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Abstract
The 2-locality problem of diameter-preserving maps between C(X)-spaces is
addressed in this paper. For any compact Hausdorff space X with at least three points,
we give an example of a 2-local diameter-preserving map onC(X)which is not linear.
However, we show that for first countable compact Hausdorff spaces X and Y , every
2-local diameter-preserving map from C(X) to C(Y ) is linear and surjective up to
constants in some sense. This fact yields the 2-algebraic reflexivity of isometries with
respect to the diameter norms on the quotient spaces.

Keywords 2-local map · Diameter-preserving map · Function space · Weighted
composition operator

Mathematics Subject Classification 46B04 · 47B38

1 Introduction and results

Let E and F be Banach spaces and let S be a subset of L(E, F), the space of linear
operators from E to F . Let us recall that a linearmap T : E → F is a localS-map if for
every e ∈ E , there exists a Te ∈ S, depending possibly on e, such that Te(e) = T (e).
On the other hand, a map � : E → F (which is not assumed to be linear) is called a
2-local S-map if for any e, u ∈ E , there exists a Te,u ∈ S, depending in general on e
and u, such that Te,u(e) = �(e) and Te,u(u) = �(u).

Most of the published works on local and 2-local S-maps concern the set S =
G(E), the group of surjective linear isometries of E . In this case, the local and 2-
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868 A. Jiménez-Vargas, F. Sady

local G(E)-maps are known as local and 2-local isometries of E , respectively. The
main question which one raises is for which Banach spaces, every local isometry
is a surjective isometry or, equivalently, which Banach spaces have an algebraically
reflexive isometry group. In the 2-local setting, the basic problem is to show that every
2-local isometry is a surjective linear isometry.

In [21], Molnár initiated the study of 2-local isometries on operator algebras and
proposed to investigate the 2-locality of isometries on function algebras. In this line,
Győry [11] dealt with 2-local isometries on spaces of continuous functions. In [18],
Villegas and the first author adapted the Győry’s technique to analyze the 2-local
isometries on Lipschitz algebras. Hatori, Miura, Oka, and Takagi [13] considered
2-local isometries on uniform algebras including certain algebras of holomorphic
functions.More recently,Hosseini [15],Hatori andOi [14] andLi, Peralta, L.Wangand
Y.-S.Wang [20] have investigated 2-local isometries of different function algebras such
as uniform algebras, Lipschitz algebras, and algebras of continuously differentiable
functions.

Our aim in this paper is to study the 2-locality problem for isometries between
certain quotient Banach spaces which appear in a natural form when one treats with
maps between C(X)-spaces which preserve the diameter of the range.

Let C(X) be the Banach space of all continuous complex-valued functions on a
compact Hausdorff space X , with the usual supremum norm. A map � : C(X) →
C(Y ) (not necessarily linear) is diameter-preserving if

ρ(�( f ) − �(g)) = ρ( f − g) ( f , g ∈ C(X)),

where for each f ∈ C(X),

ρ( f ) = sup {| f (x) − f (z)| : x, z ∈ X} .

Győry and Molnár [12] introduced such maps and gave a complete description of
diameter-preserving linear bijections of C(X), when X is a first countable compact
Hausdorff space. Cabello Sánchez [5] andGonzález andUspenskij [10] established the
same characterization without the first countability assumption. As usual, T denotes
the unit circle of C. We also put

T
+ = {eit : t ∈ [0, π)}.

Moreover, 1X and 0X stand for the constant functions 1 and 0 on X , respectively.

Theorem 1 [5,10,12]. Let X and Y be compact Hausdorff spaces. A linear bijection
T : C(X) → C(Y ) is diameter-preserving if and only if there exist a homeomorphism
φ : Y → X, a linear functional μ : C(X) → C and a scalar λ ∈ T with λ �= −μ(1X )

such that

T ( f ) = λ f ◦ φ + μ( f )1Y ( f ∈ C(X)) .

The main problem addressed in the study of diameter-preserving maps between
function algebras is establishing a representationof such amapas the sumof aweighted
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On 2-local diameter-preserving maps between C(X)-spaces 869

composition operator and a functional as in Theorem 1. We have a precise description
of diameter-preserving maps for most of the classical function spaces (see for example
[1–3,5,7,9,23] for diameter-preserving linear maps and [4,8,16] for the non-linear
case).

