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Abstract. For any 1 ≤ p ≤ ∞, let Sp(D) be the space of holomorphic functions
f on D such that f ′ belongs to the Hardy space Hp(D), with the norm ∥f∥Σ =
∥f∥∞+∥f ′∥p. We prove that every approximate local isometry of Sp(D) is a surjective
isometry and that every approximate 2-local isometry of Sp(D) is a surjective linear
isometry. As a consequence, we deduce that the sets of isometric reflections and
generalized bi-circular projections on Sp(D) are also topologically reflexive and 2-
topologically reflexive.

Mathematics Subject Classification (2020): 47B38, 47B33, 46B04.

Key words: Algebraic reflexivity, topological reflexivity, isometry group, isometric reflec-
tion.

1. Introduction. Let D be the open unit disc in the complex plane and let
H(D) be the space of all holomorphic functions on D. The Hardy space H∞(D)
consists of all bounded functions in H(D). For 1 ≤ p <∞, the Hardy space Hp(D)
is the space of all holomorphic functions f : D → C such that

∥f∥p = sup
0≤r<1

(
1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ) 1

p

<∞.

For 1 ≤ p ≤ ∞, let Sp(D) be the derivative Hardy space of holomorphic functions
f on D such that f ′ ∈ Hp(D), with the norm

∥f∥Σ = ∥f∥∞ + ∥f ′∥p .

In the literature, Sp(D) spaces or some of their variants have been studied un-
der other names such as Novinger-Oberlin spaces, holomorphic Sobolev spaces or
Hardy–Sobolev spaces.
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A natural problem is to characterize the surjective linear isometries of these
spaces. de Leeuw, Rudin and Wermer [12] did so for H∞(D) and H1(D) (see also
[18] by Nagasawa for H∞(D)). Forelli [7] extended their results for linear isometries
(not necessarily surjective) of the spaces Hp(D) with 1 ≤ p < ∞ and p ̸= 2. For
these numbers p, Novinger and Oberlin [19] proved that every linear isometry of
Sp(D) has the form of a weighted composition operator induced by a conformal
automorphism of D (bijective holomorphic map of D onto itself). Furthermore,
when p > 1 this conformal map must actually be a rotation of D. This connects
with the fact stated by Roan [21] that the rotations are the unique conformal maps
of D whose induced composition operators are isometries on Sp(D). The second
author and Niwa [16] obtained the same description of Novinger and Oberlin for
onto linear isometry of S∞(D). From [16, Remark 4.1], S∞(D) coincides with the
space of all Lipschitz functions in H(D). We refer to the chapter 4 of the monograph
[6] by Fleming and Jamison for a survey on the isometries of these and other spaces
of holomorphic functions.

In the words of Cowen and MacCluer [4], the study of composition operators
on spaces of holomorphic functions provides a rich arena in which to explore the
connections between operator theory and function theory. The investigation of com-
position operators on Sp(D) was initiated by Roan [21]. Namely, he dealed with
their boundedness and compactness, which were later characterized in terms of
Carleson measures by MacCluer [15]. Contreras and Hernández-Dı́az [3] extended
this study to weighted composition operators on Sp(D).

Once the problem of describing the isometry group of these spaces is solved, an
interesting question is to address the (topological) algebraic reflexivity problem as
to when every (approximate) local isometry is a surjective isometry. Given a con-
tinuous linear operator T : E → E, let us recall that T is a local isometry whenever
T coincides at every point of E with some element of the isometry group G(E) of
E, and that T is an approximate local isometry if T can be norm-approximated at
every point of E by an element of G(E).

Although we are interested here in the reflexivity problem for isometries, the
study of the algebraic and topological reflexivity of the sets of derivations and auto-
morphisms on operator algebras and function algebras is a classical problem which
follows attracting the attention of numerous researchers. Molnár’s monograph [17]
gives an interesting account of these developments.

In the context of spaces of holomorphic functions, Cabello Sánchez and Molnár
[2] showed that the isometry group and the automorphism group of the disc al-
gebra A(D) and the space H∞(Ω) (with Ω a simply connected domain of C) are
topologically reflexive as well as the isometry group of the space Hp(D) with p ̸= 2.
Botelho and Jamison [1] established the topological reflexivity of different spaces
of holomorphic functions, among them the spaces Sp(D) with the norm

∥f∥σ = |f(0)| + ∥f ′∥p .

