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Abstract
In this paper, we prove that any projection in the convex hull of three surjective linear
isometries on AC(X) is a generalized bi-circular projection, where AC(X) denotes the
Banach space of all absolutely continuous functions on a compact subset of R with at
least two points. We also show that the trivial projections are the only projections on
AC(X) which can be represented as the average of three surjective linear isometries.

Keywords Convex combination of isometries · Absolutely continuous function ·
Generalized bi-circular projection · Surjective linear isometry
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1 Introduction

The study of projections in the convex hull of surjective linear isometries was initiated
by Botelho [2], who proved that any projection on C(X) expressed as the convex
combination of two surjective linear isometries is a generalized bi-circular projection,
where C(X) is the Banach space of all complex-valued continuous functions on a
compact connected Hausdorff space X . Let us recall that a projection P on a Banach
space is said to be a generalized bi-circular projection if there is a unimodular scalar
λ, different from 1, such that P + λ(Id − P) is an isometry, where Id is the identity
operator [5] Motivated by [2] such projections were studied on spaces of Banach-
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valued continuous functions [3], spaces of Lipschitz functions [4], spaces of Hilbert-
valued analytic functions [6] and spaces of absolutely continuous functions [9].

Meantime, some work has been done to characterize projections on Banach spaces
which are in the convex hull of three surjective linear isometries. One can see the
results dealing with such projections defined on continuous function spaces C(X) for
a compact connected Hausdorff space X in [1] and Lipschitz function spaces Lip(X)

and lip(Xα) with 0 < α < 1 for a compact 1-connected metric space X with diameter
at most 2 in [4].

In this paper, we study projections in the convex hull of three surjective linear
isometries on absolutely continuous function spaces AC(X) for a subset X of the real
line with at least two points. More precisely, it is shown that such a projection must be
a generalized bi-circular projection. We also prove that the trivial projections are the
only projections on AC(X) given by the average of three surjective linear isometries.

2 Preliminaries

In this section, we recall some definitions and fix notations. Throughout the rest of the
paper, X is a subset of R with at least two points.

A function f : X → C is said to be absolutely continuous if given ε > 0, there
exists a δ > 0 such that for every finite family of non-overlapping open intervals
{(ai , bi ) : i = 1, . . . , n} whose extreme points belong to X and

∑n
i=1(bi − ai ) < δ,

we have
∑n

i=1 | f (bi ) − f (ai )| < ε.
We denote by AC(X) the Banach space of all absolutely continuous functions

f : X → C, equipped with the sum norm

‖ f ‖� := ‖ f ‖∞ + V( f ),

where

‖ f ‖∞ := sup {| f (x)| : x ∈ X}

and V( f ) is the total variation of f defined by

V( f ) := sup

{
n∑

i=1

| f (xi ) − f (xi−1)| :

n ∈ N, x0, x1, . . . , xn ∈ X , x0 < x1 < · · · < xn

}

.

It isworth pointingout that for every closed subset F ⊆ X and everypoint x ∈ X\F ,
there exists a function f ∈ AC(X) such that f (x) �= 0 and f |F = 0, where f |F
denotes the restriction function of f to F .

Now, let us mention that by idX and 1X we mean the identity function and the
function constantly 1 on X , respectively. We denote by Id the identity operator on
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AC(X). Meantime, let MH(X) denote the set of all monotonic absolutely continuous
homeomorphisms of X onto itself. As usual, T stands for the set of all unimodular
complex numbers.

Next, we state a result due to Pathak [11] which characterizes surjective linear
isometries of absolutely continuous function spaces AC(X) (see also [10, Example 7]
and [8, Corollary 4.3]).

Theorem 2.1 [11, Theorem 2.10 and Lemma 2.3] A map T : AC(X) → AC(X) is a
surjective linear isometry if and only if there exist a map ϕ ∈ MH(X) and a scalar
λ ∈ T such that T f = λ f ◦ ϕ for all f ∈ AC(X). 	


Finally, we bring the following result saying that generalized bi-circular projections
are the only projections on AC(X)written as the convex combination of two surjective
linear isometries.

Theorem 2.2 [9, Remark 3.3] A projection P on AC(X) is in the convex hull of two
surjective linear isometries if and only if there exist a number λ ∈ {1,−1} and a map
ϕ ∈ MH(X) with ϕ2 = idX such that P f = (1/2)[ f + λ f ◦ ϕ] for all f ∈ AC(X). 	


3 Results

Our purpose is to characterize those projections on AC(X)which belong to the convex
hull of three surjective linear isometries.

Throughout this section, we assume that, unless explicitly stated, P = ∑3
i=1 αi Ti

is a projection on AC(X), where 0 < αi < 1 with
∑3

i=1 αi = 1 and Ti f = λi f ◦ ϕi
for all f ∈ AC(X), with λi ∈ T and ϕi ∈ MH(X) for i = 1, 2, 3 (see Theorem 2.1).

Since P is a projection, we have

α1λ1

[
α1λ1 f (ϕ

2
1(x)) + α2λ2 f (ϕ2(ϕ1(x))) + α3λ3 f (ϕ3(ϕ1(x)))

]

+ α2λ2

[
α1λ1 f (ϕ1(ϕ2(x))) + α2λ2 f (ϕ

2
2(x)) + α3λ3 f (ϕ3(ϕ2(x)))

]

+ α3λ3

[
α1λ1 f (ϕ1(ϕ3(x))) + α2λ2 f (ϕ2(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α1λ1 f (ϕ1(x)) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)). (3.1)

for all f ∈ AC(X) and x ∈ X .
For the proofs of our main results, we will need a series of lemmas.

Lemma 3.1 The following assertions hold:

(1) We have either
∑3

i=1 αiλi = 1, or
∑3

i=1 αiλi = 0. Moreover, if
∑3

i=1 αiλi = 1,
then λ1 = λ2 = λ3 = 1.

(2) For any i, j ∈ {1, 2, 3} with i �= j , we have 0 �= αiλi + α jλ j �= 1.
(3) For any i, j ∈ {1, 2, 3}, we have αiλi − α jλ j �= 1.
(4) If P �= 0, then αi ≤ 1/2 for all i ∈ {1, 2, 3}.
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Proof (1) If we take f = 1X in Eq. (3.1), then (
∑3

i=1 αiλi )
2 = ∑3

i=1 αiλi , which
implies that either

∑3
i=1 αiλi = 1 or

∑3
i=1 αiλi = 0. Moreover, since C is

strictly convex, it is clear that λ1 = λ2 = λ3 = 1 if
∑3

i=1 αiλi = 1.
(2) Let us assume that α1λ1 + α2λ2 = 0. It follows from Part (1) that α3 = 0 or

α3 = 1, a contradiction. Furthermore, if α1λ1 + α2λ2 = 1, then 1 ≤ α1 + α2,
which yields α3 = 0, and it is impossible.

(3) If αiλi − α jλ j = 1 for some i, j ∈ {1, 2, 3} (clearly, i �= j), then we get
1 ≤ αi + α j , which is impossible as above.

(4) As P �= 0, take f ∈ AC(X) such that ‖ f ‖� = 1 and P f = 0. Then α1T1 f +
α2T2 f = −α3T3 f . Hence, by taking norms, it follows that α1 + α2 ≥ α3.
Similarly, α2 + α3 ≥ α1 and α1 + α3 ≥ α2. Thus, as

∑3
i=1 αi = 1, it is easily

inferred that αi ≤ 1/2 for all i ∈ {1, 2, 3}. 	

