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Let X and Y be compact subsets of R such that X and Y coincide with the closures 
of their interiors. For any n ∈ N, let C(n)(X) be the Banach algebra of all n-times 
continuously differentiable complex-valued functions f on X, with the norm ‖f‖C =
maxx∈X(

∑n
k=0(|f (k)(x)|/k!)). We prove that every approximate local isometry of 

C(n)(X) to C(n)(Y ) is an isometric linear algebra monomorphism multiplied by 
a fixed n-times continuously differentiable unimodular function. This description 
allows us to establish the algebraic and 2-algebraic reflexivity of the set of linear 
isometries of C(n)(X) onto C(n)(Y ). Furthermore, this algebraic reflexivity becomes 
topological whenever X and Y are compact intervals of R. Another application of 
our main result shows that the sets of isometric reflections and generalized bi-circular 
projections of C(n)(X) are topologically and 2-topologically reflexive.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Let n ≥ 1 be any integer and let X be a compact subset of R such that X coincides with the closure of 
its interior. Let C(n)(X) be the space of all n-times continuously differentiable complex-valued functions on 
X, with the C-norm given by

‖f‖C = max
x∈X

(
n∑

k=0

∣∣f (k)(x)
∣∣

k!

)
(f ∈ C(n)(X)).

It is known that C(n)(X) is a unital semisimple commutative Banach algebra.
Linear isometries of these spaces have been studied by different authors. Pathak [19] proved that any 

surjective linear isometry of C(n)([0, 1]) is induced by a surjective isometry of [0, 1]. Previously, Cambern 
[3] had obtained Pathak’s result for n = 1. Wang [22] extended this result for C(n)

0 (X), the Banach space of 

* Corresponding author.
E-mail addresses: m.hosseini@kntu.ac.ir (M. Hosseini), ajimenez@ual.es (A. Jiménez-Vargas).
https://doi.org/10.1016/j.jmaa.2021.125092
0022-247X/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2021.125092
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2021.125092&domain=pdf
mailto:m.hosseini@kntu.ac.ir
mailto:ajimenez@ual.es
https://doi.org/10.1016/j.jmaa.2021.125092


2 M. Hosseini, A. Jiménez-Vargas / J. Math. Anal. Appl. 500 (2021) 125092
complex-valued functions which have up to n-th continuous derivatives and vanish at infinity on a locally 
compact subset X of R such that X is contained in the closure of its interior (see also the paper [4] by 
Cambern and Pathak for the case n = 1). We denote by G(C(n)(X)) the set of all surjective linear isometries 
of C(n)(X).

The purpose of the present note is to study the approximate local isometries between C(n)(X)-spaces. Let 
us recall that a local isometry of C(n)(X) is a continuous linear map T of C(n)(X) into itself which agrees 
at every point of C(n)(X) with some element of G(C(n)(X)), that is, for every f ∈ C(n)(X), there exists 
a Tf ∈ G(C(n)(X)), possibly depending on f , such that T (f) = Tf (f). Also, we can consider approximate 
local isometries on C(n)(X) which are those continuous linear maps T satisfying that for every f ∈ C(n)(X)
and ε > 0, there is a Tf ∈ G(C(n)(X)) such that ‖T (f) − Tf (f)‖C < ε. Similarly, the concepts of local 
automorphism and local derivation on C(n)(X) and their approximate versions can be introduced.

The study of local automorphisms and local derivations on operator algebras began by Larson [13], 
Kadison [11] and Larson and Sourour [14]. The investigation concerning (approximate) local isometries on 
operator algebras and function algebras was initiated by Molnár [16], Molnár and Zalar [18] and Cabello 
Sánchez and Molnár [2]. The main problem that arises in these papers is to study whether every local deriva-
tion, local automorphism or local isometry of an algebra is a derivation, an automorphism or a surjective 
isometry, respectively, or equivalently, to establish the algebraic reflexivity of the sets of derivations, auto-
morphisms and isometries of such algebras. One can also deal with the approximate version of this question, 
that is, when the sets of derivations, automorphisms and isometries of an algebra are topologically reflexive. 
The consideration of approximate local maps instead of local maps is more general and allows us to address 
the problems of algebraic reflexivity and topological reflexivity of some sets of linear transformations on 
C(n)(X) simultaneously.

