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representation as the sum of a weighted composition operator and a homogeneous 
Lipschitz functional on, at least, a subspace Y0 of Y which is isometric to Y . 
Moreover, Δ is both linear and surjective when X is also separable.
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1. Introduction

The study of 2-local isometries between Banach spaces has received considerable attention in recent years. 
This class of maps was introduced by Molnár [15], motivated by the paper [18] of Šemrl who obtained the 
first results on 2-local automorphisms and 2-local derivations between Banach algebras.

Given two Banach spaces E and F , a mapping Δ: E → F (no linearity nor surjectivity are assumed) 
is called a 2-local isometry if for every x, y ∈ E, there exists a surjective linear isometry Tx,y : E → F , 
depending possibly on x and y, such that Δ(x) = Tx,y(x) and Δ(y) = Tx,y(y). It is immediate that every 
2-local isometry Δ preserves the distance between points. A problem addressed in the literature by different 
authors is to study when Δ is both linear and surjective.

A Banach space E is said to be 2-iso-reflexive if every 2-local isometry from E into itself is linear and 
surjective. Molnár [15] proved that the C∗-algebra B(H) of all bounded linear operators on a separable 
infinite-dimensional Hilbert space H is 2-iso-reflexive. In [16], he raised to study the 2-iso-reflexivity for 
the space C(X) of all continuous scalar-valued functions on a first countable compact Hausdorff space X, 
endowed with the supremum norm. This problem was solved by Győry [4], who showed that C0(X) – the 
space of all continuous complex-valued functions vanishing at infinity on a first countable σ-compact Haus-
dorff space X – is 2-iso-reflexive. Al-Halees and Fleming [1] extended Győry’s result for 2-local isometries 
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between spaces of continuous vector-valued functions. Hatori, Miura, Oka and Takagi [7] and Hosseini [8]
considered 2-local isometries on uniform algebras and on spaces of continuously differentiable functions, 
respectively.

The research on 2-local isometries between spaces of Lipschitz functions was initiated in [9]. Given a 
metric space X, let Lip(X) be the Banach space of all scalar-valued bounded Lipschitz functions f on X
equipped with some of the natural norms: max {‖f‖∞ ,Lip(f)} or ‖f‖∞ + Lip(f), where Lip(f) denotes 
the Lipschitz constant of f . The isometry group of Lip(X) is said to be canonical if every surjective linear 
isometry of Lip(X) can be expressed as a weighted composition operator of the form λ · (f ◦ φ) for all 
f ∈ Lip(X), where λ is an unimodular constant and φ is a surjective isometry of X. In [9], we proved that if 
X is bounded and separable and the isometry group of Lip(X) is canonical, then Lip(X) is 2-iso-reflexive.

This study was subsequently extended in several directions. In [10], Li, Peralta, Wang, Wang and the first 
author studied 2-local isometries between spaces of vector-valued Lipschitz functions. Li, Peralta, Wang and 
Wang [13] also established some spherical reformulations of the Gleason–Kahane–Zelazko and Kowalski–
Słodkowski theorems [3,11,12] that were used to describe 2-weak-local isometries on Lipschitz algebras and 
uniform algebras. Recently, this spherical variant of the Kowalski–Słodkowski theorem has been extended 
and applied by Oi [17] to prove that 2-local maps in the set of all surjective isometries (without assuming 
linearity) on several function spaces are surjective isometries (see also the paper [6] by Hatori and Oi).

We now present the pointed Lipschitz spaces. Let (X, dX) be a pointed metric space with a basepoint 
designated by eX , let X̃ denote the set

{(x, y) ∈ X ×X : x �= y} ,

and let K be the field of real or complex numbers. The pointed Lipschitz space Lip0(X) is the Banach space 
of all Lipschitz functions f : X → K for which f(eX) = 0, endowed with the norm defined by

Lip(f) = sup
{
|f(x) − f(y)|

dX(x, y) : (x, y) ∈ X̃

}
.