In the case that S is the set of all diameter-preserving linear bijections from C(X)

to C(Y ), we studied in a recent paper [17] the local S-maps, called local diameter-
preservingmaps. Namely, we proved that for first countable compact Hausdorff spaces
X and Y , every local diameter-preserving map from C(X) to C(Y ) is a diameter-
preserving bijection. The first countability assumption on the topological spaces is a
mild and appropriate condition when one deals with these problems. For example,
the isometry group and the automorphism group of C(X) are algebraically reflexive
whenever X is first countable [22], while these results are no longer true when X does
not enjoy this property (see section 7 in [6]).

It is natural to arise the corresponding question in the 2-local context, that is, is every
2-local diameter-preservingmap adiameter-preserving linear bijection?Unfortunately
or not, the answer is negative as we shall see in a counterexample.

Let us recall that a map � : C(X) → C(Y ) (not assumed to be linear) is a 2-local
diameter-preserving map if for any f , g ∈ C(X), there exists a diameter-preserving
linear bijection T f ,g from C(X) to C(Y ) such that T f ,g( f ) = �( f ) and T f ,g(g) =
�(g).

Example (A 2-local diameter-preserving non-linear map between C(X)-spaces) Let
X be a compact Hausdorff space with at least three points. Let μ : C(X) → C be
a homogeneous non-additive functional such that μ(1X ) �= −1 and μ(1X − f ) =
μ(1X ) − μ( f ) for all f ∈ C(X). To give an example of such a functional μ, fix three
distinct points x1, x2, x3 ∈ X and define μ : C(X) → C by

μ( f ) =
{
f (x1) if f (x1) = f (x2) and f (x1) �= f (x3),
f (x3) otherwise.

It is easy to see that μ is homogeneous and μ(1X − f ) = μ(1X ) − μ( f ) for all
f ∈ C(X). Meanwhile, μ is not additive, since we can take f , g ∈ C(X) such that
f (x1) = f (x2) = 1 and f (x3) = 0 and also g(x1) = g(x3) = 1 and g(x2) = 0, and
then μ( f + g) = 1 �= 2 = μ( f ) + μ(g).

Define now the map � : C(X) → C(X) by

�( f ) = f + μ( f )1X ( f ∈ C(X)).

For each pair f , g ∈ C(X), consider a linear functional μ f ,g : C(X) → C satisfying

μ f ,g( f ) = μ( f ), μ f ,g(g) = μ(g), μ f ,g(1X ) = μ(1X ).

Notice that such a functional μ f ,g exists. Indeed, if { f , g, 1X } is linearly inde-
pendent, the existence of μ f ,g can be established by extending linearly to C(X)

a convenient linear functional defined on span{ f , g, 1X }. If { f , g, 1X } is linearly
dependent and 1X ∈ span{ f , g}, then we can find a linear functional μ f ,g on C(X)
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870 A. Jiménez-Vargas, F. Sady

such that μ f ,g( f ) = μ( f ) and μ f ,g(g) = μ(g) (note that μ is homogeneous).
Since 1X = a f + bg for some a, b ∈ C, the hypotheses on μ easily imply that
μ f ,g(1X ) = μ(1X ), as desired. In the case where { f , g, 1X } is linearly dependent and
1X /∈ span{ f , g}we conclude that f and g are linearly dependent and wemay assume
that f = cg for some scalar c. In this case, there exists a linear functionalμ f ,g onC(X)

such that μ f ,g(1X ) = μ(1X ) and μ f ,g(g) = μ(g). Hence μ f ,g( f ) = μ( f ) since μ

is homogeneous. Thus in each case we can find a linear functional μ f ,g : C(X) → C

with the desired properties.
Finally, for any f , g ∈ C(X), define T f ,g : C(X) → C(X) by

T f ,g(h) = h + μ f ,g(h)1X (h ∈ C(X)).

Then T f ,g is a diameter-preserving linear bijection by Theorem 1. Clearly, for any
f , g ∈ C(X), we have T f ,g( f ) = �( f ) and T f ,g(g) = �(g). Hence � is a 2-local
diameter-preserving map which is homogeneous but not additive.