Concerning to derivations on such spaces, Johnson [10] proved that the space of all bounded derivations 
from C(1)([0, 1]) into C(1)([0, 1])∗ is algebraically reflexive, but Samei [20] showed that C(n)([0, 1]) does not 
enjoy this property for all n ≥ 2.

Our goal in this paper is to provide a Banach–Stone type representation of approximate local isometries 
between C(n)(X)-spaces. More concretely, we prove that every approximate local isometry of C(n)(X) to 
C(n)(Y ) is an isometric linear algebra monomorphism induced by an n-times continuously differentiable 
surjection σ : Y → X and multiplied by a fixed n-times continuously differentiable unimodular function 
θ : Y → C. Furthermore, this monomorphism is an isomorphism if and only if σ is injective. As an appli-
cation, we state the algebraic reflexivity of the set G(C(n)(X), C(n)(Y )) of all linear isometries of C(n)(X)
onto C(n)(Y ), and this algebraic reflexivity becomes topological when X and Y are compact intervals of R. 
It is interesting to note that the obtained representation also permits us to deduce that the sets of isomet-
ric reflections and generalized bi-circular projections on C(n)(X) are topologically reflexive. Our approach 
requires first to state characterizations for these classes of maps on C(n)(X).

It is worth noting that the proof of our main result strongly depends on the application of a spherical 
reformulation of the Gleason–Kahane–Żelazko theorem, obtained by Li, Peralta, L. Wang and Y.-S. Wang 
[15]. This result applies only to unital complex Banach algebras and therefore the technique used in this 
paper cannot be applied to study the problem in the case of C(n)

0 (X)-spaces.
We are also interested in the notion of 2-locality which is due to Šemrl [21] who stated the first results on 

2-local automorphisms and 2-local derivations on operator algebras. Motivated by these results, Molnár [17]
studied 2-local isometries on such algebras. 2-local isometries on function algebras have been investigated by 
different authors (see, for example, [7,15]). Recently, the 2-locality problem for surjective linear isometries 
on C(n)([0, 1]) with the C-norm has been addressed by Kawamura, Koshimizu and Miura [12], and without 
assuming linearity by Hatori and Oi [8]. The first author of this paper also studied 2-local isometries on 
C(n)([0, 1]) in [9] but with a norm different to the C-norm.

Applying now a spherical variant of the Kowalski–Słodkowski theorem (see [15]), we establish here that 
the set of surjective linear isometries from C(n)(X) onto C(n)(Y ) is 2-algebraically reflexive. This reflexivity 
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becomes topological whenever X and Y are compact intervals of R and we extend the main result concerning 
the 2-algebraically reflexivity of the isometry group of C(n)([0, 1]) stated in [12]. Furthermore, we prove 
that the sets of isometric reflections and generalized bi-circular projections of C(n)(X) are 2-topologically 
reflexive.

2. Preliminaries

We recall the concepts of algebraic and topological reflexivity. Let E and F be Banach spaces, let FE

be the set of all maps from E into F and let S be a nonempty subset of the Banach space B(E, F ) of all 
bounded linear maps from E to F . Define the algebraic reflexive closure and the topological reflexive closure 
of the set of S by

refalg(S) = {T ∈ B(E,F ) : ∀e ∈ E, ∃Se ∈ S | Se(e) = T (e)}

and

reftop(S) =
{
T ∈ B(E,F ) : ∀e ∈ E, ∃{Se,i}i∈N ⊂ S | lim

i→∞
Se,i(e) = T (e)

}
,

respectively. The elements of refalg(S) and reftop(S) are known as local S-maps and approximate local 
S-maps, respectively.

Consider also the 2-algebraic reflexive closure of S, 2-refalg(S), defined as

{
Δ ∈ FE : ∀e, u ∈ E, ∃Se,u ∈ S | Se,u(e) = Δ(e), Se,u(u) = Δ(u)

}
and the 2-topological reflexive closure of S, 2-reftop(S), given by

{
Δ ∈ FE : ∀e, u ∈ E, ∃{Se,u,i}i∈N ⊂ S | lim

n→∞
Se,u,i(e) = Δ(e), lim

i→∞
Se,u,i(u) = Δ(u)

}
.

The elements of 2-refalg(S) and 2-reftop(S) are referred to as 2-local S-maps and approximate 2-local S-
maps, respectively.

