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Abstract. Let X and Y be compact subsets of R with at least two points.
For p ≥ 1, let ACp(X) be the space of all absolutely continuous complex-
valued functions f on X such that f ′ ∈ Lp(X), with the norm ‖f‖Σ =
‖f‖∞ + ‖f ′‖p. We describe the topological reflexive closure of the set
of linear isometries from ACp(X) onto ACp(Y ). Using this description,
we prove that such a set is algebraically reflexive and 2-algebraically re-
flexive. Moreover, as another application, it is shown that the sets of
isometric reflections and generalized bi-circular projections of ACp(X)
are topologically reflexive and 2-topologically reflexive.
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1. Introduction

For normed spaces E and F , let B(E,F ) be the set of all continuous linear
operators of E to F . If E = F , we will write B(E) instead of B(E,E). Let S
be a nonempty subset of B(E,F ). Define

refalg(S) = {T ∈ B(E,F ) : T (e) ∈ S(e), ∀e ∈ E} ,

reftop(S) =
{

T ∈ B(E,F ) : T (e) ∈ S(e), ∀e ∈ E
}

,

where S(e) = {L(e) : L ∈ S} and S(e) denotes its norm-closure in F . We say
that the set S is algebraically reflexive (respectively, topologically reflexive) if
refalg(S) = S (respectively, reftop(S) = S).
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The problem of the reflexivity of different classes of bounded linear oper-
ators has attracted a considerable attention in the last decades. Originally, the
first investigations of this kind are due to Kadison, Larson and Sourour by con-
sidering the classes of derivations and automorphisms on algebras of operators
[19,22,23]. With regard to isometries, Molnár in [25] began the study of the
reflexivity of the group of all surjective linear isometries on the full operator
algebra B(H) on a Hilbert space H. In [27], Molnár and Zalar established the
reflexivity of the isometry groups of some important Banach spaces including
the function space C(X) for a first countable compact Hausdorff space X. Now,
there are a lot of studies on the reflexivity of sets of surjective linear isometries
between different function spaces (see, for example, [3–5,7,8,15,16,28]).

Moreover, motivated by the Kowalski–S�lodowski theorem [21], Šemrl re-
laxed the linearity assumption for (approximate) local maps as explained be-
low:

2-refalg(S) =
{
Δ ∈ FE : ∀e, u ∈ E, ∃Se,u ∈ S |

Se,u(e) = Δ(e), Se,u(u) = Δ(u)} ,

2-reftop(S) =
{
Δ ∈ FE : ∀e, u ∈ E, ∃{Se,u,n}n∈N ⊂ S |

lim
n→∞ Se,u,n(e) = Δ(e), lim

n→∞ Se,u,n(u) = Δ(u)
}

,

where FE denotes the set of all maps of E to F . The set S is said to be 2-
algebraically reflexive (respectively, 2-topologically reflexive) if 2-refalg(S) = S
(respectively, 2-reftop(S) = S).

In [32], Šemrl dealt with the 2-algebraic reflexivity of the set of auto-
morphisms and derivations on operator algebras. Molnár [26] initiated the
study of 2-topological reflexivity of the isometry groups of certain C∗-algebras.
Then, in the context of function spaces, Győry [11] obtained the first result
on 2-algebraic reflexivity of the isometry group of C0(X), where C0(X) de-
notes the Banach space of all continuous complex-valued functions on a first
countable, σ-compact Hausdorff space X vanishing at infinity. We also refer
to [12,13,15,16,18,24] for some related results done on spaces of continuous
scalar-valued functions.

In this paper, we are concerned with the reflexivity of sets of linear op-
erators between ACp(X)-spaces. Let us recall that for p ≥ 1, ACp(X) is the
space of all absolutely continuous functions f : X → C such that f ′ ∈ Lp(X),
with the norm ‖f‖Σ = ‖f‖∞ + ‖f ′‖p. More precisely, in the main results of
the paper we give a complete description of operators in G(ACp(X),ACp(Y ))
and reftop(G(ACp(X),ACp(Y ))), where G(ACp(X),ACp(Y )) stands for the
set of all surjective linear isometries from ACp(X) onto ACp(Y ). Then we
apply them to obtain the algebraic reflexivity and 2-algebraic reflexivity of
G(ACp(X),ACp(Y )). Moreover, as other consequences of the main results, it
is shown that the sets of isometric reflections and generalized bi-circular pro-
jections of ACp(X) are topologically reflexive and 2-topologically reflexive.
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We finally remark that the key tools, as in some previous works, are the
Gleason–Kahane–Żelazko theorem and a spherical variant of the Kowalski–
S�lodkowski theorem given in [24].

2. Preliminaries

Let X be a compact subset of R with at least two points and let f be a
complex-valued function on X. Let us recall that f has bounded variation if
the total variation V(f) of f is finite, that is,

V(f) = sup

{
n∑

i=1

|f(xi) − f(xi−1)| : n ∈ N, x0, x1, . . . , xn ∈ X,

x0 < x1 < . . . < xn

}
< ∞.

Moreover, f is said to be absolutely continuous if for every ε > 0, there exists
a δ > 0 such that

n∑
i=1

|f(bi) − f(ai)| < ε

for each finite family of non-overlapping open intervals {(ai, bi) : i = 1, . . . , n}
with ai, bi ∈ X for all i ∈ {1, . . . , n} and

∑n
i=1(bi − ai) < δ. We denote the

space of all continuous (respectively, absolutely continuous) functions on X by
C(X) (respectively, AC(X)). It is easily seen that each function in AC(X) has
bounded variation.

