinity constitute the four branch points of the Riemann
surface R. Analyzing the signs of the coefficients in (2.26) it is easy to show that, according
to the value of t ∈ (0, 1) with respect to the critical value t = t∗ = a/(a + 1), the following
cases arise (see Figure 3):

• Case 1: t ∈ (0, t∗), i.e., k < 0. The Riemann surface R has three simple real branch
points 0 < p < q, plus a simple branch point at infinity. This is the left-most graph in
Figure 3.

• Case 2: t ∈ (t∗, 1), i.e., k > 0. The Riemann surface R has three simple branch points
p < 0 < q, plus a simple branch point at infinity. This is the right-most graph in Figure
3.

• Case 3: t = t∗, i.e., k = 0. This is the critical case where the Riemann surface R has
two real branch points, 0 and q > 0, 0 being degenerate (of order 2), and q being simple.
The point at infinity is still a simple branch point of R.

These assertions coincide with the statement of Proposition 2.3. The rest of the assertions
of Corollary 2.5 is a consequence of straightforward although tedious computations based on
equation (2.26).

In this paper, we shall analyze Case 1 and Case 2. The sheet structure of R is shown in
Figure 4. As before we use p− = min(p, 0) and p+ = max(p, 0). The sheets R1 and R2 are
glued together along the cut ∆1 = [p+, q] and the sheets R3 and R2 are glued together along
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1
t(1−t)

1
t(1−t)p

p

q q

ζ

ζ

z zζ1

1/k

1/k

ζ2

ζ1

ζ2

ζ3 ζ3

ζ1

ζ1 ζ2

ζ2

Figure 3: Plots of z = 1−kζ
ζ(1−t(1−t)ζ)2

, ζ ∈ R, for Case 1 (k < 0; left) and Case 2 (k > 0; right).

the cut ∆2 = (−∞, p−]. The functions ζ1, ζ2, ζ3 are defined and analytic on the sheets R1,
R2, and R3 respectively, and we have the jump relations:

ζ1±(x) = ζ2∓(x), x ∈ ∆1,

ζ2±(x) = ζ3∓(x), x ∈ ∆2.
(4.5)

On ∆2, the function ζ1 is real and ζ2 and ζ3 are complex conjugate, while on ∆1, the function
ζ3 is real and ζ1 and ζ2 are complex conjugate, so that

ζ1±(x) = ζ2±(x), x ∈ ∆1,

ζ2±(x) = ζ3±(x), x ∈ ∆2.
(4.6)

Near the origin, one may check from (4.1) that, as z → 0,

ζ1(z) =
1

k
+O (z) , ζ2(z) = − k1

z1/2
+ k2 +O

(
z1/2

)
, ζ3(z) =

k1

z1/2
+ k2 +O

(
z1/2

)
, (4.7)

in Case 1 (p− = 0), while

ζ1(z) = − k1

(−z)1/2
+ k2 +O

(
z1/2

)
, ζ2(z) =

k1

(−z)1/2
+ k2 +O

(
z1/2

)
, ζ3(z) =

1

k
+O (z) ,

(4.8)
in Case 2 (p+ = 0), where we have set k = (1 − t)(t− a(1 − t)) as before, and

k1 = −
√
|k|

t(1 − t)
, k2 =

1

t(1 − t)
− 1

2k
.

Next, we introduce the integrals of the ζ-functions,

λ1(z) =

∫ z

q
ζ1(s)ds, (4.9)

λ2(z) =

∫ z

q
ζ2(s)ds, (4.10)

λ3(z) =

∫ z

p−

ζ3(s)ds + λ2−(p−). (4.11)
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•

R1

R2

R3

•

∆1•
p+ qp−

••
∆2

•

Figure 4: The Riemann surface R, p− = 0 and p+ = p in Case 1, p− = p and p+ = 0 in Case
2.

The functions λ1 and λ2 are defined and analytic in C\(−∞, q], and the function λ3 is defined
and analytic in C\(−∞, p−]. By (4.7)–(4.8), these functions are bounded in the neighborhood
of each branch point p−, p+, q. By (4.6),

λ1±(x) = λ2±(x) , x ∈ ∆1 . (4.12)

From (4.2)–(4.4), it follows that, as z → ∞,

λ1(z) = log z + ℓ1 −
(1 − t)(t+ a(1 − t))

z
+ O

(
1

z2

)
, (4.13)

λ2(z) =
z

t(1 − t)
− 2

√
az

t
− 1

2
log z + ℓ2

+
t+ 4a(1 − t)

4
√
az

+
(1 − t)(t+ a(1 − t))

2z
+ O

(
1

z3/2

)
, (4.14)

λ3(z) =
z

t(1 − t)
+

2
√
az

t
− 1

2
log z + ℓ3

− t+ 4a(1 − t)

4
√
az

+
(1 − t)(t+ a(1 − t))

2z
+ O

(
1

z3/2

)
, (4.15)

where ℓj, j = 1, 2, 3, are certain integration constants.
We will need the following relation between ℓ2 and ℓ3.

Lemma 4.1. We have ℓ3 = ℓ2 + πi.
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Proof. By the definition of λ2 and λ3 we have for z = −R on the lower side of the cut ∆2,

(λ2 − λ3)(z) =

∫ z

(p−)−

ζ2(s)ds −
∫ z

p−

ζ3(s)ds =

∫ z

p−

(ζ2− − ζ3−)(s)ds

=

∫ −R

p−

(ζ3+ − ζ3−)(s)ds =

∫

γR,ε

ζ3(s)ds

where γR,ε is a contour from −R to p− − ε on the lower side of ∆2 continued with the circle
around p− of radius ε, and then back from p−− ε to −R on the upper side of ∆2. Here ε > 0
is taken sufficiently small. Then we write

(λ2 − λ3)(z) =

∫

γR,ε

(
ζ3(s) −

1

t(1 − t)
−

√
a

t(s− p−)1/2
+

1

2(s− p−)

)
ds

+

∫

γR,ε

√
a

t(s− p−)1/2
ds−

∫

γR,ε

1

2(s − p−)
ds.

Since the integrand of the first term on the right-hand side is analytic in C \ (−∞, p−] and
behaves as O(s−3/2) as s → ∞ (due to (4.4)), it follows that the first term tends to 0 as
R→ ∞. For the second term we have

∫

γz,ε

√
a

t(s− p−)1/2
ds+

4
√
az

t
→ 0

as R→ ∞, ε→ 0, and the third term is just simply −πi. Thus

(λ2 − λ3)(z) = −4
√
az

t
− πi+ o(1) (4.16)

which gives the lemma in view of (4.14) and (4.15).

From (4.5), the definitions of the λ-functions, and the relations
∮
ζ1(s)ds = 2πi,

∮
ζ2(s)ds = −2πi,

(which follow by a residue calculation from the expansion (4.2) of ζ1 at infinity), where the
integrals are taken on a positively oriented closed contour around ∆1, we check that the
following jump relations hold true,

λ1+(x) = λ1−(x) + 2πi, x ∈ (−∞, p+],

λ1±(x) = λ2∓(x), x ∈ ∆1 = [p+, q],

λ2+(x) = λ2−(x) − 2πi, x ∈ [p−, p+],

λ2+(x) = λ3−(x) − 2πi, λ2−(x) = λ3+(x), x ∈ ∆2 = (−∞, p−].

(4.17)

A straightforward consequence of these relations is the following statement:

Lemma 4.2. Functions eλ1(z), eλ2(z) and eλ3(z) are analytic and single–valued outside of ∆1,

∆1 ∪ ∆2, and ∆2 respectively.

In the sequel, we will need to compare the real parts of the λ-functions on R and in
neighborhoods of ∆2 and ∆1. This is the aim of the next lemma.
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Lemma 4.3. (a) The following inequalities hold true,

Reλ1 < Reλ2 on (0, p+) in Case 1,

Reλ3 < Reλ2 on (p−, 0) in Case 2,

Reλ1 < Reλ2 on (q,+∞).

(b) The open interval (p+, q) has a neighborhood U1 in the complex plane such that

Reλ2(z) < Reλ1(z), z ∈ U1 \ (p+, q).

(c) The open interval (−∞, p−) has a neighborhood U2 in the complex plane such that

Reλ2(z) < Reλ3(z), z ∈ U2 \ (−∞, p−).

The neigbhorhood U2 is unbounded and contains a full neighborhood of infinity.

Proof. It is easy to check (see also the left-most picture in Figure 3) that, in Case 1, ζ2(s) <
ζ1(s) < ζ3(s) for s ∈ (0, p+). Hence, from the definitions of the functions λ1 and λ2 and (4.12),
we may conclude that Reλ1 < Reλ2 on (0, p+). In Case 2, we have ζ1(s) < ζ3(s) < ζ2(s) for
s ∈ (p−, 0) (see right-most picture in Figure 3). Moreover, since

(λ3 − λ2)(z) =

∫ z

(p−)+

(ζ3 − ζ2)(s)ds + λ2−(p−) − λ2+(p−),

we get, along with the third jump relation in (4.17), that Reλ3 < Reλ2 on (p−, 0). Finally,
on (q,∞), ζ1(s) < ζ2(s) < ζ3(s) so that the third inequality in assertion (a) is indeed satisfied.

On the + side of ∆1, (λ2 − λ1)+ is purely imaginary. Its derivative (ζ2 − ζ1)+(z) is
purely imaginary as well. By inspection of the Riemann surface R, it can be shown that this
imaginary part is actually positive. Hence by the Cauchy-Riemann equations the real part of
(λ2 − λ1)(z) decreases as z moves into the upper half-plane, so that Reλ2(z) < Reλ1(z) for
z near ∆1 in the upper half-plane. Similarly, Reλ2(z) < Reλ1(z) for z near ∆1 in the lower
half-plane, which shows assertion (b).

The proof of assertion (c) is similar. In order to see that U2 contains a full neighborhood
of infinity, it is sufficient to use (4.16), where

√
a/t > 0.

A consequence of Lemma 4.3 is that we may (and do) assume that contours ∆±
2 , defined

in Section 3 (and depicted in Figure 2) meet the real line at the branch point p−, and lie in
the neighborhood U2 of ∆2 where Re (λ2 − λ3) < 0.