However, we will show that, in the case where X and Y are first countable, every
2-local diameter-preserving map (which is immediately diameter-preserving) is linear
and surjective up to constants in some sense. Our approach consists of analyzing the 2-
local isometries of the following quotient Banach spaces which appear closely related
to diameter-preserving maps.

Given a compact Hausdorff space X , let Cρ(X) denote the quotient space
C(X)/ ker(ρ). Clearly, Cρ(X) is a Banach space with the norm

‖πX ( f )‖ρ = ρ( f ) ( f ∈ C(X)),

where πX : C(X) → Cρ(X) is the canonical quotient surjection. Let us recall that a
mapping T : Cρ(X) → Cρ(Y ) (which is not assumed to be linear or surjective) is an
isometry whenever

‖T (πX ( f )) − T (πX (g))‖ρ = ‖πX ( f ) − πX (g)‖ρ ( f , g ∈ C(X)).

Our main result is the following theorem on 2-local isometries between Cρ(X)-
spaces.

Theorem 2 Let X and Y be first countable compact Hausdorff spaces and let
T : Cρ(X) → Cρ(Y ) be a 2-local isometry. Then T is a surjective linear isometry.

2 Proofs

The first key tool to prove Theorem 2 is the fact that every isometry T between
Cρ(X)-spaces induces a convenient (injective) diameter-preserving map � between
the corresponding C(X)-spaces, which is linear or surjective if so is T . Towards this
end, fix two points u0 ∈ X and w0 ∈ Y and consider the linear bijections

�X : C(X) → Cρ(X) ⊕ C, �X ( f ) = (πX ( f ), f (u0)) ( f ∈ C(X))
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On 2-local diameter-preserving maps between C(X)-spaces 871

and

�Y : C(Y ) → Cρ(Y ) ⊕ C, �Y (g) = (πY (g), g(w0)) (g ∈ C(Y )).

Lemma 1 Let X and Y be compact Hausdorff spaces and let T : Cρ(X) → Cρ(Y ) be
an isometry. Then � : C(X) → C(Y ) defined by

�( f ) = �−1
Y (T (πX ( f )), f (u0)) ( f ∈ C(X))

is an injective diameter-preservingmap.Moreover, T is linear (respectively, surjective)
if and only if so is �.

Proof Given f , g ∈ C(X), we put h = �( f ) − �(g). Then

h = �−1
Y (T (πX ( f )), f (u0)) − �−1

Y (T (πX (g)), g(u0))

= �−1
Y (T (πX ( f )) − T (πX (g)), f (u0) − g(u0)).

Hence

(πY (h), h(w0)) = �Y (h) = (T (πX ( f )) − T (πX (g)), f (u0) − g(u0)),

and, consequently, πY (h) = T (πX ( f )) − T (πX (g)). This implies that

ρ(�( f ) − �(g)) = ‖πY (h)‖ρ = ‖T (πX ( f )) − T (πX (g))‖ρ

= ‖πX ( f ) − πX (g)‖ρ

= ρ( f − g),

that is, � is diameter-preserving. Clearly, � is injective. It is also easy to see that � is
linear if so is T . Assume now that T is surjective. Then, given g ∈ C(Y ) there exists
f ∈ C(X) such that T (πX ( f )) = πY (g). Replacing g by g + λ for some λ ∈ C, we
can assume that g(w0) = f (u0). Hence

�( f ) = �−1
Y (T (πX ( f )), f (u0)) = �−1

Y (πY (g), g(w0)) = g,

which shows that � is surjective, as well. A similar reasoning shows that if � is linear
(respectively, surjective), then so is T . �	

We now prove our main theorem.

Proof of Theorem 2 Let T : Cρ(X) → Cρ(Y ) be a 2-local isometry. We prove the
theorem through a series of claims. We note that some claims have similar proofs to
those of the corresponding steps in the proof of [17, Theorem 2]. For this reason, we
will only include here the proof of those claims whose arguments differ essentially
from similar steps in [17].
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872 A. Jiménez-Vargas, F. Sady

Claim 1 The map � : C(X) → C(Y ) defined by

�( f ) = �−1
Y (T (πX ( f )), f (u0)) ( f ∈ C(X)),

is a 2-local diameter-preserving map.