In the case that S is the set of all linear isometries from E onto F , we refer to the elements of refalg(S), 
reftop(S), 2-refalg(S) and 2-reftop(S) as local isometries, approximate local isometries, 2-local isometries 
and approximate 2-local isometries of E to F , respectively. The terminology local map, approximate local 
map, 2-local map and approximate 2-local map, substituting the word “map” by isometric reflection and 
generalized bi-circular projection should be self-explanatory.

The set S is said to be algebraically reflexive (topologically reflexive) if refalg(S) = S (respectively, 
reftop(S) = S). Similarly, the set S is called 2-algebraically reflexive (2-topologically reflexive) if 2-refalg(S) =
S (respectively, 2-reftop(S) = S).

Throughout this paper, T denotes be the unit circle of C. Given a set X ⊆ R, the symbols 1X and idX

stand for the function constantly 1 and the identity function on X, respectively. Moreover, cl(X) and int(X)
denote the closure and the interior of X, respectively.

3. Results

Our starting point is the following characterization of surjective linear isometries between C(n)
0 (X)-spaces 

equipped with the C-norms, obtained by Wang [22].
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Theorem 1. [22, Theorem 4.4] Let n ∈ N and X and Y be locally compact subsets of R with X ⊆ cl(int(X))
and Y ⊆ cl(int(Y )). A map T : C(n)

0 (X) → C
(n)
0 (Y ) is a surjective linear isometry with respect to the C-

norms if and only if there exist a function θ : Y → C with |θ(y)| = 1 and θ′(y) = 0 for all y ∈ Y , and a 
homeomorphism σ : Y → X with |σ′(y)| = 1 and σ′′(y) = 0 for all y ∈ Y such that

T (f)(y) = θ(y)f(σ(y)) (y ∈ Y, f ∈ Cn
0 (X)) . �

From now on we shall suppose that X and Y are compact subsets of R such that X = cl(int(X)) and 
Y = cl(int(Y )). Moreover, I and J will denote two compact intervals of R.

To simplify the writing, for any n ∈ N we introduce the following sets of functions:

G(C(n)(X), C(n)(Y )) =
{
T : C(n)(X) → C(n)(Y ) : T is a surjective linear isometry

}
,

An(Y ) = {θ : Y → C : |θ(y)| = 1, θ′(y) = 0, ∀y ∈ Y } ,
Bn(Y,X) = {σ : Y → X : σ is a homeomorphism, |σ′(y)| = 1, σ′′(y) = 0, ∀y ∈ Y } .

The main result of this paper is the following description of the elements of the topological reflexive 
closure of the set G(C(n)(X), C(n)(Y )).

Theorem 2. Every approximate local isometry T of C(n)(X) to C(n)(Y ) is an isometry of the form

T (f)(y) = θ(y)f(σ(y)) (y ∈ Y, f ∈ C(n)(X)),

where θ is a function of C(n)(Y ) such that |θ(y)| = 1 and θ′(y) = 0 for all y ∈ Y , and σ : Y → X is an 
n-times continuously differentiable surjective function such that |σ′(y)| = 1 and σ′′(y) = 0 for all y ∈ Y . 
Moreover, T is surjective if and only if σ is injective.

Proof. We prove the result through several steps.

Step 1. T is an isometry with respect to the C-norms.

Let f ∈ C(n)(X). Hence there is a sequence {Tf,i}i∈N in G(C(n)(X), C(n)(Y )) such that

lim
i→∞

Tf,i(f) = T (f).

Clearly, we have

lim
i→∞

‖Tf,i(f)‖C = ‖T (f)‖C ,

and since ‖Tf,i(f)‖C = ‖f‖C for all i ∈ N, we conclude that ‖T (f)‖C = ‖f‖C .

Step 2. For every f ∈ C(n)(X), there exist sequences {θf,i}i∈N in An(Y ) and {σf,i}i∈N in Bn(Y, X) such 
that T (f) = limi→∞ θf,i(f ◦ σf,i).

Let f ∈ C(n)(X). Hence there is a sequence {Tf,i}i∈N in G(C(n)(X), C(n)(Y )) such that

T (f) = lim
i→∞

Tf,i(f).

By Theorem 1, for each i ∈ N, there are two functions θf,i ∈ An(Y ) and σf,i ∈ Bn(Y, X) such that 
Tf,i(h) = θf,i(h ◦ σf,i) for all h ∈ C(n)(X), and therefore
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T (f) = lim
i→∞

θf,i(f ◦ σf,i).