Using functions λj, we can now define the second transformation of the RH problem.

U(z) = C2X(z)



e−nλ1(z) 0 0

0 e
−n(λ2(z)− z

t(1−t)
)

0

0 0 e
−n(λ3(z)− z

t(1−t)
)


 , (4.18)

where

C2 =








1 0 0

0 1 −in t+4a(1−t)
4
√

a

0 0 1


Ln, if n is even,




1 0 0

0 n t+4a(1−t)
4
√

a
i

0 i 0


Ln, if n is odd,

(4.19)
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and L is the constant diagonal matrix

L =



eℓ1 0 0
0 eℓ2 0
0 0 eℓ3


 . (4.20)

By Lemma 4.2, the matrix-valued function U is analytic in C \ R.
Making use of the jump relations (3.15)–(3.18) for X and the definition (4.18) one easily

gets that the following jump relations for U :

U+(x) = U−(x)



en(λ1−(x)−λ1+(x)) xαen(λ1−(x)−λ2+(x)) 0

0 en(λ2−(x)−λ2+(x)) 0

0 0 en(λ3−(x)−λ3+(x))




for x ∈ R+,

U+(x) = U−(x)



en(λ1−(x)−λ1+(x)) 0 0

0 en(λ2−(x)−λ2+(x)) 0

0 |x|αen(λ3−(x)−λ2+(x)) en(λ3−(x)−λ3+(x))




for x ∈ (p−, 0) (in Case 2),

U+(x) = U−(x)



en(λ1−(x)−λ1+(x)) 0 0

0 0 −|x|−αen(λ3−(x)−λ2+(x))

0 |x|αen(λ3−(x)−λ2+(x)) 0




for x ∈ (−∞, p−), and

U+(z) = U−(z)




1 0 0

0 1 e±απiz−αen(λ2−λ3)(z)

0 0 1


 , z ∈ ∆±

2 .

Using the jump relations (4.17), one checks easily that the jump properties for U simplify
to the ones stated in the following proposition with the just introduced notation.

Proposition 4.4. The matrix-valued function U(z) defined by (4.18) is the unique solution

of the following RH problem.

1. U(z) is analytic in C \ (R ∪ ∆±
2 ).

2. U(z) possesses continuous boundary values at (R ∪ ∆±
2 ) \ {p−, 0}, and

U+(x) = U−(x)




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ ∆2 = (−∞, p−), (4.21)

U+(x) = U−(x) ×
{
I + xαen(λ1−λ2)(x)E12, x ∈ (0, p+) in Case 1,

I + |x|αen(λ3−λ2)(x)E32, x ∈ (p−, 0) in Case 2,
(4.22)

U+(x) = U−(x)



en(λ2−λ1)+(x) xα 0

0 en(λ2−λ1)−(x) 0
0 0 1


 , x ∈ ∆1 = (p+, q). (4.23)
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U+(x) = U−(x)
(
I + xαen(λ1−λ2)(x)E12

)
, x ∈ (q,∞), (4.24)

U+(z) = U−(z)
(
I + e±απiz−αen(λ2−λ3)(z)E23

)
, z ∈ ∆±

2 . (4.25)

3. As z → ∞ we have

U(z) =

(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2


 ,

(4.26)

4. U(z) is bounded at p− if p− < 0, and has the same behavior as X(z) at the origin, see

(2.18) and (3.20).

Proof. Jumps (4.21)–(4.25) are result of straightforward calculations and Lemma 4.2.
For the proof of the asymptotic condition in item 3 we note that property (3.19) of X and

the asymptotic behaviors (4.13)-(4.15) of the λj-functions yield

X(z)



e−nλ1(z) 0 0

0 e
−n(λ2(z)− z

t(1−t)
)

0

0 0 e
−n(λ3(z)− z

t(1−t)
)




=

(
I + O

(
1

z

))


1 0 0

0 z(−1)n/4 0

0 0 z−(−1)n/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2




× L−n




1 + O(1
z ) 0 0

0 1 − c1
z1/2 + c2

z + O( 1
z3/2 ) 0

0 0 1 + c1
z1/2 + c2

z + O( 1
z3/2 )


 (4.27)

as z → ∞, where

c1 = n
t+ 4a(1 − t)

4
√
a

, c2 =
c21 − nk

2
.

If n is even, then by Lemma 4.1 we have that L−n commutes with all matrices before it.
The last matrix in the right-hand side of (4.27) can be moved to the left as in the proof of
Proposition 3.1. The result is that (4.27) is equal to

L−n




1 0 0
0 1 ic1
0 0 1



(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2


 ,

as z → ∞. Then (4.26) follows by the definition (4.18)–(4.20) of U .
If n is odd, then by Lemma 4.1, we have that

L−n diag(1, 1,−1) = diag
(
e−nℓ1, e−nℓ2 , e−nℓ2

)
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commutes with all factors before it in (4.27). The result now is that (4.27) is equal to

L−n




1 0 0
0 0 −i
0 −i c1



(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2


 ,

as z → ∞, and again (4.26) follows by the definition (4.18)–(4.20) of U .
The behavior of U at the origin given in item 4 follows from the corresponding behavior

of X, and the fact that the λj functions all remain bounded near the origin.

It follows from Lemma 4.3 that the jump matrices in (4.22), (4.24), and (4.25) tend to
the identity matrix I as n → ∞ at an exponential rate. Moreover, by (4.17), (λ2 − λ1)+ =
−(λ2 − λ1)− is purely imaginary on ∆1, so that the first two diagonal elements of the jump
matrices in (4.23) are oscillatory. In the third transformation we open a lens around ∆1 and
we turn the oscillatory entries into exponentially small entries.

5 Third transformation of the RH problem

Here, the goal is to transform the oscillatory diagonal terms in the jump matrices on ∆1 into
exponentially small off-diagonal terms. This we do by opening a lens around ∆1, see Figure
5. We assume that the lens is contained in U1, see Lemma 4.3.

R

∆+
2

∆−
2

∆2

∆+
1

∆−
1

∆1

p− p+ q

Figure 5: Deformation of contours around ∆1.

We use the following factorizations of the 2 × 2 non-trivial block of the jump matrix in
(4.23),

(
en(λ2−λ1)+(x) xα

0 en(λ2−λ1)−(x)

)

=

(
1 0

x−αen(λ2−λ1)−(x) 1

)(
0 xα

−x−α 0

)(
1 0

x−αen(λ2−λ1)+(x) 1

)
.

We set
T (z) = U(z)

(
I ∓ z−αen(λ2−λ1)(z)E21

)
, (5.1)

for z in the domain bounded by ∆±
1 and ∆1, and we let

T (z) = U(z) (5.2)
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for z outside of the lens.
Straightforward calculations show that T (z) is a solution of the following Riemann–Hilbert

problem which is stated in the next proposition.

Proposition 5.1. The matrix-valued function T (z) is the unique solution of the following

RH problem.

1. T is analytic in C \ (R ∪ ∆±
1 ∪ ∆±

2 ).

2. T has a jump T+(z) = T−(z) jT (z) on each of the oriented contours shown in Figure 5.

They are given by

jT (x) =




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ ∆2,

jT (z) = I + e±απiz−αen(λ2−λ3)(z)E23, z ∈ ∆±
2 ,

jT (x) =

{
I + xαen(λ1−λ2)(x)E12, x ∈ (0, p+) in Case 1,

I + |x|αen(λ3−λ2)(x)E32, x ∈ (p−, 0) in Case 2,

jT (x) =




0 xα 0
−x−α 0 0

0 0 1


 , x ∈ ∆1,

jT (z) = I + z−αen(λ2−λ1)(z)E21, z ∈ ∆±
1 ,

jT (x) = I + xαen(λ1−λ2)(x)E12, x ∈ (q,+∞).

3. As z → ∞, we have

T (z) =

(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2


 . (5.3)

4. For −1 < α < 0, T (z) behaves near the origin like:

T (z) = O




1 |z|α 1
1 |z|α 1
1 |z|α 1


 , as z → 0.

For α = 0, T (z) behaves near the origin like:

T (z) = O




1 log |z| 1
1 log |z| 1
1 log |z| 1


 , as z → 0 outside the lens that ends in 0,

and

T (z) =





O




1 log |z| log |z|
1 log |z| log |z|
1 log |z| log |z|


 , as z → 0 inside the lens around ∆2 in Case 1,

O




log |z| log |z| 1

log |z| log |z| 1

log |z| log |z| 1


 , as z → 0 inside the lens around ∆1 in Case 2.
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For α > 0, T (z) behaves near the origin like:

T (z) = O




1 1 1
1 1 1
1 1 1


 , as z → 0 outside the lens that ends in 0,

and

T (z) =





O




1 1 |z|−α

1 1 |z|−α

1 1 |z|−α


 , as z → 0 inside the lens around ∆2 in Case 1,

O



|z|−α 1 1
|z|−α 1 1
|z|−α 1 1


 , as z → 0 inside the lens around ∆1 in Case 2.

5. T is bounded at p and q.

Proof. All properties follow by straightforward calculations.
Because of the prescribed behavior at the origin, it is not immediate that the RH problems

for U and T are equivalent. Reasoning as in [41, Lemma 4.1] we can still show that they are.
Thus in particular the solution of the RH problem for T is unique.

6 Model RH problem for the global parametrix

In view of Lemma 4.3 the jump matrices in the RH problem for T all tend to the identity
matrix exponentially fast as n → ∞, except for the jump matrices on ∆1 and ∆2. Thus we
expect that the main contribution to the asymptotic behavior of T is described by a solution
Nα of the following model RH problem.

1. Nα is analytic in C \ (∆1 ∪ ∆2).

2. Nα has continuous boundary values on ∆1∪∆2, satisfying the following jump relations:

Nα+(x) = Nα−(x)




0 xα 0
−x−α 0 0

0 0 1


 , x ∈ ∆1, (6.1)

Nα+(x) = Nα−(x)




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ ∆2. (6.2)

3. As z → ∞, z ∈ C \ ∆2,

Nα(z) =

(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2


 .

