ORIGINAL PAPER

(p, σ)-Absolute continuity of Bloch maps

A. Bougoutaia ${ }^{1}$. A. Belacel ${ }^{1} \cdot$ O. Djeribia ${ }^{1}$. A. Jiménez-Vargas ${ }^{2}$

Received: 23 January 2024 / Accepted: 27 February 2024
© Tusi Mathematical Research Group (TMRG) 2024

Abstract

Motivated by new progress in the theory of ideals of Bloch maps, we introduce (p, σ)-absolutely continuous Bloch maps with $p \in[1, \infty)$ and $\sigma \in[0,1)$ from the complex unit open disc \mathbb{D} into a complex Banach space X. We prove a Pietsch domination/factorization theorem for such Bloch maps that provides a reformulation of some results on both absolutely continuous (multilinear) operators and Lipschitz operators. We also identify the spaces of (p, σ)-absolutely continuous Bloch zeropreserving maps from \mathbb{D} into X^{*} under a suitable norm $\pi_{p, \sigma}^{\mathcal{B}}$ with the duals of the spaces of X-valued Bloch molecules on \mathbb{D} equipped with the Bloch version of the (p^{*}, σ)-Chevet-Saphar tensor norms.

Keywords Summing operators • (p, σ)-Absolutely continuous operators • Vector-valued Bloch maps • Pietsch factorization/domination • Compact Bloch maps

Mathematics Subject Classification 30H30 • 46E15 • 46E40 • 47B10 • 47B38

[^0]
1 Introduction and preliminaries

For any Banach spaces X and $Y, \mathcal{L}(X, Y)$ denotes the Banach space of all continuous linear operators from X into Y, under the operator norm. In particular, $\mathcal{L}(X, \mathbb{K})$ is denoted by X^{*}. As usual, B_{X} stands for the closed unit ball of X.

Recall that $T \in \mathcal{L}(X, Y)$ is called p-summing with $p \in[1, \infty)$ if there exists $C \geq 0$ so that

$$
\left(\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{p}\right)^{\frac{1}{p}} \leq C \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

for any $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$. The infimum of such constants C is denoted by $\pi_{p}(T)$, and the Banach space of all p-summing operators from X into Y, under the norm π_{p}, by $\Pi_{p}(X, Y)$.

In the eighties, Matter considered the ideal of (p, σ)-absolutely continuous linear operators for any $p \in[1, \infty)$ and $\sigma \in[0,1$), with the aim of analysing super-reflexive Banach spaces, providing its main properties in the papers [13, 14].

Let us recall that a linear map $T: X \rightarrow Y$ is called (p, σ)-absolutely continuous for $p \in[1, \infty)$ and $\sigma \in[0,1)$ if there exist a Banach space Z and a p-summing operator $S \in \Pi_{p}(X, Z)$ for which

$$
\|T(x)\| \leq\|x\|^{\sigma}\|S(x)\|^{1-\sigma} \quad(x \in X)
$$

We set $\pi_{p, \sigma}(T)=\inf \left\{\pi_{p}(S)^{1-\sigma}\right\}$, where the infimum is taken over all Banach spaces Z and $S \in \Pi_{p}(X, Z)$ such that the above inequality holds. Let $\Pi_{p, \sigma}(X, Y)$ be the Banach space of all (p, σ)-absolutely continuous operators from X into Y, under the norm $\pi_{p, \sigma}$.

In the nineties, López Molina and Sánchez Pérez investigated on the factorization properties and the tensor norms related to these operator ideals in the papers [11, $12,19]$. Roughly speaking, the ideal of (p, σ)-absolutely continuous operators can be considered as an interpolating ideal between the p-summing operators and the continuous operators since

$$
\Pi_{p}(X, Y) \subseteq \Pi_{p, \sigma}(X, Y) \subseteq \mathcal{L}(X, Y)
$$

with

$$
\|T\| \leq \pi_{p, \sigma}(T) \leq \pi_{p}(T) \quad\left(T \in \Pi_{p}(X, Y)\right)
$$

We refer the reader to the book [9] for a complete study on p-summing operators.
In the second decade of the twentieth century, Achour, Dahia, Rueda and Sánchez Pérez dealt with the factorization of both absolutely continuous polynomials and strongly (p, σ)-continuous multilinear operators in [1, 2]. Besides, Achour, Rueda and Yahi [3] extended these studies for Lipschitz maps from a metric space into a Banach space.

Our main purpose in this paper is to introduce and establish the most notable properties of a notion of (p, σ)-absolutely continuous Bloch map on the open unit disc $\mathbb{D} \subseteq \mathbb{C}$, in terms of the concept of p-summing Bloch map. From now on, unless otherwise stated, X will denote a complex Banach space.

If $\mathcal{H}(\mathbb{D}, X)$ represents the space of all holomorphic maps from \mathbb{D} into X, a map $f \in \mathcal{H}(\mathbb{D}, X)$ is called Bloch if

$$
\rho_{\mathcal{B}}(f):=\sup \left\{\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|: z \in \mathbb{D}\right\}<\infty .
$$

The linear space of all Bloch maps from \mathbb{D} into X, under the Bloch seminorm $\rho_{\mathcal{B}}$, is denoted by $\mathcal{B}(\mathbb{D}, X)$. The normalized Bloch space $\widehat{\mathcal{B}}(\mathbb{D}, X)$ is the closed subspace of $\mathcal{B}(\mathbb{D}, X)$ formed by all those maps f for which $f(0)=0$, under the Bloch norm $\rho_{\mathcal{B}}$. For simplicity, we write $\widehat{\mathcal{B}}(\mathbb{D})$ instead of $\widehat{\mathcal{B}}(\mathbb{D}, \mathbb{C})$. Numerous authors have studied these function spaces (see, for example, the monographs [4] for the complex-valued case, and [20] for the vector-valued case).

In a recent paper [6], the p-summability of operators was adapted to address the property of p-summability in the setting of Bloch maps, as follows.

For any $p \in[1, \infty)$, we say that a map $f \in \mathcal{H}(\mathbb{D}, X)$ is p-summing Bloch if there exists $C \geq 0$ such that for any n in $\mathbb{N}, \lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{C} and z_{1}, \ldots, z_{n} in \mathbb{D}, one has

$$
\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p}\left\|f^{\prime}\left(z_{i}\right)\right\|^{p}\right)^{\frac{1}{p}} \leq C \sup _{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p}\left|g^{\prime}\left(z_{i}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

The infimum of the constants C for which this inequality holds, denoted by $\pi_{p}^{\mathcal{B}}$, defines a seminorm on the linear space $\Pi_{p}^{\mathcal{B}}(\mathbb{D}, X)$ of all p-absolutely continuous Bloch maps from \mathbb{D} into X. Furthermore, this seminorm becomes a norm on the subspace $\Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ consisting of all those maps $f \in \Pi_{p}^{\mathcal{B}}(\mathbb{D}, X)$ so that $f(0)=0$. A complete study on these spaces can be consulted in [6].

Now, we introduce the Bloch analogue of the notion of (p, σ)-absolutely continuous operator.

Definition 1.1 For any $p \in[1, \infty)$ and $\sigma \in[0,1)$, we say that a map $f \in \mathcal{H}(\mathbb{D}, X)$ is (p, σ)-absolutely continuous Bloch if there exist a complex Banach space Y and a map $g \in \Pi_{p}^{\mathcal{B}}(\mathbb{D}, Y)$ such that

$$
\left\|f^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|^{1-\sigma} \quad(z \in \mathbb{D})
$$

In such case, we put

$$
\pi_{p, \sigma}^{\mathcal{B}}(f)=\inf \left\{\pi_{p}^{\mathcal{B}}(g)^{1-\sigma}\right\}
$$

taking the infimum over all complex Banach spaces Y and all $g \in \Pi_{p}^{\mathcal{B}}(\mathbb{D}, Y)$ such that the above inequality holds. $\Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$ stands for the linear space of all (p, σ) -
absolutely continuous Bloch maps $f: \mathbb{D} \rightarrow X$. The linear subspace of $\Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$ consisting of all those maps f for which $f(0)=0$ is denoted by $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$.

We divide the contents of this paper into some sections. We start by showing that $\left(\Pi_{p, 0}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p, 0}^{\mathcal{B}}\right)$ can be identified with $\left(\Pi_{p}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p}^{\mathcal{B}}\right)$. For this reason, the results that we establish in this paper extend some obtained in [6]. In a clear parallel with the linear setting, the class $\Pi_{p, \sigma}^{\mathcal{B}}$ can be considered as an interpolating class between the classes $\Pi_{p}^{\mathcal{B}}$ and \mathcal{B}.

In Sects. 2 and 5, we prove that $\left[\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}, \pi_{p, \sigma}^{\mathcal{B}}\right]$ is an injective Banach normalized Bloch ideal. Sections 3 and 4 are devoted to both versions of Pietsch domination theorem and Pietsch factorization theorem for (p, σ)-absolutely continuous Bloch maps on \mathbb{D}. We also address the invariance of the space $\left(\Pi_{p}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p}^{\mathcal{B}}\right)$ by Möbius transformations of \mathbb{D}. In Sect. 6, we introduce and analyse the so-called (p, σ)-ChevetSaphar Bloch norms $d_{p, \sigma}^{\widehat{\mathcal{B}}}$ on the tensor product space $\mathcal{G}(\mathbb{D}) \otimes X$, where $\mathcal{G}(\mathbb{D})$ is the Bloch-free Banach space. If $p^{*}=\infty$ for $p=1$, and $p^{*}=p /(p-1)$ for $1<p<\infty$, we show that $\left(\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right), \pi_{p, \sigma}^{\mathcal{B}}\right)$ can be canonically identified with the dual of the completion of the space $\mathcal{G}(\mathbb{D}){\underset{d_{p^{*}, \sigma}^{\mathcal{B}}}{ }} X$.

2 Banach structure

We begin with an easy result on interpolation which can be compared to [13, Proposition 3.3]. We will need the following class of Bloch functions. For each $z \in \mathbb{D}$, the map $f_{z}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
f_{z}(w)=\frac{\left(1-|z|^{2}\right) w}{1-\bar{z} w} \quad(w \in \mathbb{D})
$$

is in $\widehat{\mathcal{B}}(\mathbb{D})$ and $\rho_{\mathcal{B}}\left(f_{z}\right)=1=\left(1-|z|^{2}\right) f_{z}^{\prime}(z)$ (see [10, Proposition 2.2]). Clearly, $f_{z} \in \Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, \mathbb{C})$ with $\pi_{p}^{\mathcal{B}}\left(f_{z}\right) \leq 1$ for any $p \in[1, \infty)$.

