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Abstract. Let AC(X) be the Banach algebra of all absolutely continuous
complex-valued functions f on a compact subset X ⊂ R with at least
two points under the norm ‖f‖Σ = ‖f‖∞ + V(f), where V(f) denotes
the total variation of f . We prove that every approximate local isometry
from AC(X) to AC(Y ) admits a Banach–Stone type representation as an
isometric weighted composition operator. Using this description, we prove
that the set of linear isometries from AC(X) onto AC(Y ) is algebraically
reflexive and 2-algebraically reflexive. Moreover, it is shown that although
the topological reflexivity and 2-topological reflexivity do not necessarily
hold for the isometry group of AC(X), but they hold for the sets of
isometric reflections and generalized bi-circular projections of AC(X).
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1. Introduction

Let B(E) be the Banach space of all continuous linear operators of a Banach
space E and let G(E) be its group of surjective linear isometries. Let us recall
that a local isometry of E is a map T ∈ B(E) such that for every e ∈ E, there
exists a Te ∈ G(E), possibly depending on e, such that Te(e) = T (e). Moreover,
an approximate local isometry of E is a map T ∈ B(E) satisfying that for every
e ∈ E, there is a sequence {Te,n}n∈N in G(E) such that limn→∞ Te,n(e) = T (e).

The main question addressed by the authors is for which Banach spaces
E, every local isometry of E is a surjective isometry or, equivalently, which
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Banach spaces E have an algebraically reflexive isometry group. One can also
study the topological version of this question, that is, when every approximate
local isometry of E is a surjective isometry or, with other words, when the
isometry group of E is topologically reflexive.

In [17], Molnár initiated the study of 2-local isometries of Banach spaces.
Namely, a map Δ: E → E (which is not assumed to be linear) is a 2-local
isometry if for any e, u ∈ E, there exists a Te,u ∈ G(E), depending in gen-
eral on e and u, such that Te,u(e) = Δ(e) and Te,u(u) = Δ(u). Moreover,
Δ: E → E is an approximate 2-local isometry if for every e, u ∈ E, there
is a sequence {Te,u,n}n∈N in G(E) such that limn→∞ Te,u,n(e) = Δ(e) and
limn→∞ Te,u,n(u) = Δ(u). In the 2-local setting, the main problem is to study
for which Banach spaces E, every 2-local isometry (respectively, approximate
2-local isometry) of E is a surjective linear isometry or, equivalently, when the
isometry group of E is 2-algebraically reflexive (respectively, 2-topologically
reflexive).

An extensive research has been done on (approximate) local isometries [4–
7,13,18] and (approximate) 2-local isometries [10,11,14,16] for different spaces
of continuous scalar-valued functions. In this paper, we deal with approximate
local (2-local) isometries on spaces of absolutely continuous complex-valued
functions on an arbitrary bounded time scale X ⊂ R. These spaces are a
fundamental tool to solve boundary value problems in ordinary and partial
differential equations and difference equations (see, for example, [2,21]).

Let X be a compact subset of R with at least two points. A finite increas-
ing subset of X is a set P = {x0, x1, . . . , xn−1, xn} ⊆ X, where x0 < x1 <
· · · < xn−1 < xn. Given a function f : X → C and a finite increasing subset
P = {x0, x1, . . . , xn−1, xn} of X, define

V(P, f) :=
n∑

i=1

|f(xi) − f(xi−1)| .

We define the total variation of f on X as

V(f,X) := sup {V(P, f) : P is a finite increasing subset of X} ∈ [0,∞].

If V(f,X) < ∞, we say that f is a function of bounded variation on X. We
shall simply write V(f) when there is no confusion.

A function f : X → C is said to be absolutely continuous if for every
ε > 0, there exists a δ > 0 such that if {(ai, bi)}ni=1, with ai, bi ∈ X, is
a finite pairwise disjoint of open intervals satisfying

∑n
i=1(bi − ai) < δ, then∑n

i=1 |f(bi)−f(ai)| < ε. It is known that every absolutely continuous function
f : X → C has bounded variation on X.

Let AC(X) denote the space of all absolutely continuous functions f : X →
C, with the norm

‖f‖Σ = ‖f‖∞ + V(f),
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where ‖f‖∞ denotes the supremum of |f | on X. It is known that AC(X) is
a unital semisimple commutative Banach algebra which contains the constant
functions and separates the points of X. We refer the reader to [22] for the
study of the classical spaces AC([a, b]) and to [1,9] for the general case AC(X).

