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In this study, a digital twin for a flat plate solar collector field is proposed. This kind of system is used to reduce
carbon dioxide emissions in bioclimatic buildings to convert them into Zero Energy Buildings. The core of the
digital twin is an Artificial Neural Network prediction model, which is a good alternative to models based
on physical equations for modeling systems with strong non-linearities, such as the ones found in flat plate
solar collectors. The Artificial Neural Network prediction model is calibrated and validated with data saved
during one year of operation comprising sunny days, cloudy days, partially cloudy days and non-operation
days. Validation shows good results using several statistical metrics, suggesting that the Artificial Neural
Network model is suitable for operation and control purposes. With a highly accurate virtual representation, the
Artificial Neural Network model allows data analysis of the plant operator, prediction of behavior, and offers
recommendations for optimizing system performance. In addition, the digital twin presented as part of this
work is not just limited to the model, but is also enriched by the integration of data acquisition technologies
and a user interface into a web page. This innovative integration establishes a robust framework for proactive,
real-time decision-making and efficient management of the plant, ensuring enhanced system operation and

sustainability.

1. Introduction

According to recent studies, the building sector is responsible for
almost 40% of the total energy consumption of the EU and 36%
of CO, emissions (European Climate Foundation and the European
Alliance to Save Energy, 2022). A photovoltaic field is an ideal solution
for supplying electricity to any building, but the use of solar energy
transcends this narrow scope. Solar energy can be used in a variety
of ways, for example, in flat plate solar collectors, by coupling them
with an absorption machine, to feed the Heating, Ventilation and Air
Conditioning (HVAC) system of the building, which is the main source
of the building’s CO, emissions. Moreover, this kind of solar collector
can heat water for domestic purposes.

However, all methods of obtaining renewable solar energy share a
common vulnerability, as their performance is intrinsically linked to
meteorological conditions. Consequently, their efficiency experiences
fluctuations that follow prevailing weather conditions. Therefore, due
to the changing and non-controllable nature of solar irradiation, energy
systems based on solar energy, like any other renewable energy system,
need an energy buffer subsystem to keep the plant operating evenly
during the absence of the primary renewable energy source. In this
regard, solar collectors employ thermal tanks to store surplus energy,
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which can be taken advantage of during periods of cloud cover, as
opposed to photovoltaic plants which typically have to rely on batteries
to store energy for use on cloudy days.

Thus, the plant has several modes of operation depending on
weather conditions and energy demand, meaning a solar collector
model is necessary for the proper operation of the plant. Apart from
that, the model can be used to analyze the plant’s performance or
for training purposes. However, nowadays, by implementing the In-
ternet of Things (IoT) and Industry 4.0 paradigm, models can evolve
into digital twins. A digital twin embeds a “virtual” image of reality
constantly synchronized with the real operating scenario to provide
reliable information (knowledge model) to the actual interpretation
model to make sound decisions (Semeraro et al., 2021). From this
definition, it becomes evident that real-time bidirectional communica-
tion is a fundamental requirement between the digital twin and the
physical plant to realize the full potential of a digital twin. This real-
time interplay between the physical entity and its digital counterpart
stands as the chief distinction between a traditional model and a digital
twin. Accordingly, digital twin technology has become an emerging
and vital field in engineering for digital transformation and intelligent
upgrades.
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This work deals with the development and implementation of a
digital twin for a flat plate solar collector field housed in a bioclimatic
building, the CIESOL Research Center, at the University of Almeria
(UAL), Spain. The flat solar collector field comprises ten loops, each
containing eight solar collectors. It is connected to an absorption ma-
chine with a refrigeration tower circuit, which feeds the HVAC system
of the building with hot or cold water on demand. In addition, the
flat plate solar collector field can supply hot water for domestic usage,
meaning the CO, emissions of the CIESOL centre can be reduced, thus
fulfilling several energy and bioclimatic objectives. The proposed dig-
ital twin is implemented through an Artificial Neural Network (ANN)
prediction model calculated with real data from the solar collector field,
which is gathered via a network of sensors strategically placed through-
out the facilities. Subsequently, the ANN model is integrated into a
web platform, establishing a connection with the actual solar collector
field through the Open Platform Communications-Unified Architecture
(OPC-UA) standard. This ensures that the digital twin continuously
receives real-time data from these physical sensors. Within this digital
twin, the ANN prediction model operates by forecasting the output
temperature of the collector array based on the sensor inputs. As such,
the digital twin can be used for operator training purposes, online fault
detection or system analysis.