In contrast, Samei [22] stated the non-reflexivity of the space of bounded derivations
from A into A∗ with A being any Banach algebra of holomorphic functions on a
connected domain of the plane.
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Approximate local isometries of derivative Hardy spaces

Our goal here is to see that approximate local isometries on Sp(D) are surjective
isometries. Applying this fact, we also deduce that the sets of isometric reflections
and generalized bi-circular projections on Sp(D) are topologically reflexive. For
this we first state a complete description of both kinds of maps on Sp(D).

On the other hand, the class of 2-local isometries on function algebras has been
investigated recently by different authors (see [8, 9, 10, 11, 13, 14], among others).
The 2-locality problem for surjective isometries (without assuming linearity) on
S∞(D) has been studied by Oi [20]. We also establish here that the set of surjective
linear isometries on Sp(D) and the sets of isometric reflections and generalized bi-
circular projections on Sp(D) are 2-topologically reflexive.

2. Preliminaries. In order to address these questions, we recall the concepts
of algebraic and topological reflexivity. Given two Banach spaces E and F , let FE

be the set of all the maps from E to F and let B(E,F ) be the Banach space of all
bounded linear maps in FE . Given a nonempty set S ⊂ B(E,F ), define the sets

refalg(S) = {T ∈ B(E,F ) : ∀e ∈ E, ∃Se ∈ S | Se(e) = T (e)}

and

reftop(S) =
{
T ∈ B(E,F ) : ∀e ∈ E, ∃{Se,n}n∈N ⊂ S | lim

n→∞
Se,n(e) = T (e)

}
.

Their respective elements are called local S-maps and approximate local S-maps.
Consider also the sets 2-refalg(S) and 2-reftop(S) given, respectively, by{

∆ ∈ FE : ∀e, u ∈ E, ∃Se,u ∈ S | Se,u(e) = ∆(e), Se,u(u) = ∆(u)
}

and{
∆ ∈ FE : ∀e, u ∈ E, ∃{Se,u,n}n∈N ⊂ S | lim

n→∞
Se,u,n(e)

= ∆(e), lim
n→∞

Se,u,n(u) = ∆(u)
}
.

Their members are referred to as 2-local S-maps and approximate 2-local S-maps,
respectively.

In particular, when S is the set of all linear isometries from E onto E, the ele-
ments of refalg(S), reftop(S), 2-refalg(S) and 2-reftop(S) are named local isometries,
approximate local isometries, 2-local isometries and approximate 2-local isometries
of E, respectively. The terminology local map, approximate local map, 2-local map
and approximate 2-local map of E, replacing the word map by the terms isometric
reflection and generalized bi-circular projection should be clear.

Finally, the set S is said to be algebraically reflexive (topologically reflexive)
if refalg(S) = S (respectively, reftop(S) = S). Similarly, the set S is called 2-
algebraically reflexive (2-topologically reflexive) if 2-refalg(S) = S (respectively,
2-reftop(S) = S).

We now fix some notation. Let T be the unit circle of C. The symbols 1 and
id stand for the function constantly equal to 1 on D and the identity function on
D. Given a Banach space E, we denote by G(E) the set of all surjective linear
isometries of E. We denote the identity operator on a Banach space by Id.
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3. Results. In the sequel, let 1 ≤ p ≤ ∞ and let Sp(D) be the derivative Hardy
space of holomorphic functions f on D such that f ′ ∈ Hp(D), with the norm

∥f∥Σ = ∥f∥∞ + ∥f ′∥p .

It is known that Sp(D) is a unital subalgebra of the disc algebra on D (see [5,
Theorem 3.11]).

The following description of (non necessarily surjective) linear isometries of
spaces Sp(D) for 1 ≤ p <∞ was stated by Novinger and Oberlin [19].

