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1. Introduction and statement of the result

This paper is concerned with the algebraic reflexivity of the set of all
diameter-preserving linear bijections between C(X)-spaces. We shall de-
note by C(X) the Banach algebra of all continuous complex-valued func-
tions on a compact Hausdorff space X with the usual supremum norm.

Our interest focuses on the local behaviour of linear maps on C(X)
which preserve the diameter of the ranges of functions in C(X). Let us
recall that, for compact Hausdorff spaces X and Y , a map T from C(X)
into C(Y ) is said to be diameter-preserving if diam(T (f)) = diam(f) for
all f ∈ C(X), where diam(f) denotes the diameter of f(X).

Győry and Molnár ([11]) introduced this kind of maps and stated the
general form of diameter-preserving linear bijections of C(X), when X
is a first countable compact Hausdorff space. Cabello Sánchez ([4]) and,
independently, González and Uspenskij ([9]) extended this description
by removing the hypothesis of first countability. Namely, they proved
the following:

Theorem 1 ([4, 9, 11]). Let X and Y be compact Hausdorff spaces. A
linear bijection T : C(X) → C(Y ) is diameter-preserving if and only if
there exist a homeomorphism φ : Y → X, a linear functional µ : C(X)→
C, and a number λ ∈ C with |λ| = 1 and λ 6= −µ(1X) such that

T (f)(y) = λf(φ(y)) + µ(f)

for every y ∈ Y and f ∈ C(X).
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The statement of Theorem 1 also holds for the algebra of continuous
real-valued functions on X.

A problem addressed by different authors is the Banach–Stone type
representation of diameter-preserving maps between function spaces.
See, for example, the papers by Aizpuru and Rambla [1], Barnes and
Roy [2], Font and Hosseini [7], Győry [10], Jamshidi and Sady [13], and
Rao and Roy [20].

On the other hand, a linear map T of C(X) into itself is called a
local isometry (respectively, local automorphism) if for every f ∈ C(X),
there exists a surjective linear isometry (respectively, automorphism) Tf
of C(X), depending on f , such that T (f) = Tf (f).

It is said that the set of all surjective linear isometries (respectively,
automorphisms) of C(X) is algebraically reflexive if every local isometry
(respectively, local automorphism) of C(X) is a surjective linear isometry
(respectively, automorphism) of C(X).

The algebraic reflexivity of both sets of surjective linear isometries
and automorphisms of C(X) was stated by Molnár and Zalar in [18,
Theorem 2.2] whenever X is a first countable compact Hausdorff space.
Furthermore, Cabello and Molnár ([5]) gave an example where that re-
flexivity fails even if X lacks first countability at only one point. After-
wards, the algebraic reflexivity of some function spaces has been studied
by Botelho and Jamison [3], Cabello Sánchez and Molnár [5], Dutta and
Rao [6], Jarosz and Rao [14], and Oi [19], among others.

Motivated by the precedent considerations, we introduce the following
concept.

Definition 1. Let X and Y be compact Hausdorff spaces. A linear
map T : C(X)→ C(Y ) is local diameter-preserving if for every f ∈C(X),
there exists a diameter-preserving linear bijection Tf : C(X) → C(Y ),
depending on f , such that T (f) = Tf (f).

We say that the set of all diameter-preserving linear bijections
from C(X) to C(Y ) is algebraically reflexive if every local diameter-
preserving linear map from C(X) to C(Y ) is a diameter-preserving bi-
jection.

Our main result is the following.

Theorem 2. Let X and Y be first countable compact Hausdorff spaces.
Then the set of all diameter-preserving linear bijections from C(X)
to C(Y ) is algebraically reflexive.

Our proof consists of showing that every local diameter-preserving
linear map T from C(X) to C(Y ) can be expressed in the form

T (f)(y) = λf(φ(y)) + µ(f) (y ∈ Y, f ∈ C(X)),
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with λ, φ, and µ being as in the statement of Theorem 1. Using this
representation, it is easily proven that T is surjective.

Our approach is in the line of the proof of the known Holsztyński The-
orem [12], which provides a Banach–Stone type representation for non-
surjective linear isometries of C(X) with the supremum norm. However,
the adaptation of the Holsztyński’s method to the setting of diameter-
preserving linear maps is far from being immediate due to the represen-
tation of the diameter-preserving linear bijections from C(X) to C(Y )
as sum of a weighted composition operator from C(X) to C(Y ) and a
linear functional on C(X).

We shall apply the known Gleason–Kahane–Żelazko Theorem [8, 16,
21] to prove our main result. A similar strategy was used in the study
of local isometries between complex-valued Lipschitz algebras [15] or
uniform algebras [5]. Recently, Li, Peralta, Wang, and Wang ([17]) es-

tablished a spherical variant of the Gleason–Kahane–Żelazko Theorem
to analyse weak-local isometries on uniform algebras and Lipschitz alge-
bras.

2. Proof of Theorem 2

Before proving our result, we fix some notation and recall the existence
of certain peaking functions. Given a set X, the notation |X| denotes
the cardinality of X and 1X denotes the constant function on X which
takes the value 1. For a set X with |X| ≥ 2, we put

X̃ = {(x1, x2) ∈ X ×X : x1 6= x2},

X2 = {{x1, x2} : (x1, x2) ∈ X̃}.

As usual, T stands for the set of all unimodular complex numbers. We
also denote

T+ = {eit : t ∈ [0, π[}.

An application of Urysohn’s lemma shows that if X is a first count-

able compact Hausdorff space and (x1, x2) ∈ X̃, then there exists a
continuous function h(x1,x2) : X → [0, 1] with h−1(x1,x2)

({1}) = {x1} and

h−1(x1,x2)
({0}) = {x2}. Hence

h(x1,x2)(x1)− h(x1,x2)(x2) = 1 = diam(h(x1,x2))

and

{(x, y) ∈ X̃ : h(x1,x2)(x)− h(x1,x2)(y) = 1} = {(x1, x2)}.
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Therefore, given a first countable compact Hausdorff space X and any
{x1, x2} ∈ X2, we may consider the nonempty sets:

F{x1,x2}={f ∈ C(X) : |f(x1)− f(x2)| = 1 = diam(f)},
F ′{x1,x2}={f ∈F{x1,x2} : {{x, y}∈X2 : |f(x)− f(y)|=1}={{x1, x2}}}.