For p ≥ 1, we let ACp(X) denote the space of all functions f ∈ AC(X)
such that f ′ ∈ Lp(X), with the norm

‖f‖Σ = ‖f‖∞ + ‖f ′‖p,

where ‖f‖∞ = sup {|f(x)| : x ∈ X} and ‖f ′‖p = (
∫

X
|f ′|p)1/pdμ (μ is the

Lebesgue measure on R). Moreover, note that ACp(X) is an algebra because
for any f, g ∈ ACp(X), we have fg ∈ AC(X) and

‖(fg)′‖p ≤ ‖f ′‖p‖g‖∞ + ‖f‖∞‖g′‖p < ∞.

Moreover, ACp(X) is sup-norm dense in C(X) by the Stone–Weierstrass
theorem.

The symbol 1X stands for the function constantly 1 on X and idX for the
identity map of X. Given a normed space E, we denote by IdE the identity
operator of E. Also, T denotes the unit circle of C.

We finish this section with some comments on the case p = 1.

Remarks 1. (1) Let mX = min(X) and MX = max(X). Since X is compact,
[mX ,MX ]\X is an open subset of R, whence [mX ,MX ]\X is the union of
a countable number of disjoint open intervals. Let us recall that that each
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function f ∈ AC(X) has the unique extension F to [mX ,MX ] formed
by linearly interpolating on each of the open intervals in [mX ,MX ] \ X
(see the expression in equation (3.1) of [6], and also [29, Lemma 1.1]).
Moreover, we have F ∈ AC([mX ,MX ]) with ‖f‖∞ = ‖F‖∞ and V(f) =
V(F ). We know that F ′ exists a.e. on [mX ,MX ] and V(F ) =

∫ MX

mX
|F ′|dμ.

Then, taking into account that the set of all isolated points of X is a null
set, indeed, a countable set (since it is a Lindelöf space), we deduce that f ′

exists a.e. on X, and so clearly we have F ′ = f ′ a.e. on X and f ′ ∈ L1(X).
Hence we have AC1(X) = AC(X) and ‖f ′‖1 ≤ V(f) for each

f ∈ AC(X). The latter inequality may be strict. For example, if X =
[0, 1] ∪ {2}, ‖(idX)′‖1 = 1 < V(idX) = 2. Moreover, (AC1([a, b]), ‖·‖Σ) =
(AC([a, b]), ‖·‖∞ + V(·)).

(2) The definition of AC1(X) as the set

{f ∈ C(X) : f ′ exists a.e., f ′ ∈ L1(X)}
in both [17, Example 7] or [30, page 188] does not coincide with the
space AC(X) even if X is an interval. For example, the Cantor function
is in AC1([0, 1]) but not in AC([0, 1]). So it seems that the condition of
absolute continuity has been dropped here (also, compare with [1, page
49] and [2,10,20]).

3. Results

In the sequel, unless explicitly stated, X and Y are two compact subsets of R
with at least two points. We denote mX = min(X) and MX = max(X), and,
similarly, mY = min(Y ) and MY = max(Y ).

Before stating the results, let us mention that G(ACp(X),ACp(Y )) stands
for the set of all surjective linear isometries from (ACp(X), ‖·‖Σ) onto (ACp(Y ),
‖·‖Σ). Further, for the case X = Y , we denote this set by G(ACp(X)).

In the first main result of the paper we describe the surjective linear
isometries in G(ACp(X),ACp(Y )). Before stating the theorem, let us bring a
result of [17] which will be applied in our proof.

Theorem 1 [17, Theorem 4]. Let A be a complex subspace of C(X) (the space
of all continuous complex-valued functions on a compact Hausdorff space X)
such that
(i) A is sup-norm dense in C(X),
(ii) the norm on A is given by the formula ‖f‖∞ + ‖TA(f)‖ for all f ∈ A,

where TA is a linear map from A into a Banach space,
(iii) A contains the constant function 1X and TA(1X) = 0.
Assume that B is a complex subspace of C(Y ) which satisfies the analogous
assumptions (i)–(iii). Then any isometry T from A onto B with T (1X) = 1Y

is of the form
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T (f) = f ◦ φ (f ∈ A),

where φ is a homeomorphism from Y onto X.

Theorem 2. Let T ∈ G(ACp(X),ACp(Y )). Then there exist a (unique) uni-
modular function h in ACp(Y ) with h′ = 0 a.e. on Y and a (unique) homeo-
morphism φ : Y → X in ACp(Y ) such that

T (f)(y) = h(y)f(φ(y)) (f ∈ ACp(X), y ∈ Y ).

Moreover, h = T (1X) and φ−1 = T−1(1Y )T−1(idY ) ∈ ACp(X).

Proof. First we assume that p > 1. We obtain the representation of T by
considering the two cases as follows.

Case 1. μ(X) = μ(Y ) = 0.

Clearly, (ACp(X), ‖·‖Σ)=(AC(X), ‖·‖∞) and (ACp(Y ), ‖·‖Σ)=(AC(Y ),
‖·‖∞). Since AC(X) and AC(Y ) are sup-norm dense in C(X) and C(Y ), re-
spectively, from the Banach–Stone theorem it follows that there exist a con-
tinuous function h : Y → T and a homeomorphism φ : Y → X such that

T (f) = h · f ◦ φ (f ∈ ACp(X)).

Since T (1X) = h and ‖T (1X)‖∞ = ‖h‖∞ = 1, it follows that h ∈ ACp(Y )
with h′ = 0 a.e. on Y .

Case 2. max{μ(X), μ(Y )} > 0 (of course, after obtaining the representation of
T it easily follows that μ(X) > 0 if and only if μ(Y ) > 0 because an absolutely
continuous homeomorphism between X and Y is established).