Step 3. θ := T (1X) is a function of C(n)(Y ) such that |θ(y)| = 1 and θ′(y) = 0 for all y ∈ Y .

Clearly, T (1X) ∈ C(n)(Y ). By Step 2, there exist sequences {θ1X ,i}i∈N in An(Y ) and {σ1X ,i}i∈N in 
Bn(Y, X) such that

T (1X) = lim
i→∞

θ1X ,i1Y .

Since the convergence in the C-norm implies pointwise convergence, for each y ∈ Y we have

T (1X)(y) = lim
i→∞

θ1X ,i(y)

and thus

|T (1X)(y)| = lim
i→∞

|θ1X ,i(y)| = 1.

That convergence also implies pointwise convergence for the derivatives and therefore

T (1X)′(y) = lim
i→∞

θ′1X ,i(y) = 0

for every y ∈ Y . Hence T (1X) ∈ An(Y ).

Step 4. For each y ∈ Y , the map Sy : C(n)(X) → C defined by

Sy(f) = θ(y)T (f)(y) (f ∈ C(n)(X)),

is a unital multiplicative linear functional.

Fix y ∈ Y . Clearly, Sy is linear and

Sy(1X) = θ(y)T (1X)(y) = θ(y)θ(y) = |θ(y)|2 = 1

by Step 3. To prove its multiplicativity, define Ty : C(n)(X) → C by

Ty(f) = T (f)(y) (f ∈ C(n)(X)).

Since Ty is linear and |Ty(f)| = |T (f)(y)| ≤ ‖T (f)‖C = ‖f‖C for all f ∈ C(n)(X) by Step 1, then Ty is 
continuous. Take now any f ∈ C(n)(X). By Step 2, there exist sequences {θf,i}i∈N in An(Y ) and {σf,i}i∈N
in Bn(Y, X) such that

T (f) = lim
i→∞

θf,i(f ◦ σf,i).

Therefore we have

Ty(f) = T (f)(y) = lim
i→∞

θf,i(y)f(σf,i(y)) ∈ Tσ(f),

where σ(f) denotes the spectrum of f . Applying a spherical version of the Gleason–Kahane–Żelazko theorem 
[15, Proposition 2.2], we conclude that Sy = Ty(1X)Ty is multiplicative.
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Step 5. There exists an n-times continuously differentiable surjective function σ : Y → X with |σ′(y)| = 1
and σ′′(y) = 0 for all y ∈ Y such that T (f)(y) = θ(y)f(σ(y)) for all y ∈ Y and f ∈ C(n)(X).

Using Step 4, we deduce easily that the map S : C(n)(X) → C(n)(Y ) defined by

S(f)(y) = θ(y)T (f)(y) (f ∈ C(n)(X), y ∈ Y )

is a unital algebra homomorphism. By Gelfand theory (see, e.g., [5, Theorem 2.3.25]), S induces a continuous 
map σ : Y → X such that

S(f)(y) = f(σ(y)) (f ∈ C(n)(X), y ∈ Y ),

and we thus obtain the desired representation of T :

T (f)(y) = θ(y)f(σ(y)) (f ∈ C(n)(X), y ∈ Y ).

Notice that σ = θT (idX) ∈ C(n)(Y ). To show the surjectivity of σ, assume on the contrary that there exists 
x0 ∈ X \σ(Y ). Being σ(Y ) compact, from the C(∞)-Urysohn Lemma (see, e.g., [6, page 245]) we can take a 
function f ∈ C(n)(X) such that f(x0) = 1 and f(x) = 0 for all x ∈ σ(Y ). Hence T (f)(y) = θ(y)f(σ(y)) = 0
for all y ∈ Y , but T is injective by Step 1, a contradiction.

By Step 2, we can take sequences {θidX ,i}i∈N in An(Y ) and {σidX ,i}i∈N in Bn(Y, X) such that 
limi→∞ θidX ,iσidX ,i = T (idX), and therefore

lim
i→∞

θidX ,iσidX ,i = θσ.