We should note that, since the range of a local diameter-preserving
linear map is a subspace without any additional (separating) property,
the standard reasoning does not work here in some steps of the proof.
Indeed, we need the next two lemmas. The first one provides some func-
tions in F ′{x1,x2} satisfying an additional condition and the second one

shows, in particular, that C(X) is the linear span of
⋃
{x1,x2}∈X2

F{x1,x2}.

Lemma 1. Let X be a first countable compact Hausdorff space and
let x1, x2, x3, x4 be pairwise distinct points in X. Then there exists a
function f ∈ F ′{x1,x2} for which f(x3) = f(x4).

Proof: We construct the function f in several stages:

(1) Choose f0 ∈ F ′{x1,x2} with values in [0, 1] such that f−10 ({1}) =

{x2} and f−10 ({0}) = {x1}. If f0(x3) = f0(x4), then f0 is the
desired function. So we assume that f0(x3) 6= f0(x4). Put a =
f0(x3) and b = f0(x4), and assume without loss of generality that
a < b. Clearly, 0 < a < b < 1.

(2) Let U and V be neighbourhoods of x3 and x4, respectively, with
U ∩ V = ∅ and x2 /∈ U ∪ V . Choose g0 ∈ C(X) satisfying g0 ≤ 0,
g0(x3) = ln(b), g0(x4) = ln(a), and g0 = 0 on X\(U ∪V ). For such
a function it suffices to take h0, h1 ∈ C(X) with values in [0, 1]
such that h0(x3) = 1 and supp(h0) ⊆ U and similarly h1(x4) = 1
and supp(h1) ⊆ V . Then g0 = ln(b)h0 + ln(a)h1 has the desired
properties.

(3) Put g = eg0 . Since g0 ≤ 0, we have 0 < g ≤ 1. Clearly, g(x3) = b,
g(x4) = a, and g(x2) = 1.

(4) Take f = f0g. Then f(x2) = 1, f(x1) = 0, and

f(x3) = f0(x3)g(x3) = ab = f0(x4)g(x4) = f(x4).

Moreover, for any x ∈ X, we have f(x) = 1 only if f0(x) = 1,
i.e., x = x2. Similarly, f(x) = 0 if and only if f0(x) = 0, i.e.,
x = x1. Hence 0 < f(x) < 1 for all x /∈ {x1, x2}. This implies that
f ∈F ′{x1,x2} and this completes the proof.

Lemma 2 ([13, Lemma 2.1(i)]). Let X be a compact Hausdorff space
and x1, x2 ∈ X be distinct. If f ∈ C(X) such that 0 ≤ f ≤ 1 and
f(x1) = f(x2), then there exists a function g ∈ C(X) such that both g
and h := 1

2f+g satisfy g(x1)−g(x2) = 1 = diam(g) and h(x1)−h(x2) =
1 = diam(h). In particular, we have g, h ∈ F{x1,x2}.
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Let T be a local diameter-preserving linear map from C(X) to C(Y ).
We have divided the proof of Theorem 2 in several steps.

Step 1. T is diameter-preserving.

Proof: Let f ∈C(X). By hypothesis, there is a diameter-preserving lin-
ear bijection Tf from C(X) to C(Y ) such that T (f) = Tf (f). Hence
diam(T (f)) = diam(Tf (f)) = diam(f).

Step 2. For every f ∈C(X), there exist a homeomorphism φf : Y →X, a
linear functional µf on C(X), and a number λf ∈ T with λf 6= −µf (1X)
such that

T (f)(y) = λff(φf (y)) + µf (f)

for all y ∈ Y .

Proof: This follows immediately from Definition 1 and Theorem 1.

Step 2 will be frequently applied without any explicit mention along
the paper. By Step 2, there exists a homeomorphism from Y onto X.
Hence |Y | = |X|. Since Theorem 2 is easy to verify when |Y | = 1, we
shall suppose |Y | ≥ 2 from now on.

Step 3. For every (x1, x2) ∈ X̃, the set

B(x1,x2) =
⋂

f∈F{x1,x2}

B(x1,x2),f

is nonempty, where

B(x1,x2),f ={((y1, y2), λ)∈ Ỹ×T : T (f)(y1)−T (f)(y2)=λ(f(x1)−f(x2))}
(f ∈ F{x1,x2}).

Proof: Let (x1, x2) ∈ X̃. We shall first prove that for each f ∈ F{x1,x2},

the set B(x1,x2),f is a nonempty closed subset of Ỹ ×T. Fix f ∈ F{x1,x2}
and take y1, y2 ∈ Y such that φf (y1) = x1 and φf (y2) = x2. Clearly,
y1 6= y2. We have

T (f)(y1)− T (f)(y2) = λf (f(φf (y1))− f(φf (y2))) = λf (f(x1)− f(x2)),

and thus ((y1, y2), λf ) ∈ B(x1,x2),f . Therefore B(x1,x2),f is nonempty, and

to prove that it is closed in Ỹ × T, assume that {((yi, zi), λi)}i∈I is a

net in B(x1,x2),f converging to ((y1, y2), λ) in Ỹ × T equipped with the
product topology. We have

T (f)(yi)− T (f)(zi) = λi(f(x1)− f(x2))

for all i ∈ I. Since T (f) ∈ C(Y ), we infer that

T (f)(y1)− T (f)(y2) = λ(f(x1)− f(x2)),
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and thus ((y1, y2),λ)∈B(x1,x2),f . A similar reasoning shows that B(x1,x2),f

is a nonempty closed subset of Y 2 × T.
We shall prove next that the family {B(x1,x2),f : f ∈ F{x1,x2}} has the

finite intersection property. Let n ∈ N and f1, . . . , fn ∈ F{x1,x2}. Define
the function g : X → C by

g(x) =
1

n

n∑
i=1

(fi(x1)− fi(x2))fi(x).

