Tusi Mathematical Research Group

ORIGINAL PAPER

Weighted holomorphic mappings attaining their norms

A. Jiménez-Vargas¹

Received: 19 April 2023 / Accepted: 4 August 2023 © Tusi Mathematical Research Group (TMRG) 2023

Abstract

Given an open subset U of \mathbb{C}^n , a weight v on U and a complex Banach space F, let $\mathcal{H}_v(U,F)$ denote the Banach space of all weighted holomorphic mappings $f\colon U\to F$, under the weighted supremum norm $\|f\|_v:=\sup\{v(z)\,\|f(z)\|\colon z\in U\}$. We prove that the set of all mappings $f\in\mathcal{H}_v(U,F)$ that attain their weighted supremum norms is norm dense in $\mathcal{H}_v(U,F)$, provided that the closed unit ball of the little weighted holomorphic space $\mathcal{H}_{v_0}(U,F)$ is compact-open dense in the closed unit ball of $\mathcal{H}_v(U,F)$. We also prove a similar result for mappings $f\in\mathcal{H}_v(U,F)$ such that vf has a relatively compact range.

Keywords Holomorphic function · Norm attaining operator · Radon–Nikodým property

Mathematics Subject Classification 46B20 · 46B22 · 46J15

Introduction and preliminaries

The Bishop–Phelps Theorem [5] assures that the set of all continuous linear functionals attaining their norms on a Banach space E is norm dense in its dual Banach space E^* . The extension of this theorem for holomorphic mappings has attracted the attention of some authors.

Choi and Kim [11, Theorem 2.7] proved that a Banach space E with the Radon–Nikodým property satisfies that the set of norm attaining k-homogeneous polynomials on E is dense in the set of all k-homogeneous polynomials on E. Acosta et al. [1, Theorem 3.1] showed that on a complex Banach space E, the functions uniformly continuous on the closed unit ball and holomorphic on the open unit ball that attain their norms are norm dense, provided that E has the Radon–Nikodým property. Other results

Communicated by Denny Leung.

Published online: 22 August 2023

A. Jiménez-Vargas ajimenez@ual.es

Departamento de Matemáticas, Universidad de Almería, 04120 Almería, Spain

73 Page 2 of 7 A. Jiménez-Vargas

on norm attaining polynomials, bilinear forms and bounded holomorphic mappings can be consulted in the works of Aron et al. [2] and Carando and Mazzitelli [10].

We will address in this note several problems regarding the attainment of the norm of weighted holomorphic mappings defined on an open subset of \mathbb{C}^n . Such spaces have been studied by Rubel and Shields [16], Bierstedt and Summers [4], Bierstedt et al. [3], Boyd and Rueda [8, 9] and Gupta and Baweja [15], among many others.

Let U be an open subset of \mathbb{C}^n and F be a complex Banach space. A *weight* v on U is a (strictly) positive continuous function on U. Let $\mathcal{H}(U, F)$ denote the space of all holomorphic mappings from U to F.

The weighted space of holomorphic mappings $\mathcal{H}_v(U, F)$ is the Banach space of all mappings $f \in \mathcal{H}(U, F)$ such that

$$||f||_v := \sup \{v(z) ||f(z)|| : z \in U\} < \infty,$$

endowed with the weighted supremum norm $\|\cdot\|_{v}$.

The *little weighted space of holomorphic mappings* $\mathcal{H}_{v_0}(U, F)$ is the norm closed linear subspace of $\mathcal{H}_v(U, F)$ formed by all mappings f so that vf vanishes at infinity on U, that is, for every $\varepsilon > 0$ there is a compact subset K of U such that $v(z) || f(z) || < \varepsilon$ for all $z \in U \setminus K$. We will write $\mathcal{H}_v(U)$ and $\mathcal{H}_{v_0}(U)$ instead of $\mathcal{H}_v(U, \mathbb{C})$ and $\mathcal{H}_{v_0}(U, \mathbb{C})$, respectively.

We say that a mapping $f \in \mathcal{H}_v(U, F)$ attains its weighted supremum norm if there exists a point $z \in U$ such that $v(z) ||f(z)|| = ||f||_v$.