During the last few years, many papers dealing with digital twins
have been published in several engineering fields (Tao et al., 2022). In
the industrial sector, digital twins can be employed at various points in
the process: during the design phase, in which they facilitate iterative
optimization, virtual evaluation, and verification; in the manufacturing
phase, in which they enable real-time monitoring, production control,
process assessment, and optimization (Kumar et al., 2023); and finally
in the service phase, in which they support predictive maintenance,
fault detection and diagnosis (Rachmawati et al., 2023), and perfor-
mance prediction (Liu et al., 2021). Digital twins have not been applied
to the industrial sector alone; they have extended their reach into
various other domains, including the aerospace industry (Shafto et al.,
2010), robotics (Yan et al., 2018; Kuts et al., 2020; Li et al., 2020;
Soliman et al., 2023), and the energy sector (Ghenai et al., 2022;
Semeraro et al., 2023), among others.

To our knowledge, there is only one paper in literature which
presents some similarities with the work developed in this paper.
Specifically, in Machado et al. (2023) a digital twin for a Fresnel
solar collector connected to an absorption machine is introduced. It
is worth mentioning that in Fresnel solar collectors, solar irradiation
is focused on a pipe located at the top of the structure. Moreover,
the authors of that paper establish a comparison between an Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) model and a phenomenological
model based on Partial Differential Equations (PDEs) and parameter
identification. The results obtained show comparable results in terms
of accuracy for both models, although the ANFIS model requires less
time for execution.

Although the Fresnel collector employs different technology than
our system, both systems share a common objective, namely, using
solar energy to heat a heat-transfer fluid. Additionally, both Fresnel and
flat plate solar collectors are mathematically described using similar
PDEs due to the shared energy transport phenomena occurring within
the pipe. However, despite these similarities, there are significant
differences between the two works. First, our work makes use of
much larger datasets for training, validation, and testing, spanning an
entire year and encompassing all plant operation modes. In contrast,
the other work only has on twenty-five days’ worth of data. Second,
our approach does not involve the comparison of the ANN model with
a different type of model. Instead, we validate it using data from
another collector loop within the solar field. This represents a novel
contribution and distinction, allowing us to highlight the versatility and
applicability of our ANN prediction model to several collector loops
within the same field. This not only demonstrates its robustness, but
also its generalizability. Lastly, another important distinction from the
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previous work is the integration of the digital twin into the web and its
real-time communication with the system, which offers a clear view of
its implementation and functionality.

The rest of the paper is organized as follows: in Section 2 the
methodology used to develop the ANN is described. In addition, this
section also includes a description of the CIESOL Research Center and
the flat solar collector field. After that, Section 3 is devoted to the
digital twin and lastly, the conclusions are presented in Section 4.

2. Development of the Artificial Neural Network prediction model
2.1. CIESOL Research Center

The flat plate solar collector field housed in the CIESOL Research
Center is used as a testbed in this work (see Fig. 1(a)). Located on
the campus of the University of Almerfa, CIESOL is a solar energy
research center jointly run with the Plataforma Solar de Almeria (PSA)
and falls under the purview of the Centro de Investigaciones Energéticas,
Medioambientales y Tecnolégicas (CIEMAT) (Castilla et al., 2014). The
building is equipped with a photovoltaic panel array to fulfill its
electrical requirements, along with a flat plate solar collector field for
sanitary hot water (see Fig. 1(b)).

The flat plate solar collector field is located on the rooftop of
the building and it is composed by ten loops, each with eight solar
collectors. In addition, the flat plate solar collector field is tilted at
a 30-degree angle to optimize solar resource utilization and ensure
uniform water flow distribution throughout all loops. Moreover, the
output water temperature must be in the range of [-20,110] °C to
avoid damage. The output water from the flat plate solar collector field
is used to feed an absorption machine with a total cooling power of
70 kW. The HVAC system of the CIESOL building has two operating
modes: summer and winter. For example, during summer operation
mode, the HVAC system exhibits the following behavior (Pasamontes
et al., 2011): first, water flows through the flat plate solar collector
field, increasing its temperature. Subsequently, this hot water is used
to feed the absorption machine. Afterwards, the absorption machine
provides chilled water that is injected into the fan coil system. The fan
coil system is distributed throughout the building and allows the indoor
temperature to be maintained within the desired level in any room of
the building. In this way, the energy demands of the HVAC system can
be covered with solar energy, thus decreasing the CO, emissions of the
building.