In this paper, we study 2-local isometries between spaces Lip0(X). Namely, under the conditions of com-
pleteness and uniform concavity on the metric spaces X and Y – which are necessary to have a convenient 
description of the surjective linear isometries from Lip0(X) to Lip0(Y ) – we obtain in Section 3 a repre-
sentation of 2-local isometries from Lip0(X) to Lip0(Y ) as the sum of a weighted composition operator 
and a homogeneous Lipschitz functional on, at least, a certain subspace Y0 of Y which is isometric to Y . 
Moreover, for a suitable choice of basepoint in Y0, we show that every 2-local isometry from Lip0(X) to 
Lip0(Y ) induces a linear isometry from Lip0(X) onto Lip0(Y0). In Section 4, when X is also separable, we 
prove that Y0 coincides with Y , and thus every 2-local isometry of Lip0(X) to Lip0(Y ) is both linear and 
surjective. Hence Lip0(X) is 2-iso-reflexive.

Our method of proof to obtain the representation of 2-local isometries between spaces Lip0(X) follows 
the strategy of Győry [4] in his study on 2-local isometries of the spaces C0(X), but also adapts to Lip0
spaces a technique employed by Győry and Molnár [5] and Cabello Sánchez [2] to describe the form of 
diameter-preserving linear bijections of C(X).

First, we shall need a representation of the surjective linear isometries between Lip0 spaces and one 
difficulty is that such isometries do not admit, in general, a representation as a weighted composition 
operator. Furthermore, there exists a considerable literature on the study of the isometry group of the 
spaces Lip under the maximum or sum norms, but to our knowledge only the references [14,19,20] deal with 
the isometry group of Lip0 spaces. To this point we devote the following section.
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2. Preliminaries

Given α ∈]0, 1[ and two compact pointed metric spaces (X, dX) and (Y, dY ), the linear isometries from 
Lip0(X, dαX) onto Lip0(Y, dαY ) were characterized by Mayer-Wolf in [14, Theorem 3.3]. The following exten-
sion of this result for linear isometries from Lip0(X) onto Lip0(Y ) is due to Weaver (see [20, Theorem 3.56]
for the real-valued case, and [19, Theorem 2.7.3] joint to [20, Theorem 3.39] for the real and complex-valued 
cases).

Let us recall that given metric spaces (X, dX) and (Y, dY ) and a number a > 0, a map φ : Y → X is an 
a-dilation if dX(φ(y1), φ(y2)) = a · dY (y1, y2) for all y1, y2 ∈ Y . We denote by SK the set of all unimodular 
scalars in K. Moreover, S+

K = {1} if K = R and S+
K =

{
eit : t ∈ [0, π[

}
if K = C.

Theorem 2.1. [19,20]. Let X and Y be uniformly concave complete pointed metric spaces. A linear operator 
T : Lip0(X) → Lip0(Y ) is a surjective isometry if and only if there exists a number λ ∈ SK and a surjective 
a-dilation φ : Y → X such that T is of the form

T (f)(y) = λa−1 (f(φ(y)) − f(φ(eY )))

for all f ∈ Lip0(X) and y ∈ Y .

According to [20, Definition 3.33], a metric space X is said to be concave if

d(x, y) < d(x, z) + d(z, y)

for any triple of distinct points x, y, z ∈ X, and uniformly concave if for every distinct points x, y ∈ X and 
every ε > 0, there exists δ > 0 such that

d(x, y) ≤ d(x, z) + d(z, y) − δ

for all z ∈ X such that min {d(x, z), d(y, z)} ≥ ε. In Section 3.5 of [20], the following examples of uniformly 
concave metric spaces are presented:

(1) Any closed subset of Rn with the inherited Euclidean norm in which no three points are colinear.
(2) Any compact subset of a strictly convex Banach space in which no three points are colinear.
(3) The unit sphere of any uniformly convex Banach space.
(4) Any metric space (X, ω ◦ d), where ω : (0, ∞) → (0, ∞) is a strictly concave distortion function. In 

particular, any Hölder metric space (X, dα) with α ∈]0, 1[.

Another important tool in our study is the following peaking functions h(x1,x2) borrowed from the proof 
of [20, Theorem 3.39].