Our main result states that for every complex Banach space F, the set of all mappings $f \in \mathcal{H}_v(U, F)$ that attain their weighted supremum norms is norm dense in the space $\mathcal{H}_v(U, F)$, provided that the closed unit ball of $\mathcal{H}_{v_0}(U, F)$ is dense in the closed unit ball of $\mathcal{H}_v(U, F)$ with respect to the compact-open topology τ_0 . A similar result for the space $\mathcal{H}_v(U, F)$ consisting of all mappings $f \in \mathcal{H}_v(U, F)$ so that vf has a relatively compact range is also established.

We must point out that it is not possible to obtain a Bishop–Phelps type theorem for any weighted space of holomorphic mappings $\mathcal{H}_v(U, F)$. For example, taking the weight v(z) = 1 for all $z \in \mathbb{D}$, note that every function $f \in \mathcal{H}_v(\mathbb{D})$ that attains its supremum norm is a constant function by the maximum modulus principle.

Recently, Dantas and Medina have dealed with weighted holomorphic mappings that attain their norms in [12]. Our approach here is different, depends on the linearization of weighted holomorphic mappings and is influenced by the study done in [14] on similar questions in the setting of spaces of Lipschitz functions.

First, we introduce some basic notation. Given Banach spaces E and F, we denote by $\mathcal{L}(E, F)$ the Banach space of all bounded linear operators from E into F, equipped with the operator canonical norm, and by $\mathcal{K}(E, F)$ the norm closed subspace of $\mathcal{L}(E, F)$ consisting of all compact operators. As usual, B_E , S_E and $\operatorname{Ext}(B_E)$ represent the closed unit ball of E, the unit sphere of E and the set of extreme points of E, respectively. \mathbb{T} stands for the set of all uni-modular complex numbers.

The key tool in our study is the canonical predual, denoted $\mathcal{G}_v(U)$, of the space $\mathcal{H}_v(U)$. Following [4], $\mathcal{G}_v(U)$ is the space of all linear functionals on $\mathcal{H}_v(U)$ whose restriction to $B_{\mathcal{H}_v(U)}$ is τ_0 -continuous. The following result gathers the properties of $\mathcal{G}_v(U)$ that we will need later.

Theorem 0.1 [4, Theorem 1.1] [15, Theorem 3.1 and Proposition 5.1] Let U be an open set of \mathbb{C}^n and let v be a weight on U.

- (i) $\mathcal{G}_v(U)$ is a Banach space with the norm induced from $\mathcal{H}_v(U)^*$, and the evaluation mapping $J_v \colon \mathcal{H}_v(U) \to \mathcal{G}_v(U)^*$, given by $J_v(f)(\phi) = \phi(f)$ for $\phi \in \mathcal{G}_v(U)$ and $f \in \mathcal{H}_v(U)$, is an isometric isomorphism.
- (ii) The restriction mapping $R_v : \mathcal{G}_v(U) \to \mathcal{H}_{v_0}(U)^*$, given by $R_v(\phi) = \phi|_{\mathcal{H}_{v_0}(U)}$ for $\phi \in \mathcal{G}_v(U)$, is an isometric isomorphism if and only if $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_v(U)}$.
- (iii) The mapping $\Delta_v : U \to \mathcal{G}_v(U)$ defined by $\Delta_v(z) = \delta_z$, where $\delta_z(f) = f(z)$ for $f \in \mathcal{H}_v(U)$, belongs to $\mathcal{H}_v(U, \mathcal{G}_v(U))$ with $\|\Delta_v\|_v \le 1$.
- (iv) $\mathcal{G}_v(U)$ coincides with the norm closed linear hull of the set $\{\delta_z \colon z \in U\}$ in $\mathcal{H}_v(U)^*$.
- (v) For every complex Banach space F and every mapping $f \in \mathcal{H}_v(U, F)$, there exists a unique operator $T_f \in \mathcal{L}(\mathcal{G}_v(U), F)$ such that $T_f \circ \Delta_v = f$.
- (vi) The map $f \mapsto T_f$ is an isometric isomorphism from $\mathcal{H}_v(U, F)$ to $\mathcal{L}(\mathcal{G}_v(U), F)$ (resp., from $\mathcal{H}_{vK}(U, F)$ to $\mathcal{K}(\mathcal{G}_v(U), F)$.