(6.3)
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The asymptotic condition at infinity looks a bit awkward. However it is consistent with
the jump on ∆2 since it may be checked that

B(z) =

(
z1/4 0

0 z−1/4

)
1√
2

(
1 i
i 1

)(
zα/2 0

0 z−α/2

)
,

satisfies

B+(x) = B−(x)

(
0 −|x|−α

|x|α 0

)
, x ∈ (−∞, 0).

We solve the RH problem for Nα in two steps. First we solve it for the special value α = 0
and then we use this to solve it for general values of α. In both steps we will use the mapping
function (4.1)

z =
1 − kζ

ζ(1 − cζ)2

with
c = t(1 − t) and k = (1 − t)(t− a(1 − t)), (6.4)

which gives a bijection between the Riemann surface R and the extended ζ-plane. The
mapping properties are summarized in Figure 6 for the two cases (Case 1 in the upper part
and Case 2 in the lower part of the figure).

The figure shows the domains

R̃j = ζj(Rj), j = 1, 2, 3,

where Rj is the jth sheet of the Riemann surface, and also the location of the points

ζp = ζ2(p), ζq = ζ2(q), ζ∞ = ζ2(∞) =
1

t(1 − t)
=

1

c

for the two cases. We observe that ζ2+(∆1) and ζ2+(∆2) are in the upper half plane, while
ζ2−(∆1) and ζ2−(∆2) are in the lower half plane.

To solve the model RH problem for α = 0, we use the polynomial D(ζ)

D(ζ) = (ζ − ζp)(ζ − ζq)(ζ − ζ∞). (6.5)

The square root D(ζ)1/2, which branches at these three points, is defined with a cut on
ζ2−(∆1) ∪ ζ2−(∆2), which, as noted before, are the parts of the boundary of R̃2 that are in
the lower half of the ζ-plane. We assume that the square root is positive for large positive ζ.

Proposition 6.1. A solution of the model RH problem for N0 is given by

N0(z) =



F1(ζ1(z)) F1(ζ2(z)) F1(ζ3(z))
F2(ζ1(z)) F2(ζ2(z)) F2(ζ3(z))
F3(ζ1(z)) F3(ζ2(z)) F3(ζ3(z))


 (6.6)

where

F1(ζ) = K1
(ζ − ζ∞)2

D(ζ)1/2
, F2(ζ) = K2

ζ(ζ − ζ∗)

D(ζ)1/2
, F3(ζ) = K3

ζ(ζ − ζ∞)

D(ζ)1/2
, (6.7)

with D(ζ) given by (6.5). Furthermore, ζ∗ 6= ζ∞, and K1, K2, K3 are explicitly computable

non-zero constants that depend on a and t.
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ζ

ζ

z

z

R1

R1

R2

R2

R3

R3

ζ2−(∆1)
ζ2−(∆2)

ζ2−(∆2)
ζ2−(∆1)

R̃1

R̃2 R̃3

0ζp ζq ζ∞

R̃1
R̃2

R̃3

0 ζpζq ζ∞

0

p

p

0

q

q

∆1

∆1

∆2

∆2

Figure 6: Bijection (4.1) between the Riemann surface R and the extended ζ-plane in the
Case 1 (top) and 2 (bottom).

Proof. Note that each of the functions Fj , j = 1, 2, 3, defined in (6.7) satisfies

{
Fj+(ζ) = −Fj−(ζ), ζ ∈ ∂R̃2 ∩ {Im ζ < 0},
Fj+(ζ) = Fj−(ζ), ζ ∈ ∂R̃2 ∩ {Im ζ > 0},

because of the choice of the branch cut for D(ζ)1/2. From this it follows that the jth row
(Nj1, Nj2, Nj3) of N0 given in (6.6) has the following jumps on ∆1:





(Nj1)+(z) = −(Nj2)−(z),
(Nj2)+(z) = (Nj1)−(z),
(Nj3)+(z) = (Nj3)−(z),

z ∈ ∆1,
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and the following jumps on ∆2:




(Nj1)+(z) = (Nj1)−(z),
(Nj2)+(z) = (Nj2)−(z),
(Nj3)+(z) = −(Nj2)−(z),

z ∈ ∆2.

These are exactly the jumps required by (6.1) and (6.2) when α = 0.
It remains to verify the asymptotic condition (6.3) with α = 0. Since the computations

are straightforward but cumbersome, we give here the outline of the argument. Observe that

ζ1(∞) = 0 , ζ2(∞) = ζ3(∞) = ζ∞ . (6.8)

Function F1 verifies

F1(ζ) = K1
ζ2
∞

D(0)1/2
+ O(ζ) , ζ → 0 , F1(ζ) = O

(
(ζ − ζ∞)3/2

)
, ζ → ζ∞ .

Taking into account (6.8) and (4.2)–(4.4), we get that as z → ∞,

N11(z) = F1(ζ1(z)) = K1
ζ2
∞

D(0)1/2
+ O(1/z) ,

N12(z) = F1(ζ2(z)) = O
(
z−3/4

)
, N13(z) = F1(ζ3(z)) = O

(
z−3/4

)
.

With K1 = ζ−2
∞ D(0)1/2 it yields

N11(z) = 1 + O(1/z), N12(z) = O(z−3/4), N13(z) = O(z−3/4),

as z → ∞, which matches the asymptotic condition for the first row of N0 in (6.3).
Analogously,

F2(ζ) = O(ζ) , ζ → 0 ,

F2(ζ) = β1(ζ − ζ∞)−1/2 + β2(ζ − ζ∞)1/2 + O
(
(ζ − ζ∞)3/2

)
, ζ → ζ∞ ,

where β1 and β2 are explicitly computable in terms of K2, ζ
∗ and the rest of the parameters

of R. By (4.2)–(4.4), and taking into account the second relation in (4.6), we have

N21(z) = F2(ζ1(z)) = O(1/z) , z → ∞ ,

N22(z) = F2(ζ2(z)) = z1/4
(
β̃1 + β̃2z

−1/2 + β̃3z
−1 + O

(
z−3/2

))
, z → ∞ ,

N23(z) = F2(ζ3(z)) = i z1/4
(
β̃1 − β̃2z

−1/2 + β̃3z
−1 + O

(
z−3/2

))
, z → ∞ ,

where again β̃j ’s are explicit. Imposing the condition that β̃1 = 1/
√

2 and β̃2 = 0, which
determines K2 and ζ∗, we obtain that for a certain constant a2,

N21(z) = O(1/z),

N22(z) =
1√
2
z1/4

(
1 +

a2

z
+ O(z−3/2)

)
,

N23(z) =
i√
2
z1/4

(
1 +

a2

z
+ O(z−3/2)

)
,

31



matching the asymptotic condition for the second row of N0 in (6.3).
Finally,

F3(ζ) = O(ζ) , ζ → 0 ,

F3(ζ) = γ1(ζ − ζ∞)1/2 + O
(
(ζ − ζ∞)3/2

)
, ζ → ζ∞ ,

where γ1 is explicitly computable in terms of K3 and the rest of the parameters of R. By
(4.2)–(4.4), and taking again into account the second relation in (4.6), we have

N31(z) = F3(ζ1(z)) = O(1/z) , z → ∞ ,

N32(z) = F3(ζ2(z)) = z−1/4
(
γ̃1 + γ̃2z

−1/2 + O
(
z−1
))

, z → ∞ ,

N33(z) = F3(ζ3(z)) = −i z1/4
(
γ̃1 − γ̃2z

−1/2 + O
(
z−1
))

, z → ∞ ,

where again γ̃j ’s are explicit. Imposing the condition that γ̃1 = i/
√

2, which determines K3,
we obtain that for a certain constant a3,

N31(z) = O(1/z),

N32(z) =
i√
2
z−1/4

(
1 +

a3

z1/2
+ O(z−1)

)
,

N33(z) =
1√
2
z−1/4

(
1 − a3

z1/2
+ O(z−1)

)
,

as z → ∞. This is precisely the asymptotic condition for the third row of N0 in (6.3). This
concludes the proof.

To construct the solution for general α, we use functions

r1(ζ) = log(1 − cζ), ζ ∈ R̃1,

r2(ζ) = log(1 − kζ) − log ζ − log(1 − cζ), ζ ∈ R̃2,

r3(ζ) = log(1 − cζ) + iπ, ζ ∈ R̃3.

(6.9)

where c and k are as in (6.4). The branches of the logarithm are defined as follows.

• log(1− cζ) vanishes for ζ = 0, and has a branch cut along ζ2−(∆2) in Case 1, and along
ζ2−(∆2) ∪ [ζp,+∞) in Case 2.

• log(1 − kζ) vanishes for ζ = 0, and has a branch cut along (−∞, 1/k] in case 1 (when
k < 0), and along [1/k,+∞) in Case 2 (when k > 0).

• log ζ is the principal branch of the logarithm, i.e., with a cut along (−∞, 0].

With these definitions of the branches we have that rj is defined and analytic on R̃j for

j = 1, 2, 3. To see this for j = 2, it is important to note that 1/k is in R̃1 in Case 1, and 1/k
is in R̃3 in Case 2.
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Proposition 6.2. A solution of the model RH problem for general α is given by

Nα(z) = CαN0(z)



eαG1(z) 0 0

0 eαG2(z) 0

0 0 eαG3(z)


 (6.10)

where N0 is given by (6.6),

Gj(z) = rj(ζj(z)), j = 1, 2, 3, z ∈ Rj , (6.11)

with r1, r2, r3 defined in (6.9), and Cα is a constant matrix given explicitly in (6.14) below.

Proof. From the definitions (6.9) with the specified branches of the logarithm it follows that
the functions rj , j = 1, 2, 3, satisfy the following boundary conditions

r2(ζ) = r1(ζ) + log z, ζ ∈ ∂R̃1,

r2(ζ) = r3(ζ) + log |z|, ζ ∈ ∂R̃3,
(6.12)

where z = z(ζ) is given by (4.1). Then by (6.12) and (6.11) we obtain

G2±(x) = log x+G1∓(x), x ∈ ∆1,

G2±(x) = log |x| +G3∓(x), x ∈ ∆2.
(6.13)

Using (6.13) and the jump propertes (6.1), (6.2) for α = 0, it is then an easy calculation to
show that (6.10) satisfies the jump conditions (6.2) and (6.1).