By an argument similar to [17, page 203] we prove that the function
|T (1X)| is constant and unimodular. We first show that |T (1X)| is constant.
Otherwise, there exists y0 ∈ Y such that |T (1X)(y0)| < ‖T (1X)‖∞. It is clear
that for each f ∈ ACp(X), there exists α ∈ T such that ‖1X + αf‖∞ =
1 + ‖f‖∞, which yields

‖1X + αf‖Σ = ‖1X + αf‖∞ + ‖f ′‖p = 1 + ‖f‖∞ + ‖f ′‖p = 1 + ‖f‖Σ,

and so

‖T (1X) + αT (f)‖Σ = 1 + ‖T (f)‖Σ = ‖T (1X)‖Σ + ‖T (f)‖Σ

because T is an isometry. Since ACp(Y ) is sup-norm dense in C(Y ), we can
choose a function k ∈ ACp(Y ) such that

‖k‖∞ = ‖T (1X)‖∞ − |T (1X)(y0)|,

and

|k(y)| ≤ ‖T (1X)‖∞ − |T (1X)(y)| +
1
2

(‖T (1X)‖∞ − |T (1X)(y0)|) (y ∈ Y ).
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For each y ∈ Y we have

|T (1X)(y)| + |k(y)| ≤ |T (1X)(y)| + ‖T (1X)‖∞ − |T (1X)(y)|

+
1
2

(‖T (1X)‖∞ − |T (1X)(y0)|)

= ‖T (1X)‖∞ +
1
2

(‖T (1X)‖∞ − |T (1X)(y0)|)

= ‖T (1X)‖∞ +
1
2
‖k‖∞,

and in consequence,

‖T (1X) + αk‖∞ ≤ sup {|T (1X)(y)| + |k(y)| : y ∈ Y } ≤ ‖T (1X)‖∞ +
1
2
‖k‖∞.

From the latter relation and taking α ∈ T with

‖T (1X) + αk‖Σ = 1 + ‖k‖Σ = ‖T (1X)‖Σ + ‖k‖Σ,

it easily follows that

‖T (1X) + αk‖Σ = ‖T (1X) + αk‖∞ + ‖T (1X)′ + αk′‖p

≤ ‖T (1X)‖∞ +
1
2
‖k‖∞ + ‖T (1X)′‖p + ‖k′‖p

= ‖T (1X)‖Σ + ‖k‖Σ − 1
2
‖k‖∞

< ‖T (1X)‖Σ + ‖k‖Σ,

which is impossible. This contradiction shows that |T (1X)| is a constant func-
tion. Now we prove that ‖T (1X)′‖p = 0. Clearly, it is valid if μ(Y ) = 0. So
let us consider the case where μ(Y ) > 0. Since μ(Y ) > 0, the dimension of
the subspace L = {f ′ : f ∈ ACp(Y )} of Lp(Y ) is strictly greater than 1. If
‖T (1X)′‖p = 0, we can choose g ∈ ACp(Y ) such that T (1X)′ and g′ are not
proportional because dim(L) > 1. Hence for each β ∈ T, taking into account
that Lp(X) is strictly convex, we have

‖T (1X) + βg‖Σ = ‖T (1X) + βg‖∞ + ‖T (1X)′ + βg′‖p

< ‖T (1X)‖∞ + ‖g‖∞ + ‖T (1X)′‖p + ‖g′‖p

= ‖T (1X)‖Σ + ‖g‖Σ = 1 + ‖g‖Σ,

a contradiction. Hence ‖T (1X)′‖p = 0, and so 1 = ‖T (1X)‖Σ = ‖T (1X)‖∞,
which yields that the constant function |T (1X)| is unimodular. Therefore,
T (1X) is a unimodular function with ‖T (1X)′‖p = 0.

Let χ be a unimodular function in ACp(X) with ‖χ′‖p = 0. Hence χ′ = 0
a.e. on X. If f ∈ ACp(X), then ‖f · χ‖∞ = ‖f‖∞ and (f · χ)′ = f ′ · χ a.e.
on X, which yields ‖(f · χ)′‖p = ‖f ′‖p and, in consequence, ‖f · χ‖Σ = ‖f‖Σ.
Thus Tχ : ACp(X) → ACp(X), defined by Tχ(f) = f · χ, is a linear isometry.
Moreover, Tχ is surjective because given g ∈ ACp(X), similarly to above, one
can see that f = χ·g ∈ ACp(X) and Tχ(f) = g. Moreover, it is easy to see that
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(ACp(X), ‖·‖Σ) satisfies the assumptions (i)–(iii) in Theorem 1. Now, taking
into account that T (1X) is a unimodular function with ‖T (1X)′‖p = 0, from
Theorem 1 we infer that

T (f) = h · f ◦ φ (f ∈ ACp(X)),

where h = T (1X) and φ : Y → X is a homeomorphism. Note that h ∈ ACp(Y )
with h′ = 0 a.e. on Y , as desired.

Now, suppose that p = 1. As in Case 2, we will see that |T (1X)| is
a constant function. Our aim is to show that ‖T (1X)′‖1 = 0, which finally
implies that T (1X) is a unimodular function and so we can again obtain the
representation of T from Theorem 1.

We assume, without loss of generality, that μ(Y ) > 0. First we prove the
following claim.

Claim. For each y ∈ Y , we have
∫

[mY ,y]∩Y

|T (1X)′|dμ = 0, or
∫

[y,MY ]∩Y

|T (1X)′|dμ = 0.

The claim is clearly valid if y ∈ {mY ,MY }. So we suppose that mY <
y < MY . Define

gy(z) =

⎧
⎨
⎩

T (1X)(z) z ∈ [mY , y] ∩ Y,

2T (1X)(y) − T (1X)(z) z ∈ (y,MY ] ∩ Y.

Clearly, gy ∈ AC1(Y ). Take f = T−1(gy). As above, there exists α ∈ T such
that

‖αgy + T (1X)‖Σ = ‖αT (f) + T (1X)‖Σ = ‖T (f)‖Σ + 1 = ‖gy‖Σ + 1.

