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Abstract
Let K be either the real unit interval [0, 1] or the complex unit circle T and let C(Y ) be the
space of all complex-valued continuous functions on a compact Hausdorff space Y . We prove
that the isometry group of the algebra C1(K ,C(Y )) of all C(Y )-valued continuously differ-
entiablemaps on K , equippedwith the�-norm, is topologically reflexive and 2-topologically
reflexive whenever the isometry group of C(Y ) is topologically reflexive.

Keywords Algebraic reflexivity · Topological reflexivity · Local isometry · 2-local
isometry · Differentiable map

Mathematics Subject Classification Primary 46B04 · 47B48; Secondary 46E15 · 47B38

1 Introduction

Surjective linear isometries on the spaceC1([0, 1], E) of all continuously differentiablemaps
on the real unit interval [0, 1] with values in a Banach space E , equipped with the �-norm:

‖F‖� = max
x∈[0,1] ‖F(x)‖E + max

x∈[0,1]
∥
∥F ′(x)

∥
∥
E

(

F ∈ C1([0, 1], E)
)

,

have been studied for some concrete Banach spaces E . For E = C, such isometries were
described first by Rao and Roy [28], and, later, by Jarosz and Pathak [12] within a more
general study of the surjective isometries of some classic function spaces. Miura and Takagi
[18] extended the result of Rao and Roy by characterizing surjective, not necessarily linear,
isometries on C1([0, 1],C).
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Hatori and Oi [8] (see also [7]) proposed a unified approach to the study of isometries
on Banach algebras of vector-valued maps by means of the notion of admissible quadruples
and described isometries on Banach algebras C1(K ,C(Y )), where K is either [0, 1] or T
(the complex unit circle) and C(Y ) is the Banach algebra of all complex-valued continuous
functions on a compact Hausdorff space Y with the supremum norm:

‖ f ‖∞ = max
y∈Y | f (y)| ( f ∈ C(Y )) .

Another usual norm considered on the linear space C1([0, 1], E) is the C-norm given by

‖F‖C = max
x∈[0,1]

{‖F(x)‖E + ∥
∥F ′(x)

∥
∥
E

} (

F ∈ C1([0, 1], E)
)

.

Cambern [4] gave a representation for the surjective linear isometries of C1([0, 1],C) with
the C-norm. Botelho and Jamison [2] extended this result to spaces C1([0, 1], H), where H
is a finite-dimensional real Hilbert space. Recently, Ranjbar-Motlagh [27] has characterized
the surjective linear isometries of C1([0, 1], E) whenever E is a strictly convex real Banach
space.

Equipped with other norms, Li and Wang [15] investigated surjective linear isometries
between spacesC (n)

0 (�, E), where� is an open subset of Euclidean space and E is a reflexive
strictly convex space. The case in which � is an open subset of R and E is a strictly convex
Banach space with dimension greater than 1 was addressed by Li et al. [13].

Reflexivity and 2-reflexivity of the set of surjective linear isometries between Banach
spaces are properties that are closely related to the study of isometries. Algebraical and
topological reflexivity of the group of surjective isometries onBanach spaceswere introduced
by Molnár and Zalar in [22]. The paper [3] by Cabello Sánchez and Molnár is concerned
with the algebraical and topological reflexivity of the isometry group and the automorphism
group of some important metric linear spaces and algebras.

The research on 2-local isometries between Banach spaces was initiated by Molnár [19],
motivated by the paper [30] of Šemrl who obtained the first results on 2-local automorphisms
and 2-local derivations between Banach algebras. The study of 2-local isometries of C(X)-
spaces was raised by Molnár [20]. In [6], Győry gave a description of 2-local isometries of
C0(L,C)-spaces.

Fleming and Jamison proposed the research on these topics in their monograph [5]. The
study of reflexivity and 2-reflexivity of the sets of isometries, derivations and automorphisms
on operator algebras and function algebras is a problemwhich follows attracting the attention
of numerous researchers.

We briefly recall these notions. For two Banach spaces E and F , let FE be the set of
all maps of E to F , B(E, F) be the space of all continuous linear operators of E to F and
Iso(E, F) be the set of all surjective linear isometries of E to F . When E = F , we write
Iso(E) instead of Iso(E, E).

It is said that Iso(E, F) is algebraically reflexive (topologically reflexive) if

refalg(Iso(E, F)) = Iso(E, F) (respectively, reftop(Iso(E, F)) = Iso(E, F)),

where

refalg(Iso(E, F)) = {T ∈ B(E, F) : ∀e ∈ E, ∃Te ∈ Iso(E, F) | T (e) = Te(e)}
and

reftop(Iso(E, F)) = {

T ∈ B(E, F) : ∀e ∈ E, ∀ε > 0 ∃Te,ε ∈ Iso(E, F) | ∥
∥T (e) − Te,ε(e)

∥
∥ < ε

}

.
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The elements of refalg(Iso(E, F)) and reftop(Iso(E, F)) are called local isometries and
approximate local isometries of E to F , respectively.

Besides, it is said that Iso(E, F) is 2-algebraically reflexive (2-topologically reflexive)
whenever

2-refalg(Iso(E, F)) = Iso(E, F) (respectively, 2-reftop(Iso(E, F)) = Iso(E, F)),

where 2-refalg(Iso(E, F)) and 2-reftop(Iso(E, F)) are the sets defined, respectively, by

{

� ∈ FE : ∀e, u ∈ E, ∃Te,u ∈ Iso(E, F) | �(e) = Te,u(e), �(u) = Te,u(u)
}

and
{

� ∈ FE : ∀e, u ∈ E, ∀ε > 0 ∃Te,u,ε ∈ Iso(E, F) | ∥
∥�(e) − Te,u,ε(e)

∥
∥

< ε,
∥
∥�(u) − Te,u,ε(u)

∥
∥ < ε

}

.