Fig. 2 provides a visual representation of the field layout, show-
ing the exact locations of the integrated sensors, these being for the
following:

Outdoor air temperature, Tout (°C): This variable measures the
outdoor air temperature constantly for subsequent recording.
Solar irradiation, Irr (W/m?): It signifies direct solar radiation,
i.e., the solar radiation incident on the surface, measured at each
time instant.

Flow rates, Q1 and Q2 (m3/h): Q1 constitutes the water that
flows to the flat plate solar collector field, whereas Q2 is the
water flow that the valve V1 diverts and, therefore, does not enter
the solar collector field. Thus, with both flow rates, it is possible
to calculate the total inlet flow to the solar collector field and,
therefore, to each of the flat collector loops.

Temperature for the inlet of a loop, SP; with i ranging from 11
to 20 (°C): It indicates the inlet temperature of the heat transfer
fluid at the beginning of a loop.

Temperature for the outlet of a loop, SP; with i ranging from 1
to 10 (°C): It indicates the outlet temperature of the heat transfer
fluid from loop i of the flat collector field.
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(a) Front view of the CIESOL Research Center

(b) The CIESOL flat-plate solar collector field

Fig. 1. The CIESOL Research Center.

| Inlet flow to collector loops

I Outlet flow from collector loops

Fig. 2. Schematic diagram of the flat plate solar collector field together with its sensors.

The sensor data is stored in text files with a “.txt” extension. Each
day is represented by a separate file containing the sensor readings
for every minute of the day. For the study at hand, we have collected
historical data for two collector loops from one year of operation.
It should be noted that the data underwent preprocessing, as the
sensors can malfunction. It happens that they may produce values
that are outside their ranges, indicating an anomaly. In such cases, if
the number of anomalous samples is limited, we use autoregressive
models calculated from the data before and after the incorrect data
to reconstruct such values. Conversely, if the number of outliers is
large, the entire day’s data is discarded. Similarly, a sensor can be
disconnected, and a noticeable jump in time stamp can appear, leading
to gaps in the data. In these cases, we follow a similar approach: if the
data gap is significant, the entire day is excluded,; if the gap is minor, an
attempt is made to reconstruct the missing values by following the same
procedure previously described, that is, by using autoregressive models.
This preprocessing step was vital and ensured that the model received
high-quality data for training, validation, and testing, thus preventing
issues arising from invalid data.

As pointed out previously, a flat plate solar collector is a system
ruled by PDEs as a result of the transport energy phenomena that take
place inside the pipe. As such, it is considered a non-linear distributed
system where partial derivatives with respect to time and space appear.
This kind of system has strong non-linearities that must be considered

when modeling the system (Pasamontes et al., 2011), which is done
by applying finite differences discrete approximation where the pipe
is discretized into a finite number of pieces and the partial spatial
derivative is approximated. Although this model delivers good results,
it has a lengthy computational time. An ANN prediction model fits well
with forecasting and modeling the behavior of this kind of solar energy
system, at the same time, providing results in a short computational
time. This is the primary reason for its consideration in this paper.

Broadly speaking, an ANN is a computational model inspired by
the functioning of the human brain. It is designed to analyze data,
learn complex patterns, and discern intricate relationships within these
data. This makes Artificial Neural Networks highly versatile, meaning
it can be used for a wide spectrum of tasks, ranging from recog-
nizing patterns to making classifications, predictions, and optimizing
processes (Sharma et al., 2021).

In general, an ANN is composed of a series of interconnected layers
of artificial neurons, which are designed to imitate the behavior of the
human brain. There are three basic types of layers: the input layer, one
or more hidden layers and the output layer. Its operating principles can
be summarized as follows: information flows through the ANN from the
input layer, where it receives external data from sensors and other input
variables, to the output layer which provides a prediction or decision.
Apart from that, connections among neurons have a weight assigned
to them, which is used to modulate the strength of the signal. In
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addition, hidden layers, which can vary in number and size (number of
neurons), are responsible for extracting and learning complex patterns
and behaviors as a function of the input data.

For the current work, we have employed the NTS (Neural Network
Time Series) tool available in the Matlab environment. It is important to
note that the efficiency and performance of such a network will depend
on careful data preparation and architectural selection. Accordingly,
these critical steps must be followed by the training and evaluation
phases, which will be vital in ensuring that we can fully leverage the
network’s effectiveness.