For each y ∈ Y , we deduce that

lim
i→∞

θidX ,i(y)σ′
idX ,i(y) = lim

i→∞

[
θ′idX ,i(y)σidX ,i(y) + θidX ,i(y)σ′

idX ,i(y)
]

= lim
i→∞

(θidX ,iσidX ,i)′(y)

= (θσ)′(y) = θ′(y)σ(y) + θ(y)σ′(y) = θ(y)σ′(y),

which implies that |σ′(y)| = 1. Moreover, one can observe that limi→∞ ‖θθidX ,iσ
′
idX ,i − σ′‖∞ = 0 (‖ · ‖∞

denotes the uniform norm), which yields the continuity of σ′. Now, since σ′ is real-valued, for each y0 ∈ Y , 
we can find a δ > 0 such that σ′(y) = σ′(y0) for all y ∈ Y with |y − y0| < δ, which clearly implies that 
σ′′(y0) = 0. Therefore, σ′′ = 0 on Y , as claimed.

Step 6. T : C(n)(X) → C(n)(Y ) is surjective if and only if σ : Y → X is injective.

We have T (f) = θ(f ◦σ) for all f ∈ C(n)(X) with θ and σ being as in Step 5. Assume that T is surjective. 
Let y1, y2 ∈ Y be such that σ(y1) = σ(y2). It follows that

θ(y1)T (f)(y1) = f(σ(y1)) = f(σ(y2)) = θ(y2)T (f)(y2)

for all f ∈ C(n)(X), that is, θ(y1)g(y1) = θ(y2)g(y2) for all g ∈ C(n)(Y ). Hence g(y1) = g(y2) for all 
g ∈ C(n)(Y ) such that g ≥ 0. This implies y1 = y2 since the set {g ∈ C(n)(Y ) : g ≥ 0} separates the points 
of Y . Therefore σ is injective.

Conversely, suppose that σ : Y → X is injective. Given g ∈ C(n)(Y ), take f = θ(g ◦ σ−1). Since σ ∈
C(n)(Y ) and |σ′| = 1, it easily follows that σ−1 ∈ C(n)(X). Consequently, f ∈ C(n)(X) and T (f) = g. This 
completes the proof of Theorem 2. �
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Now we state the algebraic reflexivity of the set G(C(n)(X), C(n)(Y )).

Corollary 1. Every local isometry of C(n)(X) to C(n)(Y ) is a surjective isometry.

Proof. Let T ∈ refalg(G(C(n)(X), C(n)(Y ))). We have

T (f)(y) = θ(y)f(σ(y)) (f ∈ C(n)(X), y ∈ Y ),

with θ and σ being as in Theorem 2. We only need to prove that σ : Y → X is injective and thus T will be 
surjective. Fix x0 ∈ X and let y0 ∈ σ−1({x0}). Consider fx0 : X → R+ defined by

fx0(x) = x− min(X) + 1
x0 − min(X) + 1 (x ∈ X).

Clearly, fx0 ∈ C(n)(X) with f−1
x0

({1}) = {x0}. Since T is a local isometry, Theorem 1 provides two functions 
θfx0

∈ An(Y ) and σfx0
∈ Bn(Y, X) such that

T (fx0)(y) = θfx0
(y)fx0(σfx0

(y)) (y ∈ Y ).

In particular, we obtain

θ(y0) = θ(y0)fx0(σ(y0)) = T (fx0)(y0) = θfx0
(y0)fx0(σfx0

(y0)),

hence fx0(σfx0
(y0)) = 1, and therefore σfx0

(y0) = x0. Since y0 was arbitrary, we have proved that

σ−1({x0}) ⊆ σ−1
fx0

({x0}).

It follows that σ is injective because so is σfx0
. �

In the following case we can assert the topological reflexivity of the set G(C(n)(I), C(n)(J)).

Corollary 2. Every approximate local isometry of C(n)(I) to C(n)(J) is a surjective isometry.

Proof. Let T ∈ reftop(G(C(n)(I), C(n)(J))). By Theorem 2, we have

T (f)(y) = θ(y)f(σ(y)) (y ∈ J, f ∈ C(n)(I)),

where θ ∈ An(J) and σ : J → I is an n-times continuously differentiable surjective function such that 
|σ′(y)| = 1 for all y ∈ J . Now, an easy argument shows that there exists c ∈ R such that either σ(y) = y+ c

for all y ∈ J , or σ(y) = −y + c for all y ∈ J . In any case, σ is injective and therefore T is surjective. �
We now establish a relationship between the 2-topological (2-algebraic) reflexive closure and the topo-

logical (algebraic) reflexive closure of G(C(n)(X), C(n)(Y )).

Theorem 3.