Here let us fix some notation. For each x ∈ X , we set

Sx = {ϕ1(x), ϕ2(x), ϕ3(x)} .

If Card(Sx ) denotes the cardinality of Sx , we put

X0 := {x ∈ X : ϕ1(x) = ϕ2(x) = ϕ3(x)} = {x ∈ X : Card(Sx ) = 1}.

We also express the set X\X0 as a partition of the following sets:

Ai = {
x ∈ X : x �= ϕi (x) �= ϕ j (x) = ϕk(x) �= x

}
,

Bi = {
x ∈ X : x = ϕ j (x) = ϕk(x) �= ϕi (x)

}
,

Ci = {
x ∈ X : x = ϕi (x) �= ϕ j (x) = ϕk(x)

}
,

Di = {
x ∈ X : x = ϕi (x) �= ϕ j (x) �= ϕk(x) �= x

}
,

E = {x ∈ X : Card(Sx ∪ {x}) = 4} ,

where i, j, k ∈ {1, 2, 3} and k �= i �= j �= k.

Lemma 3.2 If X = X0, then P = 0 or P = Id.

Proof For simplicity, take ϕ = ϕ1. Since ϕ1 = ϕ2 = ϕ3, we have P f =
(
∑3

i=1 αiλi ) f ◦ ϕ for all f ∈ AC(X). In view of Lemma 3.1, if
∑3

i=1 αiλi = 0,
then P = 0. Otherwise, if

∑3
i=1 αiλi = 1, we have P f = f ◦ ϕ for all f ∈ AC(X).

Since P is a projection, we get that f ◦ ϕ2 = f ◦ ϕ for all f ∈ AC(X). Hence,
considering f = idX , from the above relation it is deduced that ϕ2 = ϕ. Now, taking
into account the injectivity of ϕ, it follows that ϕ = idX , and thus, P = Id. 	


To avoid discussing on trivial cases, in the next lemmas it is assumed that P is a
proper projection.

Lemma 3.3 We have E = ∅ and Ai = ∅ for every i ∈ {1, 2, 3}.
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Proof First, it is shown that Ai = ∅ for i ∈ {1, 2, 3}. We assume, without loss of
generality, that i = 3. Suppose, on the contrary, that A3 �= ∅. Let x ∈ A3. Then we
have x �= ϕ1(x) = ϕ2(x) �= ϕ3(x) �= x . Since ϕ1(x) does not belong to the set

F =
{
ϕ3(x), ϕ1(ϕ3(x)), ϕ2(ϕ3(x)), ϕ

2
1(x), ϕ

2
2(x)

}
,

we can choose f ∈ AC(X) with f (ϕ1(x)) = 1 and f |F = 0. By considering f in Eq.
(3.1), we get

α1λ1 [α3λ3 f (ϕ3(ϕ1(x)))] + α2λ2 [α3λ3 f (ϕ3(ϕ2(x)))]

+α3λ3

[
α3λ3 f (ϕ

2
3(x))

]
= α1λ1 + α2λ2,

that is,

α3λ3 [α1λ1 + α2λ2] f (ϕ3(ϕ1(x))) + α2
3λ

2
3 f (ϕ

2
3(x)) = α1λ1 + α2λ2.

Since α1λ1 + α2λ2 �= 0 by Lemma 3.1, the above relation shows that at least one of
the two points ϕ3(ϕ1(x)) and ϕ2

3(x) must be equal to ϕ1(x).
If ϕ2

3(x) �= ϕ1(x) = ϕ3(ϕ1(x)), then by taking a function f ∈ AC(X) with 0 ≤
f ≤ 1, f (ϕ1(x)) = 1 and f = 0 on F ∪{ϕ2

3(x)}, it follows that α3λ3[α1λ1+α2λ2] =
α1λ1 + α2λ2, which yields α3λ3 = 1, and consequently, α3 = 1, a contradiction.

Now, if ϕ2
3(x) = ϕ1(x) �= ϕ3(ϕ1(x)), similarly by choosing a suitable function

we can conclude that α2
3λ

2
3 = α1λ1 + α2λ2. Hence, from Lemma 3.1, we have either

α2
3λ

2
3 = −α3λ3, or α2

3 = 1−α3. The first case yields α3 = 1, which is a contradiction.
The second case implies thatα3 = (−1+√

5)/2 > 1/2, and it is impossible byLemma
3.1. Thus, ϕ2

3(x) = ϕ1(x) = ϕ3(ϕ1(x)), which especially yields ϕ3(x) = ϕ1(x)
because of the injectivity of ϕ3, a contradiction. Therefore, A3 = ∅.

We now prove that E = ∅. Contrary to what we claim, let x ∈ X with Card(Sx ∪
{x}) = 4. We assume, without loss of generality, that α1 = max{α1, α2, α3}. Since
ϕ1(x) does not belong to the set

A =
{
ϕ2(x), ϕ3(x), ϕ

2
1(x), ϕ1(ϕ2(x)), ϕ1(ϕ3(x))

}
,

we can select a function f ∈ AC(X) with 0 ≤ f ≤ 1 such that f (ϕ1(x)) = 1 and
f |A = 0. Then Eq. (3.1) becomes

α1λ1 [α2λ2 f (ϕ2(ϕ1(x))) + α3λ3 f (ϕ3(ϕ1(x)))]

+ α2λ2

[
α2λ2 f (ϕ

2
2(x)) + α3λ3 f (ϕ3(ϕ2(x)))

]

+ α3λ3

[
α2λ2 f (ϕ2(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α1λ1. (3.2)
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If α1 = α2 = α3, Eq. (3.2) reduces to
∑3

k=1, j=2 λkλ j f (ϕ j (ϕk(x))) = 3λ1, which
clearly implies that at least three points in the set

B =
{
ϕ2(ϕ1(x)), ϕ3(ϕ1(x)), ϕ

2
2(x), ϕ3(ϕ2(x)), ϕ2(ϕ3(x)), ϕ

2
3(x)

}

must be equal to ϕ1(x), but this is impossible because B does not contain three equal
points.

Now, assume that the relation α1 = α2 = α3 is not valid, which especially yields
α1 > min{α2, α3}. Hence, taking into account that α1 = max{α1, α2, α3} and αi < 1
for each i ∈ {1, 2, 3}, from (3.2) one can easily conclude that at least two points (in
fact, exactly two) from the set B must be equal to ϕ1(x). Since x ∈ E , it is deduced
that ϕ1(x) = ϕ2(ϕi (x)) = ϕ3(ϕ j (x)) with i, j ∈ {1, 2, 3}. Thus, from Eq. (3.2) it
follows that α1 ≤ α2αi + α3α j , which taking into account that α1 > min{α2, α3},
implies that α1 < α2

1 + α2
1 = 2α2

1, whence α1 > 1/2, a contradiction by Lemma 3.1.
	


Lemma 3.4 (1) If for some i ∈ {1, 2, 3}, Bi �= ∅, then αi = 1/2. Moreover, λi = 1
(resp., λi = −1) when

∑3
i=1 αiλi = 1 (resp.,

∑3
i=1 αiλi = 0), α jλ j + αkλk =

1/2 for j, k ∈ {1, 2, 3} with k �= i �= j �= k.
(2) If for some i ∈ {1, 2, 3}, Ci �= ∅, thenαi = 1/2 and λi = 1. Further,ϕi ◦ϕ j = ϕ j ,

and we have either λ j = λk = 1 and α jλ j +αkλk = 1/2, or λ j = λk = −1 and
α jλ j + αkλk = −1/2 for j, k ∈ {1, 2, 3} with k �= i �= j �= k.