The topological reflexivity does not hold true for the isometry group of
any AC(X)-space. We present in this paper an easy counterexample. How-
ever, we can describe the elements of the topological reflexive closure of the
set G(AC(X),AC(Y )) of all linear isometries of AC(X) onto AC(Y ). To be
more precise, we prove that every approximate local isometry T from AC(X)
to AC(Y ) is an isometric weighted composition operator induced by a mono-
tonic absolutely continuous function φ from Y onto X. Using this description,
we prove that the set G(AC(X),AC(Y )) is algebraically reflexive. Moreover,
it is shown that every (approximate) 2-local isometry from AC(X) to AC(Y )
is a (an approximate) local isometry and, as a consequence, we establish the
2-algebraic reflexivity of G(AC(X),AC(Y )). As mentioned above, the isome-
try group AC(X) is usually neither topologically reflexive nor 2-topologically
reflexive, but we show that the sets of isometric reflections and generalized
bi-circular projections of AC(X) are.

The starting point of our study is an appropriate description of surjective
linear isometries between AC(X)-spaces in terms of a weighted composition
operator. Such isometries of AC(X) equipped with the Σ-norm were charac-
terized by Pathak [19]. Previously, the isometries of AC([0, 1]) were investi-
gated by Cambern [8] and Rao and Roy [20]. Moreover, Jarosz and Pathak
[15] developed a technical scheme to verify that surjective linear isometries
between some classical function spaces are induced by homeomorphisms be-
tween corresponding Hausdorff compact spaces. In particular, this holds for
AC(X)-spaces.

The first author stated in [13] the algebraic reflexivity of the set of onto
linear isometries between spaces of absolutely continuous vector-valued func-
tions with a norm different to the Σ-norm. Our approach here is quite dif-
ferent because our objective is to study the topological reflexivity, or at least
to describe the elements of the topological reflexive closure, and it essentially
depends on the application of two spherical reformulations of the known the-
orems of Gleason–Kahane–Żelazko and of Kowalski–S�lodkowski, stated by Li,
Peralta, Wang and Wang [16] who applied them to study the 2-locality problem
of the isometry group of uniform algebras and Lipschitz algebras.

We thus extend here some results established by the first author in [13]
concerning the algebraic reflexivity of the sets of onto linear isometries, iso-
metric reflections and generalized bi-circular projections of AC(X)-spaces.

2. Preliminaries

Let us recall the concepts of reflexivity addressed in this paper. Let E and
F be Banach spaces, FE the set of all maps of E to F and B(E,F ) the
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set of all continuous linear maps of E to F . Let S be a nonempty subset of
B(E,F ). Define the algebraic reflexive and topological reflexive closures of S,
respectively, by

refalg(S) = {T ∈ B(E,F ) : T (e) ∈ S(e), ∀e ∈ E} ,

reftop(S) =
{

T ∈ B(E,F ) : T (e) ∈ S(e), ∀e ∈ E
}

,

where S(e) = {L(e) : L ∈ S} and S(e) denotes its norm-closure in F . The set
S is said to be algebraically reflexive (topologically reflexive) if refalg(S) = S
(respectively, reftop(S) = S).

Consider now the 2-algebraic reflexive closure of S, 2-refalg(S), given by
{
Δ ∈ FE : ∀e, u ∈ E, ∃Se,u ∈ S |Se,u(e) = Δ(e), Se,u(u) = Δ(u)

}
,

and the 2-topological reflexive closure of S, 2-reftop(S), defined by
{

Δ ∈ FE : ∀e, u ∈ E, ∃{Se,u,n}n∈N ⊂ S | lim
n→∞ Se,u,n(e)

= Δ(e), lim
n→∞ Se,u,n(u) = Δ(u)

}
.

We say that the set S is 2-algebraically reflexive (2-topologically reflexive) if
2-refalg(S) = S (respectively, 2-reftop(S) = S).

In the sequel, X and Y are two compact subsets of R with at least
two points. We denote mX = min(X), MX = max(X), and similarly, mY =
min(Y ), MY = max(Y ).

We denote by MH(Y,X) the set of all monotonic absolutely continuous
homeomorphisms of Y onto X. In particular, we write MH(X) instead of
MH(X,X) and MH2(X) represents the set of functions φ ∈ MH(X) such that
φ2 = idX , where idX is the identity map of X. The symbol 1X stands for the
function constantly 1 on X and |X| for the cardinality of X. Given a Banach
space E, we denote by IdE the identity operator of E. As usual, T denotes the
unit circle of C.

The following functions will frequently be used through the paper. For
each x0 ∈ X and r > 0, the function hx0,r : X → [0, 1] defined by

hx0,r(x) = max
{

0, 1 − |x − x0|
r

}
,

is Lipschitz with h−1({1}) = {x0} and h−1({0}) = {x ∈ X : |x − x0| ≥ r}.
Notice that every Lipschitz function is absolutely continuous.