Theorem 3.1. ([19, Theorem 3.1]) Let 1 ≤ p <∞ and let T be a linear isometry
from (Sp(D), ∥·∥Σ) into (Sp(D), ∥·∥Σ). Then there exist a number λ ∈ T and a
conformal automorphism ϕ : D → D such that

T (f)(z) = λf(ϕ(z)) (z ∈ D, f ∈ Sp(D)) .

If p > 1, ϕ is necessarily a rotation of D.

Hence every linear isometry of Sp(D) with 1 ≤ p < ∞ is surjective. Moreover,
a similar result holds in the case p = ∞.

Theorem 3.2. (see [16, Theorem 1]) A linear map T : S∞(D) → S∞(D) is a
surjective isometry with respect to the Σ-norm if and only if there exist constants
λ, τ ∈ T such that

T (f)(z) = λf(τz) (z ∈ D, f ∈ S∞(D)) .

Let us recall that every conformal automorphism ϕ from D onto itself must have
the form ϕ = τϕa for some τ ∈ T and some a ∈ D, where

ϕa(z) =
a− z

1 − az
(z ∈ D) .

The set of conformal automorphisms of D forms a group Aut(D) under composition,
and the subgroup of them that fix the origin coincides with the set of rotations of
the complex plane about the origin.

The following result is an immediate consequence of the preceding results.

Corollary 3.3. Let T be a surjective linear isometry of Sp(D). Then ∥T (f)∥∞ =
∥f∥∞ and ∥T (f)′∥p = ∥f ′∥p for all f ∈ Sp(D).

Proof. Notice that T (f)(z) = λf(ϕ(z)) for all z ∈ D and f ∈ Sp(D), with λ and
ϕ being as in Theorem 3.1. Let f ∈ Sp(D). An easy calculation yields

∥T (f)∥∞ = sup
z∈D

|T (f)(z)| = sup
z∈D

|λf(ϕ(z))| = sup
w∈D

|f(w)| = ∥f∥∞ .

Since
∥T (f)∥∞ + ∥T (f)′∥p = ∥T (f)∥Σ = ∥f∥Σ = ∥f∥∞ + ∥f ′∥p ,

we infer that ∥T (f)′∥p = ∥f ′∥p. 2

We first establish the topological reflexivity of the isometry group of Sp(D).
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Theorem 3.4. Every approximate local isometry of Sp(D) is a surjective isometry.

Proof. Let T be an approximate local isometry of Sp(D). Hence, for each f ∈
Sp(D), there exists a sequence {Tf,n}n∈N in G(Sp(D)) such that

lim
n→∞

Tf,n(f) = T (f).

Since ∥Tf,n(f)∥Σ = ∥f∥Σ for all n ∈ N and

lim
n→∞

∥Tf,n(f)∥Σ = ∥T (f)∥Σ ,

we have ∥f∥Σ = ∥T (f)∥Σ. Hence T is a linear isometry of Sp(D). In the case
1 ≤ p <∞, Theorem 3.1 yields the surjectivity of T and the proof is finished. For
the case p = ∞, we give some steps leading to the result.

Step 1. It holds that ∥T (f)∥∞ = ∥f∥∞ and ∥T (f)′∥∞ = ∥f ′∥∞ for all f ∈ S∞(D).

Let f ∈ S∞(D). Take a sequence {Tf,n}n∈N in G(S∞(D)) such that

lim
n→∞

Tf,n(f) = T (f).

Clearly, we have

lim
n→∞

∥Tf,n(f)∥∞ = ∥T (f)∥∞ ,

lim
n→∞

∥Tf,n(f)′∥∞ = ∥T (f)′∥∞ .

Since ∥Tf,n(f)∥∞ = ∥f∥∞ and ∥Tf,n(f)′∥∞ = ∥f ′∥∞ for all n ∈ N by Corollary
3.3, the equalities of Step 1 hold.

Step 2. There exists a number λ ∈ T such that T (1) = λ1.

Step 1 yields ∥T (1)′∥∞ = ∥1′∥∞ = 0 and ∥T (1)∥∞ = ∥1∥∞ = 1. Hence T (1)
is a unimodular constant function on D, and therefore T (1) = λ1 for some λ ∈ T.