Let f , g ∈ C(X). By hypotheses, there exists a surjective linear isometry
T f ,g : Cρ(X) → Cρ(Y ) such that T f ,g(πX ( f )) = T (πX ( f )) and T f ,g(πX (g)) =
T (πX (g)). Define � f ,g : C(X) → C(Y ) by

� f ,g(h) = �−1
Y (T f ,g(πX (h)), h(u0)) (h ∈ C(X)).

By Lemma 1, � f ,g is a diameter-preserving linear bijection from C(X) to C(Y )

satisfying � f ,g( f ) = �( f ) and � f ,g(g) = �(g).
The following fact will be used repeatedly without any explicit mention in our

proof.

Claim 2 For any f , g ∈ C(X), there exists a diameter-preserving linear bijection
� f ,g of C(X) to C(Y ) such that � f ,g( f ) = �( f ) and � f ,g(g) = �(g). Moreover,
there exist a homeomorphism φ f ,g : Y → X, a linear functional μ f ,g on C(X) and a
scalar λ f ,g ∈ T with λ f ,g �= −μ f ,g(1X ) such that

�( f )(y) = λ f ,g f (φ f ,g(y)) + μ f ,g( f ) (y ∈ Y )

and

�(g)(y) = λ f ,gg(φ f ,g(y)) + μ f ,g(g) (y ∈ Y ).

It follows from Claim 1 and Theorem 1.

Claim 3 � is injective, diameter-preserving and homogeneous.

Let f , g ∈ C(X). If �( f ) = �(g), then f = g by the injectivity of � f ,g and
therefore � is injective. Clearly, � is diameter-preserving because

ρ(�( f ) − �(g)) = ρ(� f ,g( f ) − � f ,g(g)) = ρ( f − g).

Finally, given λ ∈ C, we have

�(λ f ) = � f ,λ f (λ f ) = λ� f ,λ f ( f ) = λ�( f ),

and thus � is homogeneous.
By Claim 2, there exists a homeomorphism from Y onto X . Hence Y and X have

the same cardinality. Since Theorem 2 is quite easy to verify when Y is a singleton,
we suppose from now on that X and Y have at least two points.

Given a set X with cardinal number |X | ≥ 2, we set

X̃ = {(x1, x2) ∈ X × X : x1 �= x2} ,
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On 2-local diameter-preserving maps between C(X)-spaces 873

X2 = {{x1, x2} : (x1, x2) ∈ X̃
}
,

and we define the natural correspondence �X : X̃ → X2 by

�X ((x1, x2)) = {x1, x2}
(
(x1, x2) ∈ X̃

)
.

Given a compact Hausdorff space X and a point (x1, x2) ∈ X̃ , Urysohn’s lemma
guarantees the existence of a continuous function h(x1,x2) : X → [0, 1] such that

h(x1,x2)(x1) − h(x1,x2)(x2) = ρ(h(x1,x2)).

In fact, h(x1,x2)(x1) = 1 and h(x1,x2)(x2) = 0. Furthermore, since X is also first
countable, we can take h(x1,x2) such that h

−1
(x1,x2)

({1}) = {x1} and h−1
(x1,x2)

({0}) = {x2}.
In particular,

∣∣h(x1,x2)(z) − h(x1,x2)(w)
∣∣ < ρ(h(x1,x2))

for all (z, w) ∈ X̃ \ {(x1, x2), (x2, x1)}.
Claim 4 For any (x1, x2) ∈ X̃ , the set

B(x1,x2) =
⋂

f ∈C(X)

B(x1,x2), f

is non-empty, where

B(x1,x2), f = {
((y1, y2), λ) ∈ Ỹ × T : �( f )(y1) − �( f )(y2) = λ ( f (x1) − f (x2))

}
( f ∈ C(X)).