Themembers of 2-refalg(Iso(E, F)) and 2-reftop(Iso(E, F)) are known as 2-local isometries
and approximate 2-local isometries of E to F , respectively.

The main purpose of this article is to prove that the isometry group of the algebra
C1(K ,C(Y )) for K = [0, 1] or K = T, equipped with the�-norm, is topologically reflexive
and 2-topologically reflexive whenever the isometry group ofC(Y ) is topologically reflexive.

Apparently, this last condition is too restrictive sinceMolnár and Zalar [22] proved that the
isometry group of C(Y ) is algebraically reflexive if Y is a first countable compact Hausdorff
space, and Cabello-Sánchez and Molnár [3] gave an example where reflexivity may fail
even if Y lacks first countability at only on point. However, the isometry group of C(Y )

is topologically reflexive whenever the homeomorphism group of Y is a finite group or a
compact group, and it is known the abundance of such spaces Y in the literature (see [1, 10,
17]).

Our result finds a first motivation in the work [25] by Oi on the algebraic reflexivity of the
isometry group of algebras of C(Y )-valued Lipschitz maps. The study of 2-local isometries
and 2-local automorphisms without assuming linearity is a hard problem initiated by Molnár
[21] in the algebra of all bounded linear operators on a Hilbert space. The 2-locality problem
for surjective isometries on C1([0, 1],C), without assuming linearity, was addressed by
Hatori and Oi [9]. The algebraic reflexivity of the isometry group of C1([0, 1],C) with the
�-norm was stated first in [26]. For more results on this subject in the setting of Banach
spaces of differentiable maps equipped with other norms, we refer the reader to [11, 16].

We have divided this paper into two sections. Section 2 gathers some known properties
of C(K ,C(Y ))-algebras. The type BJ representation of the isometry group of C1(K ,C(Y ))

with the�-norm, stated by Hatori and Oi [8], is essential in our arguments. We complete this
section with descriptions of the maximal ideal space of the Banach algebra C1(K ,C(Y ))

and of the algebra homomorphism group between C1(K ,C(Y ))-algebras, which will be
needed later. Section 3 contains the main results of this work. Using a spherical variant of the
Gleason–Kahane–Żelazko theorem [14], the Gelfand theory and the Arzelá–Ascoli theorem,
we prove first that the group Iso(C1(K )) is topologically reflexive. This fact joint to the
Banach–Stone theorem are applied to state that Iso(C1(K ,C(Y ))) is topologically reflexive
whenever so is Iso(C(Y )). As a consequence, but applying now a spherical variant of the
Kowalski–Słodkowski theorem [14], we deduce that Iso(C1(K ,C(Y )) is also 2-topologically
reflexive under the same condition on Iso(C(Y )). We finish with some observations about
nice operators on Banach spaces that motivate new open problems.
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2 Preliminaries

We first present the algebras of continuously differentiable maps which are studied in this
paper. Given two Hausdorff spaces X and Z , denote

C(X , Z) = { f is a continuous map of X to Z} ,

Homeo(X , Z) = { f is a homeomorphism of X onto Z} .

When X is a compact Hausdorff space and Z is a complex Banach space, we consider the
linear space C(X , Z) equipped with the supremum norm:

‖F‖∞ = sup
x∈X

‖F(x)‖Z (F ∈ C(X , Z)) .

In the case Z = C, we write C(X) instead of C(X ,C). Given any set X , the symbols idX
and 1X stand for the identity map on X and the function constantly 1 on X , respectively. For
a metric space X , Iso(X) denotes the set of all isometries of X onto itself. All elements in
Iso(X) are assumed to be linear when X has a vector space structure.

Let F ∈ C(K ,C(Y )), where K is either the real unit interval [0, 1] or the complex unit
circle T, and Y is a compact Hausdorff space. It is said that F is continuously differentiable
if there exists a map G ∈ C(K ,C(Y )) such that

lim
x→x0

∥
∥
∥
∥

F(x) − F(x0)

x − x0
− G(x0)

∥
∥
∥
∥∞

= 0

for every x0 ∈ K . We denote F ′ = G. Consider the set

C1(K ,C(Y )) = {F ∈ C(K ,C(Y )) : F is continuously differentiable} .

Given f ∈ C1(K ) and g ∈ C(Y ), the map f ⊗ g : K → C(Y ), defined by

( f ⊗ g)(x) = f (x)g (x ∈ K ),

belongs toC1(K ,C(Y ))with‖ f ⊗ g‖∞ = ‖ f ‖∞ ‖g‖∞ and
∥
∥( f ⊗ g)′

∥
∥∞ = ∥

∥ f ′∥∥∞ ‖g‖∞,
and therefore ‖ f ⊗ g‖� = ‖ f ‖� ‖g‖∞.

The space C1(K ,C(Y )), equipped with the �-norm given by

‖F‖� = ‖F‖∞ + ∥
∥F ′∥∥∞

(

F ∈ C1(K ,C(Y ))
)

,

is a unital semisimple commutative Banach algebra with unit 1K ⊗ 1Y . If Y is a singleton,
then C(Y ) is isometrically isomorphic to C and we write C1(K ) instead of C1(K ,C(Y )).

Following to Hatori and Oi [8], we identify C(K ,C(Y )) with C(K × Y ) and assume that
C1(K ,C(Y )) is a subalgebra of C(K × Y ) by the correspondence:

(x 
→ F(x)) ∈ C1(K ,C(Y )) ↔ ((x, y) 
→ (F(x))(y)) ∈ C(K × Y ).

Taking into account that

Iso([0, 1]) = {

id[0,1], 1[0,1] − id[0,1]
}

and

Iso(T) = {

λidT, λidT : λ ∈ T
}

,

where · denotes the complex conjugation, we can gather in a unique statement the following
representations, obtained and called of type BJ in [8], for the surjective linear isometries of
the spaces C1(K ,C(Y )) endowed with the �-norm.
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In what follows, given a function ϕ : K × Y → K , for each y ∈ Y , we denote by
ϕy : K → K the function defined by ϕy(x) = ϕ(x, y) for all x ∈ K .