3. Results

For our purposes, we first need to complete a description of onto linear isome-
tries between AC(X)-spaces stated by Pathak (see Theorem 2.10 and Lemma
2.3 in [19]). We deduce this description by applying a more general result of
Jarosz and Pathak (see [15, Example 7]).
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Theorem 1. ([15,19]) A map T : AC(X) → AC(Y ) is a surjective linear isom-
etry if and only if there exist a number λ ∈ T and a map φ ∈ MH(Y,X) such
that

T (f)(y) = λf(φ(y)) (f ∈ AC(X), y ∈ Y ).

Proof. Assume that T is a linear isometry from AC(X) onto AC(Y ). By [15,
Proposition], T is of the form

T (f)(y) = χ(y)f(φ(y)) (f ∈ AC(X), y ∈ Y ),

where φ : Y → X is a homeomorphism and χ ∈ AC(Y ) is a unimodular func-
tion with V(χ) = 0. Hence χ is a constant function, therefore there is a λ ∈ T

such that χ(y) = λ for all y ∈ Y , and thus

T (f)(y) = λf(φ(y)) (f ∈ AC(X), y ∈ Y ).

Clearly, φ = λT (idX) ∈ AC(Y ). Since T−1 : AC(Y ) → AC(X) has the form

T−1(g)(x) = λg(φ−1(x)) (g ∈ AC(Y ), x ∈ X),

it follows that φ−1 = λT−1(idY ) ∈ AC(X) and so φ is an absolutely continuous
homeomorphism. Moreover, taking into account the representation of T , the
monotonicity of φ can be obtained by an argument similar to the proof of [12,
Lemma3.15].

Conversely, assume that T : AC(X) → AC(Y ) is a map having the form

T (f)(y) = λf(φ(y)) (f ∈ AC(X), y ∈ Y )

with λ and φ being as in the statement of the theorem. The linearity of T is
immediate. To prove its surjectivity, given g ∈ AC(Y ), take f = λ(g ◦ φ−1).
Since φ−1 is absolutely continuous and strictly monotonic, it follows easily
that f ∈ AC(X) and clearly T (f) = g. Finally, given f ∈ AC(X), an easy
verification shows that ‖T (f)‖∞ = ‖f‖∞ and V(T (f)) = V(f), and therefore
T is an isometry with respect to the Σ-norms. �

For a later reference we deduce from the proof of Theorem 1 the following
fact.

Corollary 1. Let T be a linear isometry from AC(X) onto AC(Y ). Then
‖T (f)‖∞ = ‖f‖∞ and V(T (f)) = V(f) for all f ∈ AC(X). �

The following example, borrowed from [3], shows that AC([0, 1]) is neither
topologically reflexive nor 2-topologically reflexive. In what follows, we shall
use the following notation. Given a function f : X → C, a subset A ⊆ X
with |A| ≥ 2 and a partition P of A, we set V(P, f,A) := V(P, f |A) and
V(f,A) := V(f |A , A).

Example 1. For each n ≥ 2, define the functions φ, φn : [0, 1] → [0, 1] by

φ(x) =

⎧
⎨

⎩

0 x ∈ [0, 1
2 ],

2x − 1 x ∈ [ 12 , 1]
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φn(x) =

⎧
⎨

⎩

2
n+1x x ∈ [0, n+1

2n ],

2x − 1 x ∈ [n+1
2n , 1].

Moreover, define T, Tn : AC([0, 1]) → AC([0, 1]) by T (f) = f ◦ φ and Tn(f) =
f ◦ φn. Clearly, each Tn is a surjective linear isometry.

We next show that T (f) = limn→∞ Tn(f) for each f ∈ AC([0, 1]), whence
T is an approximate local isometry. Let f ∈ AC([0, 1]). Since one can see that
{‖Tn(f) − T (f)‖∞}n∈N → 0 by Dini’s theorem, it is enough to show that
{V(Tn(f) − T (f))}n∈N → 0. For this purpose, let ε > 0 and choose δ > 0 such
that

n∑

i=1

|f(bi) − f(ai)| <
ε

4
,

for every finite family of non-overlapping open intervals {(ai, bi) : i = 1, . . . , n}
whose extreme points belong to [0, 1] and

∑n
i=1(bi − ai) < δ.

Choose n0 ∈ N such that 1/n0 < min{δ, 1/2}, and 0 < (n+1)/2n−1/2 <
δ for all n ≥ n0. From the additive property of the total variation we have

V (Tn(f) − T (f)) = V
(

Tn(f) − T (f),
[
0,

1
2

])
+ V

(
Tn(f) − T (f),

[
1
2
, 1

])
.