Proof (1) With no loss of generality, suppose that i = 3. Let x ∈ B3. Then x =
ϕ1(x) = ϕ2(x) �= ϕ3(x). In the following, we show that ϕ3(x) = ϕ2(ϕ3(x)) =
ϕ1(ϕ3(x)).

If ϕ2(ϕ3(x)) �= ϕ3(x) �= ϕ1(ϕ3(x)), then by considering f ∈ AC(X) with
f (ϕ3(x)) = 1 and f |F = 0, where

F =
{
ϕ1(x), ϕ1(ϕ3(x)), ϕ2(ϕ3(x)), ϕ

2
3(x)

}
,

in Eq. (3.1) it follows that α1λ1α3λ3+α2λ2α3λ3 = α3λ3, which yields α1λ1+α2λ2 =
1, a contradiction by Lemma 3.1. Then ϕ3(x) = ϕ1(ϕ3(x)), or ϕ3(x) = ϕ2(ϕ3(x)).

If ϕ2(ϕ3(x)) �= ϕ3(x) = ϕ1(ϕ3(x)), then choose a function f ∈ AC(X) with
f (ϕ3(x)) = 1 and f (ϕ1(x)) = f (ϕ2

3(x)) = f (ϕ2(ϕ3(x))) = 0. Hence, from Eq.
(3.1), we have

α1λ1α3λ3 + α2λ2α3λ3 + α3λ3α1λ1 = α3λ3,

which gives 2α1λ1 +α2λ2 = 1. Now, if
∑3

i=1 αiλi = 0, then from the latter equation
it follows that α1λ1 − α3λ3 = 1, which is impossible by Lemma 3.1. Therefore,∑3

i=1 αiλi = 1. Thus, α3λ3 = α1λ1, which shows that α3 = α1. On the other hand,
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by choosing f ∈ AC(X) with f (x) = 1 and f (ϕ3(x)) = 0, Eq. (3.1) reduces to

α1λ1 [α1λ1 + α2λ2] + α2λ2 [α1λ1 + α2λ2]

+ α3λ3

[
α2λ2 f (ϕ2(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α1λ1 + α2λ2,

and so

[α1λ1 + α2λ2]
2 + α3λ3

[
α2λ2 f (ϕ2(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]
= α1λ1 + α2λ2.

So, taking into account that ϕ2(ϕ3(x)) �= ϕ2(x) = x and ϕ2
3(x) �= ϕ3(x), it follows

that ϕ2
3(x) = x . Then we choose an f ∈ AC(X) with f (x) = 1 and f (ϕ3(x)) =

f (ϕ2(ϕ3(x))) = 0 and obtain

[α1λ1 + α2λ2]
2 + α2

3λ
2
3 = α1λ1 + α2λ2.

As λ1 = λ2 = λ3 = 1, we have (1 − α3)
2 + α2

3 = 1 − α3, which yields α3 = 1/2,
and since α1 = α3, we obtain α2 = 0, a contradiction.

Similarly, it is proved that the relation ϕ2(ϕ3(x)) = ϕ3(x) �= ϕ1(ϕ3(x)) leads
to a contradiction. Now, from the above discussion one concludes that ϕ3(x) =
ϕ2(ϕ3(x)) = ϕ1(ϕ3(x)), as desired.

Moreover, taking f ∈ AC(X) with f (ϕ3(x)) = 1 and f (ϕ1(x)) = f (ϕ2
3(x)) = 0,

from Eq. (3.1) we have

α1λ1α3λ3 + α2λ2α3λ3 + α3λ3[α1λ1 + α2λ2] = α3λ3,

and so α1λ1 + α2λ2 = 1/2. Now, if
∑3

i=1 αiλi = 0, then α3λ3 = −1/2, which
implies that α3 = 1/2 and λ3 = −1. Furthermore, if

∑3
i=1 αiλi = 1, then α3 = 1/2

and λ3 = 1.
(2) Let x ∈ C3. Then x = ϕ3(x) �= ϕ1(x) = ϕ2(x). Select a function f ∈ AC(X)

with f (ϕ1(x)) = 1 and f |A = 0, where

A =
{
ϕ3(x), ϕ

2
1(x), ϕ

2
2(x)

}
.

Then, from Eq. (3.1), it follows that

α1λ1 [α3λ3 f (ϕ3(ϕ1(x)))] + α2λ2 [α3λ3 f (ϕ3(ϕ1(x)))]

+α3λ3 [α1λ1 + α2λ2] = α1λ1 + α2λ2,

and so α3λ3 f (ϕ3(ϕ1(x)))+α3λ3 = 1 because α1λ1+α2λ2 �= 0 by Lemma 3.1. Since
0 < α3 < 1, from the above it follows that ϕ3(ϕ1(x)) = ϕ1(x), whence 2α3λ3 = 1.
The latter equation especially shows that α3 = 1/2 and λ3 = 1.

If
∑3

i=1 αiλi = 1, then λ1 = λ2 = λ3 = 1 and α1λ1 + α2λ2 = 1 − α3λ3 = 1/2.
Meantime, if

∑3
i=1 αiλi = 0, then α1λ1 + α2λ2 = −α3λ3 = −1/2, which yields
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−1 = 2α1λ1 +2α2λ2. Since α1 +α2 = 1/2, we infer that λ1 = λ2 = −1 by the strict
convexity of C. 	


Lemma 3.5 If i ∈ {1, 2, 3} and x ∈ Di , then α1 = α2 = α3 = 1/3.

Proof We prove the result by an argument similar to that of [1, Lemma 2.3]. Assume
that x ∈ D1. Then we have x = ϕ1(x) �= ϕ2(x) �= ϕ3(x) �= x and we can rewrite Eq.
(3.1) as follows:

α1λ1 [α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x))]

+ α2λ2

[
α1λ1 f (ϕ1(ϕ2(x))) + α2λ2 f (ϕ

2
2(x)) + α3λ3 f (ϕ3(ϕ2(x)))

]

+ α3λ3

[
α1λ1 f (ϕ1(ϕ3(x))) + α2λ2 f (ϕ2(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)). (3.3)

Choose a function f ∈ AC(X) such that f (x) = 1 and f (ϕ2(x)) = f (ϕ3(x)) =
f (ϕ1(ϕ2(x))) = f (ϕ1(ϕ3(x))) = 0. Then Eq. (3.3) reduces to

α2
1λ

2
1 + α2λ2

[
α2λ2 f (ϕ

2
2(x)) + α3λ3 f (ϕ3(ϕ2(x)))

]

+ α3λ3

[
α2λ2 f (ϕ2(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α1λ1. (3.4)

Taking into account that α1 < 1, from the above relation it follows that at least one
point in the set

D =
{
ϕ2
2(x), ϕ3(ϕ2(x)), ϕ2(ϕ3(x)), ϕ

2
3(x)

}

is equal to x . Meantime, note that at most two elements in D are equal. Then, noting
at the following claim, which is proved at the end of the proof, we deduce that x is
equal to exactly two elements in D. Hence, one of the following cases may happen:

⎧
⎪⎨

⎪⎩

x = ϕ2
2(x) = ϕ3(ϕ2(x)),

x = ϕ2(ϕ3(x)) = ϕ3(ϕ2(x)),

x = ϕ2
2(x) = ϕ2

3(x).