Theorem 1 (see [8,Corollaries 18 and 19]) Let K be either [0, 1] or T and let Y1, Y2 be
compactHausdorff spaces. AmapU is a linear isometry ofC1(K ,C(Y1))ontoC1(K ,C(Y2))
with respect to the �-norms if and only if there exist a function h ∈ C(Y2,T), a function
ϕ ∈ C(K × Y2, K ) with ϕy ∈ Iso(K ) for each y ∈ Y2, and a map τ ∈ Homeo(Y2, Y1) such
that

U (F)(x, y) = h(y)F(ϕ(x, y), τ (y)) ((x, y) ∈ K × Y2),

for all F ∈ C1(K ,C(Y1)). �

For our proofs, we also will need the following results. The first one shows that the
maximal ideal space ofC1(K ,C(Y )) can be identified with K ×Y . The second one provides
a description of unital algebra homomorphisms between C1(K ,C(Y ))-algebras.

Theorem 2 Let K be either [0, 1] or T and Y be a compact Hausdorff space. Then the
maximal ideal space of C1(K ,C(Y )) is homeomorphic to K × Y .

Proof For each (x, y) ∈ K × Y , let χ(x,y) denote the evaluation functional at (x, y), that is,

χ(x,y)(F) = F(x, y) = F(x)(y)
(

F ∈ C1(K ,C(Y ))
)

.

It is clear that χ(x,y) belongs to the maximal ideal space M of C1(K ,C(Y )). The map
(x, y) 
→ χ(x,y) is an embedding from K × Y into M.

We next prove that this embedding is surjective. Here we apply an argument similar
to the proof of Proposition 11 in [24]. Suppose that χ ∈ M such that χ �= χ(x,y) for
all (x, y) ∈ K × Y . Fix x0 ∈ K , and let y ∈ Y . Since χ �= χ(x0,y), there is a map
F(x0,y) ∈ C1(K ,C(Y )) with χ(x0,y)(F(x0,y)) = F(x0,y)(x0)(y) �= 0 and χ(F(x0,y)) = 0.
Clearly, Y = ∪y∈Y Vy , where

Vy = {

z ∈ Y : F(x0,y)(x0)(z) �= 0
}

is an open subset of Y . From the compactness of Y , we conclude that there exist y1, . . . , yn ∈
Y such thatY = ∪n

i=1Vyi .Note that if z ∈ Y , then F(x0,yi )(x0)(z) �= 0 for some i ∈ {1, . . . , n}.
Since C1(K ,C(Y )) is self-adjoint, the map

Hx0 =
n

∑

i=1

F(x0,yi )F(x0,yi )

belongs to C1(K ,C(Y )), where

F(x0,yi )(x)(z) = F(x0,yi )(x)(z) (x ∈ K , z ∈ Y ).

We have

χ(Hx0) =
n

∑

i=1

χ(F(x0,yi ))χ(F(x0,yi )) = 0

and Hx0(x0)(z) > 0 for all z ∈ Y . Since Hx0(x0) is a positive continuous function on the
compact space Y , there exists δx0 > 0 such that Hx0(x0)(z) ≥ δx0 for all z ∈ Y . Put

Mx0 = max
x∈K

∥
∥H ′

x0(x)
∥
∥∞ .
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Next, by using the above functions, we define a map G ∈ C1(K ,C(Y )) such that 1/G ∈
C1(K ,C(Y )). First consider the case where K = [0, 1]. Set

Vx0 =
{

x ∈ K : Hx0(x)(z) ≥ δx0

2
, ∀z ∈ Y

}

.

Obviously, x0 ∈ Vx0 . We claim that x0 ∈ Int(Vx0). Let z ∈ Y . Since for each x ∈ K ,
∣
∣
∣
∣

Hx0(t)(z) − Hx0(x)(z)

t − x
− H ′

x0(x)(z)

∣
∣
∣
∣
≤

∥
∥
∥
∥

Hx0(t) − Hx0(x)

t − x
− H ′

x0(x)

∥
∥
∥
∥∞

−→t→x 0,

we infer that the function Pz Hx0 : K → [0,+∞), defined by

Pz Hx0(x) = Hx0(x)(z) (x ∈ K ) ,

is differentiable at x and its derivative is H ′
x0(x)(z). Then, according to the mean value

Theorem, for each x ∈ K , there exists tx ∈ K such that
∣
∣Hx0(x)(z) − Hx0(x0)(z)

∣
∣ = ∣

∣H ′
x0(tx )(z)(x − x0)

∣
∣ ≤ Mx0 |x − x0| .

Now, if x ∈ K with |x − x0| < δx0/3Mx0 , it follows that

Hx0(x)(z) ≥ Hx0(x0)(z) − |Hx0(x)(z) − Hx0(x0)(z)|
≥ δx0 − Mx0 |x − x0| > δx0 − Mx0

δx0

3Mx0

= 2δx0
3

>
δx0

2
.

This discussion yields x0 ∈ Int(Vx0). From the above argument, K = ∪x∈K Int(Vx ). Then
there exist x1, . . . , xm ∈ K such that K = ∪m

j=1Int(Vx j ) because K is compact. Hence, if
x ∈ K , then x ∈ Vx j for some j ∈ {1, . . . ,m}, whence Hx j (x)(z) ≥ δx j /2 for all z ∈ Y .
Define G = ∑m

j=1 Hx j . It is clear that G ∈ C1(K ,C(Y )) and G(x)(z) ≥ δ0 > 0 for all
x ∈ K and z ∈ Y , where δ0 = min{δx1/2, . . . , δxm /2}. Now, one can easily check that
1/G ∈ C1(K ,C(Y )) with (1/G)′ = −G ′/G2.

Now suppose that K = T. Choose t0 ∈ [0, 2π ] with eit0 = x0. Set

Vt0 =
{

t ∈ [0, 2π ] : Hx0(e
it )(z) ≥ δx0

2
, ∀z ∈ Y

}

.