It is clear that g ∈ C(X) with g(x1) − g(x2) = 1. By Step 2, consider
λg ∈ T and take y1, y2 ∈ Y such that φg(y1) = x1 and φg(y2) = x2.
Clearly, y1 6= y2. We have

T (g)(y1)−T (g)(y2) = λg(g(φg(y1))−g(φg(y2))) = λg(g(x1)−g(x2))=λg.

Using the linearity of T , we can write

λg = T (g)(y1)−T (g)(y2)=
1

n

n∑
i=1

(fi(x1)− fi(x2))(T (fi)(y1)−T (fi)(y2)).

By Step 1, note that

|(fi(x1)− fi(x2))(T (fi)(y1)− T (fi)(y2))|= |T (fi)(y1)− T (fi)(y2)|

≤diam(T (fi)) = diam(fi) = 1

for every i ∈ {1, . . . , n}. By the strict convexity of C, it follows that

T (fi)(y1)− T (fi)(y2) = λg(fi(x1)− fi(x2))

for all i ∈ {1, . . . , n}, and thus ((y1, y2), λg) ∈
⋂n
i=1 B(x1,x2),fi , as desired.

Hence {B(x1,x2),f : f ∈ F{x1,x2}} is a family of closed subsets of the

compact space Y 2 × T with the finite intersection property. Therefore
there exists ((y1, y2), λ) ∈ Y 2 × T such that

T (f)(y1)− T (f)(y2) = λ(f(x1)− f(x2))

for any f ∈F{x1,x2}. This implies y1 6= y2 and thus ((y1, y2), λ) ∈ B(x1,x2).

Step 4. For every (x1, x2) ∈ X̃, there exist (y1, y2) ∈ Ỹ and λ ∈ T+

such that

B(x1,x2) = {((y1, y2), λ), ((y2, y1),−λ)}.
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Proof: Let (x1, x2) ∈ X̃. By Step 3, the set B(x1,x2) is nonempty. Hence
we can take an element ((y1, y2), λ) ∈ B(x1,x2). Note that ((y2, y1),−λ) ∈
B(x1,x2). Let ((z1, z2), β) ∈ B(x1,x2) be arbitrary. We have

T (f)(y1)− T (f)(y2) = λ(f(x1)− f(x2)),

T (f)(z1)− T (f)(z2) = β(f(x1)− f(x2)),

for all f ∈ F{x1,x2}. Fix any f ∈ F ′{x1,x2}. Using Step 2, we deduce

λf (f(φf (y1))− f(φf (y2))) = λ(f(x1)− f(x2)),

λf (f(φf (z1))− f(φf (z2))) = β(f(x1)− f(x2)).

Since f ∈ F ′{x1,x2} and

|f(φf (y1))− f(φf (y2))| = |f(φf (z1))− f(φf (z2))| = 1,

we derive from above that

{(φf (y1), φf (y2)), (φf (z1), φf (z2))} ⊆ {(x1, x2), (x2, x1)}.
We have four possibilities:

(1) x1 = φf (y1), x2 = φf (y2), x1 = φf (z1), x2 = φf (z2).

(2) x1 = φf (y1), x2 = φf (y2), x1 = φf (z2), x2 = φf (z1).

(3) x1 = φf (y2), x2 = φf (y1), x1 = φf (z2), x2 = φf (z1).

(4) x1 = φf (y2), x2 = φf (y1), x1 = φf (z1), x2 = φf (z2).

Using the injectivity of φf , we deduce that

((z1, z2), β) ∈ {((y1, y2), λ), ((y2, y1),−λ)}.
Therefore

B(x1,x2) = {((y1, y2), λ), ((y2, y1),−λ)}.
Finally, notice that either λ ∈ T+ or −λ ∈ T+.

Step 5. For every (x1, x2) ∈ X̃, the set

A(x1,x2) = {(y1, y2) ∈ Ỹ | ∃λ ∈ T+ : ((y1, y2), λ) ∈ B(x1,x2)}

is a singleton. Let Γ: X̃ → Ỹ be the map given by

{Γ(x1, x2)} = A(x1,x2).

Furthermore, (y2, y1) = Γ(x2, x1) if (y1, y2) = Γ(x1, x2).

Proof: Given (x1, x2) ∈ X̃, the set A(x1,x2) is a singleton by Step 4, say

A(x1,x2) ={(y1, y2)}. Hence Γ(x1, x2)=(y1, y2)∈ Ỹ . Let (x1, x2),(x3, x4)∈
X̃ be such that (x1, x2) = (x3, x4). Let Γ(x1, x2) = (y1, y2) ∈ Ỹ . Hence
(y1, y2)∈A(x1,x2) and therefore there exists λ∈T+such that ((y1, y2), λ)∈
B(x1,x2). It follows that ((y1, y2), λ) ∈ B(x3,x4), hence (y1, y2) ∈ A(x3,x4)
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and so (y1, y2) = Γ(x3, x4). Consequently, Γ(x1, x2) = Γ(x3, x4). This

justifies that the map Γ: X̃ → Ỹ is well-defined.
For the last statement, let (y1, y2)=Γ(x1, x2). Then (y1, y2) ∈ A(x1,x2)

and therefore there exists λ ∈ T+ such that ((y1, y2), λ) ∈ B(x1,x2). It
follows that ((y2, y1), λ) ∈ B(x2,x1), hence (y2, y1) ∈ A(x2,x1) and thus
(y2, y1) = Γ(x2, x1), as required.

Step 6. If (x1, x2) ∈ X̃ and (y1, y2) = Γ(x1, x2), then

T (f)(y1) = T (f)(y2)

for all f ∈ C(X) such that f(x1) = f(x2).

Proof: Let (x1, x2) ∈ X̃ and (y1, y2) = Γ(x1, x2). By Step 5, there is a
β(x1, x2) ∈ T+ such that

T (h)(y1)− T (h)(y2) = β(x1, x2)(h(x1)− h(x2))

for all h ∈ F{x1,x2}. Let f be in C(X) with f(x1) = f(x2). Assume first
that 0 ≤ f ≤ 1. By Lemma 2, we can take a function g ∈ F{x1,x2} such
that (1/2)f + g ∈ F{x1,x2}. Therefore

T

(
1

2
f + g

)
(y1)− T

(
1

2
f + g

)
(y2)

= β(x1, x2)

((
1

2
f + g

)
(x1)−

(
1

2
f + g

)
(x2)

)
.