Given two semi-normed spaces $\left(X, \rho_{X}\right)$ and $\left(Y, \rho_{Y}\right)$, we will write $\left(X, \rho_{X}\right) \leq$ $\left(Y, \rho_{Y}\right)$ to indicate that $X \subseteq Y$ and $\rho_{Y}(x) \leq \rho_{X}(x)$ for all $x \in X$.

Proposition 2.1 If $p, q \in[1, \infty)$ with $p<q$ and $\sigma \in[0,1)$, then

$$
\begin{aligned}
\left(\Pi_{p, 0}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p, 0}^{\mathcal{B}}\right) & =\left(\Pi_{p}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p}^{\mathcal{B}}\right) \leq\left(\Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p, \sigma}^{\mathcal{B}}\right) \\
& \leq\left(\Pi_{q, \sigma}^{\mathcal{B}}(\mathbb{D}, X), \pi_{q, \sigma}^{\mathcal{B}}\right) \leq\left(\mathcal{B}(\mathbb{D}, X), \rho_{\mathcal{B}}\right)
\end{aligned}
$$

Proof If $f \in \Pi_{p, 0}^{\mathcal{B}}(\mathbb{D}, X)$, there is a map $g \in \Pi_{p}^{\mathcal{B}}(\mathbb{D}, Y)$ for some complex Banach space Y such that $\left\|f^{\prime}(z)\right\| \leq\left\|g^{\prime}(z)\right\|$ for all $z \in \mathbb{D}$. Given $n \in \mathbb{N}, \lambda_{i} \in \mathbb{C}$ and $z_{i} \in \mathbb{D}$ for all $i \in\{1, \ldots, n\}$, we get

$$
\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p}\left\|f^{\prime}\left(z_{i}\right)\right\|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p}\left\|g^{\prime}\left(z_{i}\right)\right\|^{p}\right)^{\frac{1}{p}}
$$

$$
\leq \pi_{p}^{\mathcal{B}}(g) \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p}\left|h^{\prime}\left(z_{i}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

hence $f \in \Pi_{p}^{\mathcal{B}}(\mathbb{D}, X)$ with $\pi_{p}^{\mathcal{B}}(f) \leq \pi_{p}^{\mathcal{B}}(g)$, and passing to the infimum over all such complex Banach spaces Y and all such maps g, one has $\rho_{\mathcal{B}}(f) \leq \pi_{p, 0}^{\mathcal{B}}(f)$.

The inequality $\left(\Pi_{p}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p}^{\mathcal{B}}\right) \leq\left(\Pi_{p, 0}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p, 0}^{\mathcal{B}}\right)$ is a particular case of the following. If $f \in \Pi_{p}^{\mathcal{B}}(\mathbb{D}, X)$, then

$$
\begin{aligned}
\left\|f^{\prime}(z)\right\| & \leq \pi_{p}^{\mathcal{B}}(f) \sup _{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left|g^{\prime}(z)\right| \leq \pi_{p}^{\mathcal{B}}(f) \frac{1}{1-|z|^{2}} \\
& =\pi_{p}^{\mathcal{B}}(f)\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|f_{z}^{\prime}(z)\right|^{1-\sigma} \quad(z \in \mathbb{D}) .
\end{aligned}
$$

as for the second inequality we use the supremum is taken over $g^{\prime} s$ in $B_{\widehat{\mathcal{B}}(\mathbb{D})}$ and that $\rho_{\mathcal{B}}(g) \geq\left(1-|z|^{2}\right)\left\|g^{\prime}(z)\right\|$. Hence $f \in \Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$ with

$$
\pi_{p, \sigma}^{\mathcal{B}}(f) \leq \pi_{p}^{\mathcal{B}}\left(\pi_{p}^{\mathcal{B}}(f)^{\frac{1}{1-\sigma}} f_{z}\right)^{1-\sigma}=\pi_{p}^{\mathcal{B}}(f) \pi_{p}^{\mathcal{B}}\left(f_{z}\right)^{1-\sigma} \leq \pi_{p}^{\mathcal{B}}(f)
$$

If $f \in \Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$, then $f \in \Pi_{q, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$ with $\pi_{q, \sigma}^{\mathcal{B}}(f) \leq \pi_{p, \sigma}^{\mathcal{B}}(f)$ follows readily by applying [6, Proposition 1.1].

If $f \in \Pi_{q, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$, we can take a complex Banach space Y and a map $g \in$ $\Pi_{q}^{\mathcal{B}}(\mathbb{D}, Y)$ such that

$$
\left\|f^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|^{1-\sigma} \quad(z \in \mathbb{D})
$$

It follows that

$$
\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\| \leq\left(\left(1-|z|^{2}\right)\left\|g^{\prime}(z)\right\|\right)^{1-\sigma} \leq \rho_{\mathcal{B}}(g)^{1-\sigma} \quad(z \in \mathbb{D})
$$

hence $f \in \mathcal{B}(\mathbb{D}, X)$ with $\rho_{\mathcal{B}}(f) \leq \rho_{\mathcal{B}}(g)^{1-\sigma}$, and taking infimum over all such complex Banach spaces Y and such maps g, we conclude that $\rho_{\mathcal{B}}(f) \leq \pi_{q, \sigma}^{\mathcal{B}}(f)$.

The case $\sigma=0$ in the next result follows from Proposition 2.1 and [6, Proposition 1.2]. In fact, we can adapt the proof of [6, Proposition 1.2] to yield a more general result.

Proposition $2.2\left(\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X), \pi_{p, \sigma}^{\mathcal{B}}\right)$ is a Banach space for any $p \in[1, \infty)$ and $\sigma \in[0,1)$.

Proof Assume that $\sigma \in(0,1)$. If $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ and $\pi_{p, \sigma}^{\mathcal{B}}(f)=0$, then $\rho_{\mathcal{B}}(f)=0$ by Proposition 2.1, and so $f=0$. We now prove the triangle inequality. For $i=1,2$,
consider $f_{i} \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$, a complex Banach space Y_{i}, and $g_{i} \in \Pi_{p}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, Y_{i}\right)$ such that

$$
\left\|f_{i}^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g_{i}^{\prime}(z)\right\|_{Y_{i}}^{1-\sigma} \quad(z \in \mathbb{D}) .
$$

Let Y be the ℓ_{1}-sum of Y_{1} and Y_{2}, and let $I_{i}: Y_{i} \rightarrow Y$ be the canonical injection. The map $g=\sum_{i=1}^{2} \pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{-\sigma}\left(I_{i} \circ g_{i}\right)$ belongs to $\Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, Y)$ and $\pi_{p}^{\mathcal{B}}(g) \leq$ $\sum_{i=1}^{2} \pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{1-\sigma}$. Using Holder's Inequality, we get

$$
\begin{aligned}
\left\|\sum_{i=1}^{2} f_{i}^{\prime}(z)\right\| & \leq \sum_{i=1}^{2}\left\|f_{i}^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma} \sum_{i=1}^{2}\left\|g_{i}^{\prime}(z)\right\|_{Y_{i}}^{1-\sigma} \\
& =\left(\frac{1}{1-|z|^{2}}\right)^{\sigma} \sum_{i=1}^{2}\left\|\pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{-\sigma} g_{i}^{\prime}(z)\right\|_{Y_{i}}^{1-\sigma} \pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{\sigma(1-\sigma)} \\
& \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left(\sum_{i=1}^{2}\left\|\pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{-\sigma} g_{i}^{\prime}(z)\right\|_{Y_{i}}\right)^{1-\sigma}\left(\sum_{i=1}^{2} \pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{1-\sigma}\right)^{\sigma} \\
& =\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|_{Y}^{1-\sigma}\left(\pi_{p}^{\mathcal{B}}\left(g_{1}\right)^{1-\sigma}+\pi_{p}^{\mathcal{B}}\left(g_{2}\right)^{1-\sigma}\right)^{\sigma} \quad(z \in \mathbb{D}) .
\end{aligned}
$$

Thus $\sum_{i=1}^{2} f_{i} \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with

$$
\pi_{p, \sigma}^{\mathcal{B}}\left(\sum_{i=1}^{2} f_{i}\right) \leq\left(\sum_{i=1}^{2} \pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{1-\sigma}\right)^{\sigma} \pi_{p}^{\mathcal{B}}(g)^{1-\sigma} \leq \sum_{i=1}^{2} \pi_{p}^{\mathcal{B}}\left(g_{i}\right)^{1-\sigma}
$$

Passing to the infimum over all such complex Banach spaces Y and such maps g_{1} and g_{2}, we deduce that $\pi_{p, \sigma}^{\mathcal{B}}\left(\sum_{i=1}^{2} f_{i}\right) \leq \sum_{i=1}^{2} \pi_{p, \sigma}^{\mathcal{B}}\left(f_{i}\right)$.

Let $\lambda \in \mathbb{C}$ and $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$. We have a complex Banach space Y and $g \in$ $\Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, Y)$ such that

$$
\left\|f^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|^{1-\sigma} \quad(z \in \mathbb{D})
$$

Therefore,
$\left\|(\lambda f)^{\prime}(z)\right\| \leq|\lambda|\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|^{1-\sigma}=\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|\left(\lambda^{\frac{1}{1-\sigma}} g\right)^{\prime}(z)\right\|^{1-\sigma} \quad(z \in \mathbb{D})$.
Since $\lambda^{\frac{1}{1-\sigma}} g \in \Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$, we have $\lambda f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with $\pi_{p, \sigma}^{\mathcal{B}}(\lambda f) \leq$ $\pi_{p}^{\mathcal{B}}\left(\lambda^{\frac{1}{1-\sigma}} g\right)^{1-\sigma}=|\lambda| \pi_{p}^{\mathcal{B}}(g)^{1-\sigma}$. For $\lambda=0$, we obtain $\pi_{p, \sigma}^{\mathcal{B}}(\lambda f)=0=$ $|\lambda| \pi_{p, \sigma}^{\mathcal{B}}(f)$. For $\lambda \neq 0$, we deduce that $\pi_{p, \sigma}^{\mathcal{B}}(\lambda f) \leq|\lambda| \pi_{p, \sigma}^{\mathcal{B}}(f)$. Hence $\pi_{p, \sigma}^{\mathcal{B}}(f) \leq$
$|\lambda|^{-1} \pi_{p, \sigma}^{\mathcal{B}}(\lambda f)$, then $|\lambda| \pi_{p, \sigma}^{\mathcal{B}}(f) \leq \pi_{p, \sigma}^{\mathcal{B}}(\lambda f)$, and thus $\pi_{p, \sigma}^{\mathcal{B}}(\lambda f)=|\lambda| \pi_{p, \sigma}^{\mathcal{B}}(f)$. So $\left(\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X), \pi_{p, \sigma}^{\mathcal{B}}\right)$ is a complex normed space.