(3.5)

Claim 3.6 (1) If x = ϕ2(ϕi (x)) for i ∈ {2, 3}, then x = ϕ3(ϕ j (x)) for j ∈ {2, 3}.
(2) If x = ϕ3(ϕi (x)) for i ∈ {2, 3}, then x = ϕ2(ϕ j (x)) for j ∈ {2, 3}.
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By considering f ∈ AC(X) with f (ϕ2(x)) = 1 and f (x) = f (ϕ3(x)) =
f (ϕ2

2(x)) = f (ϕ2(ϕ3(x))) = 0 in Eq. (3.3), we get

α1λ1α2λ2 + α2λ2[α1λ1 f (ϕ1(ϕ2(x))) + α3λ3 f (ϕ3(ϕ2(x)))]
+ α3λ3

[
α1λ1 f (ϕ1(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α2λ2. (3.6)

Moreover, if we choose f ∈ AC(X) with f (ϕ3(x)) = 1 and f (x) = f (ϕ2(x)) =
f (ϕ2

3(x)) = f (ϕ3(ϕ2(x))) = 0 in Eq. (3.3), then

α1λ1α3λ3 + α2λ2

[
α1λ1 f (ϕ1(ϕ2(x))) + α2λ2 f (ϕ

2
2(x))

]

+ α3λ3[α1λ1 f (ϕ1(ϕ3(x))) + α2λ2 f (ϕ2(ϕ3(x)))]
= α3λ3. (3.7)

Now, from (3.4)–(3.7) we can see that one of following disjoint situations may happen
for the points of D1:

D11 =
{
x ∈ D1 : x = ϕ2

2(x) = ϕ3(ϕ2(x)), ϕ2(x) = ϕ2
3(x) = ϕ1(ϕ2(x)),

ϕ3(x) = ϕ1(ϕ3(x)) = ϕ2(ϕ3(x))} ,

D12 =
{
x ∈ D1 : x = ϕ2

2(x) = ϕ3(ϕ2(x)), ϕ2(x) = ϕ2
3(x) = ϕ1(ϕ3(x)),

ϕ3(x) = ϕ1(ϕ2(x)) = ϕ2(ϕ3(x))} ,

D13 =
{
x ∈ D1 : x = ϕ2(ϕ3(x)) = ϕ3(ϕ2(x)), ϕ2(x) = ϕ2

3(x) = ϕ1(ϕ2(x)),

ϕ3(x) = ϕ1(ϕ3(x)) = ϕ2
2(x)

}
,

D14 =
{
x ∈ D1 : x = ϕ2(ϕ3(x)) = ϕ3(ϕ2(x)), ϕ2(x) = ϕ2

3(x) = ϕ1(ϕ3(x)),

ϕ3(x) = ϕ1(ϕ2(x)) = ϕ2
2(x)

}
,

D15 =
{
x ∈ D1 : x = ϕ2

2(x) = ϕ2
3(x), ϕ2(x) = ϕ1(ϕ2(x)) = ϕ3(ϕ2(x)),

ϕ3(x) = ϕ1(ϕ3(x)) = ϕ2(ϕ3(x))} ,

D16 =
{
x ∈ D1 : x = ϕ2

2(x) = ϕ2
3(x), ϕ2(x) = ϕ1(ϕ3(x)) = ϕ3(ϕ2(x)),

ϕ3(x) = ϕ1(ϕ2(x)) = ϕ2(ϕ3(x))} .
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For each x ∈ D11, Eq. (3.3) becomes

[
α2
1λ

2
1 + α2λ2(α2λ2 + α3λ3)

]
f (x) +

[
2α1λ1α2λ2 + α2

3λ
2
3

]
f (ϕ2(x))

+ [2α1λ1α3λ3 + α3λ3α2λ2] f (ϕ3(x))

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)).

Since x �= ϕ2(x) �= ϕ3(x) �= x , by taking a suitable function in the above equation it
follows that 2α1λ1 + α2λ2 = 1, which taking into account Lemma 3.1, implies that∑3

i=1 αiλi = 1 and λ1 = λ2 = λ3 = 1. Then one can obtain easily the following two
equations

{
1 = 2α1 + α2,

α1 = α2
1 + α2(α2 + α3).

(3.8)

For x ∈ D12, we have

[
α2
1λ

2
1 + α2λ2(α2λ2 + α3λ3)

]
f (x)

+ [α1λ1α2λ2 + α3λ3(α1λ1 + α3λ3)] f (ϕ2(x))

+ [α1λ1α3λ3 + α1λ1α2λ2 + α3λ3α2λ2] f (ϕ3(x))

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)),

which, by choosing proper functions, implies that

⎧
⎪⎨

⎪⎩

α1 ≤ α2
1 + α2(α2 + α3),

α2 ≤ α1α2 + α3(α1 + α3),

α3 ≤ α3α1 + α1α2 + α2α3.

(3.9)

For x ∈ D13, we have

[
α2
1λ

2
1 + 2α2α3λ2λ3

]
f (x)

+ [2α1λ1α2λ2 + α2
3λ

2
3] f (ϕ2(x))

+
[
α1λ1α3λ3 + α2

2λ
2
2 + α3λ3α1λ1

]
f (ϕ3(x))

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)),

which similarly shows that

⎧
⎪⎨

⎪⎩

α1 ≤ α2
1 + 2α1α3,

α2 ≤ 2α1α2 + α2
3,

α3 ≤ 2α1α3 + α2
2 .

(3.10)
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If x ∈ D14, then

[
α2
1λ

2
1 + 2α2α3λ2λ3

]
f (x)

+
[
α1λ1α2λ2 + α1λ1α3λ3 + α2

3λ
2
3

]
f (ϕ2(x))

+
[
α1λ1α3λ3 + α2λ2α1λ1 + α2

2λ
2
2

]
f (ϕ3(x))

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)),

which yields

⎧
⎪⎨

⎪⎩

α1 ≤ α2
1 + 2α2α3,

α2 ≤ α1α2 + α3(α1 + α3),

α3 ≤ α1α3 + α2(α1 + α2).

(3.11)

For x ∈ D15, we have

[
α2
1λ

2
1 + α2

2λ
2
2 + α2

3λ
2
3

]
f (x)

+ [2α1λ1α2λ2 + α2λ2α3λ3] f (ϕ2(x))

+ [2α1λ1α3λ3 + α3λ3α2λ2] f (ϕ3(x))

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)),

which gives 1 = 2α1λ1 + α2λ2. Now from Lemma 3.1 it easily follows that∑3
i=1 αiλi = 1 and λ1 = λ2 = λ3 = 1. Now, the following equations can be

derived immediately

{
1 = 2α1 + α3,

1 = 2α1 + α2.
(3.12)

For x ∈ D16,

[
α2
1λ

2
1 + α2

2λ
2
2 + α2

3λ
2
3

]
f (x)

+ [α1λ1α2λ2 + α2λ2α3λ3 + α1λ1α3λ3] f (ϕ2(x))

+ [α1λ1α3λ3 + α1λ1α2λ2 + α3λ3α2λ2] f (ϕ3(x))

= α1λ1 f (x) + α2λ2 f (ϕ2(x)) + α3λ3 f (ϕ3(x)),

which gives

⎧
⎪⎨

⎪⎩

α1 ≤ α2
1 + α2

2 + α2
3,

α2 ≤ α1α2 + α2α3 + α3α1,

α3 ≤ α1α2 + α2α3 + α3α1.