Step 3. For every f ∈ S∞(D), there exist sequences {λf,n}n∈N and {τf,n}n∈N in
T such that limn→∞ λf,n(f ◦ τf,nid) = T (f).

Let f ∈ S∞(D). By hypothesis there is a sequence {Tf,n}n∈N in G(S∞(D)) such
that

lim
n→∞

Tf,n(f) = T (f).

By Theorem 3.2, for each n ∈ N, there are constants λf,n, τf,n ∈ T such that
Tf,n(h) = λf,n(h◦τf,nid) for all h ∈ S∞(D). Hence limn→∞ λf,n(f ◦τf,nid) = T (f).

Step 4. For each z ∈ D, the mapping Sz : S∞(D) → C defined by

Sz(f) = λT (f)(z) (f ∈ S∞(D)),

is a unital multiplicative linear functional.
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Let z ∈ D. Clearly, Sz is linear and, by Step 2, unital. To prove its multiplica-
tivity, define Tz : S∞(D) → C by

Tz(f) = T (f)(z) (f ∈ S∞(D)).

Since Tz is linear and

|Tz(f)| = |T (f)(z)| ≤ ∥T (f)∥∞ ≤ ∥T (f)∥Σ = ∥f∥Σ

for all f ∈ S∞(D), it follows that Tz is continuous. Take now any f ∈ S∞(D). By
Step 3, there exist sequences {λf,n}n∈N and {τf,n}n∈N in T such that

T (f) = lim
n→∞

λf,n(f ◦ τf,nid).

Since the convergence in the Σ-norm implies pointwise convergence, we have

Tz(f) = T (f)(z) = lim
n→∞

λf,nf(τf,nz) ∈ Tσ(f) = Tσ(f),

where σ(f) denotes the spectrum of f and Tσ(f) the closure of Tσ(f). Applying
a spherical variant of the Gleason–Kahane–Żelazko theorem stated in [14, Propo-
sition 2.2], we conclude that Sz = Tz(1)Tz is multiplicative.

Step 5. There exists a constant τ ∈ T such that T (f)(z) = λf(τz) for all z ∈ D
and f ∈ S∞(D).

Using Step 4, we deduce easily that the mapping S : S∞(D) → S∞(D) defined
by

S(f)(z) = λT (f)(z) (f ∈ S∞(D), z ∈ D)

is a unital algebra homomorphism. Since the maximal ideal space of S∞(D) is
homeomorphic to D (see a proof in [20, Theorem 17]), Gelfand theory shows that

S is automatically continuous and induces a continuous map ϕ̂ : D → D such that

S(f)(z) = f(ϕ̂(z)) (f ∈ S∞(D), z ∈ D).

Let ϕ be the restriction map of ϕ̂ to D. Hence

T (f)(z) = λf(ϕ(z)) (f ∈ S∞(D), z ∈ D).

Clearly, ϕ = λT (id) ∈ S∞(D). We now prove that ϕ is a rotation of D. By Step 3,
we can take sequences {λid,n}n∈N and {τid,n}n∈N in T such that

lim
n→∞

λid,nτid,nid = T (id).

Taking subsequences, we can suppose that {λid,n}n∈N → λid and {τid,n}n∈N → τid
for some λid, τid ∈ T. We have

ϕ(z) = λT (id)(z) = λ lim
n→∞

λid,nτid,nid(z) = λλidτidz
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for all z ∈ D, that is, ϕ = τ id with τ = λλidτid ∈ T. The proof of Theorem 3.4 is
now complete in view of Theorem 3.2. 2

Using Theorem 3.4 we now deduce that the set G(Sp(D)) is 2-topologically
reflexive.

Corollary 3.5. Every approximate 2-local isometry of Sp(D) is a surjective lin-
ear isometry.