Hence

‖gy‖Σ + 1 = ‖αgy + T (1X)‖Σ = ‖αgy + T (1X)‖∞ + ‖αg′
y + T (1X)′‖1,

≤ ‖gy‖∞ + ‖T (1X)‖∞ + ‖g′
y‖1 + ‖T (1X)′‖1

= ‖gy‖Σ + ‖T (1X)‖Σ = ‖gy‖Σ + 1,

which yields

‖αgy + T (1X)‖∞ = ‖gy‖∞ + ‖T (1X)‖∞

and

‖αg′
y + T (1X)′‖1 = ‖g′

y‖1 + ‖T (1X)′‖1.
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From the second equation it follows that∫

[mY ,y]∩Y

|αg′
y + T (1X)′|dμ +

∫

[y,MY ]∩Y

|αg′
y + T (1X)′|dμ

=
∫

[mY ,y]∩Y

|g′
y|dμ +

∫

[y,MY ]∩Y

|g′
y|dμ +

∫

[mY ,y]∩Y

|T (1X)′|dμ

+
∫

[y,MY ]∩Y

|T (1X)′|dμ,

which implies that∫

[mY ,y]∩Y

|αg′
y + T (1X)′|dμ =

∫

[mY ,y]∩Y

|g′
y|dμ +

∫

[mY ,y]∩Y

|T (1X)′|dμ

and∫

[y,MY ]∩Y

|αg′
y + T (1X)′|dμ =

∫

[y,MY ]∩Y

|g′
y|dμ +

∫

[y,MY ]∩Y

|T (1X)′|dμ.

From the definition of gy we get∫

[mY ,y]∩Y

|α + 1||T (1X)′|dμ = 2
∫

[mY ,y]∩Y

|T (1X)′|dμ

and ∫

[y,MY ]∩Y

| − α + 1||T (1X)′|dμ = 2
∫

[y,MY ]∩Y

|T (1X)′|dμ.

From the first equation it follows that α = 1 if
∫
[mY ,y]∩Y

|T (1X)′|dμ = 0, and
from the second one we conclude that α = −1 if

∫
[y,MY ]∩Y

|T (1X)′|dμ = 0.
Then at least one of the following equations holds∫

[mY ,y]∩Y

|T (1X)′|dμ = 0, or
∫

[y,MY ]∩Y

|T (1X)′|dμ = 0,

as claimed.
Now we prove that ‖T (1X)′‖1 = 0. To the contrary, suppose that

‖T (1X)′‖1 > 0. Take a positive scalar ε such that ε < ‖T (1X)′‖1. Since
T (1X)′ ∈ L1(Y ), there exists δ > 0 such that

∫
E

|T (1X)′|dμ < ε holds for all
measurable sets E ⊆ Y with μ(E) < δ. We can choose a finite set {z0, · · · , zn}
in the compact set Y such that mY = z0 < z1 < · · · < zn = MY , and
zi − zi−1 < δ for each i with (zi−1, zi) ∩ Y = ∅ (1 ≤ i ≤ n). Now from
Claim it follows that there exists i, 1 ≤ i ≤ n, such that

∫
Y

|T (1X)′|dμ =∫
[zi−1,zi]∩Y

|T (1X)′|dμ. Meantime, from the choice of δ and the points zi it
follows that

∫
[zi−1,zi]∩Y

|T (1X)′|dμ < ε. Therefore

‖T (1X)′‖1 =
∫

[zi−1,zi]∩Y

|T (1X)′|dμ < ε,

a contradiction.
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From the representation of T in all situations, it easily follows that
φ = hT (idX) ∈ ACp(Y ). Furthermore, φ−1 ∈ ACp(X) since one can see that
T−1 : ACp(Y ) → ACp(X) has the form

T−1(g)(x) = T−1(1Y )(x)g(φ−1(x))

= h(φ−1(x))g(φ−1(x)) (g ∈ ACp(Y ), x ∈ X),

and so φ−1 = T−1(1Y )T−1(idY ) ∈ ACp(X). �
Remarks 2. (1) From Theorem 2, we deduce that if T is in G(ACp(X),ACp

(Y )), then T is an isometry with respect to the uniform norms, whence
‖T (f)‖∞ = ‖f‖∞ and ‖T (f)′‖p = ‖f ′‖p for all f ∈ ACp(X).

(2) In Theorem 2, h is not necessarily a constant function and φ is not neces-
sarily monotonic (compare with [16, Theorem 1] and [14, Corollary 4.3]).
For example, let X = [0, 1]∪{2} and define the surjective linear isometry
T : ACp(X) → ACp(X) by

T (f)(x) = h(x)f(φ(x)) (x ∈ X),

where h(x) = −1 if x ∈ [0, 1] and h(2) = 1, and φ(x) = 1 − x if x ∈ [0, 1]
and φ(2) = 2.
However, if X is an interval, then h is a constant function and φ is
monotonic. To see it, assume that X is an interval, indeed, X = [mX ,MX ]
(and so Y = [mY ,MY ]). From the previous part, ‖h′‖p = ‖T (1X)′‖p = 0.
Hence

V(h) = ‖h′‖1 ≤ ‖h′‖p (MX − mX)1−1/p = 0

by the Hölder’s inequality, which yields V(h) = 0, whence h is a constant
function. Moreover, from the intermediate value theorem, one can see
that the homeomorphism φ : [mY ,MY ] → [mX ,MX ] is monotonic.

(3) Since (AC1([0, 1]), ‖·‖Σ) = (AC([0, 1]), ‖·‖∞ + V(·)), Example 1 in [16]
shows that the space G(AC1([0, 1])) is neither topologically reflexive nor 2-
topologically reflexive. However, we will observe that the isometry groups
of ACp(X)-spaces are algebraically reflexive and 2-algebraically reflexive.