Let (x1, x2) ∈ X̃ and f ∈ C(X). Observe first that B(x1,x2), f is non-empty. Indeed,
it suffices to choose y1, y2 ∈ Y such that φ f , f (yi ) = xi for i = 1, 2. Then

�( f )(y1) − �( f )(y2) = � f , f ( f )(y1) − � f , f ( f )(y2) = λ f , f ( f (x1) − f (x2)) ,

and therefore ((y1, y2), λ f , f ) ∈ B(x1,x2), f .
We next prove that B(x1,x2),g ⊆ B(x1,x2), f where g = h(x1,x2). By Claim 2, there

exists a diameter-preserving linear bijection �g, f from C(X) to C(Y ) such that
�g, f (g) = �(g) and �g, f ( f ) = �( f ). Furthermore, we have a homeomorphism
φg, f from Y onto X , a linear functional μg, f on C(X) and a scalar λg, f ∈ T with
λg, f �= −μg, f (1X ) such that

�g, f (h)(y) = λg, f h(φg, f (y)) + μg, f (h) (h ∈ C(X), y ∈ Y ).

Let ((y1, y2), λ) ∈ B(x1,x2),g be arbitrary. We have

λ (g(x1) − g(x2)) = �(g)(y1) − �(g)(y2)
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874 A. Jiménez-Vargas, F. Sady

= �g, f (g)(y1) − �g, f (g)(y2)

= λg, f
(
g(φg, f (y1)) − g(φg, f (y2))

)

and therefore

∣∣g(φg, f (y1)) − g(φg, f (y2))
∣∣ = 1.

This implies that either

(φg, f (y1), φg, f (y2)) = (x1, x2),

or

(φg, f (y1), φg, f (y2)) = (x2, x1).

Hence λg, f = λ in the first case, or λg, f = −λ in the second one. It follows that

�( f )(y1) − �( f )(y2) = �g, f ( f )(y1) − �g, f ( f )(y2)

= λg, f
(
f (φg, f (y1)) − f (φg, f (y2))

)
= λ ( f (x1) − f (x2)) ,

whence ((y1, y2), λ) ∈ B(x1,x2), f and this proves that B(x1,x2),g ⊆ B(x1,x2), f . Conse-
quently, we obtain that B(x1,x2) = B(x1,x2),g .

The proof of Claim 5 is similar to that of Step 4 in [17].

Claim 5 For every (x1, x2) ∈ X̃ , there exist (y1, y2) ∈ Ỹ and λ ∈ T such that

B(x1,x2) = {((y1, y2), λ), ((y2, y1),−λ)} .

It is immediate from Claim 5 that for every (x1, x2) ∈ X̃ , the set

A(x1,x2) = {
(y1, y2) ∈ Ỹ | ∃λ ∈ T

+ : ((y1, y2), λ) ∈ B(x1,x2)
}

is a singleton. Let 	 : X̃ → Ỹ be the map given by 	((x1, x2)) = (y1, y2) where for
each (x1, x2) ∈ X̃ , the element (y1, y2) ∈ Ỹ is the unique point of A(x1,x2). We note
that if A(x1,x2) = {(y1, y2)}, then the definition of A(x1,x2) shows that there exists a
(unique) scalar β(x1, x2) ∈ T

+, depending on the pair (x1, x2), such that

�( f )(y1) − �( f )(y2) = β(x1, x2) ( f (x1) − f (x2)) ( f ∈ C(X)).

This concludes that

�( f )(y2) − �( f )(y1) = β(x1, x2) ( f (x2) − f (x1)) ( f ∈ C(X)),

that is, β(x2, x1) = β(x1, x2) and 	 ((x2, x1)) = (y2, y1).
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On 2-local diameter-preserving maps between C(X)-spaces 875

Claim 6 The map 	 is a bijection from X̃ to ∪(x1,x2)∈X̃A(x1,x2).

The surjectivity of 	 is immediate, since (y1, y2) = 	 ((x1, x2)) if and only if
(y1, y2) ∈ A(x1,x2). To prove the injectivity of 	, let (x1, x2), (x3, x4) ∈ X̃ be such
that

(y1, y2) = 	 ((x1, x2)) = 	 ((x3, x4)) .

Then we have

β(x1, x2) ( f (x1) − f (x2)) = �( f )(y1) − �( f )(y2) = β(x3, x4) ( f (x3) − f (x4))

for all f ∈ C(X), where β(x1, x2), β(x3, x4) ∈ T
+. Substituting f by h(x1,x2), we

deduce that {x3, x4} = {x1, x2}. Now since both scalars β(x1, x2) and β(x3, x4) are
in T+, we get (x3, x4) = (x1, x2), as desired.