(1) Every approximate 2-local isometry of C(n)(X) to C(n)(Y ) is an approximate local isometry.
(2) Every 2-local isometry of C(n)(X) to C(n)(Y ) is a local isometry.
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Proof. Let Δ ∈ 2-reftop(G(C(n)(X), C(n)(Y ))). We first show that for each y ∈ Y , the functional 
Δy : C(n)(X) → C defined by

Δy(f) = Δ(f)(y) (f ∈ C(n)(X)),

is linear. According to the spherical version of the Kowalski–Słodkowski theorem [15], it suffices to show 
that Δy is 1-homogeneous and satisfies that Δy(f) − Δy(g) ∈ Tσ(f − g) for all f, g ∈ C(n)(X). The 1-
homogeneity follows immediately since Δ is an approximate 2-local isometry. For the spectral condition, let 
f, g ∈ C(n)(X) and take {θf,g,i}i∈N in An(Y ) and {σf,g,i}i∈N in Bn(Y, X) such that

lim
i→∞

θf,g,if(σf,g,i(y)) = Δ(f)(y),

lim
i→∞

θf,g,ig(σf,g,i(y)) = Δ(g)(y).

Thus

Δy(f) − Δy(g) = lim
i→∞

θf,g,i(f − g)(σf,g,i(y)) ∈ Tσ(f − g).

Hence Δ is linear by the arbitrariness of y. Therefore Δ ∈ reftop(G(C(n)(X), C(n)(Y ))). This proves (1), 
and (2) is obtained with an analogous proof. �

We next see that G(C(n)(X), C(n)(Y )) is 2-algebraically reflexive and this reflexivity becomes 2-
topological whenever X and Y are compact intervals of R. We extend in this way the 2-algebraically 
reflexivity of G(C(n)([0, 1])) stated in [12, Theorem 2.1]. Our result follows by applying Theorem 3 and 
Corollaries 1 and 2.

Corollary 3.

(1) Every 2-local isometry of C(n)(X) to C(n)(Y ) is a surjective linear isometry.
(2) Every approximate 2-local isometry of C(n)(I) to C(n)(J) is a surjective linear isometry. �

We next shall study the algebraic and topological reflexivity of two classes of linear transformations on 
C(n)(X): the isometric reflections and the generalized bi-circular projections.

We recall that an isometric reflection of a Banach space E is a linear isometry T : E → E such that 
T 2 = idE . By G2(E) we denote the set of all isometric reflections of E.

The next theorem provides a characterization of isometric reflections of C(n)(X).

Theorem 4. A map T : C(n)(X) → C(n)(X) is an isometric reflection if and only if there exist a function 
θ ∈ An(X) with θ(x) ∈ {±1} for all x ∈ X, and a function σ ∈ Bn(X, X) with σ2(x) = x for all x ∈ X

such that

T (f)(x) = θ(x)f(σ(x)) (x ∈ X, f ∈ C(n)(X)).

Proof. Let T ∈ G2(C(n)([0, 1])). By Theorem 1, there are functions θ ∈ An(X) and σ ∈ Bn(X, X) such that

T (f)(x) = θ(x)f(σ(x)) (f ∈ C(n)(X), x ∈ X).

Since T 2 = idC(n)(X), it follows that

f(x) = T 2(f)(x) = T (T (f))(x) = [θ(x)]2f(σ2(x)) (f ∈ C(n)(X), x ∈ X).
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Taking above f = 1X , we deduce that [θ(x)]2 = 1 for all x ∈ X and thus θ(x) ∈ {±1} for all x ∈ X. 
Substituting also f = idX , we obtain that x = [θ(x)]2σ2(x) = σ2(x) for all x ∈ X.

Conversely, assume that T has the form as in the statement. Then T ∈ G(C(n)(X)) by Theorem 1, and 
an easy verification yields

T 2(f)(x) = [θ(x)]2f(σ2(x)) = f(x) (f ∈ C(n)(X), x ∈ X).

Hence T ∈ G2(C(n)(X)). �
We can deduce that every approximate local isometric reflection of C(n)(X) is an isometric reflection.

Corollary 4. The set G2(C(n)(X)) is topologically reflexive.

Proof. Let T ∈ reftop(G2(C(n)(X))). By Theorem 4, for f ∈ C(n)(X), we can take two sequences {θf,i}i∈N
in An(X) with θf,i(x) ∈ {±1} for all x ∈ X, and {σf,i}i∈N in Bn(X, X) with σ2

f,i(x) = x for all x ∈ X

satisfying

lim
i→∞

θf,i(f ◦ σf,i) = T (f).