Lemma 2.2. [20]. Let X be a concave pointed metric space and (x1, x2) ∈ X̃. Consider the functions 
g(x1,x2), h(x1,x2) : X → R defined by

g(x1,x2)(z) = d(x1, x2)d(z, x2)
d(z, x1) + d(z, x2)

,

h(x1,x2)(z) = g(x1,x2)(z) − g(x1,x2)(eX)

for all z ∈ X. Then h(x1,x2) belongs to Lip0(X), and satisfies that
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h(x1,x2)(x1) − h(x1,x2)(x2)
d(x1, x2)

= 1

and ∣∣h(x1,x2)(z) − h(x1,x2)(w)
∣∣

d(z, w) < 1

for all (z, w) ∈ X̃ \ {(x1, x2), (x2, x1)}.

3. Representation of 2-local isometries

We shall first describe the form of the 2-local isometries between Lip0 spaces.

Theorem 3.1. Let X and Y be uniformly concave complete pointed metric spaces and let Δ be a 2-local 
isometry from Lip0(X) to Lip0(Y ). Then there exist a subspace Y0 of Y which is isometric to Y , a number 
λ ∈ SK and a surjective a-dilation φ : Y0 → X such that

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X).

Proof. The proof will be divided into a sequence of steps. The following one will be frequently applied 
without any explicit mention.

Step 1. For any f, g ∈ Lip0(X), there are a constant λf,g ∈ SK and a surjective af,g-dilation φf,g from Y
onto X such that

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λf,g
f(φf,g(y1)) − f(φf,g(y2))
dX(φf,g(y1), φf,g(y2))

and

Δ(g)(y1) − Δ(g)(y2)
dY (y1, y2)

= λf,g
g(φf,g(y1)) − g(φf,g(y2))
dX(φf,g(y1), φf,g(y2))

for all (y1, y2) ∈ Ỹ . In the case f = g, we shall simply write λf , af and φf .

Let f, g ∈ Lip0(X). By hypothesis, there exists a linear isometry Tf,g from Lip0(X) onto Lip0(Y ) sat-
isfying Δ(f) = Tf,g(f) and Δ(g) = Tf,g(g). Applying Theorem 2.1, there are a constant λf,g ∈ SK and a 
surjective af,g-dilation φf,g from Y onto X such that

Tf,g(h)(y) = λf,ga
−1
f,g(h(φf,g(y)) − h(φf,g(eY )))

for all h ∈ Lip0(X) and y ∈ Y . Hence

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= Tf,g(f)(y1) − Tf,g(f)(y2)
dY (y1, y2)

= λf,ga
−1
f,g

f(φf,g(y1)) − f(φf,g(y2))
dY (y1, y2)

= λf,g
f(φf,g(y1)) − f(φf,g(y2))
dX(φf,g(y1), φf,g(y2))
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for all (y1, y2) ∈ Ỹ . Similarly, we have

Δ(g)(y1) − Δ(g)(y1)
dY (y1, y2)

= λf,g
g(φf,g(y1)) − g(φf,g(y2))
dX(φf,g(y1), φf,g(y2))

for all (y1, y2) ∈ Ỹ .

By Theorem 2.1 and the definition of 2-local isometry, there exists a bijection from Y onto X. Hence 
|Y | = |X|, where |S| denotes the cardinality of the set S. Since Theorem 3.1 is easy to verify when |Y | = 1, 
we shall suppose |Y | ≥ 2 from now on.

Step 2. For each (x1, x2) ∈ X̃, define the sets:

B(x1,x2),f =
{

((y1, y2), λ) ∈ Ỹ × SK : Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ
f(x1) − f(x2)
dX(x1, x2)

}
(f ∈ Lip0(X)) ,

B(x1,x2) =
⋂

f∈Lip0(X)

B(x1,x2),f .

Then {B(x1,x2) : (x1, x2) ∈ X̃} is a family of nonempty subsets of Ỹ × SK.