Recall that a Banach space E has the $Radon-Nikodým\ property\ (RNP)$ provided for every measure space (Ω, Σ, μ) with $\mu(\Omega) < \infty$ and every μ -continuous measure $\nu \colon \Sigma \to E$ of finite variation, there is a Bochner integrable function $f \colon \Omega \to E$ such that $\nu(A) = \int_A f\ d\mu$ for all $A \in \Sigma$. The classical Dunford-Pettis Theorem (see [7, Theorem 4.1.3]) asserts that separable dual spaces have the (RNP).

A Banach space *E* has the *Krein–Milman property* (KMP) if every nonempty closed convex bounded subset of *E* has an extreme point. According to [7, Theorem 3.3.6], (RNP) implies (KMP), but the converse is still an open problem.

From the assertions (i), (iii) and (iv) of Theorem 0.1, we deduce that $\mathcal{G}_v(U)$ is a separable Banach space. Moreover, in view of the assertion (ii), the aforementioned compact-open density condition imposed in the main results of this paper guarantees that $\mathcal{G}_v(U)$ is a dual Banach space. Therefore, $\mathcal{G}_v(U)$ has the (RNP) and this fact is very important in our arguments as happens in the main results of [1, 11, 14].

By [4, Corollary 1.2], the compact-open density condition assures that $\mathcal{H}_v(U)$ is canonically isometrically isomorphic to $\mathcal{H}_{v_0}(U)^{**}$. This problem known as the *Biduality Problem* was addressed first by Williams [17] and Rubel and Shields [16], afterwards by Bierstedt and Summers [4] and more recently by Boyd and Rueda [9]. As shown in Examples 2.1 and 2.2 of [4], the compact-open density condition is satisfied in the classical cases obtained in [16] (when $U = \mathbb{D}$ is the open unit disk in \mathbb{C} and v is a radial weight on \mathbb{D} that converges to 0 as z converges to the boundary of \mathbb{D}), and in [17] (when $U = \mathbb{C}$ and v is a radial weight that is rapidly decreasing at infinity).

1 The results

Given Banach spaces E and F, an operator $T \in \mathcal{L}(E, F)$ attains its norm at a point $x \in S_E$ if ||T(x)|| = ||T||. As usual, NA(E, F) denotes the set of all bounded linear operators from E into F that attain their norms, and to simplify, NA(E) is written instead of NA (E, \mathbb{C}) .

73 Page 4 of 7 A. Jiménez-Vargas

The analogue of this concept can be introduced in the setting of weighted spaces of holomorphic functions as follows.

Definition 1.1 Let U be an open subset of \mathbb{C}^n , let v be a weight on U, let F be a complex Banach space and let $f \in \mathcal{H}_v(U, F)$.

- (i) We say that f attains its weighted supremum norm if there exists a point $z \in U$ such that $v(z) || f(z) || = || f ||_v$. We denote by $\mathcal{H}_{vNA}(U, F)$ the set of all mappings $f \in \mathcal{H}_v(U, F)$ attaining their weighted supremum norms. In particular, we write $\mathcal{H}_{vNA}(U)$ instead of $\mathcal{H}_{vNA}(U, \mathbb{C})$.
- (ii) We say that f attains its weighted supremum norm on $\mathcal{G}_v(U)$ if its linearization $T_f \in \mathcal{L}(\mathcal{G}_v(U), F)$ attains its operator canonical norm. We denote by $\mathcal{H}_{vNA}(\mathcal{G}_v(U), F)$ the set of all mappings $f \in \mathcal{H}_v(U, F)$ that attain their weighted supremum norms on $\mathcal{G}_v(U)$. In addition, we write $\mathcal{H}_{vNA}(\mathcal{G}(U))$ instead of $\mathcal{H}_{vNA}(\mathcal{G}(U), \mathbb{C})$.
- (iii) We say that f attains its weighted supremum norm in the direction $x \in F$ if $||x|| = ||f||_n$, and there exists a sequence (z_n) of points in U such that

$$\lim_{n \to +\infty} v(z_n) f(z_n) = x.$$

We begin with the following elementary observation.