Obviously, t0 ∈ Vt0 . Similarly to the previous case, we prove that t0 ∈ Int(Vt0). Let z ∈ Y .
We define the function PzHt0 : [0, 2π ] → [0,+∞) by

PzHt0(t) = Heit0 (e
it )(z) = Hx0(e

it )(z) (t ∈ [0, 2π]).
Similarly to above, the function PzHt0 is differentiable at each t ∈ [0, 2π] and its derivative
is ieit H ′

x0(e
it )(z), and so from the mean value Theorem, we obtain

∣
∣PzHt0(t) − PzHt0(t0)

∣
∣ ≤ Mx0 |t − t0| .

Now, if t ∈ [0, 2π] with |t − t0| < δx0/3Mx0 , it follows that

Heit0 (e
it )(z) = PzHt0(t) >

δx0

2
.

Therefore, it is inferred that t0 ∈ Int(Vt0). Clearly, [0, 2π] = ∪t∈[0,2π ]Int(Vt ) (note that
V0 = V2π ), and so there exist t1, . . . , tm ∈ [0, 2π ] such that [0, 2π] = ∪m

j=1Int(Vt j ). Define
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G = ∑m
j=1 Hx j , where x j = eit j . Then G ∈ C1(K ,C(Y )), and if x ∈ T, then there exists

j ∈ {1, . . . ,m} such that t ∈ Vt j and x = eit , which implies that

G(x)(z) ≥ Hx j (e
it )(z) ≥ δ0 > 0

for all z ∈ Y , where δ0 = min{δx1/2, . . . , δxm /2}. Now, one can easily check that 1/G ∈
C1(K ,C(Y )), as desired.

Finally, as observed in both cases, G ∈ C1(K ,C(Y )) and χ(G) = ∑m
j=1 χ(Hx j ) = 0.

However, 1/G ∈ C1(K ,C(Y )), and so 1 = χ(G · (1/G)) = χ(G)χ(1/G) which yields
χ(G) �= 0, a contradiction. This completes the proof. ��
Theorem 3 Let K be either [0, 1] or T and Y1, Y2 be compact Hausdorff spaces. If T is a
unital algebra homomorphism of C1(K ,C(Y1)) to C1(K ,C(Y2)), then there exist a function
ϕ ∈ C(K×Y2, K ) satisfying thatϕy ∈ C1(K ) for each y ∈ Y2, and amap τ ∈ C(K×Y2, Y1)
such that

T (F)(x, y) = F(ϕ(x, y), τ (x, y)) ((x, y) ∈ K × Y2)

for all F ∈ C1(K ,C(Y1)).

Proof Since T is a unital algebra homomorphism, it is easy that to see for each (x, y) ∈
K × Y2, the functional T(x,y) : C1(K ,C(Y1)) → C defined by

T(x,y)(F) = T (F)(x, y) = T (F)(x)(y)
(

F ∈ C1(K ,C(Y1))
)

,

belongs to the maximal ideal space of C1(K ,C(Y1)). Then, taking into account Theorem 2,
this allows us to define the functions ϕ : K × Y2 → K and τ : K × Y2 → Y1 such that, for
each (x, y) ∈ K × Y2, we have

T(x,y)(F) = χ(ϕ(x,y),τ (x,y))(F)
(

F ∈ C1(K ,C(Y1))
)

.

Hence it follows that

T (F)(x, y) = F(ϕ(x, y), τ (x, y))
(

F ∈ C1(K ,C(Y1)), (x, y) ∈ K × Y2
)

.

We now prove that τ and ϕ are continuous. For this purpose, assume that {(xα, yα)}α is a net
in K × Y2 converging to (x0, y0) ∈ K × Y2.

Firstly, for each f ∈ C(Y1), from the fact that T (1K ⊗ f ) ∈ C(K × Y2) we get

lim
α

T (1K ⊗ f )(xα, yα) = T (1K ⊗ f )(x0, y0),

which taking into account the above relation, implies that

lim
α

(1K ⊗ f )(ϕ(xα, yα), τ (xα, yα)) = (1K ⊗ f )(ϕ(x0, y0), τ (x0, y0)).

Consequently, limα f (τ (xα, yα)) = f (τ (x0, y0)) for each f ∈ C(Y1). From this argument
we easily deduce that limα τ(xα, yα) = τ(x0, y0), and so τ ∈ C(K × Y2, Y1).

Secondly, since T (idK ⊗ 1Y1) ∈ C(K × Y2), it follows that

lim
α

T (idK ⊗ 1Y1)(xα, yα) = T (idK ⊗ 1Y1)(x0, y0),

and thus

lim
α

(idK ⊗ 1Y1)(ϕ(xα, yα), τ (xα, yα)) = (idK ⊗ 1Y1)(ϕ(x0, y0), τ (x0, y0)),

which yields limα ϕ(xα, yα) = ϕ(x0, y0), as desired.

123
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Finally, let y ∈ Y2. For each x ∈ K , we have

ϕy(x) = ϕ(x, y)

= (idK ⊗ 1Y1)(ϕ(x, y), τ (x, y))

= T (idK ⊗ 1Y1)(x, y)

= T (idK ⊗ 1Y1)(x)(y).

This implies that ϕy ∈ C1(K ) since (ϕy)′(x) = T (idK ⊗ 1Y1)
′(x)(y) for all x ∈ K . ��

3 Results

We first show that every approximate local isometry of C1(K ) is a surjective isometry. By
[11,Corollary 2], this fact is known for C1([0, 1]) equipped with the norm:

‖ f ‖C = max
x∈[0,1]

(| f (x)| + ∣
∣ f ′(x)

∣
∣
) (

f ∈ C1([0, 1])) .

Theorem 4 For K = [0, 1] or K = T, the group Iso(C1(K )) is topologically reflexive.