To prove its completeness, let $\left(f_{n}\right)$ be a sequence in $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ for which $\sum_{n=1}^{\infty} \pi_{p, \sigma}^{\mathcal{B}}\left(f_{n}\right)<\infty$. Since $\rho_{\mathcal{B}} \leq \pi_{p, \sigma}^{\mathcal{B}}$ on $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ (by Proposition 2.1) and $\widehat{\mathcal{B}}(\mathbb{D}, X)$ with the norm $\rho_{\mathcal{B}}$ is a Banach space, there exists $f \in \widehat{\mathcal{B}}(\mathbb{D}, X)$ such that $\sum_{n=1}^{\infty} f_{n}=f$ for $\rho_{\mathcal{B}}$. We will prove that $\sum_{n=1}^{\infty} f_{n}=f$ for $\pi_{p, \sigma}^{\mathcal{B}}$. Let $\varepsilon>0$, and for each $n \in \mathbb{N}$, we can take a complex Banach space Y_{n} and a map $g_{n} \in \Pi_{p}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, Y_{n}\right)$ for which

$$
\left\|f_{n}^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g_{n}^{\prime}(z)\right\|_{Y_{n}}^{1-\sigma} \quad(z \in \mathbb{D})
$$

with

$$
\pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma} \leq \pi_{p, \sigma}^{\mathcal{B}}\left(f_{n}\right)+\frac{\varepsilon}{2^{n}}
$$

Then

$$
\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma} \leq \sum_{n=1}^{\infty} \pi_{p, \sigma}^{\mathcal{B}}\left(f_{n}\right)+\varepsilon
$$

Let $g=\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{-\sigma}\left(I_{n} \circ g_{n}\right) \in \Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, Y)$, where Y is the ℓ_{1}-sum of all Y_{n} and $I_{n}: Y_{n} \rightarrow Y$ is the canonical injection. Hence

$$
\begin{aligned}
\left\|f^{\prime}(z)\right\| & \leq \sum_{n=1}^{\infty}\left\|f_{n}^{\prime}(z)\right\| \leq \sum_{n=1}^{\infty}\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g_{n}^{\prime}(z)\right\|_{Y_{n}}^{1-\sigma} \\
& \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|_{Y}^{1-\sigma}\left(\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma}\right)^{\sigma} \quad(z \in \mathbb{D}) .
\end{aligned}
$$

This implies that $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with

$$
\begin{aligned}
\pi_{p, \sigma}^{\mathcal{B}}(f) & \leq\left(\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma}\right)^{\sigma} \pi_{p}(g)^{1-\sigma} \\
& \leq\left(\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma}\right)^{\sigma}\left(\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma}\right)^{1-\sigma} \\
& =\sum_{n=1}^{\infty} \pi_{p}^{\mathcal{B}}\left(g_{n}\right)^{1-\sigma} \leq \sum_{n=1}^{\infty} \pi_{p, \sigma}^{\mathcal{B}}\left(f_{n}\right)+\varepsilon
\end{aligned}
$$

Moreover, we have

$$
\pi_{p, \sigma}^{\mathcal{B}}\left(f-\sum_{k=1}^{n} f_{k}\right)=\pi_{p, \sigma}^{\mathcal{B}}\left(\sum_{k=n+1}^{\infty} f_{k}\right) \leq \sum_{k=n+1}^{\infty} \pi_{p}^{\mathcal{B}}\left(f_{k}\right) \quad(n \in \mathbb{N})
$$

and thus $\sum_{n=1}^{\infty} f_{n}=f$ for $\pi_{p, \sigma}^{\mathcal{B}}$.

3 Pietsch domination

Our next result is a reformulation for (p, σ)-absolutely continuous Bloch maps of Pietsch domination theorem for (p, σ)-absolutely continuous operators stated by Matter in [13, Theorem 4.1]. However, to prove our result, we will apply an unified abstract version of the Pietsch domination theorem established by Pellegrino and Santos in [15, Theorem 3.1] (see also [5, 16]). Our proof is based on [6, Theorem 1.4 and Lemma 1.5].

Let us recall that $\widehat{\mathcal{B}}(\mathbb{D})$ is a dual Banach space (see, for example, [20]) and therefore we can consider this space equipped with its weak* topology. Let $\mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$ be the set of all Borel regular probability measures μ on $\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}, w^{*}\right)$.

Given $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right), p \in[1, \infty)$ and $\sigma \in[0,1)$, consider the inclusion operators

$$
I_{\infty, p /(1-\sigma)}: L_{\infty}(\mu) \rightarrow L_{p /(1-\sigma)}(\mu)
$$

and

$$
j_{\infty}: C\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right) \rightarrow L_{\infty}(\mu)
$$

We will also use the map

$$
\iota_{\mathbb{D}}: \mathbb{D} \rightarrow C\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)
$$

defined by

$$
\iota_{\mathbb{D}}(z)(g)=g^{\prime}(z) \quad\left(g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}, z \in \mathbb{D}\right),
$$

and, for a complex Banach space X, the isometric linear embedding

$$
\iota_{X}: X \rightarrow \ell_{\infty}\left(B_{X^{*}}\right)
$$

given by

$$
\iota_{X}(x)\left(x^{*}\right)=x^{*}(x) \quad\left(x^{*} \in B_{X^{*}}, x \in X\right) .
$$

Theorem 3.1 (Pietsch domination). Let $p \in[1, \infty), \sigma \in[0,1)$ and $f \in \widehat{\mathcal{B}}(\mathbb{D}, X)$. The following are equivalent:
(1) $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$.
(2) There is a constant $C \geq 0$ and a measure $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$ such that

$$
\left\|f^{\prime}(z)\right\| \leq C\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}(z)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}}
$$

for all $z \in \mathbb{D}$.
(3) There is a constant $C \geq 0$ such that

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|f^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \leq C \\
& \quad \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
\end{aligned}
$$

for all $n \in \mathbb{N}, \lambda_{i} \in \mathbb{C}$ and $z_{i} \in \mathbb{D}$ for all $i \in\{1, \ldots, n\}$.
Furthermore, the infimum of the constants $C \geq 0$ in (2) (and in (3)) is $\pi_{p, \sigma}^{\mathcal{B}}(f)$.
Proof $(1) \Rightarrow(2)$: If $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$, then there exist a complex Banach space Y and a map $g \in \Pi_{p}^{\widehat{\mathcal{B}}}(\mathbb{D}, Y)$ such that

$$
\left\|f^{\prime}(z)\right\| \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\|g(z)\|^{1-\sigma} \quad(z \in \mathbb{D})
$$

By [6, Theorem 1.4], there is a measure $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$ such that

$$
\left\|g^{\prime}(z)\right\| \leq \pi_{p}^{\mathcal{B}}(g)\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left|h^{\prime}(z)\right|^{p} \mathrm{~d} \mu(h)\right)^{\frac{1}{p}} \quad(z \in \mathbb{D})
$$

and therefore

$$
\begin{aligned}
\left\|f^{\prime}(z)\right\| & \leq\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|^{1-\sigma} \\
& \leq \pi_{p}^{\mathcal{B}}(g)^{1-\sigma}\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}(z)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}}(z \in \mathbb{D}) .
\end{aligned}
$$

$(2) \Rightarrow(1):$ By [6, Lemma 1.5], there exists a map $k \in \widehat{\mathcal{B}}\left(\mathbb{D}, L_{\infty}(\mu)\right)$ with $\rho_{\mathcal{B}}(k)=$ 1 such that $k^{\prime}=j_{\infty} \circ \iota_{\mathbb{D}}$. In fact, $k \in \Pi_{p}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, L_{\infty}(\mu)\right)$ with $\pi_{p}^{\mathcal{B}}(k)=1$. By (2), we
can write

$$
\begin{aligned}
\left\|f^{\prime}(z)\right\| & \leq C\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}(z)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}} \\
& =\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left|C^{\frac{1}{1-\sigma}}\left(I_{\infty, p} \circ j_{\infty} \circ \iota \mathbb{D}\right)(z)(h)\right|^{p} \mathrm{~d} \mu(h)\right)^{\frac{1-\sigma}{p}} \\
& =\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D}}}\left|C^{\frac{1}{1-\sigma}}\left(I_{\infty, p} \circ k\right)^{\prime}(z)(h)\right|^{p} \mathrm{~d} \mu(h)\right)^{\frac{1-\sigma}{p}} \\
& =\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left\|g^{\prime}(z)\right\|_{L_{p}(\mu)}^{1-\sigma}
\end{aligned}
$$

where $g=C^{\frac{1}{1-\sigma}}\left(I_{\infty, p} \circ k\right) \in \Pi_{p}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, L_{p}(\mu)\right)$.
(2) \Rightarrow (3): If (2) holds, then

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|f^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq C\left(\sum_{i=1}^{n} \int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq C\left(\sum_{i=1}^{n} \int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}} \\
& \quad=C\left(\sum_{i=1}^{n} \int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|f_{z_{i}}^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq C\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|f_{z_{i}}^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \leq C \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
\end{aligned}
$$

for all $n \in \mathbb{N} \lambda_{i} \in \mathbb{C}$ and $z_{i} \in \mathbb{D}$ for all $i \in\{1, \ldots, n\}$, and this proves (3).
$(3) \Rightarrow(2)$: Let $R: B_{\widehat{\mathcal{B}}(\mathbb{D})} \times(\mathbb{D} \times \mathbb{R}) \times \mathbb{R} \rightarrow[0,+\infty[$ be given by

$$
R(h,(z, \lambda), b)=|\lambda|\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}(z)\right|^{1-\sigma}|b|
$$

and let $S: \widehat{\mathcal{B}}(\mathbb{D}, X) \times(\mathbb{D} \times \mathbb{R}) \times \mathbb{R} \rightarrow[0,+\infty[$ be defined by

$$
S(f,(z, \lambda), b)=|\lambda|\left\|f^{\prime}(z)\right\||b| .
$$

Then f is R - S-abstract $p /(1-\sigma)$-summing (see definition in [15]) since

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} S\left(f,\left(z_{i}, \lambda_{i}\right), b_{i}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}=\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left\|f^{\prime}\left(z_{i}\right)\right\|\left|b_{i}\right|\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq C \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\left|b_{i}\right|\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad=C \sup _{h \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n} R\left(h,\left(z_{i}, \lambda_{i}\right), b_{i}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} .
\end{aligned}
$$

Then, by [15, Theorem 3.1], there are $C>0$ and $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$ such that

$$
S(f,(z, \lambda), b) \leq C\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}} R(h,(z, \lambda), b)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}}
$$

for all $(z, \lambda) \in \mathbb{D} \times \mathbb{R}$ and $b \in \mathbb{R}$. In particular, we have

$$
\left\|f^{\prime}(z)\right\| \leq C\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}(z)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(h)\right)^{\frac{1-\sigma}{p}} \quad(z \in \mathbb{D})
$$

4 Pietsch factorization

We now present the analogue for (p, σ)-absolutely continuous Bloch maps of Pietsch factorization theorem for (p, σ)-summing operators. Its proof is based on those of [6, Theorem 1.6] and [7, Theorem 3.5].