In the subsequent subsections, we will delve into the specifics of
the process, which include: (i) data preparation, which involves data
cleaning, filtering, and handling missing or invalid values; (ii) variable
selection, where we choose input and output variables based on prior
system knowledge; (iii) data-set splitting, which is a vital step in the
creation of training, validation, and testing data-sets and; (iv) determin-
ing the network’s architecture, including the configuration of layers,
neurons, and activation functions. The last step is to finish the training
process by using the training data-set and the subsequent evaluation of
the network’s performance.

2.2. Data preprocessing and dataset construction

To create the ANN prediction model, we used a dataset that includes
historical data from the entire year of 2014. Following the preprocess-
ing procedure, which involved the removal of incorrect data (refer to
Section 2.1 for details), the dataset consisted of temperature records for
277 days, sampled at one-minute intervals. Fig. 3 visually represents
these temperature samples. The samples maintain their chronological
order, as they occurred consecutively throughout the year. Then, we
adopt a division ratio of 70 — 15 — 15 for the training, validation, and
testing segments, allocating 70% of the data for training, 15% for val-
idation, and another 15% for testing. Our selection process is visually
represented in Fig. 3, where the color blue represents the data used
for training, green for validation, and red for model testing. Notably,
our approach involves selecting complete days of data for training the
model, which is highly beneficial when the model’s structure relies
on past output or input values. In contrast to random data selection,
this method ensures that the model learns from complete information
days, enhancing its ability to capture temporal dependencies and pro-
vide more accurate predictions. Furthermore, this division accounts
for changing data patterns throughout the year, particularly during its
last months when the flow in the field becomes unnecessary due to
the low energy demands of the HVAC system, as it no longer has to
supply the absorption machine. Consequently, this approach ensures
that each of the three subsets (training, validation, and testing) captures
the diverse dynamics encountered in the solar collector field covering
non-operating, sunny, partly cloudy and cloudy days.

2.3. Selection of ANN input and output variables

In terms of input variables, we focused on sensor data that signifi-
cantly affect the loop’s output temperature. Specifically, these include
the “Outdoor air Temperature”, “Solar Irradiation” and “Loop Flow”.
The calculation of “Loop Flow” is derived from the difference between
the water flowing into the flat plate solar collector field, denoted as
01, and the water flow directed by the valve V1, represented as Q2.
This difference is then divided by the number of loops within the
system, namely, (01-02)/10. Additionally, we included the “Loop Inlet
Temperature”, labeled as SP;, with i ranging from 11 to 20. The specific
value of i depends on the loop in question, as illustrated in Fig. 2.
Furthermore, we incorporated the date and time of each sensor reading
to be used as supplementary input variables, collectively referred to
as the “Julian Date”. This addition is of paramount importance as it
unveils distinct seasonal trends, while the times of the readings provide
valuable insights into daily temperature variations.

Engineering Applications of Artificial Intelligence 133 (2024) 108387

Conversely, the output variables represent the information we seek
to predict. In this project, our primary emphasis is on forecasting the
loop’s output temperature, specifically referred to as the “Loop Outlet
Temperature”, denoted as SP; with i ranging from 1 to 10, as illustrated
in Fig. 2. In addition, both input and output variables have been
normalized within the range [-1 1] by using the mapminmax function
available in the Matlab environment.

In this study, our initial focus centers on predicting the outlet tem-
perature for a specific loop, namely ‘loop 1’, whose outlet temperature
is measured by the SP, sensor. After that, we explore the potential of
extending the model’s ability to forecast the temperature for a second
loop, ‘loop 2, associated with the outlet temperature measured by the
SP, sensor, illustrated in Fig. 2. Finally, we delve into a comprehensive
statistical analysis to assess the reliability and accuracy of temperature
predictions across the entire system, especially under diverse weather
conditions.

2.4. Selection of the ANN architecture and structure using data from loop
1

In this work, the structure of a recurrent neural network known
as Nonlinear AutoRegressive with eXternal input (NARX) has been
used. This structure allows to capture the dynamics of a system where
the prediction of the output values depends on the current and past
values of the output and also on past and current values of external
input variables, see Eq. (1). Hence, it is characterized by having as
input a tapped delay line for the inputs and another one for the
output signals. Therefore, within the ANN in question, there are two
critical parameters which must be set in the general configuration for
forecasting: (i) numberNeurons (nn), which is related to the number of
neurons in the hidden layer that the neural network should have and
which are responsible for learning the characteristics of the time series
data, and, (ii) timeDelay (td), which represents the number of steps or
previous values supplied to the model to predict a future value in a
single forward step. The architecture of the proposed NARX network
can be observed in Fig. 4.