Using the linearity of T and the equality

T (g)(y1)− T (g)(y2) = β(x1, x2)(g(x1)− g(x2)),

we get
T (f)(y1) = T (f)(y2).

If f is arbitrary, consider the decomposition

f = (Re f)+ − (Re f)− + i[(Im f)+ − (Im f)−],

apply the previous case to each one of the four functions of the decom-
position f/(1+ ||f ||∞), and the same conclusion is achieved by using the
linearity of T .

Some arguments used in Steps 7, 8, and 9 below appear for the first
time in the papers [4, 5].

Step 7. For every (x1, x2) ∈ X̃, there exists a number λ(x1, x2) ∈ T+

such that

T (f)(y1)− T (f)(y2) = λ(x1, x2)(f(x1)− f(x2))

for all f ∈ C(X), where (y1, y2) = Γ(x1, x2). Furthermore, λ(x1, x2) =
λ(x2, x1).
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Proof: Let (x1, x2) ∈ X̃ and (y1, y2) = Γ(x1, x2). Let λ(x1, x2) be the
number given by

λ(x1, x2) = T (f)(y1)− T (f)(y2),

where f is any function in C(X) which satisfies f(x1)− f(x2) = 1. The
number λ(x1, x2) does not depend on such a function f by Step 6, and it
is well-defined. Using the homogeneity of T , we may deduce easily that

T (f)(y1)− T (f)(y2) = λ(x1, x2)(f(x1)− f(x2))

for all f ∈ C(X).
Since (y1, y2) = Γ(x1, x2), Step 5 gives a λ ∈ T+ such that

T (f)(y1)− T (f)(y2) = λ(f(x1)− f(x2))

for all f ∈ F{x1,x2}. In particular, taking f = h(x1,x2) yields

λ(x1, x2) = T (h(x1,x2))(y1)− T (h(x1,x2))(y2) = λ,

and so λ(x1, x2) ∈ T+.
Similarly, since (y2, y1) = Γ(x2, x1) by Step 5, we have

T (f)(y2)− T (f)(y1) = λ(x2, x1)(f(x2)− f(x1))

for all f ∈ C(X). Combining the equations obtained, we infer that

λ(x1, x2)(f(x1)− f(x2)) = T (f)(y1)− T (f)(y2)

= −(T (f)(y2)− T (f)(y1))

= −λ(x2, x1)(f(x2)− f(x1))

= λ(x2, x1)(f(x1)− f(x2))

for all f ∈C(X), and taking f=h(x1,x2) yields λ(x1, x2) = λ(x2, x1).

Step 8. The map Γ is a bijection from X̃ to
⋃

(x1,x2)∈X̃ A(x1,x2).

Proof: Let (y1, y2) ∈
⋃

(x1,x2)∈X̃ A(x1,x2). Then (y1, y2) ∈ A(x1,x2) for

some (x1, x2)∈ X̃. By Step 5, A(x1,x2) = {(y1, y2)} and thus Γ(x1, x2) =
(y1, y2) by the definition of Γ. This proves the surjectivity of Γ.

To prove its injectivity, let (x1, x2), (x3, x4) ∈ X̃ be such that

(y1, y2) = Γ(x1, x2) = Γ(x3, x4),

where (y1, y2) ∈
⋃

(x1,x2)∈X̃ A(x1,x2). By Step 7, we have

λ(x1, x2)(f(x1)−f(x2)) = T (f)(y1)−T (f)(y2)=λ(x3, x4)(f(x3)−f(x4))

for all f ∈ C(X), with λ(x1, x2), λ(x3, x4) ∈ T+. Substituting any func-
tion f ∈ F ′{x1,x2}, we deduce that {x3, x4} = {x1, x2}. This implies that
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either (x1, x2) = (x4, x3) or (x1, x2) = (x3, x4). In the former case, we
would have

λ(x1, x2)(f(x1)− f(x2)) = λ(x3, x4)(f(x2)− f(x1))

= −λ(x3, x4)(f(x1)− f(x2))

for all f ∈C(X). In particular, for f=h(x1,x2)we would obtain λ(x1, x2)=
−λ(x3, x4), which is impossible. Therefore (x1, x2) = (x3, x4).

Step 9. Let (x1, x2), (x3, x4) ∈ X̃, (y1, y2) = Γ(x1, x2), and (y3, y4) =
Γ(x3, x4). Then

|{x1, x2} ∩ {x3, x4}| = |{y1, y2} ∩ {y3, y4}|.

In others words, if ΛX : X̃ → X2 and ΛY : Ỹ → Y2 are the maps defined
by ΛX(x1, x2) = {x1, x2} and ΛY (y1, y2) = {y1, y2}, respectively, we
have

|ΛX(x1, x2) ∩ ΛX(x3, x4)| = |ΛY (Γ(x1, x2)) ∩ ΛY (Γ(x3, x4))|

for all (x1, x2), (x3, x4) ∈ X̃.

Proof: Firstly, assume |{x1, x2}∩{x3, x4}| = 2. Then (x1, x2)∈{(x3, x4),
(x4, x3)}, hence (y1, y2)∈{Γ(x3, x4),Γ(x4, x3)} = {(y3, y4), (y4, y3)} and
thus

|{y1, y2} ∩ {y3, y4}| = 2.

Secondly, if |{x1, x2}∩{x3, x4}| = 1, then |{y1, y2}∩{y3, y4}| ≤ 1 by the
injectivity of Γ, and therefore

|{y1, y2} ∩ {y3, y4}| = 1.