(3.13)
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It is easy to check that the unique solution of the systems (3.8)–(3.13) is α1 = α2 =
α3 = 1/3. This completes the proof of Lemma 3.5. 	


Now, we turn to the proof of Claim 3.6.

Proof We only prove the first part because the second one will be similar. Contrary to
what we claim, suppose that x = ϕ2(ϕi2(x))where i2 ∈ {2, 3}, and x �= ϕ3(ϕk(x)) for
k = 2, 3. Put j2 ∈ {2, 3}\{i2}. If we consider f ∈ AC(X) with 0 ≤ f ≤ 1, f (x) = 1
and f (ϕ3(ϕ2(x))) = f (ϕ2(ϕ j2(x))) = f (ϕ2

3(x)) = 0 in Eq. (3.4), then we have

α2
1λ

2
1 + α2λ2αi2λi2 = α1λ1 (3.14)

which yields

α1 ≤ α2
1 + α2αi2 . (3.15)

Moreover, by taking f ∈ AC(X) with 0 ≤ f ≤ 1, f (ϕ2(x)) = 1 and f (x) =
f (ϕ3(x)) = f (ϕ2

2(x)) = f (ϕ2(ϕ3(x))) = 0 in Eq. (3.3) we get

α1λ1α2λ2 + α2λ2 [α1λ1 f (ϕ1(ϕ2(x))) + α3λ3 f (ϕ3(ϕ2(x)))]

+ α3λ3

[
α1λ1 f (ϕ1(ϕ3(x))) + α3λ3 f (ϕ

2
3(x))

]

= α2λ2. (3.16)

Since α1 < 1, it easily follows from the above that ϕ2(x) must be equal to at least one
of the points in the set

{
ϕ1(ϕ2(x)), ϕ3(ϕ2(x)), ϕ1(ϕ3(x)), ϕ

2
3(x)

}
.

Assume that ϕ2(x) �= ϕ3(ϕk(x)) for k = 2, 3. Then by taking the preceding f such
that f (ϕ3(ϕk(x))) = 0 (k = 2, 3) in Eq. (3.16), we obtain that

α1λ1α2λ2 + α1λ1α2λ2 f (ϕ1(ϕ2(x))) + α1λ1α3λ3 f (ϕ1(ϕ3(x))) = α2λ2.

The above relation clearly shows that ϕ1(ϕ2(x)) or ϕ1(ϕ3(x)) must be equal to ϕ2(x).
Let us assume that ϕ2(x) = ϕ1(ϕi1(x)) where i1 ∈ {2, 3}. It is apparent that ϕ2(x) �=
ϕ1(ϕ j1(x)), where j1 ∈ {2, 3}\{i1}. Then from the above relation, we get α1λ1α2λ2 +
α1λ1αi1λi1 = α2λ2, which implies that

α2 ≤ α1(α2 + αi1).

If i1 = 2, then α2 ≤ 2α1α2, and so α1 = 1/2. Thus, according to (3.15), 1/2 ≤
1/4+ α2αi2 ≤ 1/4+ (max{α2, α3})2, which verifies that 1/4 ≤ (max{α2, α3})2, and
hence, max{α2, α3} ≥ 1/2, a contradiction.

Now, assume that i1 = 3. Thus, α2 ≤ α1(α2 + α3) = α1(1 − α1). If α1 ≤ α2,
then α2 ≤ α2(1 − α1) which implies that 1 − α1 ≥ 1, a contradiction showing that
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α1 > α2. Next, from (3.15) it follows that α1 ≤ α2
1 + α2αi2 < α2

1 + α1αi2 , which
yields 1 < α1 + αi2 and it is impossible.

Therefore, from the above discussion, we infer that ϕ2(x) is equal to (exactly) one
of the points ϕ3(ϕ2(x)) or ϕ2

3(x). Let us suppose that ϕ2(x) = ϕ3(ϕi3(x)), where i3
is either 2 or 3. Obviously, ϕ2(x) �= ϕ3(ϕ j3(x)), where j3 ∈ {2, 3}\{i3}. Moreover,
consider f ∈ AC(X) with 0 ≤ f ≤ 1, f (ϕ3(ϕ j3(x))) = 1 and f (x) = f (ϕ2(x)) =
f (ϕ3(x))) = 0 in (3.3), and we have

α1λ1α2λ2 f (ϕ1(ϕ2(x))) + α1λ1α3λ3 f (ϕ1(ϕ3(x)))

+ α2λ2α j2λ j2 f (ϕ2(ϕ j2(x))) + α3λ3α j3λ j3 f (ϕ3(ϕ j3(x)))

= α1λ1α2λ2 f (ϕ1(ϕ2(x))) + α1λ1α3λ3 f (ϕ1(ϕ3(x))) + α2λ2α j2λ j2 f (ϕ2(ϕ j2(x)))

+ α3λ3α j3λ j3 = 0. (3.17)

We next show that

α2λ2α j2λ j2 + α3λ3α j3λ j3 �= 0. (3.18)

Otherwise, we have

α2λ2α j2λ j2 = −α3λ3α j3λ j3 . (3.19)

If
∑3

i=1 αiλi = 1, then from Eq. (3.19) we get α2α j2 = −α3α j3 , which is impossible.
Hence,

∑3
i=1 αiλi = 0.

If j2 = j3, then from (3.19) we deduce thatα2λ2 = −α3λ3, which is a contradiction
by Lemma 3.1. Now, suppose that j2 �= j3. Let j2 = 2 and j3 = 3. If ϕ1(ϕk(x)) �=
ϕ2(x) for k = 2, 3, from (3.16) we have α1λ1α2λ2 +α3λ3α2λ2 = α2λ2, which yields
α1λ1 + α3λ3 = 1, a contradiction by Lemma 3.1. Then, we have either ϕ1(ϕ2(x)) =
ϕ2(x) or ϕ1(ϕ3(x)) = ϕ2(x). From (3.16), we have two possibilities:

(1) α1λ1α2λ2 +α1λ1α2λ2 +α3λ3α2λ2 = α2λ2; in consequence, 2α1λ1 +α3λ3 = 1,
and so α1λ1 − α2λ2 = 1, a contradiction (Lemma 3.1),

(2) α1λ1α2λ2 + α3λ3α1λ1 + α3λ3α2λ2 = α2λ2, which shows that α1λ1α2λ2 −
α3λ3α3λ3 = α2λ2, and from (3.19) it follows that α1λ1α2λ2 + α2

2λ
2
2 = α2λ2,

whence α1λ1 + α2λ2 = 1, a contradiction (Lemma 3.1).

If j2 = 3 and j3 = 2, then from (3.19), α2λ2α3λ3 = −α3λ3α2λ2, which is
impossible. Therefore, Eq. (3.18) holds.