If P = {x0, . . . , xm} is a partition of [0, 1/2], then for each n ≥ n0

V
(

P, Tn(f) − T (f),
[
0,

1
2

])
=

m∑

i=1

|(Tn(f) − T (f))(xi)

− (Tn(f) − T (f))(xi−1)|

=
m∑

i=1

|f(φn(xi)) − f(φ(xi))

− f(φn(xi−1)) + f(φ(xi−1))|

=
m∑

i=1

∣∣∣∣f
(

2
n + 1

xi

)
− f

(
2

n + 1
xi−1

)∣∣∣∣ <
ε

4
,

because
m∑

i=1

(
2

n + 1
xi − 2

n + 1
xi−1

)
=

2
n + 1

1
2

=
1

n + 1
< δ.

Thus, for all n ≥ n0, we have

V
(

Tn(f) − T (f),
[
0,

1
2

])
≤ ε

4
.

Now, suppose that n ≥ n0 and P = {x0, . . . , xm} is a partition of [1/2, 1]. We
assume, with no loss of generality, that xk = (n + 1)/2n for some 1 ≤ k < m.
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Then we get

V
(

P, Tn(f) − T (f),
[
1
2
, 1

])
=

m∑

i=1

|(Tn(f) − T (f))(xi) − (Tn(f) − T (f))(xi−1)|

=
m∑

i=1

|f(φn(xi)) − f(φ(xi)) − f(φn(xi−1)) + f(φ(xi−1))|

=
k∑

i=1

|f
(

2
n + 1

xi

)
− f(2xi − 1) − f

(
2

n + 1
xi−1

)
+ f(2xi−1 − 1)| + 0

≤
k∑

i=1

∣∣∣∣f
(

2
n + 1

xi

)
− f

(
2

n + 1
xi−1

)∣∣∣∣ +
k∑

i=1

|f(2xi − 1) − f(2xi−1 − 1)|

<
ε

4
+

ε

4
=

ε

2
,

because
k∑

i=1

(
2

n + 1
xi − 2

n + 1
xi−1

)
≤ 2

n + 1
n + 1
2n

=
1
n

< δ

and
k∑

i=1

(2xi − 1 − 2xi−1 + 1) = 2
k∑

i=1

(xi − xi−1) = 2
(

n + 1
2n

− 1
2

)
=

1
n

< δ.

Then for any n ≥ n0, we have

V
(

Tn(f) − T (f),
[
1
2
, 1

])
≤ ε

2
,

and in consequence, V(Tn(f)−T (f)) < ε. Therefore, {V(Tn(f)−T (f))}n∈N →
0, as claimed.

The main result of this paper is the following description of the topolog-
ical reflexive closure of the set of linear isometries from AC(X) onto AC(Y ).

Theorem 2. Let T ∈ reftop(G(AC(X),AC(Y ))). Then T is an isometry of the
form

T (f)(y) = λf(φ(y)) (f ∈ AC(X), y ∈ Y ),

where λ ∈ T and φ : Y → X is a surjective, monotonic, absolutely continuous
function. Moreover, T is surjective if and only if φ is injective and φ−1 is
absolutely continuous.

Proof. We have divided the proof into a series of claims. �

Claim 1. ‖T (f)‖Σ = ‖f‖Σ, ‖T (f)‖∞ = ‖f‖∞ and V(T (f)) = V(f) for all
f ∈ AC(X).
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Let f ∈ AC(X). Then there exists a sequence {Tf,n}n∈N in G(AC(X),
AC(Y )) such that limn→∞ Tf,n(f) = T (f). It is clear that limn→∞ ‖Tf,n(f)‖Σ =
‖T (f)‖Σ, limn→∞ ‖Tf,n(f)‖∞ = ‖T (f)‖∞ and limn→∞ V(Tf,n(f)) = V(T (f)).
Since ‖Tf,n(f)‖Σ = ‖f‖Σ, ‖Tf,n(f)‖∞ = ‖f‖∞ and V(Tf,n(f)) = V(f) for all
n ∈ N by Corollary 1, the claim holds.

Claim 2. For every f ∈ AC(X), there exist sequences {λf,n}n∈N in T and
{φf,n}n∈N in MH(Y,X) such that limn→∞ λf,n(f ◦ φf,n) = T (f).

Since T ∈ reftop(G(AC(X),AC(Y ))), the claim is an immediate conse-
quence of Theorem 1.

Claim 3. There exists a number λ ∈ T such that T (1X) = λ1Y .

Claim 1 yields V(T (1X)) = V(1X) = 0 and ‖T (1X)‖∞ = ‖1X‖∞ = 1.
Hence T (1X) is a unimodular constant function on Y , and therefore T (1X) =
λ1Y for some λ ∈ T.

Claim 4. For each y ∈ Y , the mapping Sy : AC(X) → C defined by

Sy(f) = λT (f)(y) (f ∈ AC(X)),

is a unital multiplicative linear functional.