Pn+1) = fwn),u(n=1), ..., u(n—td+1); y(n), y(n—1), ..., y(n—td +1)) (1)

where u(n) and y(n) represent the input and output variables at time
step n, and td is the number of past values assigned for both input and
output variables. Finally, f is a non-linear mapping function which is
approximated by means of a multiplayer perceptron.

We systematically conducted a series of experiments to adjust
both parameters. These experiments were evaluated using the Mean
Squared Error (MSE) to identify the best-performing cases. Our tests
involved combinations of the numberNeurons parameter with values
ranging from 2 to 14 (specifically, nn = {2,4,6,8,10,12,14}), and the
timeDelay parameter with values ranging from 2 to 14 (also 1d =
{2,4,6,8,10,12, 14}). It is worth to mentioning that the computer used
to calculate and evaluate the ANN models and run the code to data
preprocessing has been a MacBook Pro with an Apple M1 PRo chip,
16 GB RAM, and 1 TB solid-state drive (SSD). On the other hand, the
software used has been the MATLAB 2022a version.

Table 1 summarizes the MSE values obtained for the different
configurations (nn, td). Additionally, to facilitate a more thorough un-
derstanding, the results from the table have also been visually depicted
in Fig. 5. As can be seen, by evaluating the figures, it is clear that the
best performing model is characterized by (nn,7d) = {8,10}. We will
name it as BestModel throughout. However, there are other models that
also demonstrate great performance, specifically, the duos (nn,td) =
{6,8},{6,10}, {12,10},{12,14}. All of them have been highlighted in
bold font in Table 1. In the following, these four models will be called
opponentModels.

Finally, it is noticeable that for (nn,td) = {14,14}, there is no
improvement in data results compared to previous configurations. Ac-
cordingly, further experimentation with higher nn and td values is
unnecessary, as it does not lead to enhanced model performance. On
the contrary, continuing with additional runs would risk overfitting the
model.
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2.5. Performance evaluation of the preselected models with loop 2

This section is dedicated to testing whether the BestModel prediction
model is suitable for the remaining loops in the flat plate collector
field. However, in our search, to achieve a balance between model
complexity and computational efficiency, we will not focus exclusively
on analyzing the top-performing model. Instead, our attention turns to
a closer examination of the opponentModels, each showing promise for
further evaluation. Specifically, we will test all five models using data

from another loop within the flat plate collector field, which we will
call ‘loop 2’. The inlet temperature of this loop is measured by the SP;,
sensor, whereas its outlet temperature is measured by the SP, sensor,
see Fig. 2. After that, a comprehensive statistical analysis to identify
the best-implemented model will be performed.

The study involves the calculation of metrics such as MAE (Mean
Absolute Error), MSE (Mean Squared Error), MAPE (Mean Absolute Per-
centage Error), MSPE (Mean Squared Percentage Error), RMSE (Root
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Table 1

Mean Squared Error (MSE) for the testing dataset.
td nn

2 4 6 8 10 12 14

2 0.0351 0.0422 0.0377 0.0537 0.0322 0.0353 0.0323
4 0.0335 0.0392 0.0317 0.0331 0.0385 0.0322 0.0285
6 0.0362 0.0358 0.0362 0.0281 0.0353 0.0313 0.0295
8 0.0596 0.0320 0.0331 0.0332 0.0312 0.0470 0.0345
10 0.0346 0.0331 0.0278 0.0266 0.0359 0.0275 0.0331
12 0.0390 0.0344 0.0367 0.0315 0.0395 0.0343 0.0319
14 0.0385 0.0360 0.0367 0.0302 0.0504 0.0284 0.0409

Mean Squared Error), NRMSE (Normalized Root Mean Squared Er-
ror), and SD (Standard Deviation). These metrics will be calculated
for different weather conditions, expressly for randomly selected days
characterized as cloudy, partially cloudy, and sunny, and finally for the
complete dataset explained in Section 2.2.

In Figs. 6, 7, and 8, the graphs positioned in the upper left corner
illustrate the solar radiation patterns for the three days selected. These
three figures also show the predicted temperatures generated by the
five models alongside the actual temperature values. Remarkably, the
predictions exhibit an exceptionally high accuracy, closely mirroring
the real results with negligible error, even though these models have
been calculated with data from another loop.