Now, taking into account (3.17), (3.18) and the fact that ϕ1(ϕ2(x)) �= ϕ1(ϕ3(x)),
it is easy to see that (exactly) one of the points ϕ1(ϕ2(x)) or ϕ1(ϕ3(x)) must be equal
to ϕ3(ϕ j3(x)). Put ϕ1(ϕr1(x)) = ϕ3(ϕ j3(x)) and ϕ1(ϕt1(x)) �= ϕ3(ϕ j3(x)) ({r1, t1} =
{2, 3}). Let us rewrite (3.16) and (3.17) as

α1λ1α2λ2 + α1λ1αt1λt1ϕ1(ϕt1(x)) + α3λ3αi3λi3 = α2λ2, (3.20)
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and

(α1λ1αr1λr1 + α3λ3α j3λ j3) f (ϕ3(ϕ j3(x))) + α2λ2α j2λ j2 f (ϕ2(ϕ j2(x)))

= α1λ1αr1λr1 + α2λ2α j2λ j2 f (ϕ2(ϕ j2(x))) + α3λ3α j3λ j3 = 0. (3.21)

Next, it is shown that

α1λ1αr1λr1 + α3λ3α j3λ j3 �= 0. (3.22)

Otherwise,

α1λ1αr1λr1 = −α3λ3α j3λ j3 . (3.23)

If
∑3

i=1 αiλi = 1, then from (3.23) we get αr1 = −α3α j3 , a contradiction. Hence,
∑3

i=1 αiλi = 0. If r1 = j3, then again from (3.23), α1λ1 = −α3λ3, a contradiction
(Lemma 3.1). Thus, r1 �= j3. If r1 = 3 and j3 = 2, then α1λ1α3λ3 = −α3λ3α2λ2 by
(3.23), which leads to a contradiction. If r1 = 2 and j3 = 3, then from (3.23) we have

α1λ1α2λ2 = −α2
3λ

2
3. (3.24)

Based on the fact that ϕ1(ϕt1(x)) �= ϕ2(x) or ϕ1(ϕt1(x)) = ϕ2(x), from (3.20) we
have either

(1) α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, whence α1λ1 + α3λ3 = 1, a contradiction, or
(2) α1λ1α2λ2 + α1λ1α3λ3 + α3λ3α2λ2 = α2λ2, and so from (3.24), −α2

3λ
2
3 +

α1λ1α3λ3+α3λ3α2λ2 = α2λ2, and hence, α3λ3[−α3λ3+α2λ2+α1λ1] = α2λ2,
which yields −2α2

3λ
2
3 = α2λ2. Consequently, from (3.24) we get 2α1λ1α2λ2 =

α2λ2, which gives α1 = 1/2 and λ1 = 1. Moreover, again from (3.24) it
follows that α2

3 = α1α2 and −λ23 = λ1λ2. On the other hand, from (3.14),
α2
1λ

2
1 + α2λ2αi2λi2 = α1λ1, and then putting α1 = 1/2 and λ1 = 1, we get

α2λ2αi2λi2 = 1/4. If i2 = 3, then α2λ2α3λ3 = 1/4, whence α2α3 = 1/4. Thus,
α3
3 = α2α1α3 = α1/4 = 1/8, and so α3 = 1/2, a contradiction. Also, if i2 = 2,

then α2
2 = 1/4, and α2 = 1/2, which is impossible.

Now we deduce (3.22).
Finally, we claim that

α1λ1αr1λr1 + α2λ2α j2λ j2 + α3λ3α j3λ j3 �= 0. (3.25)

Otherwise,

α1λ1αr1λr1 + α2λ2α j2λ j2 + α3λ3α j3λ j3 = 0.

If
∑3

i=1 αiλi = 1, then α1αr1 + α2α j2 + α j3α j3 = 0, which is impossible. Hence,
∑3

i=1 αiλi = 0.
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If r1 = j2 = j3, then t1 = i2 = i3. If ϕ1(ϕt1(x)) = ϕ2(x), from (3.20) we have
α1λ1α2λ2 + αi3αi3(α1λ1 + α3λ3) = α2λ2, and consequently, α1λ1 − αi3αi3 = 1, a
contradiction.

Now, assume that ϕ1(ϕt1(x)) �= ϕ2(x). From (3.20) we have α1λ1α2λ2 +
α3λ3αi3αi3 = α2λ2.

If i3 = 2, then from the above relation we get α1λ1 + α3λ3 = 1, a contradiction.
Now, suppose that i3 = 3. Then (3.20) and (3.14) become

α1λ1α2λ2 + α2
3λ

2
3 = α2λ2, (3.26)

and

α2
1λ

2
1 + α2λ2α3λ3 = α1λ1. (3.27)

Byadding (3.26) and (3.27) together,weobtainα1λ1α2λ2+α2
1λ

2
1+α2

3λ
2
3+α2λ2α3λ3 =

−α3λ3, and so α1λ1(−α3λ3) + α3λ3(−α1λ1) = −α3λ3; thus, α1λ1 = 1 − α1λ1,
which verifies that α1 = 1/2 and λ1 = 1. Now, from (3.27) one can conclude that
1/4 + α2λ2α3λ3 = 1/2, whence

α2λ2α3λ3 = 1

4
. (3.28)

On the other hand, from (3.26), (1/2)α2λ2 + α2
3λ

2
3 = α2λ2, which yields

1

2
α2λ2 = α2

3λ
2
3. (3.29)

Combining (3.27) and (3.29), we get 1/4 + 2α3
3λ

3
3 = 1/2, and so α3

3λ
3
3 = 1/8;

consequently, α3 = 1/2, which is impossible.
Assume that r1 �= j2 = j3. Thus, α1λ1αr1λr1 = −(α2λ2+α3λ3)α j2λ j2 . As before,

one can see
∑3

i=1 αiλi = 0, which easily implies that α1λ1αr1λr1 = α1λ1α j2λ j2 , and
so

αr1λr1 = α j2λ j2 , αr1 = α j2 , λr1 = λ j2 . (3.30)

Let j2 = j3 = 3 and r1 = 2. Based on the fact that ϕ1(ϕ3(x)) �= ϕ2(x) or
ϕ1(ϕ3(x)) = ϕ2(x), from (3.20) we have either

(1) α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, a contradiction, or
(2) α1λ1α2λ2 + α1λ1α3λ3 + α3λ3α2λ2 = α2λ2, which taking into account (3.30) it

follows that α1λ1α2λ2 + α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, and so α1λ1 + α1λ1 +
α3λ3 = α1λ1 − α2λ2 = 1, a contradiction.

If j2 = j3 = 2 and r1 = 3, similarly, based on the fact that ϕ1(ϕ2(x)) �= ϕ2(x) or
ϕ1(ϕ2(x)) = ϕ2(x), from (3.30) and (3.20) we have either

(1) α1λ1α2λ2 + α2
2λ

2
2 = α2λ2, and so α1λ1 + α2λ2 = 1, which is impossible, or
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(2) α1λ1α2λ2 +α1λ1α2λ2 +α2
3λ

2
3 = α2λ2, and so from (3.30) 2α1λ1α2λ2 +α2

2λ
2
2 =

α2λ2, which gives and so α1λ1 − α3λ3 = 1, which is impossible.

Now, assume that r1 = j2 �= j3. If (α1λ1 + α2λ2)α j2λ j2 = −α3λ3α j3λ j3 , then as
before,

∑3
i=1 αiλi = 0, and consequently, the above relation reduces −α3λ3α j2λ j2 =

−α3λ3α j3λ j3 and so

α j2λ j2 = α j3λ j3 . (3.31)

If j3 = 2 and j2 = r1 = 3, similarly to above, based on the fact that ϕ1(ϕ2(x)) �=
ϕ2(x) or ϕ1(ϕ2(x)) = ϕ2(x) from (3.31) and (3.20) we get

(1) α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, a contradiction, or
(2) α1λ1α2λ2 + α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, and then, 2α1λ1 + α3λ3 = α1λ1 −

α2λ2 = 1, a contradiction.