Obviously, T ∈ reftop(G(C(n)(X))) and, by Theorem 2, we can find a function θ ∈ An(X) and an n-times 
continuously differentiable surjective function σ : X → X such that |σ′(x)| = 1 and σ′′(x) = 0 for all x ∈ X

such that

T (f) = θ(f ◦ σ) (f ∈ C(n)(X)).

Hence θ = T (1X) = limi→∞ θ1X ,i and since θ1X ,i(x) ∈ {±1} for all i ∈ N and x ∈ X, it is deduced easily 
that θ(x) ∈ {±1} for all x ∈ X. Define g(x) = x − min(X) + 1 for all x ∈ X. We have

θ(g ◦ σ) = T (g) = lim
i→∞

θg,i(g ◦ σg,i).

Since the convergence in the C-norm implies uniform convergence, and g(x) > 0, θ(x), θg,i(x) ∈ {±1} for 
all x ∈ X, we conclude that limi→∞ ‖g ◦ σg,i − g ◦ σ‖∞ = 0. Hence limi→∞ ‖σg,i − σ‖∞ = 0. Now, given 
x ∈ X and ε > 0, taking into account that σ is continuous and limi→∞ σg,i(x) = σ(x), one can find i0 ∈ N

such that ‖σg,i − σ‖∞ < ε/2 and 
∣∣σ(σg,i(x)) − σ2(x)

∣∣ < ε/2 for all i ≥ i0. Then for any i ≥ i0, we have

∣∣σ2
g,i(x) − σ2(x)

∣∣ ≤ |σg,i(σg,i(x)) − σ(σg,i(x))| +
∣∣σ(σg,i(x)) − σ2(x)

∣∣ < ε,

which yields limi→∞ σ2
g,i(x) = σ2(x). On the other hand, for each i ∈ N and x ∈ X we have σ2

g,i(x) = x, 
which finally implies that σ2(x) = x. Thus, we infer that σ ∈ Bn(X, X) with σ2 = idX . Therefore T ∈
G2(C(n)(X)) by Theorem 4. �

We now prove that every approximate 2-local isometric reflection of C(n)(X) is an isometric reflection.

Corollary 5. The set G2(C(n)(X)) is 2-topologically reflexive.

Proof. Let Δ ∈ 2-reftop(G2(C(n)(X))). With a similar proof to that of Theorem 3, we can prove that Δ is 
linear. Hence Δ ∈ reftop(G2(C(n)(X))). Then Δ ∈ G2(C(n)(X)) by Corollary 4. �
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Let us recall that a generalized bi-circular projection of a Banach space E is a linear projection P : E → E

such that P + λ(idE − P ) is a linear surjective isometry for some λ ∈ T \ {1}. We denote by GBP(E) the 
set of all generalized bi-circular projections of E.

A complete description of such projections on C(1)([0, 1], E) with E a finite-dimensional complex Hilbert 
space was given by Botelho and Jamison [1]. Here, the next theorem describes the class of generalized 
bi-circular projections of C(n)(X).

Theorem 5. A map P : C(n)(X) → C(n)(X) is a generalized bi-circular projection if and only if there exist 
a function θ ∈ An(X) with θ(x) ∈ {±1} for all x ∈ X, and a function σ ∈ Bn(X, X) with σ2 = idX such 
that

P (f)(x) = 1
2 [f(x) + θ(x)f(σ(x))] (x ∈ X, f ∈ C(n)(X)).

Proof. Assume that P ∈ GBP(C(n)(X)). Then P + λ(idC(n)(X) − P ) ∈ G(C(n)(X)) for some λ ∈ T with 
λ �= 1. By Theorem 1, we can find two functions θ ∈ An(X) and σ ∈ Bn(X, X) such that

[P + λ(idC(n)(X) − P )](f)(x) = θ(x)f(σ(x)) (f ∈ C(n)(X), x ∈ X),

which gives the following formula for P :

P (f)(x) = (1 − λ)−1[−λf(x) + θ(x)f(σ(x))] (f ∈ C(n)(X), x ∈ X).

Since P 2 = P , we obtain the following equation:

λf(x) − (λ + 1)θ(x)f(σ(x)) + [θ(x)]2f(σ2(x)) = 0 (f ∈ C(n)(X), x ∈ X).