The summary of the statistical analysis for these three days is
displayed in Table 2. In general, the resulting errors are minimal for
the subset of selected models, indicating that the predictions closely
align with the actual temperature values. Besides that, the difference
in the several statistical indexes among the models is negligible. This
fact underlines the effectiveness of all models in predicting patterns
and delivering accurate temperature forecasts, regardless of current
weather conditions. The good performance of the models under dif-
ferent weather conditions implies that these models can capture the
non-linear behavior of this kind of system whenever the operation
point in which the system is working. It is worth mentioning that
during cloudy days, when there is low solar irradiation, low flow is
necessary to reach high temperatures at the output of the solar collector

loop. On the other hand, during sunny days, the operation conditions
are totally different, and a high flow rate is used to reach a loop
output temperature close to the desired one. Therefore, these changes
in the operational conditions make the solar collector loop have totally
different dynamics.

However, it is important to note that determining an outright supe-
rior model is not straightforward. Model performance varies depending
on the specific day in question. For instance, on a partially cloudy
day, it appears that the smallest errors are obtained with the model
parameters (nn,td) = {12,10}. Nevertheless, for the other two days,
the optimal model choice can differ depending on the specific metric
used. In fact, there may be multiple viable choices for the best model,
emphasizing the complexity of model selection.

In contrast, when we look at the entire dataset, we can clearly see
that one model stands out as the best performer. The detailed results
can be seen in Table 3, which gives an overview of the statistical analy-
sis for the entire dataset for loop 2. For a more visual representation, see
Fig. 9, where we compare the model’s predictions to the actual values
collected from loop 2.

What is interesting is that all five models selected provide quite
similar predictions with very small errors. This suggests they are all
relatively good at forecasting outlet temperature data for collector loop
2. However, the BestModel with parameters (nn,td) = {8,10} clearly
outperforms the others. In fact, it performs the best across all the
metrics considered. As such, it can be considered the best one for our
forecasting purposes.

2.6. Prediction for multiple steps ahead

As previously mentioned, one of our main goals was fault detec-
tion in real-time. For this reason, we chose the best ANN model for
predictions a single step ahead. However, it should also be possible to
be interested in long-term resource management, process optimization,
or risk management tasks. In such cases, adopting a predictive mod-
eling perspective suggests that forecasting the system’s behavior for
multiple steps ahead is more advantageous since it offers us a more
comprehensive understanding of the system’s dynamics.
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Fig. 7. Solar radiation for a partially cloudy day and results obtained by each prediction model versus the real solution.
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Fig. 8. Solar radiation for a sunny day and results obtained by each prediction model versus the real solution.

To illustrate this fact, we carried out an analysis where only the
BestModel as well as the opponetModels were evaluated but considering
multiple steps ahead, specifically five. In this case, the obtained MSE
values for the models (nn,td) = {6,10}, {8,6}, {8,10}, {12,10}, and
{12,14}, were 0.1058, 0.2025, 0.0408, 0.0157, and 0.3247, respec-
tively. Notably, the model with (nn,td) = {12,10} emerged as the new

BestModel, making it the preferred choice for inclusion in the digital

twin for this particular analysis.

This showcases that while the shell of the digital twin remains
constant, its core, that is, the ANN model, can vary depending on the

ultimate objective.
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Fig. 9. Graphical representation of the results of the data from collector loop 2.

300

Table 2
Statistical analysis for various numberNeurons and TimeDelay configurations under
different weather conditions.

Table 3
Statistical metrics obtained for loop 2 using the entire dataset and different pairs of
(nn,td).