Proof. Let ∆ ∈ 2-reftop(G(Sp(D))). We claim that for each z ∈ D, the functional
∆z : Sp(D) → C given by

∆z(f) = ∆(f)(z) (f ∈ Sp(D)),

is linear. Applying the spherical version of the Kowalski–S lodkowski theorem [14,
Proposition 3.2], it is sufficient to show that ∆z is homogeneous and satisfies that
∆z(f) − ∆z(g) ∈ Tσ(f − g) for every f, g ∈ Sp(D). The homogeneity follows
immediately since ∆ is an approximate 2-local isometry. For the spectral condition,
let f, g ∈ Sp(D), take two sequences {λf,g,n}n∈N in T and {ϕf,g,n}n∈N in Aut(D)
such that

lim
n→∞

λf,g,nf(ϕf,g,n(z)) = ∆(f)(z),

lim
n→∞

λf,g,ng(ϕf,g,n(z)) = ∆(g)(z),

and we obtain that

∆z(f) − ∆z(g) = lim
n→∞

λf,g,n [f(ϕf,g,n(z)) − g(ϕf,g,n(z))]

= lim
n→∞

λf,g,n(f − g)(ϕf,g,n(z)) ∈ Tσ(f − g) = Tσ(f − g).

This proves our claim. Since z was arbitrary in D, it follows that ∆ is linear. It is
obvious then that ∆ ∈ reftop(G(Sp(D))), and therefore ∆ ∈ G(Sp(D)) by Theorem
3.4. This proves the corollary. 2

Theorem 3.4 can be applied to state the topological reflexivity of other classes
of linear transformations on Sp(D).

Let us recall that an isometric reflection of a Banach space E is a linear isometry
T : E → E such that T 2 = Id. We denote by G2(E) the set of all isometric
reflections of E.

The next theorem provides a characterization of isometric reflections on Sp(D).

Theorem 3.6. A map T : Sp(D) → Sp(D) is an isometric reflection if and only if
there exist a constant λ ∈ {−1, 1} and a map ϕ ∈ Aut(D) with ϕ2 = id such that

T (f)(z) = λf(ϕ(z)) (f ∈ Sp(D), z ∈ D) .
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Proof. Let T ∈ G2(Sp(D)). By Theorems 3.1 and 3.2, there are a number λ ∈ T
and a map ϕ ∈ Aut(D) such that T (f) = λ(f ◦ ϕ) for all f ∈ Sp(D). Therefore
T (1) = λ1 and T 2(1) = λ21. Since T 2 = Id, it follows that 1 = λ21 and so
λ ∈ {±1}. Moreover, since T (id) = λϕ and T (ϕ) = λϕ2, we have

id = T 2(id) = T (λϕ) = λT (ϕ) = λ2ϕ2 = ϕ2.

The sufficiency is obvious. 2

Remark 3.7. The set of all involutive conformal automorphisms of D is
{ϕa : a ∈ D} ∪ {id}. Indeed, let ϕ = λϕa with λ ∈ T and a ∈ D such that ϕ2 = id.
We have

a = ϕ2(a) = λϕa(λϕa(a)) = λϕa(0) = λa,

which implies λ = 1 or a = 0. In the first case, we obtain ϕ = ϕa. In the other
one, ϕ = λϕ0 = λ(−id) and since ϕ2 = id, we infer that λ2id = id, hence λ = ±1
and thus ϕ = ±id. Therefore{

ϕ ∈ Aut(D) : ϕ2 = id
}
⊆ {ϕa : a ∈ D} ∪ {id}

and the converse inclusion is immediate.

We next prove that the set G2(Sp(D)) is topologically reflexive.

Corollary 3.8. Every approximate local isometric reflection of Sp(D) is an iso-
metric reflection.

Proof. Let T ∈ reftop(G2(Sp(D))). By Theorem 3.6, for every f ∈ Sp(D), there
are two sequences {λf,n}n∈N in {−1, 1} and {ϕf,n}n∈N in Aut(D) with ϕ2f,n = id
for all n ∈ N satisfying

lim
n→∞

λf,n(f ◦ ϕf,n) = T (f).

Hence T ∈ reftop(G(Sp(D))) and, by Theorem 3.4, T ∈ G(Sp(D))). So, by Theorems
3.1 and 3.2, there exist a number λ ∈ T and a map ϕ ∈ Aut(D) such that

T (f) = λ(f ◦ ϕ) (f ∈ Sp(D)).