Definition 3. Given a nonempty subset S of B(E,F ), the elements of refalg(S)
and reftop(S) are defined as local S-maps and approximate local S-maps, re-
spectively. Similarly, the elements of 2-refalg(S) and 2-reftop(S) are referred to
as 2-local S-maps and approximate 2-local S-maps, respectively.

We state the second main result of this paper which gives a complete
description of approximate local isometries from ACp(X) into ACp(Y ).

Theorem 4. Let T ∈ reftop(G(ACp(X),ACp(Y ))). Then T is an isometry of
the form

T (f)(y) = h(y)f(φ(y)) (f ∈ ACp(X), y ∈ Y ),

where h is a unimodular function in ACp(Y ) with ‖h′‖p = 0 and φ : Y → X
is a surjective function in ACp(Y ).
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Proof. We prove the result through several claims.

Claim 1. ‖T (f)‖Σ = ‖f‖Σ, ‖T (f)‖∞ = ‖f‖∞ and ‖T (f)′‖p = ‖f ′‖p for all
f ∈ ACp(X).

Let f ∈ ACp(X). Then there exists a sequence {Tf,n}n∈N in G(ACp(X),
ACp(Y )) such that limn→∞ Tf,n(f) = T (f). It is clear that limn→∞ ‖Tf,n(f)‖Σ
= ‖T (f)‖Σ, limn→∞ ‖Tf,n(f)‖∞ = ‖T (f)‖∞ and limn→∞ ‖Tf,n(f)′‖p =
‖T (f)′‖p. Since ‖Tf,n(f)‖Σ = ‖f‖Σ, ‖Tf,n(f)‖∞ = ‖f‖∞ and ‖Tf,n(f)′‖p =
‖f ′‖p for all n ∈ N by Remarks 2 (1), the claim holds.

Claim 2. For every f ∈ ACp(X), there exist a sequence {hf,n : Y → T}n∈N

in ACp(Y ) with ‖h′
f,n‖p = 0 and a sequence of homeomorphisms {φf,n : Y →

X}n∈N in ACp(Y ) such that

lim
n→∞ hf,n(f ◦ φf,n) = T (f).

Since T ∈ reftop(G(ACp(X),ACp(Y ))), the claim is a quick consequence
of Theorem 2.

Claim 3. h := T (1X) is a unimodular function in ACp(Y ) with ‖h′‖p = 0.

Clearly, T (1X) ∈ ACp(Y ). By Claim 2, there exist a sequence {h1X ,n}n∈N

of unimodular functions in ACp(Y ) with ‖h′
1X ,n‖p = 0 for all n ∈ N such that

T (1X) = lim
n→∞ h1X ,n.

Since the convergence in the ‖·‖Σ-norm implies pointwise convergence, for each
y ∈ Y we have T (1X)(y) = limn→∞ h1X ,n(y) and thus

|T (1X)(y)| = lim
n→∞ |h1X ,n(y)| = 1.

That convergence also implies that

‖T (1X)′‖p = lim
n→∞ ‖h′

1X ,n‖p = 0.

This proves the claim.

Claim 4. (ACp(X), ‖ · ‖0 = ‖·‖Σ + V(·)) is a Banach space.

Suppose that {fn}n∈N is a Cauchy sequence in (ACp(X), ‖·‖0). In partic-
ular, {fn}n∈N is a Cauchy sequence in the Banach space (AC(X), ‖·‖∞ +V(·)),
and so there exists f ∈ AC(X) such that

‖fn − f‖∞ + V(fn − f) → 0.

Moreover, {f ′
n}n∈N is a Cauchy sequence in the Banach space (Lp(X), ‖ · ‖p),

whence there exists g ∈ Lp(X) such that ‖f ′
n − g‖p → 0, which implies that

‖f ′
n − g‖1 → 0 because

‖f ′
n − g‖1 ≤ ‖f ′

n − g‖p μ(X)1−1/p → 0

by the Hölder’s inequality.
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On the other hand, in view of Remarks 1.(1) we have that ‖f ′
n − f ′‖1 ≤

V(fn−f) for all n ∈ N, and since V(fn−f) → 0, it follows that ‖f ′
n−f ′‖1 → 0.

Thus we conclude that g = f ′ a.e. on X. Hence f ∈ ACp(X) and ‖fn−f‖0 → 0.
Therefore (ACp(X), ‖ · ‖0) is a Banach space.

Claim 5. There exists a norm ‖ · ‖, equivalent to the complete norm ‖ · ‖0,
which makes ACp(X) a Banach algebra with maximal ideal space X.

First note that if {fn}n∈N is a convergent sequence in (ACp(X), ‖ · ‖0) to
f ∈ ACp(X) and g ∈ ACp(X), then fng → fg because

‖fng − fg‖0 ≤ ‖fn − f‖∞ ‖g‖∞ + V(g) ‖fn − f‖∞
+ V(fn − f) ‖g‖∞ + ‖g‖∞ ‖f ′

n − f ′‖p + ‖fn − f‖∞ ‖g′‖p → 0.

Now, taking into account Claim 4, from Theorem 10.2 in [31] it follows that
there is a norm ‖ · ‖, equivalent to the complete norm ‖ · ‖0, which makes
ACp(X) a Banach algebra.

We show that if f ∈ ACp(X) such that {x ∈ X : f(x) = 0} = ∅, then
1X/f ∈ ACp(X). We note that 1X/f ∈ AC(X) and also (1X/f)′ ∈ Lp(X)
because

‖(1X/f)′‖p =
(∫

X

|f ′|p
|f |2p

dμ

)1/p

≤ 1
m2

‖f ′‖p < ∞,

where m = min{|f(x)| : x ∈ X} is a positive scalar. Furthermore, it is obvious
that ACp(X) is self-adjoint. Now, from Proposition 4.1.5 (ii) in [9] we infer
that the maximal ideal space of ACp(X) is homeomorphic to X.