numberNeurons - TimeDelay Metric {6,10} {8,6} {8,10} {12,10} {12,14}
{6,10} {8,6} {8,10} {12,10} {12,14} MSE 0.062 0.060 0.058 0.060 0.062
Metric Cloudy day MAE 0.091 0.089 0.083 0.085 0.087
MSPE 6.214% 6.011% 5.755% 5.969% 6.203%
MSE 0.000 0.000 0.000 0.001 0.000 MAPE 9.099% 8.944% 8.270% 8.516% 8.701%
MAE 0.012 0.011 0.014 0.019 0.014 RMSE 0.249 0.245 0.240 0.244 0.249
MSPE 0.025% 0.025% 0.033% 0.059% 0.040% NRMSE 0.723% 0.711% 0.696% 0.709% 0.723%
MAPE 1.204% 1.144% 1.379% 1.938% 1.362% SD 0.249 0.245 0.240 0.244 0.249
RMSE 0.016 0.016 0.018 0.024 0.020
NRMSE 0.099% 0.098% 0.113% 0.152% 0.125%
SD 0.015 0.016 0.018 0.024 0.018
Metric Partially cloudy day technologies and a user interface through a web page. This combination
MSE 0.008 0.006 0.005 0.001 0.008 enables online simulation and both effective and real-time interaction
MAE 0.053 0.049 0.045 0.025 0.044 with the physical system. Fig. 10 summarizes the main components of
MSPE 0.835% 0.567% 0.531% 0.138% 0.754% . .
he digital twin pr .
MAPE 5.304% 4.866% 4.515% 2.476% 4.446% the digita t, np OPosed . .
RMSE 0.091 0.075 0.073 0.037 0.087 In the digital twin, data acquisition plays a crucial role by allow-
NRMSE 0.203% 0.167% 0.162% 0.082% 0.193% ing us to collect real-time information from the physical system. The
SD 0.086 0.068 0.069 0.037 0.086 captured information is used to feed our ANN prediction model and
Metric Sunny day keep it up to date, ensuring that simulations are accurate and reflect the
MSE 0.072 0.073 0.073 0.072 0.072 current operating conditions of the flat plate collector field. The data
MAE 0.112 0.114 0.103 0.108 0.102 from the real system are obtained through Pt100 and other IoT sensors.
MSPE 7.167% 7.302% 7.309% 7.187% 7.220% These data are then transmitted via the Industrial Ethernet protocol and
0/ 0, 0, 0, 0, . .
MAPE 11.238% 11.436% 10.327% 10.819% 10.169% mapped by the OPC-UA protocol. The web page is also an essential
RMSE 0.268 0.270 0.270 0.268 0.269 for i . ith the dicital twin. Fie. 10 .
NRMSE 0.606% 0.612% 0.612% 0.607% 0.609% component or interacting with the digital twin. Fig. summarizes
SD 0.267 0.270 0.270 0.268 0.269 the technologies used to develop the web page and the database where

3. The digital twin

The core of the digital twin is the ANN prediction model as previ-
ously explained. However, our digital twin is not just limited to the
model, as it is also enriched by the integration of data acquisition

the data is saved. These technologies have had the following purposes:
HyperText Markup Language (HTML) is a standard markup language
used to create and structure the content of a web page, defining and
organizing it within a web document. In this work, the last version of
this language, HTMLS5, has been used to make the visual part belong to
this web page, focussing on the frontend part of it.

On the server side, Hypertext Preprocessor (PHP) has been chosen
programming language because it is suitable for web development. As a
server-side language and, therefore, responsible for performing many of
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Fig. 10. Graphical representation of the digital twin.

the functionalities implemented on the web page, it has been used to
establish a connection between the website and the CIESOL database
and perform SQL queries to be later used in structures defined and
created using HTMLS.

On the other hand, the graphic design language chosen to define
the presentation and style of a marked document has been Cascading
Style Sheets (CSS) that works together with HTML. Therefore, CSS has
been used in the development of this project to define the styles of
the different pages that make up the website, giving it character and
personality.

JavaScript is considered a high-level programming language with
which you can add certain functionalities to a web page. In this case,
it is a client-side language and, therefore, allows the client to interact
with the content of the web. This language has been used to perform
mainly two functions, the first being to show the value of a certain
sensor visually when selected, the second being to perform the ‘Show
Password’ function on the login screen of the website.

Finally, as a database gestor, MySQL has been chosen. This lan-
guage, which is based on the Structured Query Language (SQL), is
one of the most popular database managers today. It has been used
to connect to the database and, in addition, to be able to perform the
respective SQL queries necessary to perform certain functionalities and
even to be able to perform other operations such as creating or deleting
users.

Additionally, the web page serves as a user interface, with its
homepage depicted in Fig. 11. From this homepage is where the user
can log into the system. In this work, we have set up three user profiles
to ensure efficient data management and control over the web platform
access. The first user profile corresponds to those who use the website
as an informational source and do not belong to the CIESOL center.
We will name them external users. These users can access and read
data but with limitations. This feature allows for the dissemination of
essential information about the flat plate solar collectors field and its
operations. The second user profile, called internal users, is aimed at
researchers or individuals who belong to the CIESOL center and require
full access to the data for in-depth study and analysis purposes. These
users need credentials provided by an administrator. In this regard,
the administrator, who represents the third user profile, has complete
control over the platform. In addition to managing authentication and
overseeing access, the administrator can grant or revoke privileges to
other users as needed. This administrative capability ensures data in-
tegrity and security within the system while also adapting to changing
user requirements. The inclusion of these three user profiles creates a
structure that reflects the functioning of the digital twin and ensures
that data and operations of the flat plate solar collectors field are
shared and managed properly, providing each type of user with the