Claim 7 For any {x1, x2}, {x3, x4} ∈ X2, we have

|{x1, x2} ∩ {x3, x4}| = |�Y (	 ((x1, x2))) ∩ �Y (	 ((x3, x4)))| .

Let {x1, x2}, {x3, x4} ∈ X2. If {x1, x2} = {x3, x4}, then either 	 ((x1, x2)) =
	 ((x3, x4)) or 	 ((x1, x2)) = 	 ((x4, x3)) and thus the equality holds. Assume
that {x1, x2} �= {x3, x4}. Then (x1, x2) �= (x3, x4) and (x1, x2) �= (x4, x3). Hence
	 ((x1, x2)) = (y1, y2) and 	 ((x3, x4)) = (y3, y4) for some {y1, y2}, {y3, y4} ∈ Y2
with {y1, y2} �= {y3, y4} by the injectivity of 	 and the fact that �Y (	 ((x1, x2))) =
�Y (	 ((x2, x1))). We have two equations:

�( f )(y1) − �( f )(y2) = β(x1, x2) ( f (x1) − f (x2)) ,

�( f )(y3) − �( f )(y4) = β(x3, x4) ( f (x3) − f (x4)) ,

for all f ∈ C(X), where β(x1, x2), β(x3, x4) ∈ T
+. Put g = h(x1,x2) and h = h(x3,x4).

Then using the first equality for g and the second one for h, we obtain

�(g)(y1) − �(g)(y2) = β(x1, x2) (g(x1) − g(x2)) ,

�(h)(y3) − �(h)(y4) = β(x3, x4) (h(x3) − h(x4)) .

By Claim 2, there exist a homeomorphism φg,h from Y onto X , a linear functional
μg,h on C(X) and a scalar λg,h ∈ T with λg,h �= −μg,h(1X ) such that

�(g)(y) = λg,hg(φg,h(y)) + μg,h(g)

and

�(h)(y) = λg,hh(φg,h(y)) + μg,h(h)
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876 A. Jiménez-Vargas, F. Sady

for all y ∈ Y . Therefore,

�(g)(y1) − �(g)(y2) = λg,h
(
g(φg,h(y1)) − g(φg,h(y2))

)
,

�(h)(y3) − �(h)(y4) = λg,h
(
h(φg,h(y3)) − h(φg,h(y4))

)
,

and it follows that

λg,h
(
g(φg,h(y1)) − g(φg,h(y2))

) = β(x1, x2) (g(x1) − g(x2)) ,

λg,h
(
h(φg,h(y3)) − h(φg,h(y4))

) = β(x3, x4) (h(x3) − h(x4)) .

These equalities imply that

(φg,h(y1), φg,h(y2))) ∈ {(x1, x2), (x2, x1)}

and

(φg,h(y3), φg,h(y4)) ∈ {(x3, x4), (x4, x3)} .

Then we have four possibilities:

(1) x1 = φg,h(y1), x2 = φg,h(y2), x3 = φg,h(y3), x4 = φg,h(y4).
(2) x1 = φg,h(y1), x2 = φg,h(y2), x3 = φg,h(y4), x4 = φg,h(y3).
(3) x1 = φg,h(y2), x2 = φg,h(y1), x3 = φg,h(y3), x4 = φg,h(y4).
(4) x1 = φg,h(y2), x2 = φg,h(y1), x3 = φg,h(y4), x4 = φg,h(y3).

If |{x1, x2} ∩ {x3, x4}| = 1, then we infer from the injectivity of φg,h that

|�Y (	 ((x1, x2))) ∩ �Y (	 ((x3, x4)))| = |{y1, y2} ∩ {y3, y4}| = 1,

while if |{x1, x2} ∩ {x3, x4}| = 0, then

|�Y (	 ((x1, x2))) ∩ 	 ((x3, x4))| = |{y1, y2} ∩ {y3, y4}| = 0.

The proof of Claim 8 is the same as that of Step 10 of [17].

Claim 8 Assume |X | ≥ 3. For each x ∈ X and any {x1, x2} ∈ X2 with x1 �= x �= x2,
there exists a unique point, dependingonly on x anddenoted byϕ(x), in the intersection
	({x, x1}) ∩ 	({x, x2}). Then the map ϕ : X → Y is injective and {ϕ(x1), ϕ(x2)} =
�Y (	 ((x1, x2))) for all {x1, x2} ∈ X2.