Proof We first prove that Iso(C1(K )) is algebraically reflexive. It holds for K = [0, 1] (see
the last paragraph in [26]) but, apparently, the property is unknown for K = T. For that
reason, we include here a proof that is valid for both cases.

Let T ∈ refalg(Iso(C1(K ))). Hence, for each f ∈ C1(K ), there exists T f ∈ Iso(C1(K ))

such that T ( f ) = T f ( f ), and therefore ‖T ( f )‖� = ‖ f ‖� . By Theorem 1, there are λ f ∈ T

andφ f ∈ Iso(K ) such that T f ( f ) = λ f ( f ◦φ f ) and thus ‖T ( f )‖∞ = ‖ f ‖∞. Consequently,
we also have that

∥
∥T ( f )′

∥
∥∞ = ∥

∥ f ′∥∥∞.
Since ‖T (1K )‖∞ = ‖1K ‖∞ = 1 and

∥
∥T (1K )′

∥
∥∞ = ∥

∥(1K )′
∥
∥∞ = 0, we deduce that

T (1K ) is a constant function of K to T and therefore T (1K ) = λ1K for some λ ∈ T.
Clearly, for each x ∈ K , the functional Sx : C1(K ) → C defined by

Sx ( f ) = λT ( f )(x) ( f ∈ C1(K )),

is linear and unital. To show its multiplicativity, define the functional Tx : C1(K ) → C by

Tx ( f ) = T ( f )(x) ( f ∈ C1(K )).

Clearly, Tx is linear and continuous. Given any f ∈ C1(K ), there exist λ f ∈ T and φ f ∈
Iso(K ) such that T ( f ) = λ f ( f ◦ φ f ) and therefore

Tx ( f ) = T ( f )(x) = λ f f (φ f (x)) ∈ Tσ( f ),

where σ( f ) denotes the spectrum of f . Applying [14,Proposition 2.2], which is a spheri-
cal variant of the Gleason–Kahane–Żelazko theorem, we conclude that Sx = Tx (1K )Tx is
multiplicative.

By above-proved, the map S : C1(K ) → C1(K ), defined by

S( f )(x) = Sx ( f ) = λT ( f )(x) ( f ∈ C1(K ), x ∈ K ),

is a unital algebra homomorphism. SinceC1(K ) is a semisimple commutativeBanach algebra
and the maximal ideal space of C1(K ) is homeomorphic to K , it is well known [29] that S
is automatically continuous and induces a map φ ∈ C(K , K ) such that S( f ) = f ◦ φ for
all f ∈ C1(K ), and whence T ( f ) = λ( f ◦ φ) for all f ∈ C1(K ). In fact, φ = λT (idK ) ∈
C1(K ).
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Wenow prove that φ is an isometry of K . Take any f ∈ C1(K ). By hypothesis, we get that
T ( f ) = λ f ( f ◦φ f ) for someλ f ∈ T andφ f ∈ Iso(K ). It follows thatλ( f ◦φ) = λ f ( f ◦φ f ).
Hence | f ◦ φ| = | f ◦ φ f | and this implies that φ = φ f ∈ C1(K ) because C1(K ) is strongly
separating. This means that for any pair of distinct points x1, x2 ∈ K , there exists f ∈ C1(K )

such that | f (x1)| �= | f (x2)|. For example, one can take the function f : K → C defined by
f (x) = (x − x2)/(x1 − x2) for all x ∈ K .
From this expression of T as a weighted composition operator, we deduce that T ∈

Iso(C1(K )) by Theorem 1, and this proves that Iso(C1(K )) is algebraically reflexive.
Wenowprove that Iso(C1(K )) is topologically reflexive. For it, letT ∈ reftop(Iso(C1(K )).

ByTheorem1, for each f ∈ C1(K ), we can take two sequences {λ f ,n}n∈N inT and {φ f ,n}n∈N
in Iso(K ) such that

lim
n→∞

∥
∥λ f ,n( f ◦ φ f ,n) − T ( f )

∥
∥

�
= 0.

Since T is compact in C, and Iso(K ) is compact in C(K ) by the Arzelá–Ascoli theorem,
we may take subsequences {λ f ,nk }k∈N and {φ f ,nk }k∈N such that

∣
∣λ f ,nk − λ f

∣
∣ → 0 and

∥
∥φ f ,nk − φ f

∥
∥∞ → 0 when k → ∞ for some λ f ∈ T and φ f ∈ Iso(K ). Now, it eas-

ily follows that T ( f )(x) = limk→∞ λ f ,nk f (φ f ,nk (x)) = λ f f (φ f (x)) for each x ∈ K .
Hence T ( f ) = λ f ( f ◦ φ f ) and therefore T is in refalg(Iso(C1(K )). Since Iso(C1(K )) is
algebraically reflexive as first proved, we conclude that T ∈ Iso(C1(K )). ��

We are ready to state the topological reflexivity of the isometry group of C1(K ,C(Y ))-
algebras under a convenient condition on the isometry group of C(Y )-algebras.

Theorem 5 Let K be either [0, 1] or T and let Y1, Y2 be compact Hausdorff spaces. Assume
that Iso(C(Y1),C(Y2)) is topologically reflexive. Then Iso(C1(K ,C(Y1)),C1(K ,C(Y2))) is
topologically reflexive.

Proof Let T be an approximate local isometry of C1(K ,C(Y1)) to C1(K ,C(Y2)). We are
going to show that T has a representation of type BJ as in Theorem 1, and therefore T will
be a linear isometry of C1(K ,C(Y1)) onto C1(K ,C(Y2))).

Claim 1 ‖T (F)‖� = ‖F‖� , ‖T (F)‖∞ = ‖F‖∞ and
∥
∥T (F)′

∥
∥∞ = ∥

∥F ′∥∥∞ for F ∈
C1(K ,C(Y1)).