Now, if r1 = j2 = 2 and j3 = 3, then analogously from (3.31) and (3.20), it follows
that either

(1) α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, and in consequence, α1λ1 + α3λ3 = 1, a contra-
diction, or

(2) α1λ1α3λ3 + α1λ1α3λ3 + α3λ3α2λ2 = α2λ2 = α3λ3, and so α1λ1 − α3λ3 = 1, a
contradiction.

Next, suppose that j3 = r1 �= j2. Clearly,
∑3

i=1 αiλi = 0 as above, and we get
(α1λ1 + α3λ3)α j3λ j3 = −α2λ2α j2λ j2 , and so

α j3λ j3 = α j2λ j2 . (3.32)

If j2 = 3 and j3 = 2, from (3.32) and (3.20) we have either

(1) α1λ1α2λ2 + α2
3λ

2
3 = α2λ2, and taking into account (3.32), α1λ1α2λ2 + α2

2λ
2
2 =

α2λ2, and so α1λ1 + α2λ2 = 1, a contradiction, or
(2) α1λ1α3λ3 + α1λ1α3λ3 + α2

3λ
2
3 = α2λ2, and so from (3.32) α1λ1 − α2λ2 = 1, a

contradiction.

Similarly, if j2 = 2 and j3 = 3, from (3.32) and (3.20) we have either

(1) α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, whence α1λ1 + α3λ3 = 1, or
(2) α1λ1α2λ2 + α1λ1α2λ2 + α3λ3α2λ2 = α2λ2, which implies that α1λ1 + α1λ1 +

α3λ3 = 1, and so α1λ1 − α2λ2 = 1, a contradiction.

Finally, (3.25) is also valid.
Now, taking into account (3.18), (3.22), (3.25), one can easily see that Eq. (3.21)

leads to a contradiction. This contradiction proves Claim 3.6. 	

The following theorem states that each projection on AC(X) expressed as the aver-

age of three surjective linear isometries is a trivial projection.

Theorem 3.7 If P is a projection on AC(X) given by the average of three surjective
linear isometries, then P = 0 or P = Id.
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Proof Assume that P = (1/3)(T1+T2+T3), where Ti f = λi f ◦ϕi for all f ∈ AC(X),
with ϕi ∈ MH(X) and λi ∈ T for all i ∈ {1, 2, 3}, according to Theorem 2.1.

Step 1 We have either all ϕi ’s are increasing, or all of them are decreasing.

Since for each i ∈ {1, 2, 3}, ϕi is a monotonic homeomorphism, we have either
ϕi (mX ) = mX or ϕi (mX ) = MX , where mX = min(X) and MX = max(X). Hence,
we conclude that Card(SmX ) ∈ {1, 2}. If Card(SmX ) = 2, then from Lemma 3.3 it
follows that mX ∈ Bi or mX ∈ Ci for some i ∈ {1, 2, 3}, which is impossible by
Lemma 3.4 (here we have αi = 1/3). Therefore, Card(SmX ) = 1, which especially
proves the claim in Step 1.

Step 2 X = X0.

On the contrary, assume that x ∈ X\X0. Taking into account Lemmas 3.3 and 3.4,
we immediately conclude that x ∈ Dk for some k ∈ {1, 2, 3}. Let us assume that
k = 1. Thus, we have x = ϕ1(x) �= ϕ2(x) �= ϕ3(x) �= x . Based on the order of
the points, we are in one of the following situations (the other cases are similar by
permutating indices 2 and 3):

(a) x = ϕ1(x) < ϕ2(x) < ϕ3(x),
(b) ϕ2(x) < ϕ3(x) < x = ϕ1(x),
(c) ϕ2(x) < x = ϕ1(x) < ϕ3(x).

First, let us rewrite Eq. (3.1):

λ1 [λ1 f (x) + λ2 f (ϕ2(x)) + λ3 f (ϕ3(x))]

+ λ2

[
λ1 f (ϕ1(ϕ2(x))) + λ2 f (ϕ

2
2(x)) + λ3 f (ϕ3(ϕ2(x)))

]

+ λ3[λ1 f (ϕ1(ϕ3(x))) + λ2 f (ϕ2(ϕ3(x))) + λ3 f (ϕ
2
3(x))]

= 3 [λ1 f (ϕ1(x)) + λ2 f (ϕ2(x)) + λ3 f (ϕ3(x))] . (3.33)

Taking f ∈ AC(X) with 0 ≤ f ≤ 1, f (x) = 1 and f (ϕ2(x)) = f (ϕ3(x)) = 0, Eq.
(3.33) becomes

λ21 + λ2

[
λ1 f (ϕ1(ϕ2(x))) + λ2 f (ϕ

2
2(x)) + λ3 f (ϕ3(ϕ2(x)))

]

+ λ3

[
λ1 f (ϕ1(ϕ3(x))) + λ2 f (ϕ2(ϕ3(x))) + λ3 f (ϕ

2
3(x))

]
= 3λ1.

Since λ1, λ2, λ3 ∈ T, from the above equation it follows that at least two points in the
set

{
ϕ1(ϕ2(x)), ϕ

2
2(x), ϕ3(ϕ2(x)), ϕ1(ϕ3(x)), ϕ2(ϕ3(x)), ϕ

2
3(x)

}

must be equal to x . Clearly, one of the following cases may occur:

(i) x = ϕ2
2(x) = ϕ3(ϕ2(x)),

(ii) x = ϕ2
2(x) = ϕ2

3(x),
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(iii) x = ϕ3(ϕ2(x)) = ϕ2(ϕ3(x)),
(iv) x = ϕ2

3(x) = ϕ2(ϕ3(x)).

In the following, we show that none of those four cases can happen. According to
Step 1, either all ϕi ’s are increasing, or all ϕi ’s are decreasing.

Firstly, we assume that all of them are increasing. Consider Case (a). Since ϕ2 is
increasing, we obtain

x = ϕ1(x) < ϕ2(x) < ϕ2
2(x) < ϕ2(ϕ3(x)),

which clearly implies that none of the cases (i)–(iv) can occur.
The argument in Case (b) is similar to Case (a).
Consider Case (c). Since ϕ2 is increasing, ϕ2

2(x) < ϕ2(x) < x , which shows that
(i) and (ii) cannot happen. Moreover, since ϕ3 is increasing, then

ϕ3(ϕ2(x))) < ϕ3(x) < ϕ2
3(x).

If x = ϕ2
3(x), then ϕ3(x) < x , which is a contradiction showing that (iv) never happen.

Now, suppose that (iii) holds. Again since ϕ3 is increasing, we have

ϕ2(x) < x < ϕ3(x) < ϕ2
3(x),

which yields ϕ2(x) �= ϕ2
3(x). Taking f ∈ AC(X) with 0 ≤ f ≤ 1, f (ϕ2(x)) = 1 and

f (x) = f (ϕ3(x)) = f (ϕ2
2(x)) = f (ϕ2

3(x)) = 0, Eq. (3.33) reduces to

λ1λ2 + λ1λ2 f (ϕ1(ϕ2(x))) + λ1λ3 f (ϕ1(ϕ3(x))) = 3λ2,

which implies that ϕ1(ϕ2(x)) = ϕ1(ϕ3(x)). Consequently, ϕ2(x) = ϕ3(x) because ϕ1
is injective, which is a contradiction showing that (iii) cannot occur.