Let y ∈ Y . Clearly, Sy(1X) = 1 by Claim 3. By the linearity of T , so is
Sy. Moreover, Sy is continuous since

|Sy(f)| = |T (f)(y)| ≤ ‖T (f)‖∞ ≤ ‖T (f)‖Σ = ‖f‖Σ

for all f ∈ AC(X). To prove that Sy is multiplicative, fix f ∈ AC(X). By
Claim 2, there exist sequences {λf,n}n∈N in T and {φf,n}n∈N in MH(Y,X)
such that

T (f) = lim
n→∞ λf,n(f ◦ φf,n).

It follows that

Sy(f) = λT (f)(y) = lim
n→∞ λλf,nf(φf,n(y)) ∈ Tσ(f),

where σ(f) denotes the spectrum of f . Applying the spherical version of the
Gleason–Kahane–Żelazko theorem stated in [16, Proposition 2.2], we conclude
that Sy = Sy(1X)Sy is multiplicative.

Claim 5. There exists a surjective, monotonic, absolutely continuous function
φ : Y → X such that T (f)(y) = λf(φ(y)) for all y ∈ Y and f ∈ AC(X).

Using Claim 4, we deduce easily that the mapping S : AC(X) → AC(Y )
defined by

S(f)(y) = λT (f)(y) (f ∈ AC(X), y ∈ Y )
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is a unital algebra homomorphism. By Gelfand theory, S is continuous and
induces a continuous mapping φ : Y → X such that S(f)(y) = f(φ(y)) for all
f ∈ AC(X) and y ∈ Y , and therefore

T (f)(y) = λf(φ(y)) (f ∈ AC(X), y ∈ Y ).

In fact, φ = idX ◦ φ = λT (idX) ∈ AC(Y ). Notice that φ is not constant since

V(φ) = V(λT (idX)) = V(T (idX)) = V(idX) > 0.

To show the surjectivity of φ, assume on the contrary that there exists x0 ∈ X
with x0 /∈ φ(Y ). Being φ(Y ) compact, we have r = d(x0, φ(Y )) > 0. Take
the function hx0,r ∈ AC(X) and notice that hx0,r(x0) = 1 and hx0,r = 0 on
φ(Y ). Hence T (hx0,r)(y) = λhx0,r(φ(y)) = 0 for all y ∈ Y , but T is injective
by Claim 1, a contradiction.

We next show that φ is monotonic. By Claim 2, there exist sequences
{λidX ,n}n∈N in T and {φidX ,n}n∈N in MH(Y,X) such that

T (idX) = lim
n→∞ λidX ,nφidX ,n.

We assume, without loss of generality, that {λidX ,n}n∈N is convergent to a
certain λidX

∈ T, and so

φ(y) = λT (idX)(y) = λλidX
lim
n→∞ φidX ,n(y) (y ∈ Y ).

Notice that λλidX
= ±1 because |λλidX

| = 1 and λλidX

= (limn→∞ φidX ,n(y))/φ(y) ∈ R for some y ∈ Y with φ(y) = 0. For each n ∈ N,
since φidX ,n ∈ MH(Y,X), one of the following cases holds: φidX ,n(mY ) = mX

and φidX ,n(MY ) = MX , or φidX ,n(mY ) = MX and φidX ,n(MY ) = mX . Since

φ(mY ) = λλidX
lim
n→∞ φidX ,n(mY )

and

φ(MY ) = λλidX
lim
n→∞ φidX ,n(MY ),

one can easily conclude that there exists some n0 ∈ N such that either
φidX ,n(mY ) = mX and φidX ,n(MY ) = MX for all n ≥ n0, or φidX ,n(mY ) =
MX and φidX ,n(MY ) = mX for all n ≥ n0. It shows that either all φidX ,n’s
with n ≥ n0 are increasing, or all of them are decreasing. Now, taking into ac-
count that φ(y) = λλidX

limn→∞ φidX ,n(y) for all y ∈ Y and λλidX
∈ {1,−1},

it easily follows that φ is monotonic.

Claim 6. T is surjective if and only if φ is injective and φ−1 is absolutely
continuous.

Assume that T is surjective. Let y1, y2 be in Y with φ(y1) = φ(y2). By
Claim 5, we have

T (f)(y1) = λf(φ(y1)) = λf(φ(y2)) = T (f)(y2)
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for all f ∈ AC(X), that is, g(y1) = g(y2) for all g ∈ AC(Y ). This implies
y1 = y2 since AC(Y ) separates the points of Y and thus φ is injective. Now,
using Claim 5, we have λg◦φ−1 ∈ AC(X) for all g ∈ AC(Y ) by the surjectivity
of T , and taking g = λidY , we conclude that φ−1 ∈ AC(X). This proves an
implication, and the converse one follows by applying Theorem 1.