Let F ∈ C1(K ,C(Y1)). Hence we have

lim
n→∞

∥
∥UF,n(F) − T (F)

∥
∥

�
= 0

for some sequence {UF,n}n∈N in Iso(C1(K ,C(Y1)),C1(K ,C(Y2))). Clearly,

lim
n→∞

∥
∥UF,n(F)

∥
∥

�
= ‖T (F)‖� ,

lim
n→∞

∥
∥UF,n(F)

∥
∥∞ = ‖T (F)‖∞ ,

lim
n→∞

∥
∥UF,n(F)′

∥
∥∞ = ∥

∥T (F)′
∥
∥∞ .

For each n ∈ N, we can write

UF,n(G) = hF,nG(ϕF,n, τF,n)
(

G ∈ C1(K ,C(Y1))
)
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with hF,n , ϕF,n and τF,n being as in Theorem 1. An easy calculation yields
∥
∥UF,n(G)

∥
∥∞ = sup

(x,y)∈K×Y2

∣
∣hF,n(y)G(ϕF,n(x, y), τF,n(y))

∣
∣

= sup
(x,y)∈K×Y2

∣
∣G(ϕF,n(x, y), τF,n(y))

∣
∣

= sup
y∈Y2

(

sup
x∈K

∣
∣
∣G(ϕ

y
F,n(x), τF,n(y))

∣
∣
∣

)

= sup
y∈Y2

(

sup
t∈K

∣
∣G(t, τF,n(y))

∣
∣

)

= sup
t∈K

(

sup
y∈Y2

∣
∣G(t, τF,n(y))

∣
∣

)

= sup
t∈K

(

sup
w∈Y1

|G(t, w)|
)

= sup
(t,w)∈K×Y1

|G(t, w)| = ‖G‖∞ .

Since
∥
∥UF,n(G)

∥
∥

�
= ‖G‖� , we also have

∥
∥UF,n(G)′

∥
∥∞ = ∥

∥G ′∥∥∞. Now the claim follows
easily.

The following fact will be used repeatedly without any explicit mention in our proof.

Claim 2 For every F ∈ C1(K ,C(Y1)), there exist three sequences {hF,n}n∈N in C(Y2,T),

{ϕF,n}n∈N in C(K × Y2, K ) such that, for each y ∈ Y2, ϕ
y
F,n ∈ Iso(K ) for all n ∈ N, and

{τF,n}n∈N in Homeo(Y2, Y1) satisfying that

lim
n→∞

∥
∥hF,n F(ϕF,n, τF,n) − T (F)

∥
∥

�
= 0.

Let F ∈ C1(K ,C(Y1)). By hypothesis, we have

lim
n→∞

∥
∥UF,n(F) − T (F)

∥
∥

�
= 0

for some sequence {UF,n}n∈N in Iso(C1(K ,C(Y1)),C1(K ,C(Y2))). By Theorem 1, for each
n ∈ N, there are hF,n ∈ C(Y2,T),ϕF,n ∈ C(K×Y2, K )withϕ

y
F,n ∈ Iso(K ) for each y ∈ Y2,

and τF,n ∈ Homeo(Y2, Y1) such that

UF,n(G)(x, y) = hF,n(y)G(ϕF,n(x, y), τF,n(y)) ((x, y) ∈ K × Y2) ,

for all G ∈ C1(K ,C(Y1)). Then the claim holds.

Claim 3 There exists a function h ∈ C(Y2,T) such that T (1K ⊗ 1Y1) = 1K ⊗ h.

Denote F = 1K ⊗ 1Y1 . On a hand, we obtain that
∥
∥T (F)′

∥
∥∞ = ∥

∥F ′∥∥∞ = 0 by Claim 1.
Hence T (F) is a constant function from K to C(Y2) and therefore T (F) = 1K ⊗ h for some
h ∈ C(Y2). On the other hand, we have

lim
n→∞

∥
∥1K ⊗ hF,n − T (F)

∥
∥

�
= lim

n→∞
∥
∥hF,n F(ϕF,n, τF,n) − T (F)

∥
∥

�
= 0.

It follows that

lim
n→∞

∥
∥hF,n − h

∥
∥∞ = lim

n→∞
∥
∥1K ⊗ (hF,n − h)

∥
∥

�
= lim

n→∞
∥
∥1K ⊗ hF,n − 1K ⊗ h

∥
∥

�
= 0.

Since {hF,n}n∈N ⊆ C(Y2,T), it follows that h is a unimodular function and this proves the
claim.

Claim 4 For each (x, y) ∈ K × Y2, the functional S(x,y) : C1(K ,C(Y1)) → C defined by

S(x,y)(F) = h(y)T (F)(x, y) (F ∈ C1(K ,C(Y1))),

is linear, unital and multiplicative.
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Fix (x, y) ∈ K × Y2. Clearly, S(x,y) is linear with S(x,y)(1K ⊗ 1Y1) = 1 by Claim 3. To
prove its multiplicativity, define T(x,y) : C1(K ,C(Y1)) → C by

T(x,y)(F) = T (F)(x, y) (F ∈ C1(K ,C(Y1))).

Since T(x,y) is linear and

|T(x,y)(F)| = |T (F)(x, y)| ≤ ‖T (F)‖∞ ≤ ‖T (F)‖� = ‖F‖� (F ∈ C1(K ,C(Y1))),

we have that T(x,y) is continuous. Pick now any F ∈ C1(K ,C(Y1)). We have

lim
n→∞

∥
∥hF,n F(ϕF,n, τF,n) − T (F)

∥
∥

�
= 0.

We infer that

T(x,y)(F) = T (F)(x, y) = lim
n→∞ hF,n(y)F(ϕF,n(x, y), τF,n(y)) ∈ Tσ(F),

by Theorem 2. Finally, applying [14,Proposition 2.2] yields that S(x,y) = T(x,y)(1K ⊗ 1Y1)
T(x,y) is multiplicative.

