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Abstract
Given an open subset U of Cn, a weight v on U and a complex Banach space F, let
Hv(U , F) denote the Banach space of all weighted holomorphic mappings f : U →
F, under the weighted supremum norm ‖ f ‖v := sup {v(z) ‖ f (z)‖ : z ∈ U } . We
prove that the set of all mappings f ∈ Hv(U , F) that attain their weighted supremum
norms is norm dense in Hv(U , F), provided that the closed unit ball of the little
weighted holomorphic spaceHv0(U , F) is compact-open dense in the closed unit ball
of Hv(U , F). We also prove a similar result for mappings f ∈ Hv(U , F) such that
v f has a relatively compact range.

Keywords Holomorphic function · Norm attaining operator · Radon–Nikodým
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Introduction and preliminaries

TheBishop–Phelps Theorem [5] assures that the set of all continuous linear functionals
attaining their norms on a Banach space E is norm dense in its dual Banach space E∗.
The extension of this theorem for holomorphic mappings has attracted the attention
of some authors.

Choi and Kim [11, Theorem 2.7] proved that a Banach space E with the Radon–
Nikodým property satisfies that the set of norm attaining k-homogeneous polynomials
on E is dense in the set of all k-homogeneous polynomials on E . Acosta et al. [1,
Theorem 3.1] showed that on a complex Banach space E, the functions uniformly
continuous on the closed unit ball and holomorphic on the open unit ball that attain their
norms are normdense, provided that E has theRadon–Nikodýmproperty.Other results
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on norm attaining polynomials, bilinear forms and bounded holomorphic mappings
can be consulted in the works of Aron et al. [2] and Carando and Mazzitelli [10].

We will address in this note several problems regarding the attainment of the norm
of weighted holomorphic mappings defined on an open subset of Cn . Such spaces
have been studied by Rubel and Shields [16], Bierstedt and Summers [4], Bierstedt et
al. [3], Boyd and Rueda [8, 9] and Gupta and Baweja [15], among many others.

Let U be an open subset of Cn and F be a complex Banach space. A weight v on
U is a (strictly) positive continuous function on U . Let H(U , F) denote the space of
all holomorphic mappings from U to F .

The weighted space of holomorphic mappings Hv(U , F) is the Banach space of
all mappings f ∈ H(U , F) such that

‖ f ‖v := sup {v(z) ‖ f (z)‖ : z ∈ U } < ∞,

endowed with the weighted supremum norm ‖·‖v .

The little weighted space of holomorphic mappings Hv0(U , F) is the norm closed
linear subspace ofHv(U , F) formed by all mappings f so that v f vanishes at infinity
onU , that is, for every ε > 0 there is a compact subset K ofU such that v(z) ‖ f (z)‖ <

ε for all z ∈ U \ K . We will write Hv(U ) and Hv0(U ) instead of Hv(U ,C) and
Hv0(U ,C), respectively.

We say that a mapping f ∈ Hv(U , F) attains its weighted supremum norm if there
exists a point z ∈ U such that v(z) ‖ f (z)‖ = ‖ f ‖v .

Our main result states that for every complex Banach space F, the set of all map-
pings f ∈ Hv(U , F) that attain their weighted supremum norms is norm dense in
the space Hv(U , F), provided that the closed unit ball of Hv0(U , F) is dense in the
closed unit ball ofHv(U , F) with respect to the compact-open topology τ0. A similar
result for the spaceHvK(U , F) consisting of all mappings f ∈ Hv(U , F) so that v f
has a relatively compact range is also established.

We must point out that it is not possible to obtain a Bishop–Phelps type theorem
for any weighted space of holomorphic mappingsHv(U , F). For example, taking the
weight v(z) = 1 for all z ∈ D, note that every function f ∈ Hv(D) that attains its
supremum norm is a constant function by the maximum modulus principle.

Recently, Dantas and Medina have dealed with weighted holomorphic mappings
that attain their norms in [12]. Our approach here is different, depends on the lineariza-
tion of weighted holomorphic mappings and is influenced by the study done in [14]
on similar questions in the setting of spaces of Lipschitz functions.