Now we prove that every local isometry between AC(X)-spaces is a sur-
jective isometry.

Corollary 2. The set G(AC(X),AC(Y )) is algebraically reflexive.

Proof. Let T ∈ refalg(G(AC(X),AC(Y ))). By Theorem 2 we have a number
λ ∈ T and a surjective, monotonic, absolutely continuous function φ : Y → X
such that

T (f)(y) = λf(φ(y)) (f ∈ AC(X), y ∈ Y ).

We need to show that φ ∈ MH(Y,X) to assure that T is surjective by Theorem
1. Define h(x) = x−mX+1 for all x ∈ X. Since T ∈ refalg(G(AC(X),AC(Y ))),
Theorem 1 asserts the existence of a number λh ∈ T and a map φh ∈ MH(Y,X)
for which

T (h)(y) = λhh(φh(y)) = λh(φh(y) − mX + 1) (y ∈ Y ).

It follows that λ(φ(y) − mX + 1) = λh(φh(y) − mX + 1) for each y ∈ Y ,
which taking into account that |λ| = |λh| = 1 implies that φ(y) − mX + 1 =
φh(y) − mX + 1. Hence φ = φh. Thus T ∈ G(AC(X),AC(Y )), and the proof
is complete. �

We also show that every (approximate) 2-local isometry between AC(X)-
spaces is an (approximate) local isometry.

Theorem 3. The following inclusions are fulfilled:

2-reftop(G(AC(X),AC(Y ))) ⊆ reftop(G(AC(X),AC(Y ))),

2-refalg(G(AC(X),AC(Y ))) ⊆ refalg(G(AC(X),AC(Y ))),

Proof. Let Δ ∈ 2-reftop(G(AC(X),AC(Y ))). We first prove that for each y ∈
Y , the complex-valued function Δy on AC(X) defined by

Δy(f) = Δ(f)(y) (f ∈ AC(X)),

is linear. According to the spherical version of the Kowalski–S�lodkowski the-
orem [16], it suffices to show that Δy is 1-homogeneous and satisfies that
Δy(f) − Δy(g) ∈ Tσ(f − g) for all f, g ∈ AC(X). The 1-homogeneity follows
immediately since Δ is an approximate 2-local isometry. For the spectral condi-
tion, let f, g ∈ AC(X) and take {λf,g,n}n∈N in T and {φf,g,n}n∈N in MH(Y,X)
such that

lim
n→∞ λf,g,nf(φf,g,n(y)) = Δ(f)(y),

lim
n→∞ λf,g,ng(φf,g,n(y)) = Δ(g)(y).
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Thus

Δy(f) − Δy(g) = lim
n→∞ λf,g,n(f − g)(φf,g,n(y)) ∈ Tσ(f − g).

Hence Δ is linear by the arbitrariness of y and, consequently,
Δ ∈ reftop(G(AC(X),AC(Y ))).

An analogous proof gives the second inclusion of the statement. �

From Theorem 3 and Corollary 2 we immediately obtain the following
theorem, which was a part of the main result in [14].

Theorem 4. The set G(AC(X),AC(Y )) is 2-algebraically reflexive. �

We next study the topological reflexivity of other distinguished subsets
of linear transformations of AC(X).

Let E be a Banach space. Let us recall that an isometric reflection of E
is a linear isometry T : E → E which is involutive, that is, T 2 = IdE ; and a
generalized bi-circular projection of E is a linear projection P : E → E such
that P + τ(IdE − P ) is a linear surjective isometry for some τ ∈ T with τ = 1.
Note that each isometric reflection of E is surjective. The symbols G2(E) and
GBP(E) stand for the sets of isometric reflections and generalized bi-circular
projections of E, respectively.

Characterizations of both types of maps on AC(X) were stated in [13]
when AC(X) is equipped with the maximum norm

‖f‖M = max {‖f‖∞ ,V(f)} (f ∈ AC(X)).

According to Corollary 1, it easily follows that each T ∈ G(AC(X),AC(Y ))
is an isometry with respect to ‖·‖M such that T (1X) is a unimodular constant
function. Then one can obtain the form of isometric reflections and generalized
bi-circular projections on AC(X) endowed with the Σ-norm by [13, Theorem
2.2 (1) and Corollary 3.3]. But we include the proofs to give a self-contained
paper.

Theorem 5. A map T : AC(X) → AC(X) is an isometric reflection if and only
if there exist a number λ ∈ {−1, 1} and a map φ ∈ MH2(X) such that

T (f) = λ(f ◦ φ) (f ∈ AC(X)).