Indeed, we can assume without loss of generality that x1 =x3 and x2 6=
x4, and assume on the contrary that |{y1, y2}∩{y3, y4}| = 0. By Step 7,
we have the equations

T (f)(y1)− T (f)(y2) = λ(x1, x2)(f(x1)− f(x2)),

T (f)(y3)− T (f)(y4) = λ(x1, x4)(f(x1)− f(x4)),

for all f ∈C(X). Since the finite sets in a first countable compact space X
are Gδ-sets, it is possible to take a continuous function f : X → [0, 1]
such that f−1({1}) = {x1} and f−1({0}) = {x2, x4} and, consequently,

{{x, y} ∈ X2 : |f(x)− f(y)| = 1} = {{x1, x2}, {x1, x4}}.
From the equations, it follows that

λf (f(φf (y1))− f(φf (y2))) = λ(x1, x2)(f(x1)− f(x2)),

λf (f(φf (y3))− f(φf (y4))) = λ(x1, x4)(f(x1)− f(x4)),

which imply that {φf (y1), φf (y2)},{φf (y3), φf (y4)}∈{{x1, x2},{x1, x4}}.
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In any case, we deduce that φf (yi) = x1 = φf (yj) for some i ∈ {1, 2} and
j∈{3, 4} with i 6=j. Since φf is injective, we get yi = yj , a contradiction.

Finally, assume |{x1, x2}∩{x3, x4}| = 0. Then |{y1, y2}∩{y3, y4}| ≤ 1
by the injectivity of Γ, and we shall prove that

|{y1, y2} ∩ {y3, y4}| = 0.

Assume on the contrary that y1 = y3 and y2 6= y4 (the other cases are
proved in a similar form). Then we have the two equations:

T (f)(y1)− T (f)(y2) = λ(x1, x2)(f(x1)− f(x2)),

T (f)(y1)− T (f)(y4) = λ(x3, x4)(f(x3)− f(x4)),

for all f ∈ C(X). It follows that

T (f)(y4)−T (f)(y2) = λ(x1, x2)(f(x1)−f(x2))−λ(x3, x4)(f(x3)−f(x4))

for all f ∈ C(X). Since {x1, x2} ∩ {x3, x4} = ∅, Lemma 1 provides a
function f ∈ F ′{x1,x2} satisfying f(x3) = f(x4). Hence we have

λf (f(φf (y4))− f(φf (y2))) = λ(x1, x2)(f(x1)− f(x2)),

which implies that {φf (y4), φf (y2)} = {x1, x2}. Using the first one of the
above-mentioned equations, we also obtain {φf (y1), φf (y2)} = {x1, x2}.
These equalities imply that φf (y4) = φf (y1) and, since φf is injective,
we get y4 = y1, hence y4 = y3, a contradiction.

Step 10. Assume |X| ≥ 3. For each x ∈ X and any (x1, x2) ∈ X̃
with x1 6= x 6= x2, there exists a unique point, depending only on x
and denoted by ϕ(x), in the intersection

ΛY (Γ(x, x1)) ∩ ΛY (Γ(x, x2)).

The map ϕ : X → Y defined in this way is injective and we have that

{ϕ(x1), ϕ(x2)} = ΛY (Γ(x1, x2)) for every (x1, x2) ∈ X̃.

Proof: Let x ∈ X and let x1, x2 ∈ X be with x1 6= x2 and x1 6= x 6= x2.
Let y be the unique point of the set ΛY (Γ(x, x1)) ∩ ΛY (Γ(x, x2)) (see
Step 9).

We claim that y ∈ ΛY (Γ(x, x3)) for every x3 ∈ X with x3 6= x,
which shows that y does not depend on x1 and x2 and thus it depends
only on x. Indeed, if |X| = 3, this is obvious. Assume |X| ≥ 4. Pick
x3 ∈ X \ {x, x1, x2} and suppose on the contrary that y /∈ ΛY (Γ(x, x3)).
We can write ΛY (Γ(x, x1)) = {y, y1} and ΛY (Γ(x, x2)) = {y, y2} for
some y1, y2 ∈ Y with y1 6= y 6= y2. In light of Step 9, we obtain
y1 6= y2. Since the cardinal of both sets ΛY (Γ(x, x3)) ∩ ΛY (Γ(x, x1))
and ΛY (Γ(x, x3)) ∩ ΛY (Γ(x, x2)) is one, we deduce that ΛY (Γ(x, x3)) =
{y1, y2}. This implies that Γ(x, x3) = (y1, y2) or Γ(x, x3) = (y2, y1). We
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shall only prove the first case and the other is similarly proven. Since
λ(x, x3), λ(x, x1), λ(x, x2) ∈ T+, an easy argument shows that

λ(x, x3)(f(x)− f(x3)) = T (f)(y1)− T (f)(y2)

= (T (f)(y1)− T (f)(y)) + (T (f)(y)− T (f)(y2))

= λ(x, x1)(f(x)−f(x1)) + λ(x, x2)(f(x)−f(x2))

for all f ∈ C(X). Taking suitable functions f ∈ C(X), we can deduce
that

λ(x, x3) = λ(x, x1) = λ(x, x2),

and so f(x) = f(x1)+f(x2)−f(x3) for all f ∈ C(X), which is impossible.
This proves our claim.

We shall next prove the injectivity of ϕ. Suppose first that |X| = 3,
say X = {x1, x2, x3}. If ϕ(x1) = ϕ(x2) = y1, then y1 ∈ ΛY (Γ(x1, x2)) ∩
ΛY (Γ(x1, x3)) ∩ ΛY (Γ(x2, x3)). As the cardinality of each one of the
three sets in this intersection is 2, there are y2, y3, y4 ∈ Y \{y1} such that
ΛY (Γ(x1, x2)) = {y1, y2}, ΛY (Γ(x1, x3)) = {y1, y3}, and ΛY (Γ(x2, x3))=
{y1, y4}. Applying Step 9 yields y2 6= y3 6= y4 6= y2, and thus |Y | ≥ 4
which contradicts that |X| = |Y |.

Assume now |X| ≥ 4. Let x1, x2 ∈ X be with x1 6= x2 and suppose
ϕ(x1) = ϕ(x2) = y2. Take {z1, z2} ∈ X2 such that {z1, z2}∩{x1, x2} = ∅.
We have y2 ∈ ΛY (Γ(x1, z1)) ∩ ΛY (Γ(x2, z2)); but since |ΛX(x1, z1) ∩
ΛX(x2, z2)| = 0, we have |ΛY (Γ(x1, z1)) ∩ ΛY (Γ(x2, z2))| = 0 by Step 9,
a contradiction. This completes the proof that ϕ is injective.