Let Y0 = ϕ(X). Since the map ϕ : X → Y is injective, its inverse φ0 : Y0 → X is
a bijection which satisfies

{y1, y2} = �Y (	 ((φ0(y1), φ0(y2))) ({y1, y2} ∈ (Y0)2).

Now the same argument as in Step 12 of [17] yields the next claim.
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Claim 9 There exists a scalar λ ∈ T such that

�( f )(y1) − �( f )(y2) = λ ( f (φ0(y1)) − f (φ0(y2))) ( f ∈ C(X), y1, y2 ∈ Y0) .

Using the above claim we can define a functional μ : C(X) → C by

μ( f ) = �( f )(y0) − λ f (φ0(y0)) ( f ∈ C(X)),

where y0 is an arbitrary point of Y0. Then it is obvious that μ is well-defined and
homogeneous and, moreover,

�( f )(y) = λ f (φ0(y)) + μ( f ) ( f ∈ C(X), y ∈ Y0). (1)

Note that �(1X ) is a non-zero constant function by Claim 3. Hence it follows from
(1) that μ(1X ) �= −λ.

The proof of Step 15 of [17] can be applied to get the next claim.

Claim 10 φ0 : Y0 → X is a homeomorphism.

In the next claims we will show that the homeomorphism φ0 : Y0 → X can be
extended to a homeomorphism φ : Y → X satisfying �( f )(y) = λ f (φ(y)) + μ( f )
for all f ∈ C(X) and y ∈ Y . To do this we first prove the next claim.

Claim 11 The map S : C(X) → C(Y ) defined by

S( f )(y) = λ−1(�( f )(y) − μ( f )) ( f ∈ C(X), y ∈ Y )

is a unital algebra homomorphism.

Fix a point y ∈ Y and define the functional Sy : C(X) → C by

Sy( f ) = λ−1(�( f )(y) − μ( f )) ( f ∈ C(X)).

Since �(1X ) is a constant function, it follows from the equality (1) that Sy(1X ) = 1.
We next prove that Sy is linear andmultiplicative. Since Sy(0X ) = 0, by theKowalski–
Słodkowski theorem [19] it suffices to show that Sy( f ) − Sy(g) ∈ ( f − g)(X) for
every f , g ∈ C(X). Let f , g ∈ C(X). Since φ0 : Y0 → X is a bijective map, there
exists y0 ∈ Y0 such that φ0(y0) = φ f ,g(y). Construct the sequence {yi }∞i=0 in Y0 such
that

φ0(yi+1) = φ f ,g(yi ) (i ∈ N ∪ {0}).

Since Y0 is a first countable compact Hausdorff space, passing through a subsequence
we may assume that {yi }i → z0 for some z0 ∈ Y0. Hence, tending i → ∞ in the
above equality, we get φ0(z0) = φ f ,g(z0). Since z0, yi ∈ Y0, Claim 9 provides the
equations:

�( f )(z0) − �( f )(yi ) = λ( f (φ0(z0)) − f (φ0(yi )))
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and

�(g)(z0) − �(g)(yi ) = λ(g(φ0(z0)) − g(φ0(yi ))).

On the other hand, since φ f ,g(z0) = φ0(z0) and φ f ,g(yi ) = φ0(yi+1), we have

�( f )(z0) − �( f )(yi ) = λ f ,g( f (φ f ,g(z0)) − f (φ f ,g(yi )))

= λ f ,g( f (φ0(z0)) − f (φ0(yi+1)))

and

�(g)(z0) − �(g)(yi ) = λ f ,g(g(φ f ,g(z0)) − g(φ f ,g(yi )))

= λ f ,g(g(φ0(z0)) − g(φ0(yi+1))).

Hence, using the cited equations above, for each i ∈ N ∪ {0} we have

f (φ0(z0)) − f (φ0(yi )) = λ−1λ f ,g( f (φ0(z0)) − f (φ0(yi+1)))

and

g(φ0(z0)) − g(φ0(yi )) = λ−1λ f ,g(g(φ0(z0)) − g(φ0(yi+1))).

Now, it follows by induction that for each i ∈ N ∪ {0} and n ∈ N, we have

f (φ0(z0)) − f (φ0(yi )) = (λ−1λ f ,g)
n( f (φ0(z0)) − f (φ0(yi+n))),

and

g(φ0(z0)) − g(φ0(yi )) = (λ−1λ f ,g)
n(g(φ0(z0)) − g(φ0(yi+n))),

Thus letting n → ∞, we get

f (φ0(z0)) = f (φ0(yi )) (i ∈ N ∪ {0}).

and

g(φ0(z0)) = g(φ0(yi )) (i ∈ N ∪ {0}).

Therefore, for each i ∈ N ∪ {0}, we infer from the above-mentioned equations that

�( f )(z0) − �( f )(yi ) = λ( f (φ0(z0)) − f (φ0(yi ))) = 0,

and

�(g)(z0) − �(g)(yi ) = λ(g(φ0(z0)) − g(φ0(yi ))) = 0,
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that is,

�( f )(z0) = �( f )(yi ), �(g)(z0) = �(g)(yi ) (i ∈ N ∪ {0}).

Taking limits when i → ∞, we deduce that

�( f )(z0) = �( f )(y0), �(g)(z0) = �(g)(y0).

On the other hand, notice that f (φ f ,g(y)) = f (φ0(y0)) = f (φ0(z0)), and conse-
quently

�( f )(y) = λ f ,g f (φ f ,g(y)) + μ f ,g( f )

= λ f ,g f (φ0(z0)) + μ f ,g( f )

= λ f ,g f (φ f ,g(z0)) + μ f ,g( f )

= �( f )(z0).

Therefore we have

�( f )(y) = �( f )(z0) = �( f )(y0),

and, similarly, we can obtain

�(g)(y) = �(g)(z0) = �(g)(y0).

Now, using the equality (1) and the definition of Sy , we can write

�( f )(y0) = λ f (φ0(y0)) + μ( f ) = λ f (φ0(y0)) + �( f )(y) − λSy( f ),

�(g)(y0) = λg(φ0(y0)) + μ(g) = λg(φ0(y0)) + �(g)(y) − λSy(g),

which imply

Sy( f ) = f (φ0(y0)) + λ−1 (�( f )(y) − �( f )(y0)) = f (φ0(y0)),

Sy(g) = g(φ0(y0)) + λ−1 (�(g)(y) − �(g)(y0)) = g(φ0(y0)).

Finally, we deduce the required condition:

Sy( f ) − Sy(g) = f (φ0(y0)) − g(φ0(y0)) ∈ ( f − g)(X).

Hence Sy is a unital multiplicative linear functional on C(X). Since y was arbitrary,
we conclude that S : C(X) → C(Y ) is a unital algebra homomorphism.

Claim 12 There exists a homeomorphism φ : Y → X such that

�( f ) = λ f ◦ φ + μ( f )1Y ( f ∈ C(X)).
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Let S : C(X) → C(Y ) be the unital algebra homomorphism given in Claim 11. By
Gelfand theory, S induces a continuous map φ : Y → X such that S( f ) = f ◦ φ for
all f ∈ C(X), and thus �( f ) = λ f ◦ φ + μ( f )1Y for all f ∈ C(X). Now, a similar
proof to that of Step 17 in [17] shows that φ is a homeomorphism from Y onto X .

We note that φ(y) = φ0(y) for all y ∈ Y0, since by Claim 12 and the equation (1)
we have f (φ(y)) = f (φ0(y)) for all f ∈ C(X) and y ∈ Y0.

Claim 13 For each f ∈ C(X), we have T (πX ( f )) = πY (λ f ◦ φ). In particular, T is
linear and surjective.

Let f ∈ C(X). By Claim 12 and the definition of �, we have

λ f ◦ φ + μ( f )1Y = �( f ) = �−1
Y (T (πX ( f )), f (u0)).

Hence �Y (λ f ◦ φ + μ( f )1Y ) = (T (πX ( f )), f (u0)) which implies

πY (λ f ◦ φ) = πY (λ f ◦ φ + μ( f )1Y ) = T (πX ( f )).

This completes the proof of Theorem 2. �	
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Project UAL-FEDER Grant UAL2020-FQM-B1858.
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