Let (x1, x2) ∈ X̃, f ∈ Lip0(X) and consider the function h(x1,x2) ∈ Lip0(X) defined in Lemma 2.2. 
We shall first show that B(x1,x2),h(x1,x2) is a nonempty subset of Ỹ × SK. By Step 1, there exist a number 
λh(x1,x2),f ∈ SK and a surjective ah(x1,x2),f -dilation φh(x1,x2),f : Y → X such that

Δ(h(x1,x2))(y1) − Δ(h(x1,x2))(y2)
dY (y1, y2)

= λh(x1,x2),f

h(x1,x2)(φh(x1,x2),f (y1)) − h(x1,x2)(φh(x1,x2),f (y2))
dX(φh(x1,x2),f (y1), φh(x1,x2),f (y2))

and

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λh(x1,x2),f

f(φh(x1,x2),f (y1)) − f(φh(x1,x2),f (y2))
dX(φh(x1,x2),f (y1), φh(x1,x2),f (y2))

for all (y1, y2) ∈ Ỹ . From the first equality, we deduce that((
φ−1
h(x1,x2),f

(x1), φ−1
h(x1,x2),f

(x2)
)
, λh(x1,x2),f

)
,
((

φ−1
h(x1,x2),f

(x2), φ−1
h(x1,x2),f

(x1)
)
,−λh(x1,x2),f

)
belong to B(x1,x2),h(x1,x2) , and hence B(x1,x2),h(x1,x2) is nonempty, as desired.

We shall next prove that B(x1,x2),h(x1,x2) is contained in B(x1,x2),f . Let ((y1, y2), λ) ∈ B(x1,x2),h(x1,x2) be 
arbitrary. We have

λ = λ
h(x1,x2)(x1) − h(x1,x2)(x2)

dX(x1, x2)

=
Δ(h(x1,x2))(y1) − Δ(h(x1,x2))(y2)

dY (y1, y2)

= λh(x1,x2),f

h(x1,x2)(φh(x1,x2),f (y1)) − h(x1,x2)(φh(x1,x2),f (y2))
dX(φh(x1,x2),f (y1), φh(x1,x2),f (y2))

and therefore
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∣∣∣h(x1,x2)(φh(x1,x2),f (y1)) − h(x1,x2)(φh(x1,x2),f (y2))
∣∣∣

dX(φh(x1,x2),f (y1), φh(x1,x2),f (y2))
= 1.

Now Lemma 2.2 implies either

(φh(x1,x2),f (y1), φh(x1,x2),f (y2)) = (x1, x2),

or

(φh(x1,x2),f (y1), φh(x1,x2),f (y2)) = (x2, x1).

Hence λh(x1,x2),f = λ in the first case, or λh(x1,x2),f = −λ in the second one. It follows that

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λh(x1,x2),f

f(φh(x1,x2),f (y1)) − f(φh(x1,x2),f (y2))
dX(φh(x1,x2),f (y1), φh(x1,x2),f (y2))

= λ
f(x1) − f(x2)
dX(x1, x2)

,

hence ((y1, y2), λ) ∈ B(x1,x2),f and this proves that

B(x1,x2),h(x1,x2) ⊆ B(x1,x2),f .

As a consequence, we obtain that B(x1,x2) = B(x1,x2),h(x1,x2) .

Step 3. For every (x1, x2) ∈ X̃, there exist (y1, y2) ∈ Ỹ and λ ∈ S+
K such that

B(x1,x2) = {((y1, y2), λ), ((y2, y1),−λ)} .

Let (x1, x2) ∈ X̃. By Step 2, we can take some ((y1, y2), λ) ∈ B(x1,x2). Observe that ((y2, y1), −λ) ∈
B(x1,x2). Let ((y3, y4), β) ∈ B(x1,x2) be arbitrary. We have

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ
f(x1) − f(x2)
dX(x1, x2)

,

Δ(f)(y3) − Δ(f)(y4)
dY (y3, y4)

= β
f(x1) − f(x2)
dX(x1, x2)

,

for all f ∈ Lip0(X). Taking f = h(x1,x2) and applying Step 1, we deduce

λf
f(φf (y1)) − f(φf (y2))
dX(φf (y1), φf (y2))

= λ,

λf
f(φf (y3)) − f(φf (y4))
dX(φf (y3), φf (y4))

= β.