For the second assertion, note that if (x1, x2) ∈ X̃, then ϕ(x1) and
ϕ(x2) are distinct and belong to ΛY (Γ(x1, x2)) (see Step 5). Hence
{ϕ(x1), ϕ(x2)} = ΛY (Γ(x1, x2)).

Step 11. There exist a nonempty subset Y0 ⊆ Y and a bijection φ0:Y0 →
X such that {y1, y2} = ΛY (Γ(φ0(y1), φ0(y2))) for all y1, y2 ∈ Y0 with y1 6=
y2.

Proof: Assume first that |X|= 2. Then |Y | = 2 by Step 2. Hence X =

{x1, x2} and Y ={y1, y2} for certain (x1, x2)∈X̃ and (y1, y2)∈ Ỹ . Clearly,

X̃ = {(x1, x2), (x2, x1)} and Ỹ = {(y1, y2), (y2, y1)}. Since Γ is a map

from X̃ to Ỹ , we have ΛY (Γ(x1, x2)) = {y1, y2}. Take Y0 = Y and the
bijection φ0 : Y0 → X defined by φ0(y1) = x1 and φ0(y2) = x2, and the
proof is finished if |X| = 2.

Assume now that |X| ≥ 3. Let ϕ : X → Y be the injective map
defined in Step 10. Then Y0 = ϕ(X) and φ0 = ϕ−1 : Y0 → X satisfy the
required conditions.



Algebraic Reflexivity of Diameter-Preserving Linear Bijections 739

Step 12. There exists a number λ ∈ T such that

T (f)(y1)− T (f)(y2) = λ(f(φ0(y1))− f(φ0(y2)))

for all y1, y2 ∈ Y0 and f ∈ C(X).

Proof: Let Y0 ⊆ Y and φ0 : Y0→X be the set and the bijection given
in Step 11. Let y1, y2 ∈ Y0 with y1 6= y2. By Step 11, {y1, y2} =
ΛY (Γ(φ0(y1), φ0(y2))). Hence either Γ(φ0(y1), φ0(y2)) = (y1, y2) or else
Γ(φ0(y1), φ0(y2)) = (y2, y1). By Step 7, we have

T (f)(y1)− T (f)(y2) = ±λ(φ0(y1), φ0(y2))(f(φ0(y1))− f(φ0(y2)))

for all f ∈ C(X), where λ(φ0(y1), φ0(y2)) ∈ T+. Put β(φ0(y1), φ0(y2)) ∈
{±λ(φ0(y1), φ0(y2))}.

We now claim that β(φ0(y1), φ0(y2)) does not depend on the vari-
ables y1, y2. This is clear when |Y0| = 2 because β(φ0(y1), φ0(y2)) =
β(φ0(y2), φ0(y1)) by Step 7. Otherwise, let y3 ∈ Y0 be with y3 /∈ {y1, y2}.
We have the equation

β(φ0(y1), φ0(y2))(f(φ0(y1))− f(φ0(y2)))

= T (f)(y1)− T (f)(y2)

= (T (f)(y1)− T (f)(y3)) + (T (f)(y3)− T (f)(y2))

= β(φ0(y1), φ0(y3))(f(φ0(y1))− f(φ0(y3)))

+ β(φ0(y3), φ0(y2))(f(φ0(y3))− f(φ0(y2)))

for all f ∈ C(X). For each i ∈ {1, 2}, consider the set

Fi = {φ0(y1), φ0(y2), φ0(y3)} \ {φ0(yi)}

and take a function fi ∈ C(X) satisfying fi(x) = 0 for all x ∈ Fi and
fi(φ0(yi)) = 1. Taking f = fi for i = 1, 2 in the equation above, it follows
that

β(φ0(y1), φ0(y3)) = β(φ0(y1), φ0(y2)) = β(φ0(y3), φ0(y2)),

as claimed. Indeed, by the arbitrariness of y1, y2, and y3, the first
equality in the preceding equation means that the function β(·, ·) does
not depend on the second variable, while the second equality tells us that
the same occurs with the first one. Hence there exists a constant λ ∈ T
such that β(φ0(y1), φ0(y2)) = λ for all y1, y2 ∈ Y0 with y1 6= y2.

Now we get

T (f)(y1)− T (f)(y2) = β(φ0(y1), φ0(y2))(f(φ0(y1))− f(φ0(y2)))

= λ(f(φ0(y1))− f(φ0(y2)))

for all f ∈ C(X) and y1, y2 ∈ Y0.
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Step 13. There exists a linear functional µ : C(X)→ C such that

T (f)(y) = λf(φ0(y)) + µ(f)

for every y ∈ Y0 and f ∈ C(X).

Proof: Define a functional µ : C(X)→ C by

µ(f) = T (f)(y)− λf(φ0(y))

for all f ∈ C(X), where y is an arbitrary point in Y0. By Step 12, µ is
well-defined. Since T is linear, so is µ.

Step 14. λ 6= −µ(1X).

Proof: By Step 2, we have

T (1X)(y) = λ1X + µ1X (1X)

for all y ∈ Y , with λ1X ∈ T and λ1X 6= −µ1X (1X). On the other hand,
by Step 13 we have

T (1X)(y) = λ+ µ(1X)

for all y ∈ Y0. Hence λ+ µ(1X) = λ1X + µ1X (1X) 6= 0.

Step 15. φ0 : Y0 → X is a homeomorphism.

Proof: We first prove that φ0 is continuous. Let y ∈ Y0 and let {yi}i be
a net in Y0 which converges to y. Since X is compact, taking a subnet if
necessary we can suppose that {φ0(yi)}i converges to some x0 ∈ X. We
claim that x0 = φ0(y). Otherwise, we could find an open neighborhood U
of x0 in X such that φ0(y) ∈ X \ U . Take a function f ∈ C(X) which
satisfies f(x0) = 1 and f(x) = 0 for all x ∈ X \ U . There exists i0 ∈ I
such that |f(φ0(yi))− f(x0)| = |f(φ0(yi))− 1| < 1/3 for all i ≥ i0 and,
by Step 13, it follows that |T (f)(yi) − T (f)(y)| = |f(φ0(yi))| > 2/3 for
all i ≥ i0, which contradicts the continuity of T (f). This proves our
claim and so φ0 is continuous.