Suppose that there exists x0 ∈ X such that x0 �= σ(x0) and x0 �= σ2(x0). Take a function h ∈ C(n)(X) such 
that h(x0) = 1 and h(σ(x0)) = 0 = h(σ2(x0)). Taking f = h and x = x0 in the equation above, we obtain 
λ = 0, a contradiction. Hence σ(x) = x or σ2(x) = x for all x ∈ X. In any case we conclude that σ2 = idX .

We now distinguish two cases. If σ �= idX , we can take a point x0 ∈ X with x0 �= σ(x0) and a function 
g ∈ C(n)(X) such that g(x0) = 1 and g(σ(x0)) = 0. Substituting now in the equation, first f = g and 
x = x0, and after f = 1X and any x, we infer that λ + [θ(x0)]2 = 0 and λ − (λ + 1)θ(x) + [θ(x)]2 = 0 for all 
x ∈ X, respectively. Hence λ = −1 and [θ(x)]2 = 1 for all x ∈ X. Hence θ(x) ∈ {−1, 1} for all x ∈ X and 
the formula of P yields

P (f)(x) = 1
2 [f(x) + θ(x)f(σ(x))] (f ∈ C(n)(X), x ∈ X).

In the another case, if σ = idX , taking f = 1X in the equation we obtain

[θ(x) − λ][θ(x) − 1] = [θ(x)]2 − (λ + 1)θ(x) + λ = 0 (x ∈ X).

Since λ �= 1, we deduce that either θ(x) = λ for all x ∈ X or θ(x) = 1 for all x ∈ X. Using the formula, we 
conclude that

P (f)(x) = 0 = 1
2 [f(x) − f(σ(x))] (f ∈ C(n)(X), x ∈ X)

or

P (f)(x) = f(x) = 1 [f(x) + f(σ(x))] (f ∈ C(n)(X), x ∈ X).
2
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Conversely, if P is given as the average of the identity operator with an isometric reflection on C(n)(X), 
then it is immediate to check that P ∈ GBP(C(n)(X)). �

We now show that every approximate local generalized bi-circular projection of C(n)(X) is a generalized 
bi-circular projection.

Corollary 6. The set GBP(C(n)(X)) is topologically reflexive.

Proof. Let P ∈ reftop(GBP(C(n)(X))). By Theorem 5, for each f ∈ C(n)(X) there exist two sequences 
{θf,i}i∈N in An(X) with θf,i(x) ∈ {±1} for all x ∈ X, and {σf,i}i∈N in Bn(X, X) with σ2

f,i = idX satisfying

lim
i→∞

1
2 [f + θf,i(f ◦ σf,i)] = P (f).

Hence

lim
i→∞

θf,i(f ◦ σf,i) = 2P (f) − f,

and so 2P − idC(n)(X) ∈ reftop(G2(C(n)(X))). Hence 2P − idC(n)(X) ∈ G2(C(n)(X)) by Corollary 4 and 
therefore P ∈ GBP(C(n)(X)). �

We close the paper with the study of approximate 2-local generalized bi-circular projection of C(n)(X).

Theorem 6. The set GBP(C(n)(X)) is 2-topologically reflexive.

Proof. Let Δ ∈ 2-reftop(GBP(C(n)(X))). For any f, g ∈ C(n)(X), there exist sequences {θf,i}i∈N in An(X)
with θf,i(x) ∈ {±1} for all x ∈ X and {σf,i}i∈N in Bn(X, X) with σ2

f,i(x) = x for all x ∈ X satisfying

lim
i→∞

1
2 [f + θf,g,i(f ◦ σf,g,i)] = Δ(f),

lim
i→∞

1
2 [g + θf,g,i(g ◦ σf,g,i)] = Δ(g).

Hence, for every f, g ∈ C(n)(X), we have

lim
i→∞

θf,g,i(f ◦ σf,g,i) = 2Δ(f) − f,

lim
i→∞

θf,g,i(g ◦ σf,g,i) = 2Δ(g) − g,

and this says that 2Δ − idC(n)(X) ∈ 2-reftop(G2(C(n)(X))). Hence 2Δ − idC(n)(X) ∈ G2(C(n)(X)) by Corol-
lary 5. Therefore, from Theorem 5 we conclude that Δ ∈ GBP(C(n)(X)). �
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