First, we introduce some basic notation. Given Banach spaces E and F, we denote
byL(E, F) the Banach space of all bounded linear operators from E into F, equipped
with the operator canonical norm, and by K(E, F) the norm closed subspace of
L(E, F) consisting of all compact operators. As usual, BE , SE and Ext(BE ) rep-
resent the closed unit ball of E, the unit sphere of E and the set of extreme points of
BE , respectively. T stands for the set of all uni-modular complex numbers.

The key tool in our study is the canonical predual, denoted Gv(U ), of the space
Hv(U ). Following [4], Gv(U ) is the space of all linear functionals on Hv(U ) whose
restriction to BHv(U ) is τ0-continuous. The following result gathers the properties of
Gv(U ) that we will need later.
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Theorem 0.1 [4, Theorem 1.1] [15, Theorem 3.1 and Proposition 5.1] Let U be an
open set of Cn and let v be a weight on U .

(i) Gv(U ) is a Banach space with the norm induced from Hv(U )∗, and the evaluation
mapping Jv : Hv(U ) → Gv(U )∗, given by Jv( f )(φ) = φ( f ) for φ ∈ Gv(U ) and
f ∈ Hv(U ), is an isometric isomorphism.

(ii) The restriction mapping Rv : Gv(U ) → Hv0(U )∗, given by Rv(φ) = φ|Hv0 (U )

for φ ∈ Gv(U ), is an isometric isomorphism if and only if BHv0 (U ) is τ0-dense in
BHv(U ).

(iii) The mapping �v : U → Gv(U ) defined by �v(z) = δz, where δz( f ) = f (z) for
f ∈ Hv(U ), belongs to Hv(U ,Gv(U )) with ‖�v‖v ≤ 1.

(iv) Gv(U ) coincides with the norm closed linear hull of the set {δz : z ∈ U } inHv(U )∗.
(v) For every complex Banach space F and every mapping f ∈ Hv(U , F), there

exists a unique operator T f ∈ L(Gv(U ), F) such that T f ◦ �v = f .

(vi) The map f 	→ T f is an isometric isomorphism from Hv(U , F) to L(Gv(U ), F)

(resp., from HvK(U , F) to K(Gv(U ), F). 
�

Recall that a Banach space E has the Radon–Nikodým property (RNP) provided
for every measure space (�,�,μ) with μ(�) < ∞ and every μ-continuous measure
ν : � → E of finite variation, there is a Bochner integrable function f : � → E such
that ν(A) = ∫

A f dμ for all A ∈ �. The classical Dunford–Pettis Theorem (see [7,
Theorem 4.1.3]) asserts that separable dual spaces have the (RNP).

ABanach space E has theKrein–Milman property (KMP) if every nonempty closed
convex bounded subset of E has an extreme point. According to [7, Theorem 3.3.6],
(RNP) implies (KMP), but the converse is still an open problem.

From the assertions (i), (iii) and (iv) of Theorem 0.1, we deduce that Gv(U ) is a
separable Banach space. Moreover, in view of the assertion (ii), the aforementioned
compact-open density condition imposed in the main results of this paper guarantees
that Gv(U ) is a dual Banach space. Therefore, Gv(U ) has the (RNP) and this fact is
very important in our arguments as happens in the main results of [1, 11, 14].

By [4, Corollary 1.2], the compact-open density condition assures that Hv(U )

is canonically isometrically isomorphic to Hv0(U )∗∗. This problem known as the
Biduality Problem was addressed first by Williams [17] and Rubel and Shields [16],
afterwards byBierstedt and Summers [4] andmore recently byBoyd andRueda [9]. As
shown in Examples 2.1 and 2.2 of [4], the compact-open density condition is satisfied
in the classical cases obtained in [16] (when U = D is the open unit disk in C and v

is a radial weight on D that converges to 0 as z converges to the boundary of D), and
in [17] (when U = C and v is a radial weight that is rapidly decreasing at infinity).