appropriate level of access and control. When having user data, it is
important to be able to encrypt it and, thus, guarantee its protection.
Therefore, if passwords are available, it is of great importance to carry
out a data encryption process that prevents their readability, avoid
obtaining them through brute force attacks, gain trust with the user
and, in addition, guarantee the confidentiality of the data of such
users. In this project, an encryption process was carried out using the
PHP language. PHP allows us to generate a hash for passwords when
creating a user. It is important to mention that a hash function is
a mathematical algorithm that transforms the input data set into an
alphanumeric expression that has a predetermined length. In this way,
we will have a database with encrypted passwords that are irreversible
or one-way.

As examples of the practicality of the web page, some pictures
pertaining to the external user are shown in Fig. 12. As shown, in
the upper left picture, Fig. 12(a), the main page offers three options:
‘Solar Collector Field’, ‘Primary Circuit’, and ‘Laboratory 6’. When any
of these options is selected, the user will be redirected to a specific page
that allows the visual representation of the sensor scheme correspond-
ing to that option, see Figs. 12(b)-12(d), respectively. Furthermore,
users can view the data collected by each sensor once they select the
one they wish to check. This is achieved through image mapping that
enables these practicality.

In this way, the user can observe a graph that visually represents the
data, allowing them to examine how various sensors behave at different
times and on different days. To enhance the interactivity between the
website and the user, a calendar field has been implemented, enabling
the user to select the desired day for data visualization. Finally, it is
important to mention that, as this user has the lowest level of privileges
and their role is primarily to gain insight into the work done at CIESOL,
it is essential to restrict the data displayed. Therefore, a simplified data
representation graph has been incorporated, showing data at half-hour
intervals instead of the minute-level data stored in the database.

One of the key applications of the digital twin is aiding operators
in the startup and shutdown processes of the flat plate solar collec-
tors field. In addition, it can provide insights and guidance based
on real-time data, enabling smoother and more efficient transitions.
Furthermore, the digital twin can play a critical role in fault detection,
as it continuously monitors the system’s health and can alert operators
to potential issues. Fig. 13 illustrates the operation of the digital twin.
It demonstrates how, after several hours of operation, the digital twin is
able to replicate and capture the system behavior even during different
operating conditions. Consequently, it helps the operator to detect
faults in the system in real-time.
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4. Conclusions

The importance of net-zero energy buildings relies on two prin-
cipal factors: to mitigate climate change by reducing CO, emissions
and to reduce energy dependence. Therefore, through the integration
of renewable energy sources, like solar-based ones, net-zero energy
buildings can reduce greenhouse gas emissions and also promote the
adoption of clean and sustainable energy technologies. Nevertheless,
to guarantee adequate operation and to maximize the performance of
these systems, it is necessary to apply resource optimization techniques,
to identify possible malfunctions and to develop fault-tolerant strate-
gies. To that end, digital twins play a vital role since they can provide
a virtual replica of systems allowing real-time monitoring, analysis,
fault-detection and simulation.

The work presented in this paper has been developed within the
context of a bioclimatic building, the CIESOL research center. As men-
tioned previously, a crucial part of this is an HVAC system based on
solar cooling which makes use of, among other elements, a flat plate so-
lar collector field and its digital twin based on an ANN-based prediction

10

model. The main contributions of this paper can be summarized as the
development of an ANN prediction model for the outlet temperature
of a flat plate solar collector field, and the integration of this ANN
prediction model into a web-based digital twin framework, which
provides real-time communication, monitoring and an interactive tool
to develop future optimal and fault-tolerant management strategies.

To develop the ANN prediction model, different configurations for
the structure of the ANN were tested using one loop from the solar
collector field. From the obtained results, a pre-selection of the five
most promising models was carried out and their performance eval-
uated for various weather conditions using a different loop from the
solar collector field. The results obtained were good, with errors of
less than 10% for all pre-selected models. Ultimately, the model with 8
neurons in the hidden layer and a delay time parameter of 10 samples
was selected and integrated into the digital twin.

In future work, the digital twin will be extended to cover the entire
solar cooling HVAC system by including other prediction models of
the main components, such as the absorption machine. In addition, it
will be used to perform optimal management of the available resources
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Fig. 13. Example of visualizing the present and predicted values of a temperature outlet sensor from the solar collector field.

in order to provide a comfortable environment for the users of the
building, ensuring, at the same time, reduced energy consumption.
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