Theorem 4.1 (Pietsch factorization). Let $p \in[1, \infty), \sigma \in[0,1)$ and $f \in \widehat{\mathcal{B}}(\mathbb{D}, X)$. The following are equivalent:
(1) $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$.
(2) There exist a measure $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$, a map $h \in \widehat{\mathcal{B}}\left(\mathbb{D}, L_{\infty}(\mu)\right)$ and an operator $T \in \mathcal{L}\left(L_{p /(1-\sigma)}(\mu), \ell_{\infty}\left(B_{X^{*}}\right)\right)$ such that the following diagram commutes:

Furthermore, $\pi_{p, \sigma}^{\mathcal{B}}(f)=\inf \left\{\|T\| \rho_{\mathcal{B}}(h)\right\}$, the infimum being extended over all such decompositions of $\iota_{X} \circ f^{\prime}$ as above, and this infimum is attained.

Proof If (1) holds, then Theorem 3.1 provides a measure $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$ such that

$$
\left\|f^{\prime}(z)\right\| \leq \pi_{p, \sigma}^{\mathcal{B}}(f)\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|g^{\prime}(z)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(g)\right)^{\frac{1-\sigma}{p}} \quad(z \in \mathbb{D})
$$

By [6, Lemma 1.5], there exists a map $h \in \widehat{\mathcal{B}}\left(\mathbb{D}, L_{\infty}(\mu)\right)$ with $\rho_{\mathcal{B}}(h)=1$ such that $h^{\prime}=j_{\infty} \circ \iota \mathbb{D}$. Denote the closed linear subspace

$$
S_{p /(1-\sigma)}:=\overline{\operatorname{lin}}\left(I_{\infty, p /(1-\sigma)}\left(h^{\prime}(\mathbb{D})\right)\right) \subseteq L_{p /(1-\sigma)}(\mu)
$$

and define $T_{0} \in \mathcal{L}\left(S_{p /(1-\sigma)}, \ell_{\infty}\left(B_{X^{*}}\right)\right)$ by

$$
T_{0}\left(I_{\infty, p /(1-\sigma)}\left(h^{\prime}(z)\right)\right)=\iota_{X}\left(f^{\prime}(z)\right) \quad(z \in \mathbb{D})
$$

Notice that $\left\|T_{0}\right\| \leq \pi_{p, \sigma}^{\mathcal{B}}(f)$ since

$$
\begin{aligned}
& \left\|T_{0}\left(\sum_{i=1}^{n} \alpha_{i} I_{\infty, p /(1-\sigma)}\left(h^{\prime}\left(z_{i}\right)\right)\right)\right\|_{\infty}=\left\|\sum_{i=1}^{n} \alpha_{i} T_{0}\left(I_{\infty, p /(1-\sigma)}\left(h^{\prime}\left(z_{i}\right)\right)\right)\right\|_{\infty} \\
& =\left\|\sum_{i=1}^{n} \alpha_{i} \iota_{X}\left(f^{\prime}\left(z_{i}\right)\right)\right\|_{\infty} \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|\iota_{X}\left(f^{\prime}\left(z_{i}\right)\right)\right\|_{\infty}=\sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|f^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{2}} \\
& \quad \leq \pi_{p, \sigma}^{\mathcal{B}}(f) \sum_{i=1}^{n}\left|\alpha_{i}\right|\left(\int_{B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|g^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}} \mathrm{d} \mu(g)\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq \pi_{p, \sigma}^{\mathcal{B}}(f) \sum_{i=1}^{n} \frac{\left|\alpha_{i}\right|}{1-\left|z_{i}\right|^{2}}
\end{aligned}
$$

and

$$
\sum_{i=1}^{n} \frac{\left|\alpha_{i}\right|}{1-\left|z_{i}\right|^{2}}=\left|\sum_{i=1}^{n} \alpha_{i} \frac{\overline{\alpha_{i}}}{\left|\alpha_{i}\right|} f_{z_{i}}^{\prime}\left(z_{i}\right)\right|=\sup _{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left|\sum_{i=1}^{n} \alpha_{i} g^{\prime}\left(z_{i}\right)\right|=\sup _{\left.g \in B_{\hat{\mathcal{B}}(\mathbb{D}}\right)}\left|\sum_{i=1}^{n} \alpha_{i} \iota_{\mathbb{D}}\left(z_{i}\right)(g)\right|
$$

$$
\begin{aligned}
& =\left\|\sum_{i=1}^{n} \alpha_{i} \mathbb{D}^{D}\left(z_{i}\right)\right\|_{\infty}=\left\|\sum_{i=1}^{n} \alpha_{i} j_{\infty}\left(\mathbb{I}_{\mathbb{D}}\left(z_{i}\right)\right)\right\|_{L_{\infty}(\mu)}=\left\|\sum_{i=1}^{n} \alpha_{i} h^{\prime}\left(z_{i}\right)\right\|_{L_{\infty}(\mu)} \\
& =\left\|I_{\infty, p /(1-\sigma)}\left(\sum_{i=1}^{n} \alpha_{i} h^{\prime}\left(z_{i}\right)\right)\right\|_{L_{p /(1-\sigma)}}=\left\|\sum_{i=1}^{n} \alpha_{i} I_{\infty, p /(1-\sigma)}\left(h^{\prime}\left(z_{i}\right)\right)\right\|_{L_{p /(1-\sigma)}}
\end{aligned}
$$

for any $n \in \mathbb{N}, \alpha_{i} \in \mathbb{C}^{*}$ and $z_{i} \in \mathbb{D}$ for all $i \in\{1, \ldots, n\}$. By the injectivity of the Banach space $\ell_{\infty}\left(B_{X^{*}}\right)$ (see [9, p. 45]), there exists $T \in \mathcal{L}\left(L_{p /(1-\sigma)}(\mu), \ell_{\infty}\left(B_{X^{*}}\right)\right)$ such that $\left.T\right|_{S_{p /(1-\sigma)}}=T_{0}$ with $\|T\|=\left\|T_{0}\right\|$. This allows us to conclude that $\iota_{X} \circ f^{\prime}=$ $T \circ I_{\infty, p /(1-\sigma)} \circ h^{\prime}$ with $\|T\| \rho_{\mathcal{B}}(h) \leq \pi_{p, \sigma}^{\mathcal{B}}(f)$.

Conversely, assume that $\iota_{X} \circ f^{\prime}=T \circ I_{\infty, p /(1-\sigma)} \circ h^{\prime}$ as in (2). We have

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|f^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|\iota_{X}\left(f^{\prime}\left(z_{i}\right)\right)\right\|_{\infty}^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|T\left(I_{\infty, p /(1-\sigma)}\left(h^{\prime}\left(z_{i}\right)\right)\right)\right\|_{\infty}^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq\|T\|\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|I_{\infty, p /(1-\sigma)}\left(h^{\prime}\left(z_{i}\right)\right)\right\|_{L_{p /(1-\sigma)}(\mu)}^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad=\|T\|\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|h^{\prime}\left(z_{i}\right)\right\|_{L_{\infty}(\mu)}^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq\|T\| \rho_{\mathcal{B}}(h)\left(\sum_{i=1}^{n} \frac{\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}}{\left(1-\left|z_{i}\right|^{2}\right)^{\frac{p}{1-\sigma}}}\right)^{\frac{1-\sigma}{p}} \\
& \quad=\|T\| \rho_{\mathcal{B}}(h)\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|f_{z_{i}}^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq\|T\| \rho_{\mathcal{B}}(h) \sup _{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|g^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
\end{aligned}
$$

for any $n \in \mathbb{N}, \lambda_{i} \in \mathbb{C}$ and $z_{i} \in \mathbb{D}$ for all $i \in\{1, \ldots, n\}$. Hence $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with $\pi_{p, \sigma}^{\mathcal{B}}(f) \leq\|T\| \rho_{\mathcal{B}}(h)$ by Theorem 3.1.

We now relate (p, σ)-absolutely continuous Bloch maps with (weakly) compact Bloch maps which were introduced in [10].

Let us recall that the Bloch range of a function $f \in \mathcal{H}(\mathbb{D}, X)$, denoted by $\operatorname{rang}_{\mathcal{B}}(f)$, is the set

$$
\left\{\left(1-|z|^{2}\right) f^{\prime}(z) \in X: z \in \mathbb{D}\right\}
$$

A map $f \in \mathcal{H}(\mathbb{D}, X)$ is called (weakly) compact Bloch if $\operatorname{rang}_{\mathcal{B}}(f)$ is a relatively (weakly) compact set in X.

Proposition 4.2 If $p \in[1, \infty)$ and $\sigma \in[0,1)$, then every (p, σ)-absolutely continuous Bloch map $f: \mathbb{D} \rightarrow X$ is weakly compact Bloch, and if in addition X is reflexive, then f is compact Bloch.