1 The results

Given Banach spaces E and F, an operator T ∈ L(E, F) attains its norm at a point
x ∈ SE if ‖T (x)‖ = ‖T ‖ . As usual, NA(E, F) denotes the set of all bounded linear
operators from E into F that attain their norms, and to simplify, NA(E) is written
instead of NA(E,C).
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The analogue of this concept can be introduced in the setting of weighted spaces
of holomorphic functions as follows.

Definition 1.1 Let U be an open subset of Cn, let v be a weight on U , let F be a
complex Banach space and let f ∈ Hv(U , F).

(i) We say that f attains its weighted supremum norm if there exists a point z ∈ U
such that v(z) ‖ f (z)‖ = ‖ f ‖v .We denote byHvNA(U , F) the set of all mappings
f ∈ Hv(U , F) attaining their weighted supremum norms. In particular, we write
HvNA(U ) instead of HvNA(U ,C).

(ii) We say that f attains its weighted supremum norm on Gv(U ) if its lineariza-
tion T f ∈ L(Gv(U ), F) attains its operator canonical norm. We denote by
HvNA(Gv(U ), F) the set of all mappings f ∈ Hv(U , F) that attain their weighted
supremum norms on Gv(U ). In addition, we write HvNA(G(U )) instead of
HvNA(G(U ),C).

(iii) We say that f attains its weighted supremum norm in the direction x ∈ F if
‖x‖ = ‖ f ‖v and there exists a sequence (zn) of points in U such that

lim
n→+∞ v(zn) f (zn) = x .

We begin with the following elementary observation.

Lemma 1.2 Let U be an open subset of Cn, let v be a weight on U , let F be a complex
Banach space, let f ∈ Hv(U , F) and z ∈ U . Then f attains its weighted supremum
norm at z if and only if f attains its weighted supremum norm on Gv(U ) at v(z)δz . In
this case, f attains its weighted supremum norm in the direction v(z) f (z).

Proof If v(z) ‖ f (z)‖ = ‖ f ‖v , we have ‖ f ‖v = ‖T f ‖ and

v(z) ‖ f (z)‖ = v(z)
∥
∥T f ◦ �v(z)

∥
∥ = v(z)

∥
∥T f (δz)

∥
∥ = ∥

∥T f (v(z)δz)
∥
∥

by Theorem 0.1(v), and thus ‖T f (v(z)δz)‖ = ‖T f ‖. Conversely, if ‖T f (v(z)δz)‖ =
‖T f ‖, we have v(z) ‖ f (z)‖ = ‖ f ‖v according to the above proof. The last statement
follows easily. 
�

Our first aim is to obtain a version of Bishop–Phelps Theorem for weighted holo-
morphic complex-valued functions. In its proof, we will use the following fact that
can be compared to Proposition 1 in [8].

Lemma 1.3 Let U be an open subset of Cn and let v be a weight on U . Suppose
BHv0 (U ) is τ0-dense in BHv(U ). Then every extreme point of BGv(D) is of the form
λv(z)δz, where λ ∈ T and z ∈ U .

Proof Let φ ∈ Ext(BGv(D)). Then R(φ) ∈ Ext(BHv0 (U )∗), where R is the isometric
isomorphism from Gv(D) toHv0(U )∗ given in Theorem 0.1(ii).

Let C0(U ) denote the Banach space of all complex-valued continuous func-
tions on U which vanish at infinity, under the supremum norm. Since the mapping
�0 : Hv0(U ) → C0(U ) given by

�0( f )(z) = v(z) f (z) (z ∈ U , f ∈ Hv0(U )),
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is an isometric linear embedding, there exists y ∈ Ext(BC0(U )∗) such that �∗
0(y) =

R(φ),where�∗
0 : C0(U )∗ → Hv0(U )∗ is the adjoint operator of�0. By a generaliza-

tion of the Arens–Kelley Theorem (see, for example, [13, Theorem 2.3.5]), it follows
that y = λδz for some λ ∈ T and z ∈ U . An easy verification yields

φ( f ) = (R−1 ◦ �∗
0)(y)( f ) = λ(R−1 ◦ �∗

0)(δz)( f ) = λR−1(δz ◦ �0)( f )