Proof. Assume first that T ∈ G2(AC(X)). By Theorem 1, there are a number
λ ∈ T and a map φ ∈ MH(X) such that T (f) = λ(f ◦φ) for all f ∈ AC(X). In
particular, T (1X) = λ1X and T 2(1X) = λ21X . Since T 2 = IdAC(X), it follows
that 1X = λ21X and so λ ∈ {±1}. Moreover,

φ2(x) = λT (φ)(x) = λT (λT (idX))(x) = λ2T 2(idX)(x) = x (x ∈ X),

as desired. The converse is clear. �
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Theorem 6. A map P : AC(X) → AC(X) is a generalized bi-circular projec-
tion if and only if there exist a number λ ∈ {−1, 1} and a map φ ∈ MH2(X)
such that

P (f) =
1
2

[f + λ(f ◦ φ)] (f ∈ AC(X)).

Proof. Assume that P ∈ GBP(AC(X)). Then P +τ(IdAC(X)−P ) ∈ G(AC(X))
for some τ ∈ T \ {1}. By Theorem 1, we can find a constant λ ∈ T and a map
φ ∈ MH(X) such that

[P + τ(IdAC(X) − P )](f)(x) = λf(φ(x)) (f ∈ AC(X), x ∈ X),

which gives the following formula for P :

P (f)(x) = (1 − τ)−1[−τf(x) + λf(φ(x))] (f ∈ AC(X), x ∈ X).

Since P 2 = P , we have the following equation:

τf(x) − (τ + 1)λf(φ(x)) + λ2f(φ2(x)) = 0 (f ∈ AC(X), x ∈ X).

Suppose that there exists x0 ∈ X such that x0 = φ(x0) and x0 = φ2(x0). Take

r = min
{|x0 − φ(x0)|, |x0 − φ2(x0)|

}

and consider the function hx0,r ∈ AC(X). Observe that hx0,r(x0) = 1 and
hx0,r(φ(x0)) = 0 = hx0,r(φ

2(x0)). Taking f = hx0,r and x = x0 in the equation
above, we obtain τ = 0, a contradiction. Hence φ(x) = x or φ2(x) = x for all
x ∈ X. In any case we conclude that φ2 = idX .

We now distinguish two cases. If φ = idX , choose x0 ∈ X such that
x0 = φ(x0) and consider hx0,s ∈ AC(X) with s = |x0 − φ(x0)|. Substituting
in the equation, first x0 and hx0,s, and after 1X , we infer that τ + λ2 = 0
and τ − (τ + 1)λ + λ2 = 0, respectively. Hence τ = −1 and λ2 = 1. Hence
λ ∈ {−1, 1}, and the formula of P yields

P (f)(x) =
1
2

[f(x) + λf(φ(x))] (f ∈ AC(X), x ∈ X).

In the another case, if φ = idX , taking f = 1X in the equation we deduce
τ − (τ + 1)λ + λ2 = 0. Hence λ = τ or λ = 1. Using the formula, it follows
that

P (f)(x) = 0 =
1
2

[f(x) − f(φ(x))] (f ∈ AC(X), x ∈ X)

or

P (f)(x) = f(x) =
1
2

[f(x) + f(φ(x))] (f ∈ AC(X), x ∈ X).

Conversely, if P is given as the average of the identity operator with an isomet-
ric reflection on AC(X), an easy verification shows that P is in GBP(AC(X)).

�
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It is interesting to note that although the isometry group of AC(X) is not
necessarily topologically reflexive, but below it is shown the sets of isometric
reflections and generalized bi-circular projections of AC(X) are topologically
reflexive. In particular, the next two corollaries improve the conclusions ob-
tained in Remarks 2.5 and 3.5 in [13] concerning the algebraic reflexivity of
G2(AC([0, 1])) and GBP(AC([0, 1])), respectively.

Corollary 3. The set G2(AC(X)) is topologically reflexive.

Proof. Let T ∈ reftop(G2(AC(X))). By Theorem 5, for every f ∈ AC(X), there
exist {λf,n}n∈N in {−1, 1} and {φf,n}n∈N in MH2(X) such that

lim
n→∞ λf,n(f ◦ φf,n) = T (f).

In view of Theorem 1, T ∈ reftop(G(AC(X))), and therefore according to
Theorem 2, there exist a number λ ∈ T and a surjective, monotonic, absolutely
continuous function φ : X → X such that

T (f) = λ(f ◦ φ) (f ∈ AC(X)).

Hence λ1X = T (1X) = limn→∞ λ1X ,n1X and therefore λ = limn→∞ λ1X ,n.
Since λ1X ,n ∈ {−1, 1} for all n ∈ N, it is deduced easily that λ ∈ {−1, 1}.