Claim 5 There exist two maps ϕ ∈ C(K × Y2, K ), with ϕy ∈ C1(K ) for each y ∈ Y2, and
τ ∈ C(K × Y2, Y1) such that

T (F)(x, y) = h(y)F(ϕ(x, y), τ (x, y)) ((x, y) ∈ K × Y2),

for all F ∈ C1(K ,C(Y1)).

Using Claim 4, it is easily deduced that S : C1(K ,C(Y1)) → C1(K ,C(Y2)), defined by

S(F)(x, y) = h(y)T (F)(x, y) ((x, y) ∈ K × Y2, F ∈ C1(K ,C(Y1))),

is a unital algebra homomorphism. By Theorem 3, there exist two maps ϕ ∈ C(K × Y2, K ),
with ϕy ∈ C1(K ) for each y ∈ Y2, and τ ∈ C(K × Y2, Y1) such that

S(F)(x, y) = F(ϕ(x, y), τ (x, y)) ((x, y) ∈ K × Y2),

for all F ∈ C1(K ,C(Y1)).

Claim 6 For each y ∈ Y2, ϕy ∈ Iso(K ).

Fix y ∈ Y2 and define Ty : C1(K ) → C1(K ) by

Ty( f )(x) = T ( f ⊗ 1Y1)(x, y) (x ∈ K , f ∈ C1(K )).

By Claim 5, we have

Ty( f )(x) = h(y) f (ϕ(x, y)) = h(y) f (ϕy(x)) (x ∈ K , f ∈ C1(K )).

Clearly, Ty ∈ B(C1(K ),C1(K )) with
∥
∥Ty( f )

∥
∥

�
≤ ‖ f ‖� . For every f ∈ C1(K ), there

exist three sequences {h f ⊗1Y1 ,n}n∈N in C(Y2,T), {ϕ f ⊗1Y1 ,n}n∈N in C(K × Y2, K ) with

ϕ
y
f ⊗1Y1 ,n ∈ Iso(K ) for all n ∈ N, and {τ f ⊗1Y1 ,n}n∈N in Homeo(Y2, Y1) such that

lim
n→∞

∥
∥
∥h f ⊗1Y1 ,n( f ⊗ 1Y1)(ϕ f ⊗1Y1 ,n, τ f ⊗1Y1 ,n) − T ( f ⊗ 1Y1)

∥
∥
∥

�
= 0.

Consequently, we obtain

lim
n→∞

∥
∥
∥h f ⊗1Y1 ,n(y)( f ◦ ϕ

y
f ⊗1Y1 ,n) − Ty( f )

∥
∥
∥

�
= 0.
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For each n ∈ N, define Ty, f ,n : C1(K ) → C1(K ) by

Ty, f ,n(g) = h f ⊗1Y1 ,n(y)(g ◦ ϕ
y
f ⊗1Y1 ,n) (g ∈ C1(K )).

In the light of Theorem 1, Ty, f ,n ∈ Iso(C1(K )) because h f ⊗1Y1 ,n(y) ∈ T and ϕ
y
f ⊗1Y1 ,n ∈

Iso(K ). Therefore Ty ∈ reftop(Iso(C1(K ))). Hence Ty ∈ Iso(C1(K )) by Theorem 4. By
Theorem 1 again, we can find a number αy ∈ T and a map φy ∈ Iso(K ) such that

Ty( f )(x) = αy f (φy(x)) (x ∈ K , f ∈ C1(K )).

In addition, αy = Ty(1K )(x) = h(y) where x is any point in K , and thus

Ty( f )(x) = h(y) f (φy(x)) (x ∈ K , f ∈ C1(K )).

Therefore we can write

h(y) f (ϕy(x)) = Ty( f )(x) = h(y) f (φy(x)) (x ∈ K , f ∈ C1(K )).

Since C1(K ) separates the points of K , we conclude that

ϕy(x) = φy(x) (x ∈ K )

and so ϕy = φy ∈ Iso(K ), as required.

Claim 7 There exists a map β ∈ Homeo(Y2, Y1) such that

β(y) = τ(x, y) (y ∈ Y2),

where x is any point of K .

Let x ∈ K be fixed and define Tx : C(Y1) → C(Y2) by

Tx (g)(y) = T (1K ⊗ g)(x, y) (y ∈ Y2, g ∈ C(Y1)).

Claim 5 yields

Tx (g)(y) = h(y)g(τ (x, y)) (y ∈ Y2, g ∈ C(Y1)).

Clearly, Tx ∈ B(C(Y1),C(Y2)) with ‖Tx (g)‖∞ ≤ ‖g‖∞ for all g ∈ C(Y1). For each
g ∈ C(Y1), we have three sequences {h1K⊗g,n}n∈N in C(Y2,T), {ϕ1K⊗g,n}n∈N in C(K ×
Y2, K ) such that, for each y ∈ Y , ϕ

y
1K⊗g,n ∈ Iso(K ) for all n ∈ N, and {τ1K⊗g,n}n∈N in

Homeo(Y2, Y1) for which

lim
n→∞

∥
∥h1K⊗g,n(1K ⊗ g)(ϕ1K⊗g,n, τ1K⊗g,n) − T (1K ⊗ g)

∥
∥

�
= 0.

Therefore we have

lim
n→∞

∥
∥h1K⊗g,n(g ◦ τ1K⊗g,n) − Tx (g)

∥
∥∞ = 0.

For each n ∈ N, define Tg,n : C(Y1) → C(Y2) by

Tg,n( f ) = h1K⊗g,n( f ◦ τ1K⊗g,n) ( f ∈ C(Y1)).

Notice that h1K⊗g,n ∈ C(Y2,T) and τ1K⊗g,n ∈ Homeo(Y2, Y1). Hence Tg,n ∈
Iso(C(Y1),C(Y2)). ThereforeTx ∈ reftop(Iso(C(Y1),C(Y2))).HenceTx ∈ Iso(C(Y1),C(Y2))
by the hypothesis of the theorem. Observe that Tg,n( f ) does not depend on x for any
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f ∈ C(Y1). Now, the Banach–Stone theorem gives a function α ∈ C(Y2,T) and a map
β ∈ Homeo(Y2, Y1) such that

Tx (g)(y) = α(y)g(β(y)) (y ∈ Y2, g ∈ C(Y1)).