= λ(δz ◦ �0)( f ) = λ�0( f )(z) = λv(z) f (z) = λv(z)δz( f )

for all f ∈ Hv0(U ). Since BHv0 (U ) is τ0-dense in BHv(U ), and both φ and δz are
τ0-continuous, we conclude that φ = λv(z)δz . 
�
Theorem 1.4 Let U be an open subset of Cn and let v be a weight on U . Suppose
BHv0 (U ) is τ0-dense in BHv(U ). Then every mapping f ∈ Hv(U ) that attains its
weighted supremum norm on Gv(U ) attains its weighted supremum norm. In other
words, HvNA(Gv(U )) = HvNA(U ). Therefore, HvNA(U ) is norm dense in Hv(U ).

Proof Clearly, the inclusionHvNA(U ) ⊆ HvNA(Gv(U )) follows from the necessity of
Lemma 1.2. To prove the converse, let f ∈ HvNA(Gv(U )). By Theorem 0.1, Gv(U )

is a separable dual Banach space and thus has the (KMP).
We claim that T f also attains its norm at an extreme point of BGv(U ). In fact,

assume f = 0 (if f = 0, then T f = 0 and there is nothing to prove) and denote
S f = T f /‖T f ‖. Clearly, the set C f = {φ ∈ BGv(U ) : S f (φ) = 1} is a closed convex
bounded nonempty subset of Gv(U ), so there exists a point φ ∈ Ext(C f ). We must
show thatφ ∈ Ext(BGv(U )).Thus, supposeφ = tφ1+(1−t)φ2 whereφ1, φ2 ∈ BGv(U )

and t ∈ (0, 1). Then 1 = S f (φ) = t S f (φ1) + (1 − t)S f (φ2) with |S f (φ1)| ≤ 1 and
|S f (φ2)| ≤ 1. It follows that 1 = S f (φ1) = S f (φ2) and thus φ1, φ2 ∈ C f . Since
φ ∈ Ext(C f ), we deduce that φ = φ1 = φ2. So φ ∈ Ext(BGv(U )) and this proves our
claim.

NowLemma1.3 guarantees thatφ = λv(z)δz for someλ ∈ T and z ∈ U .Therefore,
f attains its weighted supremum norm on Gv(U ) at v(z)δz, and then f ∈ HvNA(U )

by Lemma 1.2.
For the last statement, take f ∈ Hv(U ) and ε > 0. Then T f ∈ Gv(U )∗

by Theorem 0.1(v), and the Bishop–Phelps Theorem [5] provides us an operator
T ∈ NA(Gv(U )) such that ‖T f − T ‖ < ε. Now, Theorem 0.1(vi) gives us a function
g ∈ Hv(U ) so that T = Tg and thus g ∈ HvNA(Gv(U )). Therefore, g ∈ HvNA(U )

with ‖ f − g‖ = ‖T f −g‖ = ‖T f − Tg‖ = ‖T f − T ‖ < ε. 
�
Our next goal is to extend the preceding density result to the vector-valued case.

Theorem 1.5 Let U be an open subset ofCn, let v be a weight on U , let F be a complex
Banach space, and f ∈ Hv(U , F). Suppose BHv0 (U ) is τ0-dense in BHv(U ). Then f
attains its weighted supremum norm if and only if f attains its weighted supremum
norm on Gv(U ). In this case, HvNA(Gv(U ), F) = HvNA(U , F).