Proof Let $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$. Hence Theorem 4.1 guarantees that

$$
\left(\iota_{X} \circ f\right)^{\prime}=\iota_{X} \circ f^{\prime}=T \circ I_{\infty, p /(1-\sigma)} \circ h^{\prime}=T \circ\left(I_{\infty, p /(1-\sigma)} \circ h\right)^{\prime},
$$

for some measure $\mu \in \mathcal{P}\left(B_{\widehat{\mathcal{B}}(\mathbb{D})}\right)$, an operator $T \in \mathcal{L}\left(L_{p /(1-\sigma)}(\mu), \ell_{\infty}\left(B_{X^{*}}\right)\right)$ and a map $h \in \widehat{\mathcal{B}}\left(\mathbb{D}, L_{\infty}(\mu)\right)$. Assume first $p>1$ and then the reflexivity of $L_{p /(1-\sigma)}(\mu)$ shows that $\iota_{X} \circ f \in \widehat{\mathcal{B}}\left(\mathbb{D}, \ell_{\infty}\left(B_{X^{*}}\right)\right)$ is weakly compact Bloch by [10, Theorem 5.6]. Now, the equality $\operatorname{rang}_{\mathcal{B}}\left(\iota_{X} \circ f\right)=\iota_{X}\left(\operatorname{rang}_{\mathcal{B}}(f)\right)$ yields that f is weakly compact Bloch. The case $p=1$ follows from the previous case when $\sigma \in(0,1)$ and from Proposition 2.1 and [6, Corollary 1.7] when $\sigma=0$.

So we have proved that $\operatorname{rang}_{\mathcal{B}}(f)$ is relatively weakly compact in X, and therefore relatively compact in X whenever X is reflexive.

5 Injective Banach normalized Bloch ideal

Motivated by the theory of operator ideals between Banach spaces [17], the concept of a Banach normalized Bloch ideal on \mathbb{D} was introduced in [10, Definition 5.11]. Proposition 1.2 in [6] asserts that $\left[\Pi_{p}^{\widehat{\mathcal{B}}}, \pi_{p}^{\mathcal{B}}\right]$ is an injective Banach normalized Bloch ideal for any $p \in[1, \infty)$. We now show that $\left[\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}, \pi_{p, \sigma}^{\mathcal{B}}\right]$ enjoys the same property using [10].

Proposition $5.1\left[\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}, \pi_{p, \sigma}^{\mathcal{B}}\right]$ is an injective Banach normalized Bloch ideal for any $p \in[1, \infty)$ and $\sigma \in[0,1)$.

Proof Note that we only need to prove the case $\sigma \in(0,1)$.
(N1): By Proposition 2.2, $\left(\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X), \pi_{p, \sigma}^{\mathcal{B}}\right)$ is a Banach space with $\rho_{\mathcal{B}}(f) \leq$ $\pi_{p, \sigma}^{\mathcal{B}}(f)$ for all $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$.
$(\mathrm{N} 2)$: Let $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x \in X$. Let us recall that $g \cdot x \in \widehat{\mathcal{B}}(\mathbb{D}, X)$ with $\rho_{\mathcal{B}}(g \cdot x)=$ $\rho_{\mathcal{B}}(g)\|x\|$ by [10, Proposition 5.13]. Assume $g \neq 0$. For all $n \in \mathbb{N}, \lambda_{i} \in \mathbb{C}$ and $z_{i} \in \mathbb{D}$ for all $i \in\{1, \ldots, n\}$, it holds

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|(g \cdot x)^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}=\rho_{\mathcal{B}}(g)\|x\|\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left|\left(\frac{g}{\rho_{\mathcal{B}}(g)}\right)^{\prime}\left(z_{i}\right)\right|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad \leq \rho_{\mathcal{B}}(g)\|x\| \sup _{h \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
\end{aligned}
$$

and so $g \cdot x \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with $\pi_{p, \sigma}^{\mathcal{B}}(g \cdot x) \leq \rho_{\mathcal{B}}(g)\|x\|$. Since $\rho_{\mathcal{B}}(g)\|x\|=$ $\rho_{\mathcal{B}}(g \cdot x) \leq \pi_{p}^{\mathcal{B}}(g \cdot x)$, we have $\pi_{p, \sigma}^{\mathcal{B}}(g \cdot x)=\rho_{\mathcal{B}}(g)\|x\|$.
(N3): Let $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X), T \in \mathcal{L}(X, Y)$ and let $g: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic function with $g(0)=0$. The Pick-Schwarz Lemma assures that

$$
\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right| \leq 1-|g(z)|^{2} \quad(z \in \mathbb{D})
$$

Let us recall that $T \circ f \circ g \in \widehat{\mathcal{B}}(\mathbb{D}, Y)$ by [10, Proposition 5.13]. We have

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|(T \circ f \circ g)^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& =\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|T\left(f^{\prime}\left(g\left(z_{i}\right)\right) g^{\prime}\left(z_{i}\right)\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \leq\|T\|\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left|g^{\prime}\left(z_{i}\right)\right|\left\|f^{\prime}\left(g\left(z_{i}\right)\right)\right\|\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \leq\|T\| \pi_{p, \sigma}^{\mathcal{B}}(f) \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left|g^{\prime}\left(z_{i}\right)\right|\left|h^{\prime}\left(g\left(z_{i}\right)\right)\right|^{1-\sigma}\left(\frac{1}{1-\left|g\left(z_{i}\right)\right|^{2}}\right)^{\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad=\|T\| \pi_{p, \sigma}^{\mathcal{B}}(f) \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left|g^{\prime}\left(z_{i}\right) h^{\prime}\left(g\left(z_{i}\right)\right)\right|^{1-\sigma}\left(\frac{\left|g^{\prime}\left(z_{i}\right)\right|}{1-\left|g\left(z_{i}\right)\right|^{2}}\right)^{\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \leq\|T\| \pi_{p, \sigma}^{\mathcal{B}}(f) \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|(h \circ g)^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \leq\|T\| \pi_{p, \sigma}^{\mathcal{B}}(f) \sup _{k \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|k^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} .
\end{aligned}
$$

where $\rho_{\mathcal{B}}(h \circ g) \leq \rho_{\mathcal{B}}(h)$ by [10, Proposition 3.6]. Therefore, $T \circ f \circ g \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with $\pi_{p, \sigma}^{\mathcal{B}}(T \circ f \circ g) \leq\|T\| \pi_{p, \sigma}^{\mathcal{B}}(f)$.
(I): Let $f \in \widehat{\mathcal{B}}(\mathbb{D}, X)$ and let $\iota: X \rightarrow Y$ be a linear isometry so that $\iota \circ f \in$ $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, Y)$. We have

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|f^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|\iota\left(f^{\prime}\left(z_{i}\right)\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{p}{1-\sigma}}\left\|(\iota \circ f)^{\prime}\left(z_{i}\right)\right\|^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
\end{aligned}
$$

$$
\leq \pi_{p, \sigma}^{\mathcal{B}}(\iota \circ f) \sup _{h \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
$$

and thus $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ with $\pi_{p, \sigma}^{\mathcal{B}}(f) \leq \pi_{p, \sigma}^{\mathcal{B}}(\iota \circ f)$. The reverse inequality follows from (N3).

The Möbius group of \mathbb{D}, designated Aut (\mathbb{D}), consists of all biholomorphic bijections from \mathbb{D} onto itself. Let us recall that a linear space $\mathcal{A}(\mathbb{D}, X) \subseteq \mathcal{B}(\mathbb{D}, X)$, under a seminorm $\rho_{\mathcal{A}}$, is Möbius-invariant if: (i) there is $C>0$ such that $\rho_{\mathcal{B}}(f) \leq C \rho_{\mathcal{A}}(f)$ for all $f \in \mathcal{A}(\mathbb{D}, X)$; and (ii) $f \circ \phi \in \mathcal{A}(\mathbb{D}, X)$ with $\rho_{\mathcal{A}}(f \circ \phi)=\rho_{\mathcal{A}}(f)$ for all $\phi \in \operatorname{Aut}(\mathbb{D})$ and $f \in \mathcal{A}(\mathbb{D}, X)$.

By Proposition 2.1, $\left(\Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p, \sigma}^{\mathcal{B}}\right) \leq\left(\mathcal{B}(\mathbb{D}, X), \rho_{\mathcal{B}}\right)$. Moreover, by the proof of (N3) in Proposition 5.1, one has that if $f \in \Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$ and $\phi \in \operatorname{Aut}(\mathbb{D})$, then $f \circ \phi \in \Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X)$ with $\pi_{p, \sigma}^{\mathcal{B}}(f \circ \phi) \leq \pi_{p, \sigma}^{\mathcal{B}}(f)$, and this fact also yields $\pi_{p, \sigma}^{\mathcal{B}}(f)=$ $\pi_{p, \sigma}^{\mathcal{B}}\left((f \circ \phi) \circ \phi^{-1}\right) \leq \pi_{p, \sigma}^{\mathcal{B}}(f \circ \phi)$. So we have stated the following result which extends [6, Proposition 1.3].

Corollary $5.2\left(\Pi_{p, \sigma}^{\mathcal{B}}(\mathbb{D}, X), \pi_{p, \sigma}^{\mathcal{B}}\right)$ is a Möbius-invariant space for $p \in[1, \infty)$ and $\sigma \in[0,1)$.

6 Duality

With the aim of studying the duality of the spaces $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right)$, we first introduce the Bloch analogues of the (p, σ)-Chevet-Saphar norms on the tensor product of two Banach spaces. We refer the reader to the references [8, 18] for a complete study on the theory of tensor product. As usual, for any linear spaces E and F, the tensor product $E \otimes F$ equipped with a norm α is denoted by $E \otimes_{\alpha} F$, and its completion by $E \widehat{\otimes}_{\alpha} F$.