We next show that Y0 is closed in Y . Since Y0 = Y in the case |X| = 2,
we suppose that |X| ≥ 3. Let {yi}i be a net in Y0 convergent to some
point y ∈ Y . By the compactness of X, taking a subnet if necessary,
we can suppose that {φ0(yi)}i converges to some x1 ∈ X. Given x2 ∈
X \ {x1}, there exists y2 ∈ Y0 such that φ0(y2) = x2. By Step 13, we
have

T (f)(yi)− T (f)(y2) = λ(f(φ0(yi))− f(φ0(y2))) = λ(f(φ0(yi))− f(x2))

for each f ∈ C(X) and all i ∈ I. Since f and T (f) are continuous, taking
limits in i above, it follows that

T (f)(y)− T (f)(y2) = λ(f(x1)− f(x2))
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for all f ∈ C(X). Note that y 6= y2 since C(X) separates the points
of X. In particular, we get

T (f)(y)− T (f)(y2) = λ(f(x1)− f(x2))

for all f ∈ F{x1,x2}. Hence ((y, y2), λ) ∈ B(x1,x2). By Steps 4 and 5,
we have either (y, y2) ∈ A(x1,x2) or else (y2, y) ∈ A(x1,x2). Hence ei-
ther Γ(x1, x2) = (y, y2) or else Γ(x1, x2) = (y2,y) by Step 5. Therefore
{y, y2}=ΛY(Γ(x1, x2))={ϕ(x1), ϕ(x2)} by Step 10, and so y ∈ ϕ(X) =
Y0.

Finally, since φ0 : Y0 → X is bijective and continuous, Y0 is compact,
and X is Hausdorff, we see that φ0 is a homeomorphism.

We have |Y | = |X| since for any f ∈ C(X), φf : X → Y is a bijection
by Step 2. Since, by Step 11, φ0 = ϕ−1 : Y0 → X is also a bijection, it
follows that |Y0| = |X|. Hence |Y | = |X| = |Y0|. If Y is finite, then Y0 =
Y since Y0 ⊆ Y , and we would obtain Steps 16 and 17 taking φ = φ0.
Suppose that Y is not finite henceforth.

Step 16. There exists a continuous map φ : Y → X such that

T (f)(y) = λf(φ(y)) + µ(f)

for all f ∈ C(X) and y ∈ Y .

Proof: For each y ∈ Y , define the linear functional Sy : C(X)→ C by

Sy(f) = T (f)(y)− µ(f) (f ∈ C(X)),

with µ : C(X)→ C being as in Step 13. Note that T (1X)(y0) = λ+µ(1X)
for each y0 ∈ Y0 by Step 13. Since T (1X) is a constant function by Step 1,
it follows that T (1X) = (λ+ µ(1X))1Y . Hence Sy(1X) = λ.

We shall now prove that λ−1Sy is multiplicative. By the Gleason–

Kahane–Żelazko Theorem, it suffices to show that for each non-vanishing
function f ∈ C(X), we have Sy(f) 6= 0. For this, let f ∈ C(X) be with
f(x) 6= 0 for all x ∈ X and assume on the contrary that T (f)(y) = µ(f).
Being φ0 : Y0 → X a bijective map, there exists y0 ∈ Y0 such that

φ0(y0) = φf (y).

In the same way we can find a sequence {yi}∞i=0 in Y0 satisfying

φ0(yi+1) = φf (yi) (i ∈ N ∪ {0}).
Since Y is a compact (first countable) space, passing through a sub-
sequence we may assume that {yi}i → z0 for some z0 ∈ Y0. Hence,
letting i→∞ in the above equality, we get

φ0(z0) = φf (z0).
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For each i ∈ N ∪ {0}, since z0, yi ∈ Y0, Step 12 yields

λ(f(φ0(z0))− f(φ0(yi))) = T (f)(z0)− T (f)(yi)

= λf (f(φf (z0))− f(φf (yi)))

= λf (f(φ0(z0))− f(φ0(yi+1))).

Hence, for each i ∈ N ∪ {0} we have

f(φ0(z0))− f(φ0(yi)) = λ−1λf (f(φ0(z0))− f(φ0(yi+1))).

For each i ∈ N ∪ {0}, it follows by induction on n that

f(φ0(z0))− f(φ0(yi)) = (λ−1λf )n(f(φ0(z0))− f(φ0(yi+n)))

for all n ∈ N. Now, letting n→∞, we get

f(φ0(z0)) = f(φ0(yi)) (i ∈ N ∪ {0}).
Therefore, we have

T (f)(z0) = λf(φ0(z0)) + µ(f) = λf(φ0(y0)) + µ(f).

On the other hand, since f(φf (y)) = f(φ0(y0)) = f(φ0(z0)) and φf (z0) =
φ0(z0), we also get

T (f)(y) = λff(φf (y)) + µf (f)

= λff(φ0(z0)) + µf (f)

= λff(φf (z0)) + µf (f)

= T (f)(z0).

Now, since T (f)(y) = µ(f), we deduce that f(φ0(y0)) = 0, which is a
contradiction.

Hence, for each y ∈ Y , λ−1Sy is a nonzero complex homomorphism
on C(X). This easily implies that the map S : C(X)→ C(Y ) defined by

S(f)(y) = λ−1Sy(f) = λ−1(T (f)(y)− µ(f)) (f ∈ C(X), y ∈ Y )

is a unital homomorphism and, consequently, it is continuous as well.
Thus the restriction of its adjoint map to the maximal ideal space of C(Y )
induces a continuous map φ : Y → X satisfying

S(f)(y) = f(φ(y)) (f ∈ C(X), y ∈ Y ).

Hence T (f)(y) = λf(φ(y)) + µ(f) for all f ∈ C(X) and y ∈ Y .

Step 17. φ : Y → X is a homeomorphism.