Lemma 1.2 Let U be an open subset of \mathbb{C}^n , let v be a weight on U, let F be a complex Banach space, let $f \in \mathcal{H}_v(U, F)$ and $z \in U$. Then f attains its weighted supremum norm at z if and only if f attains its weighted supremum norm on $\mathcal{G}_v(U)$ at $v(z)\delta_z$. In this case, f attains its weighted supremum norm in the direction v(z) f(z).

Proof If $v(z) || f(z) || = || f ||_v$, we have $|| f ||_v = || T_f ||$ and

$$v(z) \| f(z) \| = v(z) \| T_f \circ \Delta_v(z) \| = v(z) \| T_f(\delta_z) \| = \| T_f(v(z)\delta_z) \|$$

by Theorem 0.1(v), and thus $||T_f(v(z)\delta_z)|| = ||T_f||$. Conversely, if $||T_f(v(z)\delta_z)|| = ||T_f||$, we have $v(z) ||f(z)|| = ||f||_v$ according to the above proof. The last statement follows easily.

Our first aim is to obtain a version of Bishop–Phelps Theorem for weighted holomorphic complex-valued functions. In its proof, we will use the following fact that can be compared to Proposition 1 in [8].

Lemma 1.3 Let U be an open subset of \mathbb{C}^n and let v be a weight on U. Suppose $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_v(U)}$. Then every extreme point of $B_{\mathcal{G}_v(\mathbb{D})}$ is of the form $\lambda v(z)\delta_z$, where $\lambda \in \mathbb{T}$ and $z \in U$.

Proof Let $\phi \in \operatorname{Ext}(B_{\mathcal{G}_v(\mathbb{D})})$. Then $R(\phi) \in \operatorname{Ext}(B_{\mathcal{H}_{v_0}(U)^*})$, where R is the isometric isomorphism from $\mathcal{G}_v(\mathbb{D})$ to $\mathcal{H}_{v_0}(U)^*$ given in Theorem 0.1(ii).

Let $C_0(U)$ denote the Banach space of all complex-valued continuous functions on U which vanish at infinity, under the supremum norm. Since the mapping $\Phi_0: \mathcal{H}_{v_0}(U) \to C_0(U)$ given by

$$\Phi_0(f)(z) = v(z)f(z) \quad (z \in U, \ f \in \mathcal{H}_{v_0}(U)),$$

is an isometric linear embedding, there exists $y \in \operatorname{Ext}(B_{C_0(U)^*})$ such that $\Phi_0^*(y) = R(\phi)$, where $\Phi_0^* \colon C_0(U)^* \to \mathcal{H}_{v_0}(U)^*$ is the adjoint operator of Φ_0 . By a generalization of the Arens–Kelley Theorem (see, for example, [13, Theorem 2.3.5]), it follows that $y = \lambda \delta_z$ for some $\lambda \in \mathbb{T}$ and $z \in U$. An easy verification yields

$$\phi(f) = (R^{-1} \circ \Phi_0^*)(y)(f) = \lambda (R^{-1} \circ \Phi_0^*)(\delta_z)(f) = \lambda R^{-1}(\delta_z \circ \Phi_0)(f)$$

= $\lambda (\delta_z \circ \Phi_0)(f) = \lambda \Phi_0(f)(z) = \lambda v(z)f(z) = \lambda v(z)\delta_z(f)$

for all $f \in \mathcal{H}_{v_0}(U)$. Since $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_v(U)}$, and both ϕ and δ_z are τ_0 -continuous, we conclude that $\phi = \lambda v(z)\delta_z$.