We next prove that φ2 = idX . Define the function h(x) = x−mX +1 for
all x ∈ X. We can take a sequence {λh,n}n∈N in {−1, 1} converging to some
λh ∈ {−1, 1} and a sequence {φh,n}n∈N in MH2(X) such that

T (h) = lim
n→∞ λh,n(h ◦ φh,n) = λh lim

n→∞(h ◦ φh,n).

Therefore we obtain that

λ(h ◦ φ) = λh lim
n→∞(h ◦ φh,n).

On a hand, since the convergence in the Σ-norm implies pointwise convergence,
we infer that

λ(φ(x) − mX + 1) = λh lim
n→∞(φh,n(x) − mX + 1) (x ∈ X),

which clearly yields

φ(x) = lim
n→∞ φh,n(x) (x ∈ X),

and, consequently, λ = λh. On the other hand, since the convergence in the
Σ-norm implies uniform convergence, we have that {φh,n}n∈N converges uni-
formly to φ. Finally, taking into account that φh,n ∈ MH2(X) for all n ∈ N, we
deduce easily that φ2(x) = x for all x ∈ X. Hence φ2 = idX , which especially
yields φ = φ−1. Now, since φ is a monotonic absolutely continuous function,
it is immediately inferred that φ ∈ MH2(X). Therefore, T ∈ G2(AC(X)) by
Theorem 5, as desired. �

Corollary 4. The set GBP(AC(X)) is topologically reflexive.
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Proof. Let P ∈ reftop(GBP(AC(X))). By Theorem 6, for every f ∈ AC(X),
there are sequences {λf,n}n∈N in {−1, 1} and {φf,n}n∈N in MH2(X) such that

lim
n→∞

1
2

[f + λf,n(f ◦ φf,n)] = P (f).

Hence, for every f ∈ AC(X), we have

lim
n→∞ λf,n(f ◦ φf,n) = 2P (f) − f,

and so 2P − IdAC(X) ∈ reftop(G2(AC(X))). Hence 2P − IdAC(X) ∈ G2(AC(X))
by Corollary 3, and therefore P ∈ GBP(AC(X)). �

We also may apply the preceding corollaries to obtain the 2-topological
reflexivity of the sets of isometric reflections and generalized bi-circular pro-
jections on AC(X)-spaces.

Corollary 5. The sets G2(AC(X)) and GBP(AC(X)) are 2-topologically reflex-
ive.

Proof. Let Δ ∈ 2-reftop(G2(AC(X))). We first prove that for each y ∈ Y , the
functional Δy defined by

Δy(f) = Δ(f)(y) (f ∈ AC(X)),

is linear. According to the spherical version of the Kowalski–S�lodkowski the-
orem [16], it suffices to show that Δy is 1-homogeneous and satisfies that
Δy(f) − Δy(g) ∈ Tσ(f − g) for all f, g ∈ AC(X). The 1-homogeneity follows
immediately since Δ is an approximate 2-local isometry. For the spectral con-
dition, let f, g ∈ AC(X) and take {λf,g,n}n∈N in T and {φf,g,n}n∈N in MH2(X)
such that

lim
n→∞ λf,g,nf(φf,g,n(y)) = Δ(f)(y),

lim
n→∞ λf,g,ng(φf,g,n(y)) = Δ(g)(y).

Thus

Δy(f) − Δy(g) = lim
n→∞ λf,g,n(f − g)(φf,g,n(y)) ∈ Tσ(f − g).

Hence Δ is linear by the arbitrariness of y. Consequently, Δ ∈ reftop(G2(AC(X))),
and therefore Δ ∈ G2(AC(X)) by Corollary 3. This proves that G2(AC(X)) is
2-topologically reflexive.

To prove the 2-topological reflexivity of GBP(AC(X)), let
Δ ∈ 2-reftop(GBP(AC(X))). For any f, g ∈ AC(X), there are sequences
{λf,g,n}n∈N in {−1, 1} and {φf,g,n}n∈N in MH2(X) such that

lim
n→∞

1
2

[f + λf,g,n(f ◦ φf,g,n)] = Δ(f),

lim
n→∞

1
2

[g + λf,g,n(g ◦ φf,g,n)] = Δ(g).



Vol. 76 (2021) Approximate Local Isometries on Spaces. . . Page 15 of 16 72

Hence, for every f, g ∈ AC(X), we have

lim
n→∞ λf,g,n(f ◦ φf,g,n) = 2Δ(f) − f,

lim
n→∞ λf,g,n(g ◦ φf,g,n) = 2Δ(g) − g,

and this says that 2Δ − IdAC(X) ∈ 2-reftop(G2(AC(X))). Since G2(AC(X)) is
2-topologically reflexive, it follows that 2Δ − IdAC(X) ∈ G2(AC(X)), and thus
Δ ∈ GBP(AC(X)). �
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