Towards our aim, we recall some concepts and results of [10]. For each $z \in \mathbb{D}$, a Bloch atom of \mathbb{D} is the functional $\gamma_{z} \in \widehat{\mathcal{B}}(\mathbb{D})^{*}$ given by $\gamma_{z}(f)=f^{\prime}(z)$ for all $f \in \widehat{\mathcal{B}}(\mathbb{D})$. The named Bloch molecules of \mathbb{D} are the elements of the space

$$
\operatorname{lin}\left(\left\{\gamma_{z}: z \in \mathbb{D}\right\}\right) \subseteq \widehat{\mathcal{B}}(\mathbb{D})^{*}
$$

and the Bloch-free Banach space of \mathbb{D} is the space

$$
\mathcal{G}(\mathbb{D}):=\overline{\operatorname{lin}}\left(\left\{\gamma_{z}: z \in \mathbb{D}\right\}\right) \subseteq \widehat{\mathcal{B}}(\mathbb{D})^{*}
$$

The map $\Gamma: z \in \mathbb{D} \mapsto \gamma_{z} \in \mathcal{G}(\mathbb{D})$ is holomorphic with $\left\|\gamma_{z}\right\|=1 /\left(1-|z|^{2}\right)$ for all $z \in \mathbb{D}$.

Define now the space of X-valued Bloch molecules of \mathbb{D} by setting

$$
\operatorname{lin}(\Gamma(\mathbb{D})) \otimes X:=\operatorname{lin}\left\{\gamma_{z} \otimes x: z \in \mathbb{D}, x \in X\right\} \subseteq \widehat{\mathcal{B}}\left(\mathbb{D}, X^{*}\right)^{*}
$$

where $\gamma_{z} \otimes x: \widehat{\mathcal{B}}\left(\mathbb{D}, X^{*}\right) \rightarrow \mathbb{C}$ is the functional given by

$$
\left(\gamma_{z} \otimes x\right)(f)=\left\langle f^{\prime}(z), x\right\rangle \quad\left(f \in \widehat{\mathcal{B}}\left(\mathbb{D}, X^{*}\right)\right) .
$$

Plainly, each element $\gamma \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ can be expressed as $\gamma=\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}$ for some $n \in \mathbb{N}, \lambda_{i} \in \mathbb{C}, z_{i} \in \mathbb{D}$ and $x_{i} \in X$ for $i=1, \ldots, n$. Moreover,

$$
\gamma(f)=\sum_{i=1}^{n} \lambda_{i}\left\langle f^{\prime}\left(z_{i}\right), x_{i}\right\rangle \quad\left(f \in \widehat{\mathcal{B}}\left(\mathbb{D}, X^{*}\right)\right) .
$$

The following family of norms contains the p-Chevet-Saphar Bloch norms on $\operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ introduced in [6, Subsection 2.3].

Definition 6.1 Let $p \in(1, \infty)$ and $\sigma \in[0,1)$. We define the (p, σ)-Chevet-Saphar Bloch norm $d_{p, \sigma}^{\widehat{\mathcal{B}}}$ on $\gamma \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ by

$$
\begin{aligned}
d_{1, \sigma}^{\widehat{\mathcal{B}}}(\gamma)= & \inf \left\{\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\max _{1 \leq i \leq n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)\right)\right)\right. \\
& \left.\times\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{\frac{1}{1-\sigma}}\right)^{1-\sigma}\right\}, \\
d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)= & \inf \left\{\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)\right. \\
& \left.\times\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{\frac{p^{*}}{p^{*}-(1-\sigma)}}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}}\right\} \\
d_{\infty, \sigma}^{\widehat{\mathcal{B}}}(\gamma)= & \inf \left\{\left(\sup _{\left.h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{1}{1-\sigma}}\right)^{1-\sigma}\right)}\right.\right. \\
& \left.\times\left(\max _{1 \leq i \leq n}\left\|x_{i}\right\| \frac{1}{1-\sigma}\right)^{1-\sigma}\right\},
\end{aligned}
$$

the infimum being taken over all the representations of γ as $\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}$.
The following result concerning Bloch reasonable crossnorms introduced in [6, Definition 2.5] is based on [6, Theorem 2.6].

Given a complex Banach space X, let us recall that a norm α on $\operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ is a Bloch reasonable crossnorm if it satisfies the two conditions: (i) $\alpha\left(\gamma_{z} \otimes x\right) \leq\left\|\gamma_{z}\right\|\|x\|$ for all $z \in \mathbb{D}$ and $x \in X$; and (ii) Given $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^{*} \in X^{*}$, the linear functional $g \otimes x^{*}: \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X \rightarrow \mathbb{C}$ given by $\left(g \otimes x^{*}\right)\left(\gamma_{z} \otimes x\right)=g^{\prime}(z) x^{*}(x)$ is bounded on $\operatorname{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$ with $\left\|g \otimes x^{*}\right\| \leq \rho_{\mathcal{B}}(g)\left\|x^{*}\right\|$.

Theorem $6.2 d_{p, \sigma}^{\widehat{\mathcal{B}}}$ is a Bloch reasonable crossnorm on $\operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ for $\sigma \in[0,1)$ and $p \in[1, \infty]$.

Proof For $\sigma=0$ and $p \in[1, \infty]$, the result was stated in [6, Theorem 2.6]. We will prove it here for $\sigma \in(0,1)$ and $p \in(1, \infty)$. For $p \in\{1, \infty\}$, the proofs are similar.

Let $\gamma \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ and let $\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}$ be a representation of γ. Clearly, $d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma) \geq 0$. Given $\lambda \in \mathbb{C}$, it is immediate that

$$
\begin{aligned}
d_{p, \sigma}^{\widehat{\mathcal{B}}}(\lambda \gamma) \leq & |\lambda|\left(\sup _{h \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right) \\
& \times\left(\sum_{i=1}^{n}\left\|x_{i}\right\| \frac{p^{*}}{p^{*}-(1-\sigma)}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}} .
\end{aligned}
$$

From this inequality, we infer that $d_{p, \sigma}^{\widehat{\mathcal{B}}}(\lambda \gamma)=0=|\lambda| d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)$ if $\lambda=0$, and that $d_{p, \sigma}^{\widehat{\mathcal{B}}}(\lambda \gamma) \leq|\lambda| d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)$ if $\lambda \neq 0$. In this case, $d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)=d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\lambda^{-1}(\lambda \gamma)\right) \leq$ $\left|\lambda^{-1}\right| d_{p, \sigma}^{\widehat{\mathcal{B}}}(\lambda \gamma)$, hence $|\lambda| d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma) \leq d_{p, \sigma}^{\widehat{\mathcal{B}}}(\lambda \gamma)$, and thus also $d_{p, \sigma}^{\widehat{\mathcal{B}}}(\lambda \gamma)=|\lambda| d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)$.

To prove the triangular inequality of $d_{p, \sigma}^{\widehat{\mathcal{B}}}$, let $\gamma_{1}, \gamma_{2} \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$ and $\varepsilon>0$. We can choose representations

$$
\gamma_{1}=\sum_{i=1}^{n} \lambda_{1, i} \gamma_{z_{1, i}} \otimes x_{1, i}, \quad \gamma_{2}=\sum_{i=1}^{m} \lambda_{2, i} \gamma_{z_{2, i}} \otimes x_{2, i}
$$

so that

$$
\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{1, i}\right|\left(\frac{1}{1-\left|z_{1, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{1, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)\left(\sum_{i=1}^{n}\left\|x_{1, i}\right\| \frac{p^{p^{*}-(1-\sigma)}}{\frac{p^{*}-(1-\sigma)}{p^{*}}}\right.
$$

and

$$
\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{m}\left(\left|\lambda_{2, i}\right|\left(\frac{1}{1-\left|z_{2, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{2, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)\left(\sum_{i=1}^{m}\left\|x_{2, i}\right\| \frac{p^{*}-(1-\sigma)}{p^{*}}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}}
$$

are less or equal than $d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}\right)+\varepsilon$ and $d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{2}\right)+\varepsilon$, respectively.
For $r, s \in \mathbb{R}^{+}$arbitrary, define

$$
\lambda_{3, i} \gamma_{z_{3, i}}= \begin{cases}r^{-1} \lambda_{1, i} \gamma_{z_{1, i}} & i=1, \ldots, n \\ s^{-1} \lambda_{2, i-n} \gamma_{z_{2, i-n}} & i=n+1, \ldots, n+m\end{cases}
$$

and

$$
x_{3, i}= \begin{cases}r x_{1, i} & i=1, \ldots, n, \\ s x_{2, i-n} & i=n+1, \ldots, n+m .\end{cases}
$$

Plainly, $\gamma_{1}+\gamma_{2}=\sum_{i=1}^{n+m} \lambda_{3, i} \gamma_{z_{3, i}} \otimes x_{3, i}$ and, in consequence, $d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}+\gamma_{2}\right)$ is less or equal than

$$
\begin{aligned}
& \left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n+m}\left(\left|\lambda_{3, i}\right|\left(\frac{1}{1-\left|z_{3, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{3, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right) \\
& \times\left(\sum_{i=1}^{n+m}\left\|x_{3, i}\right\| \frac{p^{*}}{p^{*}-(1-\sigma)}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}}
\end{aligned}
$$

A simple computation produces

$$
\begin{aligned}
&\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n+m}\left(\left|\lambda_{3, i}\right|\left(\frac{1}{1-\left|z_{3, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{3, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)^{\frac{p^{*}}{1-\sigma}} \\
& \leq\left(r^{-1} \sup _{h \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{1, i}\right|\left(\frac{1}{1-\left|z_{1, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{1, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)^{\frac{p^{*}}{1-\sigma}} \\
&+\left(s^{-1} \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{m}\left(\left|\lambda_{2, i}\right|\left(\frac{1}{1-\left|z_{2, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{2, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)^{\frac{p^{*}}{1-\sigma}}
\end{aligned}
$$

and

$$
\sum_{i=1}^{n+m}\left\|x_{3, i}\right\| \frac{p^{*}}{p^{*}-(1-\sigma)}=r^{\frac{p^{*}}{p^{*}-(1-\sigma)}} \sum_{i=1}^{n}\left\|x_{1, i}\right\| \frac{p^{p^{*}}}{p^{*}-(1-\sigma)}+s^{\frac{p^{*}}{p^{*}-(1-\sigma)}} \sum_{i=1}^{m}\left\|x_{2, i}\right\|^{\frac{p^{*}}{p^{*}-(1-\sigma)}}
$$