Theorem 1.4 Let U be an open subset of \mathbb{C}^n and let v be a weight on U. Suppose $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_v(U)}$. Then every mapping $f \in \mathcal{H}_v(U)$ that attains its weighted supremum norm on $\mathcal{G}_v(U)$ attains its weighted supremum norm. In other words, $\mathcal{H}_{vNA}(\mathcal{G}_v(U)) = \mathcal{H}_{vNA}(U)$. Therefore, $\mathcal{H}_{vNA}(U)$ is norm dense in $\mathcal{H}_v(U)$.

Proof Clearly, the inclusion $\mathcal{H}_{vNA}(U) \subseteq \mathcal{H}_{vNA}(\mathcal{G}_v(U))$ follows from the necessity of Lemma 1.2. To prove the converse, let $f \in \mathcal{H}_{vNA}(\mathcal{G}_v(U))$. By Theorem 0.1, $\mathcal{G}_v(U)$ is a separable dual Banach space and thus has the (KMP).

We claim that T_f also attains its norm at an extreme point of $B_{\mathcal{G}_v(U)}$. In fact, assume $f \neq 0$ (if f = 0, then $T_f = 0$ and there is nothing to prove) and denote $S_f = T_f / \|T_f\|$. Clearly, the set $C_f = \{\phi \in B_{\mathcal{G}_v(U)} \colon S_f(\phi) = 1\}$ is a closed convex bounded nonempty subset of $\mathcal{G}_v(U)$, so there exists a point $\phi \in \operatorname{Ext}(C_f)$. We must show that $\phi \in \operatorname{Ext}(B_{\mathcal{G}_v(U)})$. Thus, suppose $\phi = t\phi_1 + (1-t)\phi_2$ where $\phi_1, \phi_2 \in B_{\mathcal{G}_v(U)}$ and $t \in (0,1)$. Then $1 = S_f(\phi) = tS_f(\phi_1) + (1-t)S_f(\phi_2)$ with $|S_f(\phi_1)| \leq 1$ and $|S_f(\phi_2)| \leq 1$. It follows that $1 = S_f(\phi_1) = S_f(\phi_2)$ and thus $\phi_1, \phi_2 \in C_f$. Since $\phi \in \operatorname{Ext}(C_f)$, we deduce that $\phi = \phi_1 = \phi_2$. So $\phi \in \operatorname{Ext}(B_{\mathcal{G}_v(U)})$ and this proves our claim.

Now Lemma 1.3 guarantees that $\phi = \lambda v(z)\delta_z$ for some $\lambda \in \mathbb{T}$ and $z \in U$. Therefore, f attains its weighted supremum norm on $\mathcal{G}_v(U)$ at $v(z)\delta_z$, and then $f \in \mathcal{H}_{vNA}(U)$ by Lemma 1.2.

For the last statement, take $f \in \mathcal{H}_v(U)$ and $\varepsilon > 0$. Then $T_f \in \mathcal{G}_v(U)^*$ by Theorem 0.1(v), and the Bishop-Phelps Theorem [5] provides us an operator $T \in \text{NA}(\mathcal{G}_v(U))$ such that $\|T_f - T\| < \varepsilon$. Now, Theorem 0.1(vi) gives us a function $g \in \mathcal{H}_v(U)$ so that $T = T_g$ and thus $g \in \mathcal{H}_{vNA}(\mathcal{G}_v(U))$. Therefore, $g \in \mathcal{H}_{vNA}(U)$ with $\|f - g\| = \|T_{f-g}\| = \|T_f - T_g\| = \|T_f - T\| < \varepsilon$.

Our next goal is to extend the preceding density result to the vector-valued case.

Theorem 1.5 Let U be an open subset of \mathbb{C}^n , let v be a weight on U, let F be a complex Banach space, and $f \in \mathcal{H}_v(U, F)$. Suppose $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_v(U)}$. Then f attains its weighted supremum norm if and only if f attains its weighted supremum norm on $\mathcal{G}_v(U)$. In this case, $\mathcal{H}_{vNA}(\mathcal{G}_v(U), F) = \mathcal{H}_{vNA}(U, F)$.