We note that by (6.9) and (6.11),

eG1(z) = 1 − cζ1(z), eG2(z) = z(1 − cζ2(z)), eG3(z) = cζ3(z) − 1,

and thus as z → ∞ by (4.2), (4.3), (4.4),

eG1(z) = 1 + O(1/z),

eG2(z) = z1/2

(√
a(1 − t) +

t(1 − t)

2
√
z

+
t(1 − t)(t+ 4a(1 − t))

8
√
az

+ O(z−3/2)

)
,

eG3(z) = z−1/2

(√
a(1 − t) − t(1 − t)

2
√
z

+
t(1 − t)(t+ 4a(1 − t))

8
√
az

+ O(z−3/2)

)
.

To obtain (6.3) we should then take the constant prefactor Cα in (6.10) as

Cα =




1 0 0

0
√
a(1 − t) it(1−t)

2
0 0

√
a(1 − t)




−α

=




1 0 0

0 (
√
a(1 − t))−α − iαt(1−t)

2 (
√
a(1 − t))−α−1

0 0 (
√
a(1 − t))−α


 .

(6.14)
Then with the choice of (6.14), we indeed have thatNα defined in (6.10) satisfies the conditions
in the model RH problem for general α.

Lemma 6.3. The solution Nα of the model RH problem given in Proposition 6.2 has the

following behavior near the branch points
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(a) In Case 1 we have

Nα(z) = O



|z − q|−1/4 |z − q|−1/4 1

|z − q|−1/4 |z − q|−1/4 1

|z − q|−1/4 |z − q|−1/4 1


 as z → q, (6.15)

Nα(z) = O



|z − p|−1/4 |z − p|−1/4 1

|z − p|−1/4 |z − p|−1/4 1

|z − p|−1/4 |z − p|−1/4 1


 as z → p, (6.16)

and

Nα(z)




1 0 0

0 z−α/2 0

0 0 zα/2


 = O




1 |z|−1/4 |z|−1/4

1 |z|−1/4 |z|−1/4

1 |z|−1/4 |z|−1/4


 as z → 0, (6.17)

(b) In Case 2 we have

Nα(z) = O



|z − q|−1/4 |z − q|−1/4 1

|z − q|−1/4 |z − q|−1/4 1

|z − q|−1/4 |z − q|−1/4 1


 as z → q, (6.18)

Nα(z) = O




1 |z − p|−1/4 |z − p|−1/4

1 |z − p|−1/4 |z − p|−1/4

1 |z − p|−1/4 |z − p|−1/4


 as z → p, (6.19)

and

Nα(z)



zα/2 0 0

0 z−α/2 0
0 0 1


 = O



|z|−1/4 |z|−1/4 1

|z|−1/4 |z|−1/4 1

|z|−1/4 |z|−1/4 1


 as z → 0. (6.20)

Proof. Observe that for j = 1, 2, 3, Fj(ζ) = O
(
(ζ − ζq)

−1/2
)

as ζ → ζq, where Fj ’s are defined
in (6.7). Furthermore, for the mapping (4.1), ζ−1

1 (ζq) = ζ−1
3 (ζq) = q, and ζ−1

3 (ζq) is a regular
point of R. Since functions ζ1 and ζ2 are bounded and have a square root branch at q, by
definition (6.6) we obtain (6.15) for N0. Since the transformation in (6.10) does not affect
the behavior at q, this proves the first identity of the Lemma. The rest of the conditions is
analyzed in a similar fashion, and we omit the details.

By (6.1)–(6.2), we have that detNα is analytic in C \ {0, p, q}, and by Lemma 6.3,
detNα(z) = O

(
|z − z0|−1/2

)
as z → z0 where z0 is any one of the branch points 0, p and q.

Hence, detNα is entire. From (6.3), limz→∞ detNα(z) = 1, and we conclude that

detNα(z) ≡ 1 , z ∈ C . (6.21)

Comparing the local behavior in Proposition 5.1 and Lemma 6.3, we see that near the branch
points, the matrix TN−1

α is not bounded which means that Nα is not a good approximation
to T . Hence we need a local analysis around these points.
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7 Parametrices near the branch points p and q (soft edges)

We are going to construct a local parametrix P around q. The local parametrix around p can
be built in a similar way, and is not further discussed here. Consider a small fixed disk Bδ

with radius δ > 0 and center at q that does not contain any other branch point. We look for
a 3 × 3 matrix valued function P such that

q q + δq − δ
∆1

∆+
1

∆−
1

Figure 7: Construction of a parametrix around q.

1. P is analytic in Bδ \ (R ∪ ∆±
1 ).

2. P has a jump P+(z) = P−(z) jT (z) on each of the oriented contours shown in Figure 7,
given by the restriction of jT in Proposition 5.1 to these contours. Namely,

jT (x) =




0 xα 0
−x−α 0 0

0 0 1


 , x ∈ (q − δ, q) = ∆1 ∩Bδ,

jT (z) = I + z−αen(λ2−λ1)(z)E21, z ∈ ∆±
1 ∩Bδ,

jT (x) = I + xαen(λ1−λ2)(x)E12, x ∈ (q, q + δ).

3. As n→ ∞,

P (z) = Nα(z)(I + O(1/n)) uniformly for z ∈ ∂Bδ \ (R ∪ ∆±
1 ),

where Nα is the global parametrix built in Section 6.

4. P is bounded as z → q, z ∈ R \ ∆±
1 .

The solution of the RH problem 1.–4.) can be built in a standard way using the Airy
functions; we follow the scheme proposed in [22, 24, 25] and developed, for instance, in
[7, 21, 42]. The function

f(z) =

[
3

4
(λ2 − λ1)(z)

]2/3

(7.1)
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is a biholomorphic (conformal) map of a neighborhood of q onto a neighborhood of the origin
such that f(z) is real and positive for z > q. We may deform the contours ∆±

1 near q in such
a way that f maps ∆±

1 ∩Bδ to the rays with angles 2π
3 and −2π

3 , respectively. We put

y0(s) = Ai(s), y1(s) = ωAi(ωs), y2(s) = ω2 Ai(ω2s), ω = e2πi/3 ,

where Ai is the usual Airy function. Define the matrix Ψ by

Ψ(s) =



y0(s) −y2(s) 0
y′0(s) −y′2(s) 0

0 0 1


 , arg s ∈ (0, 2π/3),

Ψ(s) =



−y1(s) −y2(s) 0
−y′1(s) −y′2(s) 0

0 0 1


 , arg s ∈ (2π/3, π),

Ψ(s) =



−y2(s) y1(s) 0
−y′2(s) y′1(s) 0

0 0 1


 , arg s ∈ (−π,−2π/3),

Ψ(s) =



y0(s) y1(s) 0
y′0(s) y′1(s) 0

0 0 1


 , arg s ∈ (−2π/3, 0).

Then (see e.g. [22, Section 7.6]), for any analytic prefactor E, we have that

P (z) = E(z)Ψ
(
n2/3f(z)

)
diag

(
z−α/2e

n
2
(λ2−λ1)(z), zα/2e−

n
2
(λ2−λ1)(z), 1

)
(7.2)

satisfies the parts 1.–3. of the RH problem for P . The freedom in E can be used to satisfy also
the matching condition (4). The construction of E uses the asymptotics of the Airy function
Ai(s) as s→ ∞, and follows the scheme, exposed in the literature (see e.g. [40]), and we omit
the details here. The result is the following.

Proposition 7.1. The matrix-valued function P given in (7.2) with E given by

E(z) = Nα(z)



zα/2 0 0

0 z−α/2 0
0 0 1




×




√
π −√

π 0
−i√π −i√π 0

0 0 1





n1/6f1/4(z) 0 0

0 n−1/6f−1/4(z) 0
0 0 1


 , (7.3)

satisfies all conditions 1.–4. in the RH problem for P .

8 Parametrix near the branch point 0 (hard edge)

From the local behavior of T (z) as z → ∞, described in Proposition 5.1, it follows that the
local parametrix P at the origin will be different from the parametrices at the other branch
points. Fortunately, this kind of behavior has been analyzed in [41] (for a 2×2 matrix valued
RH problem), and in [45] (for a 3×3 matrix valued RH problem) and we use the construction
from these papers. There will be a new feature though in the case −1 < α < 0.
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8.1 Case 1.

LetBδ be a small fixed disk with radius δ > 0, now centered at the origin, that does not contain
any other branch point. Consider all the jumps matrices jT of matrix T on curves meeting
at 0, see item 2. in Proposition 5.1. The off-diagonal entry in jT on (0, δ) is xαen(λ1−λ2)(x),
which is exponentially small since Re (λ1 −λ2) < −c < 0 on [0, δ). This suggests that we may
ignore the jump on (0, δ) in the construction of the local parametrix. Note however, that xα

is not bounded as x→ 0 in case −1 < α < 0, which explains why we need an extra argument
for this case.

0 0
−δ −δ δ

∆2∆2

∆+
2 ∆+

2

∆−
2 ∆−

2

Figure 8: Contours for the local parametrix around 0 in the Case 1, for α ≥ 0 (left picture)
and for −1 < α < 0 (right picture).

8.1.1 First part of the construction (which works for α ≥ 0)

In this part we simply disregard the jump matrix on (0, δ). Taking into account Proposition
5.1, we thus look for a 3 × 3 matrix valued function Q such that

1. Q is analytic in Bδ \ (∆2 ∪ ∆±
2 ).

2. Q has a jump Q+(z) = Q−(z)jT (z) on (∆2 ∪∆±
2 )∩Bδ, see the left picture in Figure 8.

The jump matrices are given by

jT (x) =




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ (−δ, 0) = ∆2 ∩Bδ,

jT (z) = I + e±απiz−αen(λ2−λ3)(z)E23, z ∈ ∆±
2 ∩Bδ.