Hence λ1 = T (1) = limn→∞ λ1,n1 and therefore λ = limn→∞ λ1,n. Since λ1,n ∈
{±1} for all n ∈ N, it is deduced easily that λ ∈ {±1}.

We now prove that ϕ2 = id. We have two sequences {λid,n}n∈N in {−1, 1} and
{ϕid,n}n∈N in Aut(D) with ϕ2id,n = id for all n ∈ N satisfying

ϕ = λT (id) = λ lim
n→∞

λid,nϕid,n.

Taking a subsequence, we can suppose that {λid,n}n∈N converges to some λid ∈
{−1, 1} and therefore

ϕ = λλid lim
n→∞

ϕid,n.
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Assume first p ̸= 1. Then each ϕid,n is an involutive rotation of D, that is, ϕid,n =
τnid with τn ∈ {−1, 1}. Taking a subsequence, we can assume that limn→∞ τn = τ
for some τ ∈ {−1, 1} and thus limn→∞ ϕid,n = τ id. Therefore

ϕ = λλid lim
n→∞

ϕid,n = λλidτ id,

hence ϕ = id or ϕ = −id, and thus ϕ2 = id. Hence T is an isometric reflection of
Sp(D) by Theorem 3.6.

Assume now p = 1. Take f = id+1. As above, we can take sequences {λf,n}n∈N
in {−1, 1} and {ϕf,n}n∈N in Aut(D) with ϕ2f,n = id for all n ∈ N such that

lim
n→∞

λf,n(f ◦ ϕf,n) = T (f) = λ(f ◦ ϕ),

where λ ∈ {±1} and ϕ ∈ Aut(D). We can assume that ϕf,n = ϕan with an ∈ D for
all n ∈ N. Clearly, we have

lim
n→∞

∥λf,n(ϕan + 1) − λ(ϕ+ 1)∥∞ = 0.

Hence we can assume that λλf,n = 1 for all n ∈ N and

lim
n→∞

∥ϕan − ϕ∥∞ = 0.

We claim that ϕ2 = id. Indeed, given z ∈ D and ε > 0, since ϕ is continuous and
|ϕan(z) − ϕ(z)| → 0 as n→ +∞, we can take m ∈ N such that ∥ϕan − ϕ∥∞ < ε/2
and |ϕ(ϕan(z)) − ϕ2(z)| < ε/2 for all n ≥ m. Then, for any n ≥ m, we have∣∣ϕ2an(z) − ϕ2(z)

∣∣ ≤ |ϕan(ϕan(z)) − ϕ(ϕan(z))| +
∣∣ϕ(ϕan(z)) − ϕ2(z)

∣∣ < ε.

Hence
∣∣ϕ2an(z) − ϕ2(z)

∣∣→ 0 as n→ +∞. Since ϕ2an(z) = z for all n ∈ N, we deduce
that ϕ2(z) = z and this proves our claim. 2

We now deduce that G2(Sp(D)) is 2-topologically reflexive.

Corollary 3.9. Every approximate 2-local isometric reflection of Sp(D) is an
isometric reflection.

Proof. Let ∆ ∈ 2-reftop(G2(Sp(D))). A similar proof to that of Corollary 3.5 shows
that ∆ is linear. Clearly, ∆ ∈ reftop(G2(Sp(D))), and therefore ∆ ∈ G2(Sp(D)) by
Corollary 3.8. 2

Let us recall that a generalized bi-circular projection of a Banach space E is a
linear projection P : E → E such that P +λ(Id−P ) is a linear surjective isometry
for some λ ∈ T \ {1}. We denote by GBP(E) the set of all generalized bi-circular
projections of E.

The next theorem describes the class of generalized bi-circular projections on
Sp(D).
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Theorem 3.10. A map P : Sp(D) → Sp(D) is a generalized bi-circular projection
if and only if there exist a number λ ∈ {−1, 1} and a map ϕ ∈ Aut(D) with ϕ2 = id
such that

P (f)(z) =
1

2
[f(z) + λf(ϕ(z))] (z ∈ D, f ∈ Sp(D)) .