Proof Necessity holds always, and its proof is immediate. To prove sufficiency, assume
that there is a φ ∈ BGv(U ) such that ‖T f (φ)‖ = ‖ f ‖v . Then, by the Hahn–Banach
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Theorem, there exists x∗ ∈ SF∗ such that |x∗(T f (φ))| = ‖T f (φ)‖. Clearly, x∗ ◦ f ∈
Hv(U ) with ‖x∗ ◦ f ‖v ≤ ‖ f ‖v . Since x∗ ◦ T f is in Gv(U )∗ and satisfies that

(x∗ ◦ T f ) ◦ �v = x∗ ◦ (T f ◦ �v) = x∗ ◦ f ,

it follows that Tx∗◦ f = x∗ ◦ T f by Theorem 0.1(v). Hence

∥
∥T f (φ)

∥
∥ = ∣

∣x∗(T f (φ))
∣
∣ ≤ ∥

∥x∗ ◦ T f
∥
∥ = ∥

∥Tx∗◦ f
∥
∥ = ∥

∥x∗ ◦ f
∥
∥

v
,

and thus ‖T f (φ)‖ = ‖x∗ ◦ f ‖v . Therefore, |Tx∗◦ f (φ)| = ‖x∗ ◦ f ‖v and this tells
us that x∗ ◦ f attains its weighted supremum norm on Gv(U ) (at φ). Now, The-
orem 1.4 provides us a point z ∈ U such that v(z)|(x∗ ◦ f )(z)| = ‖x∗ ◦ f ‖v .

Therefore, v(z) |x∗( f (z))| = ‖ f ‖v , and since v(z) ‖ f (z)‖ ≤ ‖ f ‖v , it follows that
v(z) ‖ f (z)‖ = ‖ f ‖v , and so f attains its weighted supremum norm. 
�

Let E and F be Banach spaces. An operator T ∈ L(E, F) is said to be absolutely
strongly exposing if there is a point x ∈ SE such that for every sequence (xn) in BE

such that limn→+∞ ‖T (xn)‖ = ‖T ‖ , there is a subsequence (xnk )k that converges
to x or −x . It is known (see [6]) that every absolutely strongly exposing operator T
attains its norm at the point x .

In [6, Theorem 5], Bourgain proved that if E has the (RNP), then for every Banach
space F, the set of all absolutely strongly exposing operators from E to F is aGδ dense
subset of L(E, F). Furthermore, if T ∈ L(E, F) and ε > 0, there is an absolutely
strongly exposingoperator S ∈ L(E, F) such that‖T − S‖ < ε andT −S ∈ K(E, F).

Corollary 1.6 Let U be an open subset of Cn, let v be a weight on U and let F be a
complex Banach space. Assume BHv0 (U ) is τ0-dense in BHv(U ). Then HvNA(U , F) is
norm dense in Hv(U , F).

Proof Let ε > 0 and f ∈ Hv(U , F). Hence T f ∈ L(Gv(U ), F) by Theo-
rem 0.1(v). By Bourgain’s Theorem, there is an absolutely strongly exposing operator
T ∈ L(Gv(U ), F) such that ‖T f − T ‖ < ε. Moreover, T ∈ NA(Gv(U ), F), there-
fore T = Tg ∈ L(Gv(U ), F) for some g ∈ Hv(U , F) by Theorem 0.1(vi), thus
g ∈ HvNA(Gv(U ), F) and therefore g ∈ HvNA(U , F) by Theorem 1.5. Furthermore,
‖ f − g‖ = ‖T f − Tg‖ = ‖T f − T ‖ < ε. 
�

If HvKNA(U , F) denotes the set of all mappings f ∈ HvK(U , F) that attain their
weighted supremum norms, we will now show the norm density of HvKNA(U , F) in
HvK(U , F).

Theorem 1.7 Let U be an open subset of Cn, let v be a weight on U and let F be a
complex Banach space. Assume BHv0 (U ) is τ0-dense in BHv(U ). Then HvKNA(U , F)

is norm dense in HvK(U , F).

Proof Let ε > 0 and f ∈ HvK(U , F). Then T f ∈ K(Gv(U ), F) by Theo-
rem0.1(vi). ByBourgain’s Theorem,we have an absolutely strongly exposing operator
T ∈ L(Gv(U ), F) such that ‖T f − T ‖ < ε and T f − T ∈ K(Gv(U ), F). Therefore,
T ∈ K(Gv(U ), F). Since in the proof of Corollary 1.6, it follows that T = Tg for
some g ∈ HvK(U , F) ∩ HvKNA(U , F) with ‖ f − g‖ < ε. 
�
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