3. For −1 < α < 0, Q(z) behaves near the origin like:

Q(z) = O




1 |z|α 1
1 |z|α 1
1 |z|α 1


 , as z → 0. (8.1)
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For α = 0, Q(z) behaves near the origin like:

Q(z) = O




1 log |z| log |z|
1 log |z| log |z|
1 log |z| log |z|


 , as z → 0. (8.2)

For α > 0, Q(z) behaves near the origin like:

Q(z) = O




1 1 |z|−α

1 1 |z|−α

1 1 |z|−α


 , as z → 0 in the lens around ∆2, bounded by ∆±

2 , (8.3)

Q(z) = O




1 1 1
1 1 1
1 1 1


 , as z → 0 outside the lens. (8.4)

4. As n→ ∞,

Q(z) = Nα(z)(I + O(1/n)) uniformly for z ∈ ∂Bδ \ (∆2 ∪ ∆±
2 ), (8.5)

where Nα is the parametrix built in Section 6.

Consider

Q̃(z) = Q(z) diag
(
1, (±1)nz−α/2e

n
2
(λ2−λ3)(z), (±1)nzα/2e−

n
2
(λ2−λ3)(z)

)
, for ±Im z > 0,

(8.6)
where zα/2 denotes the principal branch, as usual. By Lemma 4.2, the diagonal factor in (8.6)
is analytic in Bδ \ (−δ, 0). It follows that the matrix valued function Q̃ should satisfy:

1. Q̃ is analytic in Bδ \ (R ∪ ∆±
2 ).

2. Q̃ has a jump Q̃+(z) = Q̃−(z)j eQ(z) on each of the oriented contours shown in Figure 8,
left. They are given by

j eQ(x) =




1 0 0
0 0 −1
0 1 0


 , x ∈ (−δ, 0) = ∆2 ∩Bδ,

j eQ(z) = I + e±απiE23, z ∈ ∆±
2 ∩Bδ,

where we have used the last identity in (4.17).

3. For −1 < α < 0, Q̃(z) behaves near the origin like:

Q̃(z) = O




1 |z|α/2 |z|α/2

1 |z|α/2 |z|α/2

1 |z|α/2 |z|α/2


 , as z → 0. (8.7)

For α = 0, Q̃(z) behaves near the origin like:

Q̃(z) = O




1 log |z| log |z|
1 log |z| log |z|
1 log |z| log |z|


 , as z → 0. (8.8)
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For α > 0, Q̃(z) behaves near the origin like:

Q̃(z) = O




1 |z|α/2 |z|−α/2

1 |z|α/2 |z|−α/2

1 |z|α/2 |z|−α/2


 , as z → 0 outside ∆±

2 , (8.9)

and

Q̃(z) = O




1 |z|−α/2 |z|−α/2

1 |z|−α/2 |z|−α/2

1 |z|−α/2 |z|−α/2


 , as z → 0 inside ∆±

2 . (8.10)

Although we have different expressions for Q̃ for the cases n even and n odd, there is no
distinction between these two cases in the conditions on Q̃.

The problem for Q̃ has a solution in terms of the modified Bessel functions of order α
see [41, Section 6]. Namely, with the modified Bessel functions Iα and Kα, and the Hankel

functions H
(1)
α and H

(2)
α (see [1, Chapter 9]), we define a 2× 2 matrix Ψ(ζ) for | arg ζ| < 2π/3

as

Ψ(ζ) =

(
Iα(2ζ1/2) i

πKα(2ζ1/2)

2πiζ1/2I ′α(2ζ1/2) −2ζ1/2K ′
α(2ζ1/2)

)
. (8.11)

For 2π/3 < arg ζ < π we define it as

Ψ(ζ) =




1
2H

(1)
α (2(−ζ)1/2) 1

2H
(2)
α (2(−ζ)1/2)

πζ1/2
(
H

(1)
α

)′
(2(−ζ)1/2) πζ1/2

(
H

(2)
α

)′
(2(−ζ)1/2)


 e

1
2
απiσ3 . (8.12)

And finally for −π < arg ζ < −2π/3 it is defined as

Ψ(ζ) =




1
2H

(2)
α (2(−ζ)1/2) −1

2H
(1)
α (2(−ζ)1/2)

−πζ1/2
(
H

(2)
α

)′
(2(−ζ)1/2) πζ1/2

(
H

(1)
α

)′
(2(−ζ)1/2)


 e−

1
2
απiσ3 . (8.13)

Then we define a 3 × 3 matrix Ψ̃, given in block form by

Ψ̃(ζ) =

(
1 0
0 σ1Ψ(ζ)σ1

)
, σ1 =

(
0 1
1 0

)
. (8.14)

[The conjugation by σ1 is needed to interchange the second and third rows and columns.]
The function

f(z) =

[
1

2
(λ2 − λ3)(z)

]2

=

[
1

2

∫ z

0
(ζ2 − ζ3)(s) ds

]2

can be continued analytically from Bδ \ (−δ, 0] to the full neighborhood Bδ, giving a biholo-
morphic (conformal) homeomorphism of a neighborhood of the origin onto itself (see (4.7))
such that f(x) is real and positive for x ∈ (0, δ). Again, we may deform the contours ∆±

2

near 0 in such a way that f maps ∆±
2 ∩Bδ to the rays with angles 2π

3 and −2π
3 , respectively.

It follows from [41] that for any analytic prefactor E, we have that

Q̃(z) = E(z)Ψ̃(n2f(z))
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satisfies the conditions (1), (2), (3) needed for Q̃. So we complete the construction of Q by
defining

Q(z) = E(z)Ψ̃(n2f(z)) diag
(
1, zα/2e−

n
2
(λ2−λ3)(z), z−α/2e

n
2
(λ2−λ3)(z)

)
, (8.15)

where E, analytic in Bδ, is chosen to satisfy the matching condition on ∂Bδ. Using again the
results of [41], and taking into account that we have to interchange the second and third rows
and columns, we define

E(z) = Nα(z) diag
(
1, z−α/2, zα/2

)
diag

(
1,

1√
2

(
1 −i
−i 1

))

× diag
(
1, (2πn)−1/2 f(z)−1/4, (2πn)1/2 f(z)1/4

)
. (8.16)

Here the branch of f1/4(z) is positive for z ∈ (0, δ). Observe that f1/4(z) = O
(
z1/4

)
as z → 0,

so by (6.17),

E(z) = O




1 1 1

1 z−1/2 1

1 z−1/2 1


 as z → 0.

It is easy to check that

E+(x) = E−(x)




1 0 0

0 i(f+/f−)−1/4(z) 0

0 0 −i(f+/f−)1/4(z)


 , x ∈ (−δ, 0) .

Since f
1/4
+ (x) = if

1/4
− (x) for x ∈ (−δ, 0) and E cannot have a pole at the origin, we conclude

that E is analytic in Bδ.
Finally, the matching condition (8.5) in condition (4) of the RH problem for Q is satisfied

by results of [41]. We have thus established the following.

Proposition 8.1. The matrix-valued function Q defined by (8.15), (8.16), with Ψ̃ as in (8.14)
satisfies the conditions 1.–4. of the RH problem for Q.

Taking into account (6.21) and that det Ψ̃ = 1 (see [41]) we also conclude that

detQ(z) ≡ 1 , z ∈ Bδ. (8.17)

If we would take Q as the local parametrix for T , we would define the final transformation as

R(z) = T (z)Q(z)−1, z ∈ Bδ.

Then R would be analytic in Bδ \ (0,∞) with the following jump for x ∈ (0, δ),

R−(x)−1R+(x) = Q(x)T−(x)−1T+(x)Q(x)−1

= Q(x)
(
I + xαen(λ1−λ2)(x)E12

)
Q(x)−1

= I + xαen(λ1−λ2)(x)Q(x)E12Q(x)−1. (8.18)

Lemma 8.2. For α ≥ 0, the matrix Q(x)E12Q(x)−1 is bounded as x→ 0, x > 0.
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Proof. If α > 0, then it follows from (8.4) and (8.17) that both Q(x) and Q(x)−1 are bounded
as x→ 0, x > 0, and the lemma follows.

For α = 0, the above argument, now based on (8.2) instead of (8.4), does not work, since
it would lead to a bound O(log |x|) as x→ 0. To prove the lemma for α = 0, we look at the
precise construction of Q. From (8.11) and the known behavior of I0(ζ) and K0(ζ) as ζ → 0,
we obtain

Ψ(ζ) = O
(

1 log |ζ|
1 log |ζ|

)

Since det Ψ(ζ) = 1, it then follows by (8.14) that

Ψ̃(ζ)−1 =




1 0 0
0 O(1) O(1)
0 O(log |ζ|) O(log |ζ|)


 as ζ → 0.

Using this in (8.15) we obtain

Q(x)−1 =




1 0 0
0 O(1) O(1)
0 O(log |x|) O(log |x|)


E−1(x), as x→ 0, x > 0, (8.19)

where E−1(x) is bounded near x = 0. Since

Q(x)E12Q(x)−1 = Q(x)




1
0
0


(0 1 0

)
Q(x)−1

and Q(x)




1
0
0


 is bounded by (8.2) and

(
0 1 0

)
Q(x)−1 is bounded by (8.19), the lemma

follows for α = 0 as well.

From Lemma 8.2 and the fact that Re (λ1 − λ2) < −c < 0, for some c > 0, it follows that
the jump matrix (8.18) is exponentially close to the identity matrix as n→ ∞, uniformly for
x ∈ (0, δ), in case α ≥ 0. We take the parametrix P = Q in case α ≥ 0.

This does not work if α < 0, since then we would get that Q(x)E12Q(x)−1 is of order
xα as x → 0. Then for any fixed x > 0, the jump matrix is close to the identity matrix as
n→ ∞, but it is not valid uniformly for x ∈ (0, δ).

8.1.2 Second part of the construction, for −1 < α < 0

Let us analyze now the case when −1 < α < 0. Now we cannot simply ignore the jump
matrix of T on (0, δ), so we will try to match all four jumps. Namely, we build a 3× 3 matrix
valued function P such that

1. P is analytic in Bδ \
(
∆2 ∪ ∆±

2 ∪ (0, δ)
)
.

2. P has a jump P+(z) = P−(z) jT (z) on each of the oriented contours shown in the right
picture of Figure 8. The jump matrices are given by

jT (x) =




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ (−δ, 0) = ∆2 ∩Bδ,
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jT (z) = I + e±απiz−αen(λ2−λ3)(z)E23, z ∈ ∆±
2 ∩Bδ,

jT (x) = I + xαen(λ1−λ2)(x)E12, x ∈ (0, δ).