Proof Necessity holds always, and its proof is immediate. To prove sufficiency, assume that there is a $\phi \in B_{\mathcal{G}_v(U)}$ such that $\|T_f(\phi)\| = \|f\|_v$. Then, by the Hahn–Banach

73 Page 6 of 7 A. Jiménez-Vargas

Theorem, there exists $x^* \in S_{F^*}$ such that $|x^*(T_f(\phi))| = ||T_f(\phi)||$. Clearly, $x^* \circ f \in \mathcal{H}_v(U)$ with $||x^* \circ f||_v \le ||f||_v$. Since $x^* \circ T_f$ is in $\mathcal{G}_v(U)^*$ and satisfies that

$$(x^* \circ T_f) \circ \Delta_v = x^* \circ (T_f \circ \Delta_v) = x^* \circ f,$$

it follows that $T_{x^* \circ f} = x^* \circ T_f$ by Theorem 0.1(v). Hence

$$||T_f(\phi)|| = |x^*(T_f(\phi))| \le ||x^* \circ T_f|| = ||T_{x^* \circ f}|| = ||x^* \circ f||_v$$

and thus $\|T_f(\phi)\| = \|x^* \circ f\|_v$. Therefore, $|T_{x^* \circ f}(\phi)| = \|x^* \circ f\|_v$ and this tells us that $x^* \circ f$ attains its weighted supremum norm on $\mathcal{G}_v(U)$ (at ϕ). Now, Theorem 1.4 provides us a point $z \in U$ such that $v(z)|(x^* \circ f)(z)| = \|x^* \circ f\|_v$. Therefore, $v(z)|x^*(f(z))| = \|f\|_v$, and since $v(z)\|f(z)\| \leq \|f\|_v$, it follows that $v(z)\|f(z)\| = \|f\|_v$, and so f attains its weighted supremum norm.

Let E and F be Banach spaces. An operator $T \in \mathcal{L}(E, F)$ is said to be *absolutely strongly exposing* if there is a point $x \in S_E$ such that for every sequence (x_n) in B_E such that $\lim_{n \to +\infty} ||T(x_n)|| = ||T||$, there is a subsequence $(x_{n_k})_k$ that converges to x or -x. It is known (see [6]) that every absolutely strongly exposing operator T attains its norm at the point x.

In [6, Theorem 5], Bourgain proved that if E has the (RNP), then for every Banach space F, the set of all absolutely strongly exposing operators from E to F is a G_{δ} dense subset of $\mathcal{L}(E,F)$. Furthermore, if $T\in\mathcal{L}(E,F)$ and $\varepsilon>0$, there is an absolutely strongly exposing operator $S\in\mathcal{L}(E,F)$ such that $\|T-S\|<\varepsilon$ and $T-S\in\mathcal{K}(E,F)$.

Corollary 1.6 Let U be an open subset of \mathbb{C}^n , let v be a weight on U and let F be a complex Banach space. Assume $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_{v}(U)}$. Then $\mathcal{H}_{vNA}(U, F)$ is norm dense in $\mathcal{H}_v(U, F)$.

Proof Let $\varepsilon > 0$ and $f \in \mathcal{H}_v(U, F)$. Hence $T_f \in \mathcal{L}(\mathcal{G}_v(U), F)$ by Theorem 0.1(v). By Bourgain's Theorem, there is an absolutely strongly exposing operator $T \in \mathcal{L}(\mathcal{G}_v(U), F)$ such that $||T_f - T|| < \varepsilon$. Moreover, $T \in \text{NA}(\mathcal{G}_v(U), F)$, therefore $T = T_g \in \mathcal{L}(\mathcal{G}_v(U), F)$ for some $g \in \mathcal{H}_v(U, F)$ by Theorem 0.1(vi), thus $g \in \mathcal{H}_{vNA}(\mathcal{G}_v(U), F)$ and therefore $g \in \mathcal{H}_{vNA}(U, F)$ by Theorem 1.5. Furthermore, $||f - g|| = ||T_f - T_g|| = ||T_f - T|| < \varepsilon$.

If $\mathcal{H}_{vKNA}(U, F)$ denotes the set of all mappings $f \in \mathcal{H}_{vK}(U, F)$ that attain their weighted supremum norms, we will now show the norm density of $\mathcal{H}_{vKNA}(U, F)$ in $\mathcal{H}_{vK}(U, F)$.