Similarly, there exists a norm ‖·‖′ which makes ACp(Y ) a Banach algebra
and its maximal ideal space is homeomorphic to Y .

Claim 6. For each y ∈ Y , the map Sy : (ACp(X), ‖ · ‖) → C defined by

Sy(f) = h(y)T (f)(y) (f ∈ ACp(X)),

is a unital multiplicative linear functional.

Fix y ∈ Y . Clearly, Sy is linear and

Sy(1X) = h(y)T (1X)(y) = h(y)h(y) = |h(y)|2 = 1

by Claim 3. To prove its multiplicativity, define Ty : (ACp(X), ‖ · ‖) → C by

Ty(f) = T (f)(y) (f ∈ ACp(X)).

From the above claim, there is a positive scalar M such that ‖ · ‖0 ≤ M‖ · ‖.
Since Ty is linear and

|Ty(f)| = |T (f)(y)| ≤ ‖T (f)‖Σ = ‖f‖Σ ≤ ‖f‖0 ≤ M‖f‖
for all f ∈ ACp(X) by Claim 1, we infer that Ty is continuous. Take now
f ∈ ACp(X). By Claim 2, there exist a sequence {hf,n : Y → T}n∈N in ACp(Y )
and a sequence of homeomorphisms {φf,n : Y → X}n∈N in ACp(Y ) such that

T (f) = lim
n→∞ hf,n(f ◦ φf,n).
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We can assume, without loss of generality, that the sequence {hf,n(y)}n∈N

converges to λf,y ∈ T. Therefore we have

Ty(f) = T (f)(y) = lim
n→∞ hf,n(y)f(φf,n(y)) = λf,y lim

n→∞ f(φf,n(y)) ∈ Tσ(f),

since the spectrum σ(f) of f is compact. Applying a spherical variant of the
Gleason–Kahane–Żelazko theorem [24, Proposition 2.2], we conclude that Sy =
Ty(1X)Ty is multiplicative.

Claim 7. There exists a surjective function φ : Y → X in ACp(Y ) such that
T (f)(y) = h(y)f(φ(y)) for all y ∈ Y and f ∈ ACp(X).

Using Claim 6, we deduce easily that the map S : (ACp(X), ‖ · ‖) →
(ACp(Y ), ‖ · ‖′) defined by

S(f)(y) = h(y)T (f)(y) (f ∈ ACp(X), y ∈ Y )

is a unital algebra homomorphism. From Gelfand theory (see, e.g., [9, Theorem
2.3.25]) and Claim 5 we conclude that S induces a continuous map φ : Y → X
such that

S(f)(y) = f(φ(y)) (f ∈ ACp(X), y ∈ Y ),

which implies that

T (f)(y) = h(y)f(φ(y)) (f ∈ ACp(X), y ∈ Y ).

Notice that φ = hT (idX) ∈ ACp(Y ). To show the surjectivity of φ, assume
on the contrary that there exists x0 ∈ X \ φ(Y ). Since φ(Y ) is compact, we
can take a function f ∈ ACp(X) such that f(x0) = 1 and f(x) = 0 for all
x ∈ φ(Y ). Hence T (f)(y) = h(y)f(φ(y)) = 0 for all y ∈ Y , a contradiction
because T is injective by Claim 1. �

Now we prove that every local isometry from ACp(X) into ACp(Y ) is a
surjective linear isometry.

Corollary 1. The set G(ACp(X),ACp(Y )) is algebraically reflexive.

Proof. Let T ∈ refalg(G(ACp(X),ACp(Y ))). By Theorem 4 there exist a uni-
modular function h ∈ ACp(Y ) and a surjective function φ : Y → X in ACp(Y )
such that

T (f)(y) = h(y)f(φ(y)) (f ∈ ACp(X), y ∈ Y ).

Define f0 : X → R by f0(x) = x−mX +1 for all x ∈ X. Clearly, f0 ∈ ACp(X),
and then by Theorem 2 there exist a unimodular function hf0 ∈ ACp(Y ) and
a homeomorphism φf0 : Y → X in ACp(Y ) such that

h(y)f0(φ(y)) = T (f0)(y) = hf0(y)f0(φf0(y)) (y ∈ Y ).

Consequently,

h(y)(φ(y) − mX + 1) = T (f0)(y) = hf0(y)(φf0(y) − mX + 1) (y ∈ Y ).
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Now, taking into account that h, hf0 are unimodular functions and f0 is a
positive function, it follows that φ(y) − mX + 1 = φf0(y) − mX + 1 for all
y ∈ Y . Hence φ = φf0 . Again, from the above relation we infer that h = hf0 .
Then for any f ∈ ACp(X) we have

T (f)(y) = h(y)f(φ(y)) = hf0(y)f(φf0(y)) = Tf0(f)(y) (y ∈ Y ).

Therefore T = Tf0 ∈ G(ACp(X),ACp(Y )). �

We also show that every (approximate) 2-local isometry between ACp(X)-
spaces is an (approximate) local isometry.

Theorem 5. (1) Every approximate 2-local isometry of ACp(X) to ACp(Y )
is an approximate local isometry.

(2) Every 2-local isometry of ACp(X) to ACp(Y ) is a local isometry.