3. P (z) behaves near the origin like:

P (z) = O




1 |z|α 1
1 |z|α 1
1 |z|α 1


 , as z → 0. (8.20)

4. As n→ ∞,

P (z) = Nα(z)(I + O(1/n)) uniformly for z ∈ ∂Bδ \
(
∆2 ∪ ∆±

2 ∪ (0, δ)
)
, (8.21)

where Nα is the parametrix built in Section 6.

We use the matrix-valued function Q given by formulas (8.15) and (8.16), that worked as
a parametrix for the case α ≥ 0. We take P in the form

P (z) = Q(z)S(z), (8.22)

where S is given in the four components of Bδ \ (∆2 ∪ ∆±
2 ∪ (0, δ)) as follows:

S(z) = I +
1

1 − e2απi
zαen(λ1−λ2)(z)E12,

for z in the region bounded by (0, δ) and ∆+
2 , (8.23)

S(z) = I +
e2απi

1 − e2απi
zαen(λ1−λ2)(z)E12,

for z in the region bounded by (0, δ) and ∆−
2 , (8.24)

S(z) = I +
1

1 − e2απi
zαen(λ1−λ2)(z)E12 −

eαπi

1 − e2απi
en(λ1−λ3)(z)E13,

for z in the region bounded by ∆2 and ∆+
2 , (8.25)

S(z) = I +
e2απi

1 − e2απi
zαen(λ1−λ2)(z)E12 +

eαπi

1 − e2απi
en(λ1−λ3)(z)E13,

for z in the region bounded by ∆2 and ∆−
2 . (8.26)

This construction is actually valid for any non-integer α.
It is a straightforward, although somewhat lengthy, calculation to show that P satisfies

all the jump conditions from item 2. in the RH problem for P . To check the jump on
∆2 = (−δ, 0) one has to keep in mind that λ2+ = λ3− − 2πi on ∆2, see (4.17), and that zα

is defined with a cut on (−∞, 0]. The conditions 1., 3., and 4. in the RH problem for P are
easy to verify from the above definitions and the corresponding conditions in the RH problem
for Q. For condition 4. we also need to note that Re (λ1 − λj)(z) < −c < 0 for j = 2, 3 and
z ∈ Bδ.

In order to unify notation for α ≥ 0 and −1 < α < 0, we take as the parametrix in Bδ

in the Case 1 the matrix valued function P = QS, where S = I if α ≥ 0, and S is given by
(8.23)–(8.26), if −1 < α < 0.
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8.2 Case 2.

The construction of the local parametrix P near the origin in Case 2 follows along similar lines
as the construction in Case 1. In Case 2 the geometry of the curves in the RH problem for
T is shown in the right picture of Figure 9. Now the jump matrix on (−δ, 0) is exponentially
close to the identity matrix if n is large, and in the first step of the construction we ignore
the jump on (−δ, 0), thereby giving us the contours as in the left picture of Figure 9.

0 0
−δδ δ

∆1 ∆1

∆+
1 ∆+

1

∆−
1 ∆−

1

Figure 9: Contours for the local parametrix around 0 in the Case 2, for α ≥ 0 (left picture)
and for −1 < α < 0 (right picture).

8.2.1 Construction for α ≥ 0

We start by constructing a solution to the following RH problem (see left picture of Figure
9).

1. Q is analytic in Bδ \ (∆1 ∪ ∆±
1 ).

2. Q has a jump Q+(z) = Q−(z) jT (z) on each of the oriented contours shown in Figure
9. They are given by

jT (x) =




0 xα 0
−x−α 0 0

0 0 1


 , x ∈ (0, δ) = ∆1 ∩Bδ,

jT (z) = I + z−αen(λ2−λ1)(z)E21, z ∈ ∆±
1 ∩Bδ.

3. For −1 < α < 0, Q(z) behaves near the origin like:

Q(z) = O




1 |z|α 1
1 |z|α 1
1 |z|α 1


 , as z → 0. (8.27)

For α = 0, Q(z) behaves near the origin like:

Q(z) = O




log |z| log |z| 1
log |z| log |z| 1
log |z| log |z| 1


 , as z → 0, (8.28)
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For 0 < α, Q(z) behaves near the origin like:

Q(z) = O



|z|−α 1 1
|z|−α 1 1
|z|−α 1 1


 , as z → 0 in the lens around ∆1, (8.29)

Q(z) = O




1 1 1
1 1 1
1 1 1


 , as z → 0 outside the lens. (8.30)

4. As n→ ∞,

Q(z) = Nα(z)(I + O(1/n)) uniformly for z ∈ ∂Bδ \ (∆1 ∪ ∆±
1 ), (8.31)

where Nα is the parametrix built in Section 6.

With Ψ built in (8.11)–(8.13) we define a 3 × 3 matrix-valued function

Ψ̂(ζ) =

(
σ3Ψ(−ζ)σ3 0

0 1

)
, σ3 =

(
1 0
0 −1

)
, (8.32)

where now Ψ is in the upper left block, and

Q(z) = E(z) Ψ̂(n2f(z)) diag
(
(±1)n(−z)−α/2e

n
2
(λ2−λ1)(z), (±1)n(−z)α/2e−

n
2
(λ2−λ1)(z), 1

)
,

(8.33)

for ±Im z > 0, where (−z)α/2 is positive for z ∈ (−δ, 0) and is defined with a cut on (0,+∞).
Here f is the conformal map

f(z) =

[
1

2
(λ2 − λ1)(z) −

1

2
(λ2 − λ1)(0)

]2

=

[
1

2

∫ z

0
(ζ2 − ζ1)(s) ds

]2

, (8.34)

and the analytic prefactor E is

E(z) = Nα(z) diag
(
(−z)α/2, (−z)−α/2, 1

)
diag

(
1√
2

(
1 i
i 1

)
, 1

)

× diag
(
(2πn)1/2f(z)1/4, (2πn)−1/2f(z)−1/4, 1

)
. (8.35)

Then we find the following analogue of Proposition 8.1.

Proposition 8.3. The matrix-valued function Q defined by (8.33), (8.35), with Ψ̂ as in (8.32)
and f as in (8.34), satisfies the conditions 1.–4. of the RH problem for Q.

8.2.2 Construction for −1 < α < 0

The above constructed Q can be used as a parametrix P for T in case α ≥ 0. For −1 < α < 0,
the parametrix should also have the same jump as T on (−δ, 0), and we seek a 3 × 3 matrix
valued function P such that

1. P is analytic in Bδ \
(
∆1 ∪ ∆±

1 ∪ (−δ, 0)
)
.
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2. P has a jump P+(z) = P−(z) jT (z) on each of the oriented contours shown in Figure 9,
right. They are given by

jT (x) =




0 xα 0
−x−α 0 0

0 0 1


 , x ∈ (0, δ) = ∆1 ∩Bδ,

jT (z) = I + z−αen(λ2−λ1)(z)E21, z ∈ ∆±
2 ∩Bδ,

jT (x) = I + |x|αen(λ3−λ2)(x)E32 , x ∈ (−δ, 0) .

3. P (z) behaves near the origin like:

P (z) = O




1 |z|α 1
1 |z|α 1
1 |z|α 1


 , as z → 0. (8.36)

4. As n→ ∞,

P (z) = Nα(z)(I + O(1/n)) uniformly for z ∈ ∂Bδ \
(
∆1 ∪ ∆±

1 ∪ (−δ, 0)
)
, (8.37)

where Nα is the parametrix built in Section 6.

Just as in Case 1, we build P in the form (8.22),

P (z) = Q(z)S(z), (8.38)

where Q is the matrix valued function constructed by formulas (8.33)–(8.35), and S is now
explicitly given in each of the four components of Bδ \ (∆1 ∪ ∆±

1 ∪ (−δ, 0)) by

S(z) = I − eαπi

1 − e2απi
zαen(λ3−λ2)(z)E32,

for z in the region outside the lens, (8.39)

S(z) = I − eαπi

1 − e2απi
zαen(λ3−λ2)(z)E32 +

eαπi

1 − e2απi
en(λ3−λ1)(z)E31,

for z in the upper part of the lens around ∆1, (8.40)

S(z) = I − eαπi

1 − e2απi
zαen(λ3−λ2)(z)E32 −

eαπi

1 − e2απi
en(λ3−λ1)(z)E31,

for z in the lower part of the lens around ∆1. (8.41)

Then by straightforward calculations it can again be checked that all conditions 1.–4. of
the RH problem for P are satisfied.

In order to unify notation for α ≥ 0 and −1 < α < 0, we take as the parametrix in Bδ

in the Case 2 the matrix valued function P = QS, where S = I if α ≥ 0, and S is given by
(8.39)–(8.41), if −1 < α < 0.
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9 Final transformation

We denote generically by Bδ the small disks around the branch points 0, p and q, and by P
the local parametrices built in Bδ. We define the matrix valued function R as

R(z) =

{
T (z)P−1(z), in the neighborhoods Bδ,

T (z)N−1
α (z), elsewhere.

(9.1)

Then R is defined and analytic outside the real line, the lips ∆±
1 and ∆±

2 of the lenses and
the circles around the three branch points. If α ≥ 0, the jump matrices of T and Nα coincide
on ∆1 and ∆2 and the jump matrices of T and P coincide inside the three disks with the
exception of the interval (0, δ) in Case 1, and (−δ, 0) in Case 2. It follows that R has an
analytic continuation to the complex plane minus the contours shown in Figure 10.

0 p q

p 0 q

Figure 10: Jump contours for the RH problem for R, when α ≥ 0: Cases 1 (top) and 2
(bottom).

We find that R satisfies the following RH problem, that we describe explicitly only in the
Case 1 (Case 2 is similar):

1. R is analytic outside of the contours in Figure 10.

2. R has a jump R+(z) = R−(z) jR(z) on each of the oriented contours in Figure 10, with
jump matrix

jR(z) = Nα(z) jT (z)N−1
α (z), z ∈ ∆±

1 ∪ ∆±
2 ∪ (δ, p − δ) ∪ (q + δ,∞), (9.2)

jR(z) = Nα(z)P−1(z), z ∈ ∂Bδ, (9.3)

jR(z) = P (z) jT (z)P−1(z), z ∈ (0, δ). (9.4)
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0 p q

p 0 q

Figure 11: Jump contours for the RH problem for R, when −1 < α < 0: Cases 1 (top) and 2
(bottom).