In fact, α(y) = Tx (1Y1)(y) = h(y) for all y ∈ Y2, and therefore

Tx (g)(y) = h(y)g(β(y)) (y ∈ Y2, g ∈ C(Y1)).

Consequently, we have

h(y)g(β(y)) = Tx (g)(y) = h(y)g(τ (x, y)) (g ∈ C(Y1), y ∈ Y2).

Since C(Y1) separates the points of Y1, we infer that

β(y) = τ(x, y) (y ∈ Y2).

This proves Claim 7 and the proof of Theorem 5 is finished. ��
Notice that Theorem 5 contains Theorem 4 as a special case (consider the case that Y1

and Y2 are singletons). Note, however, that Theorem 4 is used in its proof.
We next apply Theorem 5 to study the 2-topological reflexivity of the set of surjective

linear isometries between algebras C1(K ,C(Y )).

Corollary 1 Let Y1, Y2 be compact Hausdorff spaces and suppose that Iso(C(Y1),C(Y2)) is
topologically reflexive. Then Iso(C1(K ,C(Y1)),C1(K ,C(Y2))) is 2-topologically reflexive
where K is either [0, 1] or T.
Proof Let � be an approximate 2-local isometry of C1(K ,C(Y1)) to C1(K ,C(Y2)). We
claim that given (x, y) ∈ K × Y2, the functional �(x,y) : C1(K ,C(Y1)) → C, defined by

�(x,y)(F) = �(F)(x, y) (F ∈ C1(K ,C(Y1))),

is linear. To prove this claim, by Proposition 3.2 in [14], which is a spherical variant of the
Kowalski–Słodkowski theorem (see also Theorem 2.2 in [26]), it is sufficient to check that
�(x,y) satisfies the following properties:

a) �(x,y) is 1-homogeneous, that is, �(x,y)(βF) = β�(x,y)(F) for all F ∈ C1(K ,C(Y1))
and β ∈ C.

b) �(x,y)(F) − �(x,y)(G) ∈ Tσ(F − G) for all F,G ∈ C1(K ,C(Y1)).

To prove a), let F ∈ C1(K ,C(Y1)) and β ∈ C. Hence there exists a sequence {TF,βF,n}n∈N
in Iso(C1(K ,C(Y1)),C1(K ,C(Y2))) such that

lim
n→∞

∥
∥TF,βF,n(F) − �(F)

∥
∥

�
= 0,

lim
n→∞

∥
∥TF,βF,n(βF) − �(βF)

∥
∥

�
= 0,

and since TF,βF,n(βF) = βTF,βF,n(F) for all n ∈ N, we deduce that

�(βF) = β�(F).

Tocheckb), let F,G ∈ C1(K ,C(Y1)).We can take three sequences {hF,G,n}n∈N inC(Y2,T),
{ϕF,G,n}n∈N in C(K × Y2, K ) and {τF,G,n}n∈N in Homeo(Y2, Y1) satisfying that

lim
n→∞

∥
∥hF,G,n F(ϕF,G,n, τF,G,n) − �(F)

∥
∥

�
= 0,

lim
n→∞

∥
∥hF,G,nG(ϕF,G,n, τF,G,n) − �(G)

∥
∥

�
= 0.
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Since
hF,G,n(y)F(ϕF,G,n(x, y), τF,G,n(y)) − hF,G,n(y)G(ϕF,G,n(x, y), τF,G,n(y))

= hF,G,n(y)(F − G)(ϕF,G,n(x, y), τF,G,n(y)) ∈ Tσ(F − G)

for all n ∈ N and
lim
n→∞

∣
∣hF,G,n(y)(F − G)(ϕF,G,n(x, y), τF,G,n(y)) − [

�(x,y)(F) − �(x,y)(G)
]∣
∣ = 0,

we get that
�(x,y)(F) − �(x,y)(G) ∈ Tσ(F − G) = Tσ(F − G).

This proves our claim. By the arbitrariness of (x, y), we infer that � is linear. Consequently,
� is an approximate local isometry of C1(K ,C(Y1)) to C1(K ,C(Y2)), hence � is a linear
isometry of C1(K ,C(Y1)) onto C1(K ,C(Y2)) by Theorem 5, and the proof of the corollary
is finished. ��
Remark 1 Let Y1, Y2 be compact Hausdorff spaces, and let K be either [0, 1] or T. Note
that from the proofs of Theorem 5 and Corollary 1 it follows that if Iso(C(Y1),C(Y2))
is algebraically reflexive, then Iso(C1(K ,C(Y1)),C1(K ,C(Y2))) is algebraically and 2-
algebraically reflexive.

We close the paper with an application on nice operators. Let T : E → F be a continuous
linear operator between Banach spaces and T ∗ : F∗ → E∗ be its adjoint operator. Let
Ext(BE ) denote the set of all extreme points of the unit closed ball BE of E . Then T is said
to be nice if T ∗(Ext(BF∗)) ⊆ Ext(BE∗). Surjective linear isometries are nice operators but
the converse is not certain in general.

In [23], the authors show that C1([0, 1]) is an example of an infinite-dimensional Banach
space for which each nice operator on C1([0, 1]) is an isometric isomorphism. As an imme-
diate consequence of Theorem 4 and Corollary 1, we deduce the following.

Corollary 2 The set of all nice operators on C1([0, 1]) is topologically reflexive and 2-
topologically reflexive.

The search of a Banach–Stone type representation for nice isomorphisms has been
approached by some authors (see Chapter 7 in [5]). It is a natural question to ask what
can be stated on the algebraic and topological reflexivity (and 2-reflexivity) of the sets of
nice isomorphisms of the classical Banach spaces.
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