Proof. Let Δ ∈ 2-reftop(G(ACp(X),ACp(Y ))). We first prove that for each
y ∈ Y , the functional Δy : (ACp(X), ‖ · ‖) → C defined by

Δy(f) = Δ(f)(y) (f ∈ ACp(X)),

is linear, where ‖·‖ is the norm presented in Claim 5. Since Δ is an approximate
2-local isometry, it is easily seen that Δy is 1-homogeneous. Now, let f, g ∈
ACp(X) and take a sequence of unimodular functions {hf,g,n}n∈N in ACp(Y )
and a sequence of homeomorphisms {φf,g,n : Y → X}n∈N such that

lim
n→∞ hf,g,n(y)f(φf,g,n(y)) = Δ(f)(y),

lim
n→∞ hf,g,n(y)g(φf,g,n(y)) = Δ(g)(y).

Thus

Δy(f) − Δy(g) = lim
n→∞ hf,g,n(y)(f − g)(φf,g,n(y)) ∈ Tσ(f − g).

Then by the spherical variant of the Kowalski–S�lodkowski theorem [24], Δy is
linear. Hence Δ is linear by the arbitrariness of y. Therefore Δ ∈ reftop(G(ACp

(X),ACp(Y ))). This proves (1), and (2) is obtained with an analogous proof.
�

From Theorem 5 and Corollary 1, we immediately obtain the following
result, which shows that every 2-local isometry of ACp(X) to ACp(Y ) is a
surjective linear isometry.

Corollary 2. The set G(ACp(X),ACp(Y )) is 2-algebraically reflexive. �

We next study the topological reflexivity of other distinguished subsets
of linear transformations of ACp(X).

Let E be a Banach space. Let us recall that an isometric reflection of E
is a linear isometry T : E → E with T 2 = IdE ; and a generalized bi-circular
projection of E is a linear projection P : E → E such that P + τ(IdE − P )
is a linear surjective isometry for some τ ∈ T with τ = 1. Note that any
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isometric reflection of E is surjective. The symbols G2(E) and GBP(E) stand
for the sets of isometric reflections and generalized bi-circular projections of
E, respectively.

The next theorem characterizes the isometric reflections on ACp(X)-
spaces.

Theorem 6. An isometry T : ACp(X) → ACp(X) is an isometric reflection if
and only if there exist a function h ∈ ACp(X) with h(x) ∈ {±1} for all x ∈ X,
and a homeomorphism φ ∈ ACp(X) with φ2(x) = x for all x ∈ X such that

T (f)(x) = h(x)f(φ(x)) (f ∈ ACp(X), x ∈ X).

Proof. Let T ∈ G2(ACp(X)). By Theorem 2, there are a unimodular function
h in ACp(X) and a homeomorphism φ : X → X in ACp(X) such that

T (f)(x) = h(x)f(φ(x)) (f ∈ ACp(X), x ∈ X).

Since T 2 = IdACp(X), it follows that

f(x) = T 2(f)(x) = T (T (f))(x) = [h(x)]2f(φ2(x)) (f ∈ ACp(X), x ∈ X).

Taking above f = 1X , we deduce that [h(x)]2 = 1 for all x ∈ X, and thus
h(x) ∈ {±1} for all x ∈ X. Also, by considering f = idX , we obtain that
x = [h(x)]2φ2(x) = φ2(x) for all x ∈ X.

Conversely, suppose that T has the form as in the statement. Then an
easy verification yields

T 2(f)(x) = [h(x)]2f(φ2(x)) = f(x) (f ∈ ACp(X), x ∈ X).

Therefore T ∈ G2(ACp(X)), as desired. �
We can deduce that every approximate local isometric reflection of

ACp(X) is an isometric reflection.

Corollary 3. The set G2(ACp(X)) is topologically reflexive.

Proof. Let T ∈ reftop(G2(ACp(X))). By Theorem 6, for f ∈ ACp(X), we can
take a sequence of unimodular functions {hf,n}n∈N in ACp(X) with hf,n(x) ∈
{±1} for all x ∈ X, and a sequence of homeomorphisms {φf,n}n∈N of X in
ACp(X) with φ2

f,n = idX satisfying

lim
n→∞ hf,n(f ◦ φf,n) = T (f).

Obviously, T ∈ reftop(G(ACp(X))) and, by Theorem 4, we can find a unimod-
ular function h ∈ ACp(X) and a surjective function φ : X → X in ACp(X)
such that

T (f) = h(f ◦ φ) (f ∈ ACp(X)).

Hence h = T (1X) = limn→∞ h1X ,n and since h1X ,n(x) ∈ {±1} for all n ∈ N

and x ∈ X, it is deduced easily that h(x) ∈ {±1} for all x ∈ X. Define
f0(x) = x − mX + 1 for all x ∈ X. We have

h(f0 ◦ φ) = T (f0) = lim
n→∞ hf0,n(f0 ◦ φf0,n).
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Since the convergence in the Σ-norm implies uniform convergence, and f0(x) >
0, h(x), hf0,n(x) ∈ {±1} for all x ∈ X, we conclude that

lim
n→∞ ‖f0 ◦ φf0,n − f0 ◦ φ‖∞ = 0.

Hence limn→∞ ‖φf0,n − φ‖∞ = 0. Now, given x ∈ X and ε > 0, taking into
account that φ is continuous and limn→∞ φf0,n(x) = φ(x), one can find n0 ∈ N

such that ‖φf0,n − φ‖∞ < ε/2 and
∣∣φ(φf0,n(x)) − φ2(x)

∣∣ < ε/2 for all n ≥ n0.
Then for any n ≥ n0, we have

∣∣φ2
f0,n(x) − φ2(x)

∣∣ ≤ |φf0,n(φf0,n(x)) − φ(φf0,n(x))|
+

∣∣φ(φf0,n(x)) − φ2(x)
∣∣ < ε,

which yields limn→∞ φ2
f0,n(x) = φ2(x). On the other hand, for each n ∈ N and

x ∈ X we have φ2
f0,n(x) = x, which finally implies that φ2(x) = x. Therefore

T is an isometry of the form T (f) = h(f ◦ φ) with φ2 = idX and h2 = 1X ,
and, in consequence, T ∈ G2(ACp(X)) by Theorem 6. �

The next theorem gives a complete description of generalized bi-circular
projections on ACp(X)-spaces.