Theorem 1.7 Let U be an open subset of \mathbb{C}^n , let v be a weight on U and let F be a complex Banach space. Assume $B_{\mathcal{H}_{v_0}(U)}$ is τ_0 -dense in $B_{\mathcal{H}_{v}(U)}$. Then $\mathcal{H}_{vKNA}(U, F)$ is norm dense in $\mathcal{H}_{vK}(U, F)$.

Proof Let $\varepsilon > 0$ and $f \in \mathcal{H}_{v\mathcal{K}}(U, F)$. Then $T_f \in \mathcal{K}(\mathcal{G}_v(U), F)$ by Theorem 0.1(vi). By Bourgain's Theorem, we have an absolutely strongly exposing operator $T \in \mathcal{L}(\mathcal{G}_v(U), F)$ such that $||T_f - T|| < \varepsilon$ and $T_f - T \in \mathcal{K}(\mathcal{G}_v(U), F)$. Therefore, $T \in \mathcal{K}(\mathcal{G}_v(U), F)$. Since in the proof of Corollary 1.6, it follows that $T = T_g$ for some $g \in \mathcal{H}_{v\mathcal{K}}(U, F) \cap \mathcal{H}_{v\mathcal{K}NA}(U, F)$ with $||f - g|| < \varepsilon$.

73

Acknowledgements The author would like to thank the referees for their valuable comments that have improved this paper. Research partially supported by Junta de Andalucía Grant FQM194, and by Grant PID2021-122126NB-C31 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".

Data Availability Not applicable.

References

- 1. Acosta, M.D., Alaminos, J., García, D., Maestre, M.: On holomorphic functions attaining their norms. J. Math. Anal. Appl. **297**(2), 625–644 (2004)
- 2. Aron, R.M., García, D., Maestre, M.: On norm attaining polynomials. Publ. Res. Inst. Math. Sci. 39(1), 165-172 (2003)
- 3. Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Mich. Math. J. 40(2), 271-297 (1993)
- 4. Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70-79 (1993)
- 5. Bishop, E.A., Phelps, R.R.: A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 67, 97-98 (1961)
- 6. Bourgain, J.: On dentability and the Bishop-Phelps property. Isr. J. Math. 28(4), 265-271 (1977)
- 7. Bourgin, R.D.: Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin (1983)
- 8. Boyd, C., Rueda, P.: The v-boundary of weighted spaces of holomorphic functions. Ann. Acad. Sci. Fenn. Math. **30**(2), 337–352 (2005)
- 9. Boyd, C., Rueda, P.: The biduality problem and M-ideals in weighted spaces of holomorphic functions. J. Convex Anal. **18**(4), 1065–1074 (2011)
- 10. Carando, D., Mazzitelli, M.: Bounded holomorphic functions attaining their norms in the bidual. Publ. Res. Inst. Math. Sci. **51**(3), 489–512 (2015)
- 11. Choi, Y.S., Kim, S.G.: Norm or numerical radius attaining multilinear mappings and polynomials. J. Lond. Math. Soc. 54(1), 135-147 (1996)
- 12. Dantas, S., Medina, R.: On holomorphic functions attaining their weighted norms. arXiv:2206.11206
- Fleming, R.J., Jamison, J.E.: Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129. Chapman & Hall/CRC, Boca Raton (2003)
- 14. García-Lirola, L., Petitjean, C., Procházka, A., Rueda Zoca, A.: Extremal structure and duality of Lipschitz free spaces. Mediterr. J. Math. 15(2), Paper No. 69, 23 pp. (2018)
- 15. Gupta, M., Baweja, D.: Weighted spaces of holomorphic functions on Banach spaces and the approximation property. Extr. Math. 31(2), 123–144 (2016)
- 16. Rubel, L.A., Shields, A.L.: The second duals of certain spaces of analytic functions. J. Aust. Math. Soc. **11**(3), 276–280 (1970)
- 17. Williams, D.L.: Some Banach spaces of entire functions. Ph.D. Thesis, University of Michigan (1967)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