It follows that

|f(φf (y1)) − f(φf (y2))|
dX(φf (y1), φf (y2))

= |f(φf (y3)) − f(φf (y4))|
dX(φf (y3), φf (y4))

= 1,

and in the light of Lemma 2.2 these equalities yield
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{φf (y1), φf (y2)} = {φf (y3), φf (y4))} = {x1, x2} .

We have four possibilities:

(1) x1 = φf (y1), x2 = φf (y2), x1 = φf (y3), x2 = φf (y4).
(2) x1 = φf (y1), x2 = φf (y2), x1 = φf (y4), x2 = φf (y3).
(3) x1 = φf (y2), x2 = φf (y1), x1 = φf (y4), x2 = φf (y3).
(4) x1 = φf (y2), x2 = φf (y1), x1 = φf (y3), x2 = φf (y4).

Using the injectivity of φf , we infer that

((y3, y4), β) ∈ {((y1, y2), λ), ((y2, y1),−λ)} .

Therefore

B(x1,x2) = {((y1, y2), λ), ((y2, y1),−λ)} .

Finally, notice that either λ ∈ S+
K or −λ ∈ S+

K .

Step 4. For every (x1, x2) ∈ X̃, the set

A(x1,x2) =
{

(y1, y2) ∈ Ỹ | ∃λ ∈ S+
K : ((y1, y2), λ) ∈ B(x1,x2)

}
is a singleton by Step 3. Let Γ: X̃ → Ỹ be the map given by

{Γ(x1, x2)} = A(x1,x2).

We have (y2, y1) = Γ(x2, x1) if (y1, y2) = Γ(x1, x2).

Let (x1, x2) ∈ X̃ and assume that (y1, y2) = Γ(x1, x2). Then (y1, y2) ∈ A(x1,x2). Therefore ((y1, y2), λ) ∈
B(x1,x2) for some λ ∈ S+

K . It follows that ((y2, y1), λ) ∈ B(x2,x1), hence (y2, y1) ∈ A(x2,x1) and thus (y2, y1) =
Γ(x2, x1), as required.

Step 5. For every (x1, x2) ∈ X̃, there exists a number λ(x1, x2) ∈ S+
K such that

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ(x1, x2)
f(x1) − f(x2)
dX(x1, x2)

for all f ∈ Lip0(X), where (y1, y2) = Γ(x1, x2). Furthermore, λ(x1, x2) = λ(x2, x1).

Let (x1, x2) ∈ X̃ and (y1, y2) = Γ(x1, x2). By Step 4, there is a number λ(x1, x2) ∈ S+
K such that

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ(x1, x2)
f(x1) − f(x2)
dX(x1, x2)

for all f ∈ Lip0(X). Since (y2, y1) = Γ(x2, x1) by Step 4, we also have

Δ(f)(y2) − Δ(f)(y1)
dY (y2, y1)

= λ(x2, x1)
f(x2) − f(x1)
dX(x2, x1)

for all f ∈ Lip0(X). Combining the equations obtained above, we infer that



8 A. Jiménez-Vargas, M. Villegas-Vallecillos / J. Math. Anal. Appl. 491 (2020) 124359
λ(x1, x2)
f(x1) − f(x2)
dX(x1, x2)

= Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= −Δ(f)(y2) − Δ(f)(y1)
dY (y2, y1)

= −λ(x2, x1)
f(x2) − f(x1)
dX(x2, x1)

= λ(x2, x1)
f(x1) − f(x2)
dX(x1, x2)

for all f ∈ Lip0(X), and taking f = h(x1,x2) yields λ(x1, x2) = λ(x2, x1).

Step 6. The map Γ is a bijection from X̃ to ∪(x1,x2)∈X̃
A(x1,x2).