Theorem 7. A map P : ACp(X) → ACp(X) is a generalized bi-circular projec-
tion if and only if P = (1/2)(IdACp(X) + T ) for a unique T ∈ G2(ACp(X)).

Proof. The proof of the sufficiency is easy. To prove the necessity, assume that
P ∈ GBP(ACp(X)). Then T := P + τ(IdACp(X) − P ) ∈ G(ACp(X)) for some
τ ∈ T \ {1}. By Theorem 2, we can find a unimodular function h ∈ ACp(X)
and a homeomorphism φ : X → X in ACp(X) such that

[P + τ(IdACp(X) − P )](f)(x) = h(x)f(φ(x)) (f ∈ ACp(X), x ∈ X).

Moreover, h = T (1X) and φ−1 ∈ ACp(X). Then

P (f)(x) = (1 − τ)−1[−τf(x) + h(x)f(φ(x))] (f ∈ ACp(X), x ∈ X).

Since P 2 = P , we have the following equation:

τf(x) − (τ + 1)h(x)f(φ(x)) + h(x)2f(φ2(x)) = 0 (f ∈ ACp(X), x ∈ X).

Suppose that there exists x0 ∈ X such that x0 = φ(x0) and x0 = φ2(x0). Take
a function f0 ∈ ACp(X) such that f0(x0) = 1 and f0(φ(x0)) = 0 = f0(φ2(x0)).
Observe that taking f = f0 and x = x0 in the equation above, we obtain
τ = 0, a contradiction. Hence φ(x) = x or φ2(x) = x for all x ∈ X. In any case
we conclude that φ2 = idX .

We now distinguish two cases. If φ = idX , choose x0 ∈ X such that
x0 = φ(x0) and consider g ∈ ACp(X) such that g(x0) = 1 and g(φ(x0)) = 0.
Substituting now in the above equation, first f = g and x = x0, and after
f = 1X and any x, we infer that τ+[h(x0)]2 = 0 and τ−(τ+1)h(x)+[h(x)]2 = 0
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for all x ∈ X, respectively. Hence τ = −1 and [h(x)]2 = 1 for all x ∈ X. Thus
h(x) ∈ {−1, 1} for all x ∈ X and the formula of P yields

P (f)(x) =
1
2

[f(x) + h(x)f(φ(x))] (f ∈ ACp(X), x ∈ X).

Therefore P = (1/2)(IdACp(X) + T ), where T ∈ G2(ACp(X)) by Theorem 6.
In the another case, if φ = idX , taking f = 1X in the equation we get

[h(x) − τ ][h(x) − 1] = [h(x)]2 − (τ + 1)h(x) + τ = 0 (x ∈ X).

Since τ = 1, from the above relation it follows that for each x ∈ X, either
h(x) = 1, or h(x) = τ . If h(x) = 1 for all x ∈ X, then we have P = IdACp(X),
and so P is of the desired form. Now, assume that h(x) = τ for some x ∈ X.
Hence, for any f ∈ ACp(X), we obtain

P (f)(x) =

⎧
⎨
⎩

f(x) if h(x) = 1,

0 if h(x) = τ.

So by taking h: X → {1,−1} by h(x) = 1 if h(x) = 1 and h(x) = −1 if
h(x) = τ , we have h ∈ ACp(X),

T (f) = hf (f ∈ ACp(X))

belongs to G2(ACp(X)) by Theorem 6 and also P = (1/2)(IdACp(X) + T ), as
desired. �

Corollary 4. The set GBP(ACp(X)) is topologically reflexive.

Proof. Let P ∈ reftop(GBP(ACp(X))). By Theorem 7, for each f ∈ ACp(X)
there exists a sequence {Tf,n}n∈N in G2(ACp(X)) such that

P (f) = lim
n→∞

1
2

[
(IdACp(X) + Tf,n)(f)

]
,

whence (2P −IdACp(X))(f) = limn→∞ Tf,n(f), which shows that 2P −IdACp(X)

∈ reftop(G2(ACp(X))). Thus 2P − IdACp(X) ∈ G2(ACp(X)) by Corollary 3 and
therefore P ∈ GBP(ACp(X)) according to Theorem 7. �

Finally, we show the 2-topological reflexivity of the set of generalized
bi-circular projections of ACp(X)-spaces.

Corollary 5. The set GBP(ACp(X)) is 2-topologically reflexive.

Proof. Let Δ ∈ 2-reftop(GBP(ACp(X))). According to Theorem 7, for any
f, g ∈ ACp(X), there exists a sequence {Tf,g,n}n∈N in G2(ACp(X)) such that

Δ(f) = lim
n→∞

1
2

[
(IdACp(X) + Tf,g,n)(f)

]
,

Δ(g) = lim
n→∞

1
2

[
(IdACp(X) + Tf,g,n)(g)

]
.



Vol. 77 (2022) Isometries and Approximate Local Isometries Page 17 of 19 186

Hence, for every f, g ∈ ACp(X), we have

2Δ(f) − f = lim
n→∞ Tf,g,n(f),

2Δ(g) − g = lim
n→∞ Tf,g,n(g),

and this says that 2Δ−IdACp(X) ∈ 2-reftop(G2(ACp(X))). Hence 2Δ−IdACp(X)

∈ G2(ACp(X)) by Corollary 3. Therefore, from Theorem 7 we conclude that
Δ ∈ GBP(ACp(X)). �
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