Since $p^{*} /(1-\sigma)>1$ and $\left(p^{*} /(1-\sigma)\right)^{*}=p^{*} /\left(p^{*}-(1-\sigma)\right)$, Young's Inequality gives us

$$
d_{p, \sigma}^{\widehat{\mathcal{O}}}\left(\gamma_{1}+\gamma_{2}\right) \leq \frac{1-\sigma}{p^{*}}\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n+m}\left(\left|\lambda_{3, i}\right|\left(\frac{1}{1-\left|z_{3, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{3, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)^{\frac{p^{*}}{1-\sigma}}
$$

$$
\begin{aligned}
& +\frac{p^{*}-(1-\sigma)}{p^{*}} \sum_{i=1}^{n+m}\left\|x_{3, i}\right\| \frac{p^{*}-(1-\sigma)}{p^{*}} \\
\leq & \frac{(1-\sigma) r^{-\frac{p^{*}}{1-\sigma}}}{p^{*}}\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{1, i}\right|\left(\frac{1}{1-\left|z_{1, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{1, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)^{\frac{p^{*}}{1-\sigma}} \\
& +\frac{\left(p^{*}-(1-\sigma)\right) r}{p^{*}} \frac{p^{p^{*}-(1-\sigma)}}{n} \sum_{i=1}^{n}\left\|x_{1, i}\right\| \frac{p^{*}}{p^{*}-(1-\sigma)} \\
& +\frac{(1-\sigma) s^{-\frac{p^{*}}{1-\sigma}}}{p^{*}}\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{m}\left(\left|\lambda_{2, i}\right|\left(\frac{1}{1-\left|z_{2, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{2, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right)^{\frac{p^{*}}{1-\sigma}} \\
& +\frac{\left(p^{*}-(1-\sigma)\right) s}{p^{*}}
\end{aligned}
$$

In particular, taking above

$$
\begin{aligned}
& r=\left(d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}\right)+\varepsilon\right)^{-\frac{1-\sigma}{p^{*}}} \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{1, i}\right|\left(\frac{1}{1-\left|z_{1, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{1, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}, \\
& s=\left(d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{2}\right)+\varepsilon\right)^{-\frac{1-\sigma}{p^{*}}} \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{m}\left(\left|\lambda_{2, i}\right|\left(\frac{1}{1-\left|z_{2, i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{2, i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}},
\end{aligned}
$$

one obtains $d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}+\gamma_{2}\right) \leq d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}\right)+d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{2}\right)+2 \varepsilon$, and the arbitrariness of ε yields

$$
d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}+\gamma_{2}\right) \leq d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{1}\right)+d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{2}\right)
$$

To conclude that $d_{p, \sigma}^{\widehat{\mathcal{B}}}$ is a norm, note that the Hölder's Inequality gives

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} \lambda_{i}\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma} g^{\prime}\left(z_{i}\right)^{1-\sigma} x^{*}\left(x_{i}\right)\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|g^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\left\|x_{i}\right\| \\
& \quad \leq\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|g^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{\frac{p^{*}-(1-\sigma)}{p^{*}}}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}} \\
& \quad \leq \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\left(\sum_{i=1}^{n}\left\|x_{i}\right\| \|^{\frac{p^{*}}{p^{*}-(1-\sigma)}}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}},
\end{aligned}
$$

whenever $g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}$ and $x^{*} \in B_{X^{*}}$. Note that the value $\left|\sum_{i=1}^{n} \lambda_{i} g^{\prime}\left(z_{i}\right) x^{*}\left(x_{i}\right)\right|$ is independent on the representation of γ seeing as

$$
\sum_{i=1}^{n} \lambda_{i} g^{\prime}\left(z_{i}\right) x^{*}\left(x_{i}\right)=\left(\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}\right)\left(g \cdot x^{*}\right)=\gamma\left(g \cdot x^{*}\right)
$$

and taking infimum over all representations of γ produces

$$
\left|\sum_{i=1}^{n} \lambda_{i} g^{\prime}\left(z_{i}\right) x^{*}\left(x_{i}\right)\right| \leq d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma) \quad\left(g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}, x^{*} \in B_{X^{*}}\right) .
$$

Now, if $d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)=0$, the above inequality gives

$$
\left(\sum_{i=1}^{n} \lambda_{i} x^{*}\left(x_{i}\right) \gamma_{z_{i}}\right)(g)=\sum_{i=1}^{n} \lambda_{i} x^{*}\left(x_{i}\right) g^{\prime}\left(z_{i}\right)=0 \quad\left(g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}, x^{*} \in B_{X^{*}}\right) .
$$

For each $x^{*} \in B_{X^{*}}$, this implies that $\sum_{i=1}^{n} \lambda_{i} x^{*}\left(x_{i}\right) \gamma_{z_{i}}=0$, and since $\Gamma(\mathbb{D})$ is linearly independent in $\mathcal{G}(\mathbb{D})$ (see [10, Remark 2.8]), we secure that $x^{*}\left(x_{i}\right) \lambda_{i}=0$ for all $i \in\{1, \ldots, n\}$, hence $\lambda_{i}=0$ for all $i \in\{1, \ldots, n\}$ since $B_{X^{*}}$ separate points, and so $\gamma=\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}=0$.

To finish, we show that $d_{p, \sigma}^{\widehat{\mathcal{B}}}$ is a Bloch reasonable crossnorm on $\operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$:
(i) Given $z \in \mathbb{D}$ and $x \in X$,

$$
\begin{aligned}
& d_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\gamma_{z} \otimes x\right) \leq\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\left(\frac{1}{1-|z|^{2}}\right)^{\sigma}\left|h^{\prime}(z)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\|x\| \\
& \leq \frac{\|x\|}{1-|z|^{2}}=\left\|\gamma_{z}\right\|\|x\|
\end{aligned}
$$

(ii) For any $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^{*} \in X^{*}$,

$$
\begin{aligned}
& \left|\left(g \otimes x^{*}\right)(\gamma)\right|=\left|\sum_{i=1}^{n} \lambda_{i}\left(g \otimes x^{*}\right)\left(\gamma_{z_{i}} \otimes x_{i}\right)\right|=\left|\sum_{i=1}^{n} \lambda_{i} g^{\prime}\left(z_{i}\right) x^{*}\left(x_{i}\right)\right| \\
& \quad \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|\left|g^{\prime}\left(z_{i}\right)\right|\left|x^{*}\left(x_{i}\right)\right| \leq \rho_{\mathcal{B}}(g)\left\|x^{*}\right\| \sum_{i=1}^{n} \frac{\left|\lambda_{i}\right|}{1-\left|z_{i}\right|^{2}}\left\|x_{i}\right\| \\
& \quad=\rho_{\mathcal{B}}(g)\left\|x^{*}\right\| \sum_{i=1}^{n}\left|\lambda_{i}\right|\left|f_{z_{i}}^{\prime}\left(z_{i}\right)\right|\left\|x_{i}\right\|=\rho_{\mathcal{B}}(g)\left\|x^{*}\right\| \sum_{i=1}^{n}\left|\lambda_{i}\right| \\
& \quad \times\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|f_{z_{i}}^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\left\|x_{i}\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \rho_{\mathcal{B}}(g)\left\|x^{*}\right\|\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|f_{z_{i}}^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}} \\
& \times\left(\sum_{i=1}^{n}\left\|x_{i}\right\| \frac{p^{*}}{p^{*}-(1-\sigma)}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}} \\
\leq & \rho_{\mathcal{B}}(g)\left\|x^{*}\right\|\left(\sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p^{*}}{1-\sigma}}\right)^{\frac{1-\sigma}{p^{*}}}\right) \\
& \times\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{\frac{p^{*}}{p^{*}-(1-\sigma)}}\right)^{\frac{p^{*}-(1-\sigma)}{p^{*}}} .
\end{aligned}
$$

Passing to the infimum over all the representations of γ yields

$$
\left|\left(g \otimes x^{*}\right)(\gamma)\right| \leq \rho_{\mathcal{B}}(g)\left\|x^{*}\right\| d_{p, \sigma}^{\widehat{\mathcal{B}}}(\gamma)
$$

Therefore, $g \otimes x^{*} \in\left(\operatorname{lin}(\Gamma(\mathbb{D})) \otimes_{d_{p, \sigma}} X\right)^{*}$ and $\left\|g \otimes x^{*}\right\| \leq \rho_{\mathcal{B}}(g)\left\|x^{*}\right\|$.

We are now in a position to address the duality of the space of (p, σ)-absolutely continuous Bloch maps from \mathbb{D} into the dual space X^{*} of a complex Banach space X. In the proof of the following result, we will make use of Proposition 2.1 and Theorem 3.1.

Theorem 6.3 Let $p \in[1, \infty)$ and $\sigma \in[0,1)$. Then $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right)$ is isometrically isomorphic to $\left(\mathcal{G}(\mathbb{D}) \widehat{\otimes}_{d_{p^{*}, \sigma}^{\widehat{\widehat{ }}}} X\right)^{*}$, via the canonical pairing

$$
\Lambda(f)(\gamma)=\sum_{i=1}^{n} \lambda_{i}\left\langle f^{\prime}\left(z_{i}\right), x_{i}\right\rangle
$$

for all $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right)$ and $\gamma=\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i} \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$.
Proof For $\sigma=0$, the result follows from Proposition 2.1 and [6, Theorem 2.8]. Assume $\sigma \in(0,1)$. We are going to prove the case $1<p<\infty$. The case $p=1$ follows similarly.