3. R(z) = I +O(1/z) as z → ∞.

Note that it is only after this final transformation that the RH problem is normalized at
infinity. Item 3. follows from (5.3) and (6.3) and the definition (9.1) of R.

If −1 < α < 0, the situation is even simpler, since now R has an analytic continuation
to the complex plane minus the contours shown in Figure 11, so that only jumps (9.2)–(9.3)
remain. By (8.20) and (8.36), R(z) is at most O (|z|α) as z → 0, so that the singularity at 0
is removable.

From the matching conditions for the local parametrices it follows that

jR(z) = I + O(1/n) as n→ ∞ uniformly for z on the boundary of the disks.

If α ≥ 0, for x in the interval (0, δ) (in Case 1) or (−δ, 0) (in Case 2), we have for some c > 0,

jR(x) = I + O(xαe−cn).

On the remaining contours we have for some c > 0,

jR(z) = I + O(e−cn|z|) as n→ ∞ .

We can use standard arguments (see e.g. [7]) to conclude that

R(z) = I + O
(

1

n(|z| + 1)

)
, n→ ∞ , (9.5)

uniformly for z in the complex plane outside of these contours. Then by Cauchy’s theorem
also

R′(z) = O
(

1

n(|z| + 1)

)
, n→ ∞ . (9.6)
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Thus, we obtain the following estimate which will be useful in the next section

R−1(y)R(x) = I +R−1(y) (R(x) −R(y)) = I + O
(
x− y

n

)
. (9.7)

10 Proofs of the theorems

The proofs of Theorems 2.4–2.9 are based on the asymptotic analysis of the kernel Kn(x, y).
If we use (2.24) and follow the steps of the RH steepest descent analysis, we find that for
x, y > 0 and x, y ∈ ∆1,

Kn(x, y) =
1

2πi(x− y)

(
0 w1(y) w2(y)

)
Y −1

+ (y)Y+(x)




1
0
0




=
1

2πi(x− y)

(
0 yαe

−n y
t(1−t) 0

)
X−1

+ (y)X+(x)




1
0
0




=
1

2πi(x− y)

(
0 yαe−nλ2,+(y) 0

)
U−1

+ (y)U+(x)



enλ1,+(x)

0
0




=
1

2πi(x− y)

(
−e−nλ1,+(y) yαe−nλ2,+(y) 0

)
T−1

+ (y)T+(x)




enλ1,+(x)

x−αenλ2,+(x)

0


 . (10.1)

This will be our basic formula for the kernel.

Proof of Theorem 2.4. We take x and y in the interior of ∆1, and we may assume that the
circles around the branch points are such that x and y lie outside of these disks, so that

T (x) = R(x)Nα(x) , T (y) = R(y)Nα(y) .

Thus, by (9.7)

T−1
+ (y)T+(x) = N−1

α,+(x)R−1
+ (x)R+(y)Nα,+(y)

= N−1
α,+(x)

(
I + O

(
x− y

n

))
Nα,+(y)

= I + O (x− y) as y → x ,

and also



1 0 0
0 yα 0
0 0 1


T−1

+ (y)T+(x)




1 0 0
0 x−α 0
0 0 1


 = I + O (x− y) as y → x .

Taking into account that on ∆1 both λ1 and λ2 are purely imaginary on ∆1 and λ2+ = λ1+
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on ∆1, we can rewrite (10.1) as

Kn(x, y) =
1

2πi(x− y)

(
−e−ni Im λ1,+(y) eni Im λ1,+(y) 0

)
(I + O (x− y))



eni Imλ1,+(x)

e−ni Im λ1,+(x)

0




=
1

2πi(x− y)

(
eni Im (λ1,+(y)−λ1,+(x)) − e−ni Im (λ1,+(y)−λ1,+(x)) + O(x− y)

)

=
sin (n Im (λ1,+(y) − λ1,+(x)))

π(x− y)
+ O(1) , as y → x , (10.2)

where O(1) holds uniformly in n. Now we let y → x. Using (4.9) and the L’Hopital rule, we
get that

Kn(x, x) = −n
π

Im ζ1,+(x) + O(1) =
n

π
|Im ζ1,+(x)| + O(1) , n→ ∞ ,

(see e.g. (4.8)), and so

lim
n→∞

1

n
Kn(x, x) =

1

π
|Im ζ1,+(x)| .

If x ∈ R+ \ ∆1, then it can be proved analogously that

lim
n→∞

1

n
Kn(x, x) = 0 .

This proves that the limiting mean density of paths exists and is supported on [p+, q]. This
proves Theorem 2.4.

Proof of Theorem 2.7. Let x∗ ∈ (p+(t), q(t)), where p+(t) < q(t) are the end points of the
interval ∆1, described in Theorem 2.4. Then ρ(x∗) > 0, where ρ is the density given in (2.25).
For given x, y ∈ R, we take

xn = x∗ +
x

nρ(x∗)
, yn = x∗ +

y

nρ(x∗)
.

Then for n large enough, we have xn, yn ∈ (p+(t), q(t)), so that (10.2) holds. Then by Taylor
expansion,

Im (λ1,+(yn) − λ1,+(xn)) = (yn − xn)Im ζ1,+(x∗) + O(yn − xn)2

=
y − x

nρ(x∗)
· (−πρ(x∗)) + O

(
1

n2

)

=
π(x− y)

n
+ O

(
1

n2

)
,

and therefore

1

nρ(x∗)
Kn(xn, yn) =

sin(nIm (λ1,+(yn) − λ1,+(xn)))

π(x− y)
+ O(1/n)

=
sinπ(x− y)

π(x− y)
+ O(1/n),

which proves Theorem 2.7.
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Proof of Theorem 2.8. Take c = f ′(q) where f is the conformal map from (7.1). For x, y ∈ R

we put xn = q + x
cn2/3 and yn = q + y

cn2/3 . This implies that

n2/3f(xn) → x, n2/3f(yn) → y.

If x, y < 0, then we still can apply (10.1), but now, for n large enough, xn, yn belong to the
small disk Bδ around q, so that

T (xn) = R(xn)P (xn)

= R(xn)E(xn)Ψ
(
n2/3f(xn)

)
diag

(
x−α/2

n e
n
2
(λ2(xn)−λ1(xn)), xα/2

n e−
n
2
(λ2(xn)−λ1(xn)), 1

)
,

and similarly for T (yn). Therefore,

T+(xn)




enλ1,+(xn)

x−α
n enλ2,+(xn)

0


 = x−α/2

n e
n
2
(λ1,+(xn)+λ2,+(xn))R(xn)E(xn)Ψ+

(
n2/3f(xn)

)



1
1
0


 ,

and

(
−e−nλ1,+(yn) yα

ne
−nλ2,+(yn) 0

)
T−1

+ (yn)

= yα/2
n e−

n
2
(λ1,+(yn)+λ2,+(yn))

(
−1 1 0

)
Ψ−1

+

(
n2/3f(yn)

)
E−1(yn)R−1(yn) .

As in [7, Section 9], we can show that

E−1(yn)R−1(yn)R(xn)E(xn) → I.

Thus,

lim
n→∞

1

cn2/3
Kn(xn, yn) =

1

2πi(x− y)

(
−1 1 0

)
Ψ−1

+ (x)Ψ+(y)




1
1
0




=
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x− y
.

Similar calculations give the same result if x and/or y are positive.
The scaling limit near p in case t < t∗ follows in a similar way.

Proof of Theorem 2.9. Now we assume t > t∗ so that we are in Case 2. For x and y are in
the δ-neighborhood Bδ of 0, we use the expression (10.1) for Kn(x, y) with T = RP = RQS,
where S = I in case α ≥ 0, or S is given by (8.40) in case −1 < α < 0. In both cases it
follows that

(
e−nλ1,+(y) yαe−nλ2,+(y)

)
S−1

+ (y) =
(
e−nλ1,+(y) yαe−nλ2,+(y)

)
,

S+(x)




enλ1,+(x)

x−αenλ2,+(x)

0


 =




enλ1,+(x)

x−αenλ2,+(x)

0


 ,
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so that by (10.1)

Kn(x, y) =
1

2πi(x − y)

(
−e−nλ1,+(y) yαe−nλ2,+(y) 0

)
Q−1

+ (y)R+(y)−1

×R+(x)Q+(x)




enλ1,+(x)

x−αenλ2,+(x)

0


 . (10.3)

Let now x, y > 0 be arbitrary. Let c = −f ′(0) > 0 where f is the conformal map from
(8.34) and take xn = x

4cn2 , yn = y
4cn2 so that

n2f(xn) → −x/4, n2f(yn) → −y/4

as n → ∞. Then for n large enough, we have that xn and yn are in the δ-neighborhood Bδ

of 0, so that we can use (10.3) with x and y replaced by xn and yn. We then have

R+(xn)Q+(xn) = R(xn)E(xn)Ψ̂+(n2f(xn))

× diag
(
eαπi/2x−α/2

n e
n
2
(λ2,+(xn)−λ1,+(xn)), e−απi/2xα/2

n e−
n
2
(λ2,+(xn)−λ1,+(xn)), 1

)
,

and similarly for R+(yn)Q+(yn). Thus,

R+(xn)Q+(xn)




enλ1,+(xn)

x−α
n enλ2,+(xn)

0


 = x−α/2

n e
n
2
(λ1,+(xn)+λ2,+(xn))R(xn)E(xn)Ψ̂+

(
n2f(xn)

)


eαπi/2

e−απi/2

0


 ,

and

(
−e−nλ1,+(yn) yα

ne
−nλ2,+(yn) 0

)
Q−1

+ (yn)R−1
+ (yn)

= yα/2
n e−

n
2
(λ1,+(yn)+λ2,+(yn))

(
−e−απi/2 eαπi/2 0

)
Ψ̂−1

+

(
n2f(yn)

)
E−1(yn)R−1(yn) .