Proof: First we show that φ is injective. For this, let y1, y2 be in Y and
assume that φ(y1) = φ(y2). Clearly, the function φ is not constant since
otherwise, T (f) would be a constant function on Y for each f ∈ C(X).
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Then, since T is diameter preserving, it follows that each f ∈ C(X) is
constant on X, while Y is infinite and |X| = |Y | 6= 1. Hence we can find
a point y3 ∈ Y such that φ(y3) 6= φ(y1). Put xk = φ(yk) for k = 1, 2, 3.
Choose f ∈ F ′{x1,x3} and then, using Step 16, we deduce that

T (f)(y1)− T (f)(y3) = λ(f(x1)− f(x3)),

which implies that

λf (f(φf (y1))− f(φf (y3))) = λ(f(x1)− f(x3)).

Thus {φf (y1), φf (y3)}={x1, x3}. A similar argument shows that {φf (y2),
φf (y3)} = {x2, x3}. Since x1 = x2, these equalities imply that φf (y1) =
φf (y2) and, consequently, y1 = y2.

Now we show that φ is surjective. Assume on the contrary that there
exists a point x0 ∈ X\φ(Y ). Being φ(Y ) compact, we can choose a
function f ∈ C(X) satisfying f(x0) = 1 and f = 0 on φ(Y ). Then, using
Step 16, we get T (f)(y) = µ(f) for all y ∈ Y , that is, T (f) is a constant
function, a contradiction since Y is infinite.

It follows immediately that φ is a homeomorphism from Y ontoX.

Step 18. T is bijective.

Proof: We first prove that T is injective. Let f ∈ C(X) and assume
T (f) = 0. By Step 1, diam(f)=diam(T (f)) = 0 and thus f is a constant
function. Hence f = α1X for some α ∈ C. Since 0 = T (f) = T (α1X) =
αT (1X) and T (1X) = (λ+ µ(1X))1Y , and also λ 6= −µ(1X) by Step 14,
we obtain α = 0 and thus f = 0.

On the other hand, given g ∈ C(Y ), the function

f = λg ◦ φ−1 − λµ(g ◦ φ−1)

λ+ µ(1X)
1X

belongs to C(X) and T (f) = g. Indeed, we have

T (f) = T

(
λg ◦ φ−1 − λµ(g ◦ φ−1)

λ+ µ(1X)
1X

)

= λ

(
λg ◦ φ−1 ◦ φ− λµ(g ◦ φ−1)

λ+ µ(1X)
1X ◦ φ

)

+ µ

(
λg ◦ φ−1 − λµ(g ◦ φ−1)

λ+ µ(1X)
1X

)

= g − µ(g ◦ φ−1)

λ+ µ(1X)
1Y + λµ(g ◦ φ−1)1Y −

λµ(g ◦ φ−1)µ(1X)

λ+ µ(1X)
1Y = g.

Hence T is surjective. This completes the proof of Theorem 2.
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For a compact Hausdorff space X, let Cρ(X) denote the quotient
space of C(X) by the constant functions and let πX : C(X)→ Cρ(X) be
the canonical quotient surjection. Then,

‖πX(f)‖ρ = diam(f) (f ∈ C(X))

defines a norm on Cρ(X). Clearly, for compact Hausdorff spaces X
and Y , any diameter-preserving linear map T : C(X) → C(Y ) induces
a linear isometry from Cρ(X) into Cρ(Y ) which is surjective if and only
if so is T . On the other hand, any linear isometry S : Cρ(X) → Cρ(Y )
induces an injective diameter-preserving linear map T : C(X) → C(Y ).
Indeed, fixing two points u0 ∈ X and w0 ∈ Y , if we consider the following
linear bijections

ΨX : C(X)→ Cρ(X)⊕ C, ΨX(f) = (πX(f), f(u0)) (f ∈ C(X))

and

ΨY : C(Y )→ Cρ(Y )⊕ C, ΨY (g) = (πY (g), g(w0)) (g ∈ C(Y )),

then the linear map T : C(X)→ C(Y ) defined by

T (f) = Ψ−1Y (S(πX(f)), f(u0)) (f ∈ C(X))

is an injective diameter-preserving map. Moreover, T is surjective if and
only if so is S. Hence, using Theorem 2, we easily get the following
corollary.

Corollary 1. Let X and Y be first countable compact Hausdorff spaces,
then the set of all linear surjective isometries from Cρ(X) to Cρ(Y ) is
algebraically reflexive.

Remark 1. By Example 2 in [5] for certain compact Hausdorff spaces X
we can find a local automorphism T : C(X) → C(X) which is not sur-
jective. Since any automorphism S on C(X) is of the form S(f) = f ◦ϕ,
for some homeomorphism ϕ : X → X, it follows that S is a diameter-
preserving linear bijection as well. Hence this example can be applied
to show that Theorem 2 is not valid for arbitrary compact Hausdorff
spaces.
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supported by Junta de Andalućıa grant FQM194 and project UAL-
FEDER grant UAL2020-FQM-B1858.



Algebraic Reflexivity of Diameter-Preserving Linear Bijections 745

References

[1] A. Aizpuru and F. Rambla, There’s something about the diameter, J. Math.

Anal. Appl. 330(2) (2007), 949–962. DOI: 10.1016/j.jmaa.2006.08.002.
[2] B. A. Barnes and A. K. Roy, Diameter-preserving maps on various classes of

function spaces, Studia Math. 153(2) (2002), 127–145. DOI: 10.4064/sm153-2-3.

[3] F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of
Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56(2) (2011), 105–114.

[4] F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch.

Math. (Basel) 73(5) (1999), 373–379. DOI: 10.1007/s000130050411.
[5] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of

some classical spaces, Rev. Mat. Iberoamericana 18(2) (2002), 409–430. DOI: 10.

4171/RMI/324.
[6] S. Dutta and T. S. S. R. K. Rao, Algebraic reflexivity of some subsets of the

isometry group, Linear Algebra Appl. 429(7) (2008), 1522–1527. DOI: 10.1016/

j.laa.2008.04.024.
[7] J. J. Font and M. Hosseini, Nonlinear diameter preserving maps on func-

tion spaces, Quaest. Math. 43(1) (2020), 67–80. DOI: 10.2989/16073606.2018.
1536896.

[8] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19

(1967), 171–172. DOI: 10.1007/BF02788714.
[9] F. González and V. V. Uspenskij, On homomorphisms of groups of integer-

valued functions, Extracta Math. 14(1) (1999), 19–29.
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