Proof. The sufficiency follows easily. For the necessity, let P ∈ GBP(Sp(D)).
Then P + λ(Id − P ) is a surjective linear isometry of Sp(D) for some λ ∈ T with
λ ̸= 1. By Theorems 3.1 and 3.2, we can take a constant τ ∈ T and a map
ϕ ∈ Aut(D) such that

[P + λ(Id − P )](f)(z) = τf(ϕ(z)) (f ∈ Sp(D), z ∈ D),

which gives the following formula for P :

P (f)(z) = (1 − λ)−1[−λf(z) + τf(ϕ(z))] (f ∈ Sp(D), z ∈ D).

Using the equality P 2 = P , we obtain the equation:

λf(z) − (λ+ 1)τf(ϕ(z)) + τ2f(ϕ2(z)) = 0 (f ∈ Sp(D), z ∈ D).

Let us suppose that there exists a point z0 ∈ D such that z0 ̸= ϕ(z0) and z0 ̸=
ϕ2(z0). We choose a polynomial g such that g(z0) = 1 and g(ϕ(z0)) = g(ϕ2(z0)) =
0. The equation, evaluated at f = g and z = z0, yields λ = 0, a contradiction.
Thus ϕ(z0) = z0 or ϕ2(z0) = z0. In any case, ϕ2(z) = z for all z ∈ D.

Taking f = 1 in the equation, we obtain τ2 − (λ + 1)τ + λ = 0 and therefore
τ = λ or τ = 1. If ϕ = id, from the formula of P , we deduce that P (f)(z) = 0
(when τ = λ) or P (f)(z) = f(z) (when τ = 1) for all f ∈ Sp(D) and z ∈ D.

If ϕ ̸= id, there is some z0 ∈ D for which ϕ(z0) ̸= z0. Take a polynomial h such
that h(z0) = 1 and h(ϕ(z0)) = 0. Substituting f = h and z = z0 in the equation,
we get λ+ τ2 = 0. Since τ = λ or τ = 1, it follows that λ = −1 and τ2 = 1. Then
the formula of P shows that P (f)(z) = (1/2)[f(z) + τf(ϕ(z))] for all f ∈ Sp(D)
and z ∈ D. 2

We now show that the set GBP(Sp(D)) is both topologically reflexive and 2-
topologically reflexive.

Corollary 3.11. Every approximate local (respectively, 2-local) generalized bi-
circular projection of Sp(D) is a generalized bi-circular projection.

Proof. Let P ∈ reftop(GBP(Sp(D))). Theorem 3.10 asserts that for every f ∈
Sp(D), there are sequences {λf,n}n∈N in {−1, 1} and {ϕf,n}n∈N in Aut(D) with
ϕ2f,n = id for all n ∈ N such that

lim
n→∞

1

2
[f + λf,n(f ◦ ϕf,n)] = P (f).

Hence, for every f ∈ Sp(D), we have

lim
n→∞

λf,n(f ◦ ϕf,n) = 2P (f) − f,
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and so 2P − Id ∈ reftop(G2(Sp(D))). Hence 2P − Id ∈ G2(Sp(D)) by Corollary 3.8,
and therefore P ∈ GBP(Sp(D)) by Theorem 3.10.

Let ∆ ∈ 2-reftop(GBP(Sp(D))). For any f, g ∈ Sp(D), there are sequences
{λf,g,n}n∈N in {−1, 1} and {ϕf,g,n}n∈N in Aut(D) with ϕ2f,g,n = id for all n ∈ N
satisfying

lim
n→∞

1

2
[f + λf,g,n(f ◦ ϕf,g,n)] = ∆(f),

lim
n→∞

1

2
[g + λf,g,n(g ◦ ϕf,g,n)] = ∆(g).

Hence, for every f, g ∈ Sp(D), we have

lim
n→∞

λf,g,n(f ◦ ϕf,g,n) = 2∆(f) − f,

lim
n→∞

λf,g,n(g ◦ ϕf,g,n) = 2∆(g) − g,

and this says that 2∆−Id ∈ 2-reftop(G2(Sp(D))). Since G2(Sp(D)) is 2-topologically
reflexive by Corollary 3.9, it follows that 2∆ − Id ∈ G2(Sp(D)), and thus ∆ ∈
GBP(Sp(D)). 2
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