Then it may be shown (see (9.7) and [7]) that

E−1(yn)R−1(yn)R(xn)E(xn) → I,

and we arrive at

lim
n→∞

1

cn2
Kn(xn, yn) =

1

2πi(x − y)

(y
x

)α/2 (
−e−απi/2 eαπi/2 0

)
Ψ̂−1

+ (y/4)Ψ̂+(x/4)



eαπi/2

e−απi/2

0


 .
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To evaluate this further, we first note that by definition of Ψ̂,

(
−e−απi/2 eαπi/2 0

)
Ψ̂−1

+ (y/4)Ψ̂+(x/4)



eαπi/2

e−απi/2

0




=
(
−e−απi/2 eαπi/2

)
σ3Ψ

−1
− (−y/4)Ψ−(−x/4)σ3

(
eαπi/2

e−απi/2

)

=
(
e−απi/2 eαπi/2

)
Ψ−1

− (−y/4)Ψ−(−x/4)
(
−eαπi/2

e−απi/2

)

=
(
1 1

)



1
2H

(2)
α (

√
y) −1

2H
(1)
α (

√
y)

1
2πi

√
y
(
H

(2)
α

)′
(
√
y) −1

2πi
√
y
(
H

(1)
α

)′
(
√
y)




−1

×




1
2H

(2)
α (

√
x) −1

2H
(1)
α (

√
x)

1
2πi

√
x
(
H

(2)
α

)′
(
√
x) −1

2πi
√
x
(
H

(1)
α

)′
(
√
x)



(
−1
1

)
.

where for the last line we used the definition of Ψ(ζ) in terms of the Hankel functions that is
valid for −π < arg ζ < −2π/3. Since

1

2

(
H(1)

α +H(2)
α

)
= Jα

and since the above matrices with the Hankel functions have determinant one, it follows that
the above expression is equal to

(
−πi√yJ ′

α(
√
y) Jα(

√
y)
)( −Jα(

√
x)

−πi√xJ ′
α(
√
x)

)

= πi
(
Jα(

√
x)
√
yJ ′

α(
√
y) −

√
xJ ′

α(
√
x)Jα(

√
y)
)
.

Using this in the expression for the scaling limit we obtain the theorem.

11 Appendix: approach via equilibrium measures

In the appendix we indicate an approach via equilibrium measures. Our starting point is
the RH problem for X, see Proposition 3.1. Instead of the λ-functions that come from the
Riemann surface we use the so-called g-functions to make the second transformation of the
RH problem.

As an intermediate step we first define

Ũ(z) = X(z) diag(1, e2n
√

az/t, e−2n
√

az/t) (11.1)

with the usual principal branch of the square root function. Then Ũ satisfies the following
RH problem.

1. Ũ(z) is analytic in C \ (R ∪ ∆±
2 ).
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2. Ũ(z) possesses continuous boundary values on R ∪ ∆±
2 denoted by Ũ+ and Ũ−, and

Ũ+(x) = Ũ−(x)

(
I + xαe

−n
“

x
t(1−t)

− 2
√

ax
t

”

E12

)
x ∈ R+, (11.2)

Ũ+(x) = Ũ−(x)




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ (−∞, p−), (11.3)

Ũ+(x) = Ũ−(x)




1 0 0

0 e4in|ax|1/2/t 0

0 |x|α e−4in|ax|1/2/t


 , x ∈ (p−, 0), (11.4)

Ũ+(z) = Ũ−(z)
(
I + e±απiz−αe−4n(az)1/2/tE23

)
z ∈ ∆±

2 . (11.5)

3. Ũ(z) has the following behavior near infinity:

Ũ(z) =

(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2






zn 0 0

0 z−n/2 0

0 0 z−n/2


 , z → ∞, z ∈ C \ (R ∪ ∆±

2 ), (11.6)

4. Ũ(z) has the same behavior as X(z) at the origin, see (3.20).

Now we consider the following variational problem for two measures µ1 and µ2. Minimize

∫∫
log

1

|x− y|dµ1(x)dµ1(y) −
∫∫

log
1

|x− y|dµ1(x)dµ2(y)

+

∫∫
log

1

|x− y|dµ2(x)dµ2(y) +

∫ (
x

t(1 − t)
− 2

√
ax

t

)
dµ1(x) (11.7)

over all pairs (µ1, µ2) such that

supp(µ1) ⊂ [0,∞),

∫
dµ1 = 1,

supp(µ2) ⊂ (−∞, 0],

∫
dµ2 = 1/2,

(11.8)

and
µ2 ≤ σ, (11.9)

where σ is the (unbounded) measure on (−∞, 0] with density

dσ

dx
=

√
a

πt
|x|−1/2, x ∈ (−∞, 0]. (11.10)
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It is possible to show that there is a unique minimizing pair (µ1, µ2). The measures are
absolutely continuous with respect to Lebesgue measure and their densities are related to the
functions ζ1 and ζ3 coming from the Riemann surface as follows

dµ1

dx
= − 1

2πi
(ζ1+ − ζ1−) ,

dµ2

dx
=
dσ

dx
+

1

2πi
(ζ3+(x) − ζ3−(x)) .

(11.11)

Thus
supp(µ1) = ∆1, supp(µ2) = (−∞, 0], supp(σ − µ2) = ∆2,

and the constraint (11.9) on µ2 is active only in Case 2.
The following variational equalities and inequalities hold for certain Lagrange multipliers

l1 and l2:

2

∫
log |x−s|dµ1(s)−

∫
log |x−s|dµ2(s)−

x

t(1 − t)
+

2
√
ax

t

{
= l1, x ∈ ∆1,
< l1, x ∈ R+ \ ∆1,

(11.12)

2

∫
log |x− y|dµ2(s) −

∫
log |x− y|dµ1(s)

{
= l2, x ∈ ∆2,
> l2, x ∈ R− \ ∆2.

(11.13)

This is a vector equilibrium for the pair of measures µ1 and µ2, supported on R+ and R−,
respectively, with the matrix of interaction

(
2 −1
−1 2

)
,

characteristic of a Nikishin system [13, 46] (see [2] for a survey), but with two additional
features:

(i) there is an external field

ϕ(x) =
x

t(1 − t)
− 2

√
ax

t

acting on R+, motivated by the varying character of the orthogonality weights in (2.20);

(ii) there is an upper constraint (11.9) originated in the fact that w2/w1 is the Cauchy
transform of a discrete measure on R−, see (3.2). The upper constraint (11.10) is equal
to the limiting distribution of the points (3.3) that are related to the positive zeros of
the Bessel function Jα.

We introduce the g-functions

gj(z) =

∫
log(z − s)dµj(s), j = 1, 2, (11.14)

and define the transformation

U(z) = Cn diag
(
e−nl1 , 1, enl2

)
Ũ(z) diag

(
e−n(g1(z)−l1), en(g1(z)−g2(z), en(g2(z)−l2)

)
(11.15)

where l1 and l2 are the constants from (11.12) and (11.13) and Cn is a constant matrix (see
the first matrix in the right-hand side of (4.18)). Then U satisfies a RH problem.
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1. U(z) is analytic in C \ (R ∪ ∆±
2 ).

2. U(z) possesses continuous boundary values on R ∪ ∆±
2 denoted by U+ and U−, and

U+(x) = U−(x)



e−n(g1+(x)−g1−(x)) xαe

n
“
g1+(x)+g1−(x)−g2(x)− x

t(1−t)
+ 2

√

ax
t

−l1
”

0

0 en(g1+(x)−g1−(x)) 0
0 0 1


 , x ∈ R+,

(11.16)

U+(x) = U−(x)




1 0 0
0 0 −|x|−α

0 |x|α 0


 , x ∈ (−∞, p−), (11.17)

U+(x) = U−(x)




1 0 0

0 e4in|ax|1/2/te−n(g2+(x)−g2−(x)) 0

0 |x|αen(g1+(x)−g2+(x)−g2−(x)+l2) e−4in|ax|1/2/ten(g2+(x)−g2−(x))


 , x ∈ (p−, 0),

(11.18)

U+(z) = U−(z)
(
I + e±απiz−αe−4n(az)1/2/ten(2g2(z)−g1(z)−l2)E23

)
z ∈ ∆±

2 . (11.19)

3. U(z) has the following behavior as z → ∞, z ∈ C \ (R ∪ ∆±
2 ):

U(z) =

(
I + O

(
1

z

))


1 0 0

0 z1/4 0

0 0 z−1/4







1 0 0
0 1√

2
1√
2
i

0 1√
2
i 1√

2







1 0 0

0 zα/2 0

0 0 z−α/2


 .

(11.20)

4. U(z) has the same behavior as X(z) at the origin, see (3.20).

Due to the equilibrium conditions we have that the jump (11.16) simplifies on the interval
∆1 to

U+(x) = U−(x)



e−n(g1+(x)−g1−(x)) xα 0

0 en(g1+(x)−g1−(x)) 0
0 0 1


 , x ∈ ∆1. (11.21)

A calculation that uses the fact that µ2 = σ on (p−, 0) shows that the diagonal entries of the
jump matrix (11.18) on (p−, 0) are equal to 1, so that

U+(x) = U−(x)
(
I + |x|αen(g1+(x)−g2+(x)−g2−(x)+l2)E32

)
x ∈ (p−, 0), (11.22)

with an off-diagonal entry that is tending to 0 as n→ ∞. Of course the jump (11.22) is only
relevant in Case 2.

We can then go on by opening a lens around ∆1 as discussed in the main part of the text.
We conclude this appendix by giving the relation between the g-functions and the λ-

functions coming from the Riemann surface. We have

g1(z) = λ1(z) − ℓ1, (11.23)

g1(z) − g2(z) = −λ2(z) +
z

t(1 − t)
− 2

√
az

t
+ ℓ2, (11.24)

g2(z) = −λ3(z) +
z

t(1 − t)
+

2
√
az

t
+ ℓ3. (11.25)
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with constants ℓ1, ℓ2, and ℓ3 appearing in (4.13)–(4.15). These relations and (4.13)–(4.15)
show that

g1(z) = log z − (1 − t)(t+ a(1 − t))

z
+ O

(
1

z2

)
, (11.26)

g2(z) =
1

2
log z +

t+ 4a(1 − t)

4
√
az

− (1 − t)(t+ a(1 − t))

2z
+ O

(
1

z3/2

)
, (11.27)

as z → ∞.
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