Secondly, we assume that all ϕi ’s are decreasing. Consider Case (a). Since ϕ1 is
decreasing, we have

ϕ3(x) > ϕ2(x) > x > ϕ1(ϕ2(x)) > ϕ1(ϕ3(x)) (3.34)

Taking into account (3.34), if Case (i) holds, we can choose f ∈ AC(X) with 0 ≤
f ≤ 1, f (ϕ3(x)) = 1 and f (x) = f (ϕ2(x)) = f (ϕ2

3(x)) = f (ϕ1(ϕ2(x))) =
f (ϕ1(ϕ3(x))) = 0. From Eq. (3.33), we get

λ1λ3 + λ2

[
λ2 f (ϕ

2
2(x)) + λ3 f (ϕ3(ϕ2(x)))

]
+ λ3λ2 f (ϕ2(ϕ3(x))) = 3λ3,

which shows that λ1λ3 + λ3λ2 f (ϕ2(ϕ3(x))) = 3λ3 by (i), whence |3 − λ1| ≤ 1 and
it is impossible.

If Case (ii) holds, again taking into account (3.34), we can select f ∈ AC(X) with
0 ≤ f ≤ 1, f (ϕ3(x)) = 1 and f (x) = f (ϕ2(x)) = f (ϕ3(ϕ2(x))) = f (ϕ1(ϕ2(x))) =
f (ϕ1(ϕ3(x))) = 0. Hence, fromEq. (3.33) and (ii), we can get λ1+λ2 f (ϕ2(ϕ3(x))) =
3, which is impossible.
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ForCase (iii), from (3.34), we can choose f ∈ AC(X)with 0 ≤ f ≤ 1, f (ϕ2(x)) =
1 and f (x) = f (ϕ2

2(x)) = f (ϕ1(ϕ2(x))) = f (ϕ1(ϕ3(x))) = f (ϕ3(x)) = 0. Now,
from Eq. (3.33) we conclude that λ1λ2 + λ23 f (ϕ

2
3(x)) = 3λ2, which is impossible.

In Case (iv), from (3.34), we can take f ∈ AC(X) with 0 ≤ f ≤ 1, f (ϕ3(x)) = 1
and f (x) = f (ϕ3(ϕ2(x))) = f (ϕ1(ϕ2(x))) = f (ϕ1(ϕ3(x))) = f (ϕ2(x)) = 0. Then
Eq. (3.33) gives λ1λ3 + λ22 f (ϕ

2
2(x)) = 3λ3, which yields a contradiction.

The argument for Case (b) is similar to Case (a).
Consider Case (c). Since ϕ2 is decreasing, it follows that ϕ2

2(x) > ϕ2(x) >

ϕ2(ϕ3(x)). If ϕ2(ϕ3(x)) = x , then x > ϕ2(x) > x , which is a contradiction showing
that (iii) and (iv) are impossible.

If ϕ3(ϕ2(x)) = x , then x = ϕ3(ϕ2(x)) > ϕ3(x) > x because ϕ3 is decreasing,
which implies that (i) does not hold.

Since ϕ1 and ϕ2 are decreasing, it is clear that ϕ3(x) > ϕ1(x) = x > ϕ1(ϕ3(x))
and ϕ3(x) > x > ϕ2(x) > ϕ2(ϕ3(x)). Take now some f ∈ AC(X) with 0 ≤
f ≤ 1, f (ϕ3(x)) = 1 and f (x) = f (ϕ2(x)) = f (ϕ2(ϕ3(x))) = f (ϕ1(ϕ3(x))) =
f (ϕ3(ϕ2(x))) = 0. If (ii) holds, Eq. (3.33) gives λ1λ3 + λ2λ1 f (ϕ1(ϕ2(x))) = 3λ3, a
contradiction.

The above discussion proves Step 2. Now, Theorem 3.7 follows from Lemma 3.2.
	


As observed, the trivial projections are the only projections as the average of three
surjective linear isometries while, as proved below, it is not true for the projections in
the convex hull of three isometries.

Theorem 3.8 A projection P on AC(X) is in the convex hull of three surjective linear
isometries if and only if P is a generalized bi-circular projection, i.e., P f = (1/2)[ f +
λ f ◦ ϕ] for all f ∈ AC(X), where λ ∈ {1,−1} and ϕ ∈ MH(X) with ϕ2 = idX .

Proof We only prove the necessity because the proof of the sufficiency is easy by [[7],
Corollary 3.3]. Let P be a projection on AC(X) such that P = ∑3

i=1 αi Ti , where
0 < αi < 1 with

∑3
i=1 αi = 1 and Ti f = λi f ◦ ϕi for all f ∈ AC(X), with λi ∈ T

and ϕi ∈ MH(X) for all i ∈ {1, 2, 3}.
According to Theorem 3.7, the result is valid if α1 = α2 = α3. Otherwise, from

Lemma 3.4 it follows that any two of the statements C1 �= ∅, C2 �= ∅, C3 �= ∅ (resp.,
B1 �= ∅, B2 �= ∅, B3 �= ∅) cannot occur simultaneously, and also the conditions
Ci �= ∅ and Bj �= ∅ with i �= j are incompatible. Then, taking into account Lemmas
3.3 and 3.5, we have the following possibilities:

(1) X = X0.
(2) X = X0 ∪ Bi for i = 1, 2, 3.
(3) X = X0 ∪ Ci for i = 1, 2, 3.
(4) X = X0 ∪ Bi ∪ Ci with Bi �= ∅ �= Ci for i = 1, 2, 3.

Case (1). Then P = 0 or P = Id by Lemma 3.2.
Case (2). Here we have ϕ j = ϕk with j, k ∈ {1, 2, 3}\{i}, and also from Lemma

3.4, it follows that λi ∈ {1,−1}, and

P f = 1

2

[
λi f ◦ ϕi + f ◦ ϕ j

]
( f ∈ AC(X)).
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Cases (3) and (4). Similarly to the second case, taking into account Lemma 3.4, we
have λ j ∈ {1,−1}, ϕ j = ϕk with j, k ∈ {1, 2, 3}\{i} and

P f = 1

2

[
f ◦ ϕi + λ j f ◦ ϕ j

]
( f ∈ AC(X)).

In the latter three cases, P is expressed as the average of two surjective linear
isometries of AC(X) and, indeed, it is a generalized bi-circular projection by Theorem
2.2. Hence, P f = (1/2)[ f + λ f ◦ ϕ] for every f ∈ AC(X), where λ ∈ {1,−1} and
ϕ ∈ MH(X) with ϕ2 = idX . To be more precise, following the proof of Theorem 3.2
in [9], it is proved that in Case (2) we have ϕ j = idX , ϕ = ϕi ∈ MH(X), ϕ2 = idX
and λ = λi ∈ {1,−1}. In Case (3), ϕi = idX , ϕ = ϕ j ∈ MH(X), ϕ2 = idX and
λ = λ j ∈ {1,−1}. Also, Case (4) will not happen. 	

Remark 3.9 We would also like to remark that, taking into account [8, Corollary 4.3]
(see also [10, Example 2]), our theorems remain true when AC(X) is equipped with
the maximum norm

‖ f ‖M = max
{‖ f ‖∞ ,V( f )

}
( f ∈ AC(X)),

andwe consider the convex hull of three surjective linear isometries of (AC(X), ‖·‖M )

carrying a weighted composition operator form.
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