Let $f \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right)$ and define the linear map $\Lambda_{0}(f): \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X \rightarrow \mathbb{C}$ by setting

$$
\Lambda_{0}(f)(\gamma)=\sum_{i=1}^{n} \lambda_{i}\left\langle f^{\prime}\left(z_{i}\right), x_{i}\right\rangle \quad\left(\gamma=\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i} \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X\right) .
$$

Since $p /(1-\sigma)>1$ and $(p /(1-\sigma))^{*}=p /(p-(1-\sigma))$, Hölder Inequality and Theorem 3.1 provide

$$
\begin{aligned}
& \left|\Lambda_{0}(f)(\gamma)\right|=\left|\sum_{i=1}^{n} \lambda_{i}\left\langle f^{\prime}\left(z_{i}\right), x_{i}\right\rangle\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|\left\|f^{\prime}\left(z_{i}\right)\right\|\left\|x_{i}\right\| \\
& \quad \leq\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left\|f^{\prime}\left(z_{i}\right)\right\|\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{\frac{p}{p-(1-\sigma)}}\right)^{\frac{p-(1-\sigma)}{p}} \\
& \quad \leq \pi_{p, \sigma}^{\mathcal{B}}(f) \sup _{h \in B_{\hat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \quad\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{\frac{p}{p-(1-\sigma)}}\right)^{\frac{p-(1-\sigma)}{p}} .
\end{aligned}
$$

Calculating the infimum on all the representations of γ yields

$$
\left|\Lambda_{0}(f)(\gamma)\right| \leq \pi_{p, \sigma}^{\mathcal{B}}(f) d_{p^{*}, \sigma}^{\widehat{\mathcal{B}}}(\gamma) .
$$

Hence $\Lambda_{0}(f)$ is continuous on $\operatorname{lin}(\Gamma(\mathbb{D})) \otimes_{d \widehat{p^{*}, \sigma}} X$ with $\left\|\Lambda_{0}(f)\right\| \leq \pi_{p, \sigma}^{\mathcal{B}}(f)$.
Clearly, $\mathcal{G}(\mathbb{D}) \otimes X$ is a norm-dense linear subspace of $\mathcal{G}(\mathbb{D}) \widehat{\otimes}_{d_{p^{*}, \sigma}^{\mathcal{B}}} X$ and therefore we can find a unique continuous map $\Lambda(f): \mathcal{G}(\mathbb{D}) \widehat{\otimes}_{d_{p^{*}, \sigma}^{\mathcal{B}}} X \rightarrow \mathbb{C}$ extending $\Lambda_{0}(f)$. Further, $\Lambda(f)$ is linear and $\|\Lambda(f)\|=\left\|\Lambda_{0}(f)\right\|$.

In this way, we define a map $\Lambda: \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right) \rightarrow\left(\mathcal{G}(\mathbb{D}) \widehat{\otimes}_{d_{p^{*}, \sigma}^{\widehat{\mathcal{B}}}} X\right)^{*}$. By [6, Corollary 2.3], Λ is linear and injective since $\Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right) \subseteq \widehat{\mathcal{B}}\left(\mathbb{D}, X^{*}\right)$. We now prove that Λ is a surjective isometry. For it, let $\varphi \in\left(\mathcal{G}(\mathbb{D}) \widehat{\otimes}_{d_{p^{*}, \sigma}^{\mathcal{B}}} X\right)^{*}$ and define $F_{\varphi}: \mathbb{D} \rightarrow X^{*}$ by

$$
\left\langle F_{\varphi}(z), x\right\rangle=\varphi\left(\gamma_{z} \otimes x\right) \quad(z \in \mathbb{D}, x \in X)
$$

Apparently (see, for example, the proof of [6, Proposition 2.4]), $F_{\varphi} \in \mathcal{H}\left(\mathbb{D}, X^{*}\right)$ and $F_{\varphi}=f_{\varphi}^{\prime}$ for a suitable map $f_{\varphi} \in \widehat{\mathcal{B}}\left(\mathbb{D}, X^{*}\right)$ with $\rho_{\mathcal{B}}\left(f_{\varphi}\right) \leq\|\varphi\|$.

To prove that $f_{\varphi} \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right)$, let $n \in \mathbb{N}, \lambda_{i} \in \mathbb{C}$ and $z_{i} \in \mathbb{D}$ for all $i \in$ $\{1, \ldots, n\}$. Given $\varepsilon>0$, for each $i \in\{1, \ldots, n\}$, we can find $x_{i} \in X$ with $\left\|x_{i}\right\| \leq 1+\varepsilon$ so that

$$
\left\langle f_{\varphi}^{\prime}\left(z_{i}\right), x_{i}\right\rangle=\left\|f_{\varphi}^{\prime}\left(z_{i}\right)\right\| .
$$

Obviously, $T: \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by

$$
T\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i} \lambda_{i}\left\|f_{\varphi}^{\prime}\left(z_{i}\right)\right\|, \quad\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{C}^{n}
$$

is in $\left(\mathbb{C}^{n},\|\cdot\|_{\left.(p /(1-\sigma))^{*}\right)^{*}}\right.$ and

$$
\|T\|=\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left\|f_{\varphi}^{\prime}\left(z_{i}\right)\right\|\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
$$

If $\left\|\left(t_{1}, \ldots, t_{n}\right)\right\|_{(p /(1-\sigma))^{*}} \leq 1$, we get

$$
\begin{aligned}
& \left|T\left(t_{1}, \ldots, t_{n}\right)\right|=\left|\varphi\left(\sum_{i=1}^{n} t_{i} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}\right)\right| \leq\|\varphi\| d_{p^{*}, \sigma}^{\widehat{\mathcal{B}}}\left(\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes t_{i} x_{i}\right) \\
& \quad \leq\|\varphi\| \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}\left(\sum_{i=1}^{n}\left\|t_{i} x_{i}\right\|^{\frac{p}{p-(1-\sigma)}}\right)^{\frac{p-(1-\sigma)}{p}} \\
& \quad \leq(1+\varepsilon)\|\varphi\| \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}},
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left\|f_{\varphi}^{\prime}\left(z_{i}\right)\right\|\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}} \\
& \leq\|\varphi\| \sup _{h \in B_{\widehat{\mathcal{B}}(\mathbb{D})}}\left(\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|\left(\frac{1}{1-\left|z_{i}\right|^{2}}\right)^{\sigma}\left|h^{\prime}\left(z_{i}\right)\right|^{1-\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
\end{aligned}
$$

and consequently Theorem 3.1 tells us that $f_{\varphi} \in \Pi_{p, \sigma}^{\widehat{\mathcal{B}}}\left(\mathbb{D}, X^{*}\right)$ with $\pi_{p, \sigma}^{\mathcal{B}}\left(f_{\varphi}\right) \leq\|\varphi\|$.
Now, for any $\gamma=\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i} \in \operatorname{lin}(\Gamma(\mathbb{D})) \otimes X$, one has
$\Lambda\left(f_{\varphi}\right)(\gamma)=\sum_{i=1}^{n} \lambda_{i}\left\langle f_{\varphi}^{\prime}\left(z_{i}\right), x_{i}\right\rangle=\sum_{i=1}^{n} \lambda_{i} \varphi\left(\gamma_{z_{i}} \otimes x_{i}\right)=\varphi\left(\sum_{i=1}^{n} \lambda_{i} \gamma_{z_{i}} \otimes x_{i}\right)=\varphi(\gamma)$,
and $\Lambda\left(f_{\varphi}\right)=\varphi$ on $\mathcal{G}(\mathbb{D}) \widehat{\otimes}_{d_{p^{*}, \sigma}^{\mathcal{B}}} X$. Further, $\pi_{p, \sigma}^{\mathcal{B}}\left(f_{\varphi}\right) \leq\left\|\Lambda\left(f_{\varphi}\right)\right\|$. This completes the proof.

Acknowledgements A. Jiménez-Vargas was partially supported by Junta de Andalucía grant FQM194 and by Ministerio de Ciencia e Innovación grant PID2021-122126NB-C31 funded by MCIN/AEI/ $10.13039 / 501100011033$ and by "ERDF A way of making Europe". The authors would like to thank the referees for their valuable comments that have improved considerably this paper.

Date availability Not applicable.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Achour, D., Dahia, E., Rueda, P., Sánchez Pérez, E.A.: Factorization of absolutely continuous polynomials. J. Math. Anal. Appl. 405(1), 259-270 (2013)
2. Achour, D., Dahia, E., Rueda, P., Sánchez Pérez, E.A.: Factorization of strongly (p, σ)-continuous multilinear operators. Linear Multilinear Algebra 62(12), 1649-1670 (2014)
3. Achour, D., Rueda, P., Yahi, R.: (p, σ)-Absolutely Lipschitz operators. Ann. Funct. Anal. 8(1), 38-50 (2017)
4. Blasco, O.: Spaces of vector valued analytic functions and applications. Lond. Math. Soc. Lect. Notes Ser. 158, 33-48 (1990)
5. Botelho, G., Pellegrino, D., Rueda, P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365, 269-276 (2010)
6. Cabrera-Padilla, M.G., Jiménez-Vargas, A., Ruiz-Casternado, D.: p-Summing Bloch mappings on the complex unit disc. Banach J. Math. Anal. 18(9), 1-31 (2024)
7. Dahia, E., Achour, D., Sánchez Pérez, E.A.: Absolutely continuous multilinear operators. J. Math. Anal. Appl. 397, 205-224 (2013)
8. Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993)
9. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)
10. Jiménez-Vargas, A., Ruiz-Casternado, D.: Compact Bloch mappings on the complex unit disc. arXiv:2308.02461
11. López Molina, J.A., Sánchez Pérez, E.A.: Ideales de operadores absolutamente continuos. Rev. R. Acad. Cienc. Exactas Fís. Nat. Madrid 87, 349-378 (1993)
12. López Molina, J.A., Sánchez Pérez, E.A.: On operator ideals related to (p, σ)-absolutely continuous operator. Stud. Math. 131(8), 25-40 (2000)
13. Matter, U.: Absolute continuous operators and super-reflexivity. Math. Nachr. 130, 193-216 (1987)
14. Matter, U.: Factoring trough interpolation spaces and super-reflexive Banach spaces. Rev. Roumaine Math. Pures Appl. 34, 147-156 (1989)
15. Pellegrino, D., Santos, J.: A general Pietsch Domination Theorem. J. Math. Anal. Appl. 375, 371-374 (2011)
16. Pellegrino, D., Santos, J.: On summability of nonlinear mappings: a new approach. Math. Z. 270, 189-196 (2012)
17. Pietsch, A.: Operator ideals, North-Holland Mathematical Library, vol. 20. North-Holland Publishing Co., Amsterdam (1980). Translated from German by the author
18. Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2012)
19. Sánchez Pérez, E.A.: On the structure of tensor norms related to (p, σ)-absolutely continuous operators. Collect. Math. 47(1), 35-46 (1996)
20. Zhu, K.: Operator theory in function spaces, 2nd edn. Mathematical Surveys and Monographs, vol. 138. American Mathematical Society, Providence (2007)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Communicated by Petr Hajek.
 \boxtimes A. Bougoutaia
 amarbou28@gmail.com
 A. Belacel
 amarbelacel@yahoo.fr
 O. Djeribia
 o.djeribia.math@lagh-univ.dz
 A. Jiménez-Vargas
 ajimenez@ual.es
 1 Laboratory of Pure and Applied Mathematics (LPAM), University of Laghouat, Laghouat, Algeria
 2 Departamento de Matemáticas, Universidad de Almería, Ctra. de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain

