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Isometric Composition Operators
on Lipschitz Spaces

A. Jiménez-Vargas

Abstract. Given pointed metric spaces X and Y , we characterize the
basepoint-preserving Lipschitz maps φ from Y to X inducing an iso-
metric composition operator Cφ between the Lipschitz spaces Lip0(X)
and Lip0(Y ), whenever X enjoys the peak property. This gives an an-
swer to a question posed by Weaver in his book [Lipschitz algebras.
Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2018].
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1. Introduction

Let (X, d) be a pointed metric space with a basepoint designated by eX , and
let ˜X denote the set

{(x, y) ∈ X × X : x �= y} .

The Lipschitz space Lip0(X) is the Banach space of all Lipschitz functions
f : X → R with f(eX) = 0, under the Lipschitz norm:

Lip(f) = sup
{ |f(x) − f(y)|

d(x, y)
: (x, y) ∈ ˜X

}

.

Throughout the paper, unless specified otherwise, X and Y will denote two
pointed metric spaces. Every Lipschitz map φ from Y to X which preserves
the basepoint produces a bounded composition operator Cφ from Lip0(X) to
Lip0(Y ), defined by Cφf = f ◦ φ for all f ∈ Lip0(X). The map φ is known
as the symbol of the operator Cφ.

The problem of characterizing those symbols φ which induce isometric
composition operators Cφ (not necessarily surjective) has been raised recently
by Weaver in [8, p. 53]. The same question was addressed by some authors
for isometric composition operators on Banach spaces of analytic functions
(see [5] and the papers that cite it).
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In the surjective case, Weaver proved in [8, Proposition 2.28 (iii)] that
those basepoint-preserving Lipschitz symbols φ from Y to X that generate
surjective isometric composition operators Cφ from Lip0(X) to Lip0(Y ) are
precisely the surjective isometries from Y to X, whenever X and Y are com-
plete.

A description of all linear isometries (surjective or not) of Lip0(X) does
not seem to be known. Given α ∈]0, 1[, we denote by Xα the metric space
(X, dα). If X and Y are compact, the linear isometries from Lip0(Xα) onto
Lip0(Y α) were characterized by Mayer-Wolf in [6, Theorem 3.3]. He showed
that a linear operator T : Lip0(Xα) → Lip0(Y α) is a surjective isometry if
and only if it is of the form

T (f)(y) = λk−α (f(φ(y)) − f(φ(eY )))

for all f ∈ Lip0(Xα) and y ∈ Y , where λ ∈ R with |λ| = 1 and φ : Y → X
is a bijective k-dilation with diam(X) = k · diam(Y ). Given k > 0, a map
φ : Y → X is a k-dilation if dX(φ(x), φ(y)) = k · dY (x, y) for all x, y ∈ Y .
Mayer-Wolf’s result was extended by Weaver for surjective linear isometries
from Lip0(X) to Lip0(Y ), when X and Y are complete and uniformly concave
[8, Theorem 3.56].

According to [8, Definition 3.33], a metric space X is said to be concave
if

d(x, y) < d(x, z) + d(z, y)

for any triple of distinct points x, y, z ∈ X, and uniformly concave if for every
distinct points x, y ∈ X and every ε > 0, there exists δ > 0 such that

d(x, y) ≤ d(x, z) + d(z, y) − δ

for all z ∈ X such that d(x, z), d(y, z) ≥ ε. The class of uniformly concave
metric spaces includes any closed subset of Rn with the Euclidean norm or
any compact subset of a strictly convex Banach space both without colinear
triples, the unit sphere of any uniformly convex Banach space and Hölder
spaces, among others (see [8, Section 3.5]).

Uniform concavity is closely related to the extremal structure of the
closed unit ball BF(X) of the Lipschitz free Banach space

F(X) := lin {δx : x ∈ X} ⊂ Lip0(X)∗,

where δx(f) := f(x) for every x ∈ X and f ∈ Lip0(X). Let us recall that
F(X) is the canonical predual of Lip0(X). By Theorems 3.39 in [8] and 4.1
in [1], X is uniformly concave if and only if every molecule (δx − δy)/d(x, y)
is a preserved extreme point of BF(X).

The notion of peaking function has been a very important tool in the
study of the isometric theory of Lipschitz spaces. According to [7, Definition
2.4.1], a function f ∈ Lip0(X) with Lip(f) ≤ 1 is said to peak at (x, y) ∈ ˜X
if

f(x) − f(y)
d(x, y)

= 1,
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and for each open set U ⊂ ˜X containing (x, y) and (y, x), there exists δ > 0
such that

|f(z) − f(w)|
d(z, w)

≤ 1 − δ

for all (z, w) ∈ ˜X\U . Colloquially, if f peaks at (x, y) ∈ ˜X, we have that
|f(z)− f(w)|/d(z, w) is uniformly less than 1 when (z, w) is away from (x, y)
and (y, x).

We say that a pointed metric space X has the peak property if for
every (x, y) ∈ ˜X, there is a function f ∈ Lip0(X) with Lip(f) ≤ 1 that
peaks at (x, y). Hölder spaces constitute a class of metric spaces with the
peak property (see the proof of Proposition 2.4.5 in [7]). By [3, Theorem 5.4],
X has the peak property if and only if every molecule (δx − δy)/d(x, y) is a
strongly exposed point of BF(X).

In this note, we characterize all basepoint-preserving Lipschitz maps
φ from Y to X whose induced composition operators Cφ from Lip0(X) to
Lip0(Y ) are isometries, whenever X has the peak property. We also give a
condition for φ to induce an isometric composition operator Cφ without any
restriction on X.

2. Results

Let us recall that a map φ : Y → X is nonexpansive if dX(φ(x), φ(y)) ≤
dY (x, y) for all x, y ∈ Y . A nonexpansive map φ : Y → X which preserves the
basepoint can induce or not an isometric composition operator Cφ : Lip0(X)
→ Lip0(Y ). For example, each k-dilation φ : Y → X with k ∈]0, 1] is nonex-
pansive and if, in addition, φ : Y → X is nonconstant, preserves the basepoint
and has dense range, then Cφ : Lip0(X) → Lip0(Y ) is an isometry if and only
if k = 1 (that is, if φ is an isometry).

We first give a sufficient condition for a basepoint-preserving Lipschitz
map φ from Y to X to be the symbol of an isometric composition operator
from Lip0(X) to Lip0(Y ).

Theorem 2.1. Let X and Y be pointed metric spaces and let φ : Y → X be a
Lipschitz map which preserves the basepoint. Assume that φ is nonexpansive
and satisfies the property (M): for every point (x, y) ∈ ˜X, there exists a
sequence {(xn, yn)} in ˜Y such that {φ(xn)} → x, {φ(yn)} → y and

{

dX(φ(xn), φ(yn))
dY (xn, yn)

}

→ 1.

Then Cφ : Lip0(X) → Lip0(Y ) is an isometry.

Proof. Since φ is nonexpansive, we have

Lip(f ◦ φ) ≤ Lip(f)Lip(φ) ≤ Lip(f)
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for every f ∈ Lip0(X). In order to check the converse inequality, take f ∈
Lip0(X). Hence there exists a sequence {(am, bm)} in ˜X such that

lim
m→∞

|f(am) − f(bm)|
dX(am, bm)

= Lip(f).

Fix m ∈ N. By assumption we can find a sequence {(x(m)
n , y

(m)
n )} in ˜Y satis-

fying that

lim
n→∞ dX(φ(x(m)

n ), am) = 0, lim
n→∞ dX(φ(y(m)

n ), bm) = 0

and

lim
n→∞

dX(φ(x(m)
n ), φ(y(m)

n ))

dY (x(m)
n , y

(m)
n )

= 1.

It follows that limn→∞ dX(φ(x(m)
n ), φ(y(m)

n )) = dX(am, bm) > 0 and, there-
fore, there exists p ∈ N such that dX(φ(x(m)

n ), φ(y(m)
n )) > 0 for all n ≥ p. We

have

Lip(f ◦ φ) = sup
x�=y

|f(φ(x)) − f(φ(y))|
dY (x, y)

≥

∣

∣

∣f(φ(x(m)
n )) − f(φ(y(m)

n ))
∣

∣

∣

dY (x(m)
n , y

(m)
n )

=

∣

∣

∣f(φ(x(m)
n )) − f(φ(y(m)

n ))
∣

∣

∣

dX(φ(x(m)
n ), φ(y(m)

n ))

dX(φ(x(m)
n ), φ(y(m)

n ))

dY (x(m)
n , y

(m)
n )

≥ dX(φ(x(m)
n ), φ(y(m)

n ))

dY (x(m)
n , y

(m)
n )

(

|f(am) − f(bm)|
dX(φ(x(m)

n ), φ(y(m)
n ))

−Lip(f)
dX(am, φ(x(m)

n ))

dX(φ(x(m)
n ), φ(y(m)

n ))
− Lip(f)

dX(bm, φ(y(m)
n ))

dX(φ(x(m)
n ), φ(y(m)

n ))

)

for all n ≥ p, and taking limits as n → ∞, we obtain

Lip(f ◦ φ) ≥ |f(am) − f(bm)|
dX(am, bm)

.

Since m was arbitrary, we conclude that

Lip(f ◦ φ) ≥ lim
m→∞

|f(am) − f(bm)|
dX(am, bm)

= Lip(f).

�

Note that there are symbols φ satisfying the conditions in Theorem 2.1;
for example, every basepoint-preserving isometry with dense range φ : Y →
X.

In general, we can establish a kind of reciprocal result of Theorem 2.1.

Proposition 2.2. Let X and Y be pointed metric spaces and let φ : Y → X be
a Lipschitz map which preserves the basepoint. Assume that Cφ : Lip0(X) →
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Lip0(Y ) is an isometry. Then φ is nonexpansive and has the following addi-
tional property: for every point (x, y) ∈ ˜X, there exists a sequence {(xn, yn)}
in ˜Y such that {φ(xn)} → x, {φ(yn)} → y and

lim
n→∞

dX(φ(xn), φ(yn))
dY (xn, yn)

≤ 1.

Proof. Clearly, ‖Cφ‖ ≤ 1, and since ‖Cφ‖ = Lip(φ) by [8, Proposition 2.23]
(completeness of X and Y is not needed to prove this formula in [8]), it
follows that φ is nonexpansive. In order to show that φ has the above-
cited property, let (x, y) ∈ ˜X. Note that Cφ is injective and, therefore,
φ(Y ) is dense in X by [8, Proposition 2.25 (ii)] (completeness of X and
Y is not necessary to prove this fact). Hence we can take sequences {xn}
and {yn} in Y such that {φ(xn)} → x and {φ(yn)} → y. It follows that
limn→∞ dX(φ(xn), φ(yn)) = dX(x, y) > 0; hence there exists p ∈ N such that
dX(φ(xn), φ(yn)) > 0 for all n ≥ p and thus dY (xn, yn) > 0 for all n ≥ p.
Since dX(φ(xn), φ(yn))/dY (xn, yn) ≤ 1 for all n ≥ p, taking subsequences if
necessary, we obtain that

lim
n→∞

dX(φ(xn), φ(yn))
dY (xn, yn)

≤ 1.

�
We shall next prove that the basepoint-preserving Lipschitz maps

φ : Y → X for which Cφ is an isometry from Lip0(X) to Lip0(Y ), are pre-
cisely the nonexpansive maps satisfying the property (M), whenever X has
the peak property.

We shall make use of the following sequential characterization of peaking
functions. It appears without proof in [3] and we prove it here for complete-
ness.

Lemma 2.3 [3]. Let X be a pointed metric space, (x, y) ∈ ˜X and f ∈ Lip0(X)
with Lip(f) ≤ 1. Then f peaks at (x, y) if and only if

f(x) − f(y)
d(x, y)

= 1,

and the following property (P) holds: if {(xn, yn)} is a sequence in ˜X such
that

{

f(xn) − f(yn)
d(xn, yn)

}

→ 1,

then {xn} → x and {yn} → y.

Proof. Assume that f peaks at (x, y). Then
f(x) − f(y)

d(x, y)
= 1.

In order to prove that f satisfies the property (P), let {(xn, yn)} be a sequence
in ˜X such that

{

f(xn) − f(yn)
d(xn, yn)

}

→ 1.
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If the conclusion of the property (P) is not satisfied, we could find a real
number ε > 0 and subsequences {xσ(n)} and {yσ(n)} of {xn} and {yn},
respectively, satisfying that d(xσ(n), x) ≥ ε for all n ∈ N or d(yσ(n), y) ≥ ε
for all n ∈ N. Clearly, the set

{

n ∈ N : d(xσ(n), y) ≥ ε
} ∪ {

n ∈ N : d(yσ(n), x) ≥ ε
}

is nonempty. Taking subsequences of {xσ(n)} and {yσ(n)}, we can suppose
that d(xσ(n), y) ≥ ε for all n ∈ N or d(yσ(n), x) ≥ ε for all n ∈ N. Since f
peaks at (x, y), there exists δ > 0 such that

∣

∣f(xσ(n)) − f(yσ(n))
∣

∣

d(xσ(n), yσ(n))
≤ 1 − δ

for all n ∈ N, and since
{

f(xn) − f(yn)
d(xn, yn)

}

→ 1,

we would arrive at a contradiction. This proves that {xn} → x and {yn} → y.
Conversely, suppose that

f(x) − f(y)
d(x, y)

= 1

and the property (P) is satisfied, but f does not peak at (x, y). Hence there
exist ε > 0 and a sequence {(xn, yn)} in ˜X satisfying that max {d(xn, x),
d(yn, y)} ≥ ε for all n ∈ N and max {d(xn, y), d(yn, x)} ≥ ε for all n ∈ N

such that
f(xn) − f(yn)

d(xn, yn)
> 1 − 1

n

for all n ∈ N. Since Lip(f) ≤ 1, it follows that
{

f(xn) − f(yn)
d(xn, yn)

}

→ 1,

but the sequence {(xn, yn)} does not satisfy the conclusion of the property
(P), a contradiction. �

We are now ready to prove our main result.

Theorem 2.4. Let X and Y be pointed metric spaces and let φ : Y → X be a
basepoint-preserving Lipschitz map. Assume that X enjoys the peak property.
Then Cφ : Lip0(X) → Lip0(Y ) is an isometry if and only if φ is nonexpansive
and satisfies the property (M): for every point (x, y) ∈ ˜X, there exists a
sequence {(xn, yn)} in ˜Y such that {φ(xn)} → x, {φ(yn)} → y and

{

dX(φ(xn), φ(yn))
dY (xn, yn)

}

→ 1.

Proof. The sufficiency follows from Theorem 2.1. To prove the necessity, as-
sume that Cφ : Lip0(X) → Lip0(Y ) is an isometry. Then φ is nonexpansive by
Proposition 2.2. We now show that φ enjoys the property (M). Let (x, y) ∈ ˜X.
Since X has the peak property, there exists a function f(x,y) ∈ Lip0(X) with
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Lip(f(x,y)) = 1 that peaks at (x, y). Note that Lip(f ◦ φ) = Lip(f) for all
f ∈ Lip0(X). Since Lip(f(x,y) ◦ φ) = 1, we can take a sequence {(xn, yn)} in
˜Y such that

{
∣

∣f(x,y)(φ(xn)) − f(x,y)(φ(yn))
∣

∣

dY (xn, yn)

}

→ 1.

Using that Lip(f(x,y)) = 1 and Lip(φ) ≤ 1, we obtain
{

dX(φ(xn), φ(yn))
dY (xn, yn)

}

→ 1.

An easy argument yields that
{

∣

∣f(x,y)(φ(xn)) − f(x,y)(φ(yn))
∣

∣

dX(φ(xn), φ(yn))

}

→ 1.

Taking subsequences, we have that
{

f(x,y)(φ(xσ(n)) − f(x,y)(φ(yσ(n)))
dX(φ(xσ(n)), φ(yσ(n)))

}

→ 1,

or
{

f(x,y)(φ(xσ(n))) − f(x,y)(φ(yσ(n)))
dX(φ(xσ(n)), φ(yσ(n)))

}

→ −1.

Applying Lemma 2.3, it follows that {φ(xσ(n))} → x and {φ(yσ(n))} → y in
the first case, or {φ(yσ(n))} → x and {φ(xσ(n))} → y in the second one. This
proves the theorem. �

Remark 2.5. Our description of isometric composition operators on Lip0(X)
is a Lipschitz version of a characterization of isometric composition operators
on the Bloch space B, obtained by Mart́ın and Vukotić [5].

In view of another characterization of isometric composition operators
on B stated by Colonna in [2, Theorem 5], it would be interesting to study
under which conditions the basepoint-preserving Lipschitz self-maps φ of X
inducing an isometric composition operator Cφ on Lip0(X) are precisely those
having Lipschitz constant equal to one.
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