Let (y1, y2) ∈ ∪(x1,x2)∈X̃
A(x1,x2). Then (y1, y2) ∈ A(x1,x2) for some (x1, x2) ∈ X̃. By Step 4, A(x1,x2) =

{(y1, y2)}, and thus Γ(x1, x2) = (y1, y2). Hence Γ is surjective.
In order to prove that it is injective, let (x1, x2), (x3, x4) ∈ X̃ be such that

(y1, y2) = Γ(x1, x2) = Γ(x3, x4),

where (y1, y2) ∈ ∪(x1,x2)∈X̃
A(x1,x2). By Step 5, we have

λ(x1, x2)
f(x1) − f(x2)
dX(x1, x2)

= Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ(x3, x4)
f(x3) − f(x4)
dX(x3, x4)

for all f ∈ Lip0(X), with λ(x1, x2), λ(x3, x4) ∈ S+
K . Taking f = h(x1,x2), we deduce that either (x1, x2) =

(x4, x3) or (x1, x2) = (x3, x4). In the former case, we would have λ(x1, x2) = −λ(x3, x4), which is impossible. 
Therefore (x1, x2) = (x3, x4).

Step 7. Let (x1, x2), (x3, x4) ∈ X̃, (y1, y2) = Γ(x1, x2) and (y3, y4) = Γ(x3, x4). Then

|{x1, x2} ∩ {x3, x4}| = |{y1, y2} ∩ {y3, y4}| .

By Step 5, we have the equalities:

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ(x1, x2)
f(x1) − f(x2)
dX(x1, x2)

,

Δ(f)(y3) − Δ(f)(y4)
dY (y3, y4)

= λ(x3, x4)
f(x3) − f(x4)
dX(x3, x4)

,

for all f ∈ Lip0(X), where λ(x1, x2), λ(x3, x4) ∈ S+
K . To simplify the writing, we denote g = h(x1,x2) and 

h = h(x3,x4). Taking f = g in the former equality and f = h in the latter one, we obtain

Δ(g)(y1) − Δ(g)(y2)
dY (y1, y2)

= λ(x1, x2) = λg,h
g(φg,h(y1)) − g(φg,h(y2))
dX(φg,h(y1), φg,h(y2))

,

Δ(h)(y3) − Δ(h)(y4)
dY (y3, y4)

= λ(x3, x4) = λg,h
h(φg,h(y3)) − h(φg,h(y4))
dX(φg,h(y3), φg,h(y4))

.

By Lemma 2.2, it follows that {φg,h(y1), φg,h(y2)} = {x1, x2} and {φg,h(y3), φg,h(y4)} = {x3, x4}, respec-
tively, and the step holds.
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Let X2 stand for the family of all subsets of X having exactly two elements. Step 7 can be reformulated as 
follows: if ΛX : X̃ → X2 and ΛY : Ỹ → Y2 are the maps defined by ΛX(x1, x2) = {x1, x2} and ΛY (y1, y2) =
{y1, y2}, respectively, we have

|ΛX(x1, x2) ∩ ΛX(x3, x4)| = |ΛY (Γ(x1, x2)) ∩ ΛY (Γ(x3, x4))|

for all (x1, x2), (x3, x4) ∈ X̃.

Step 8. Assume |X| ≥ 3. For each x ∈ X and any (x1, x2) ∈ X̃ with x1 �= x �= x2, there exists a unique 
point, depending only on x and denoted by ϕ(x), in the intersection

ΛY (Γ(x, x1)) ∩ ΛY (Γ(x, x2)).

The map ϕ : X → Y is injective and {ϕ(x1), ϕ(x2)} = ΛY (Γ(x1, x2)) for every (x1, x2) ∈ X̃.

Let x ∈ X and let x1, x2 ∈ X be with x1 �= x2 and x1 �= x �= x2. By Step 7, there exists a unique point, 
denoted here by y, in the intersection ΛY (Γ(x, x1)) ∩ ΛY (Γ(x, x2)).

We claim that y ∈ ΛY (Γ(x, x3)) for every x3 ∈ X with x3 �= x, what shows that y does not depend 
on x1 and x2 and thus it depends only on x. Indeed, if |X| = 3, this is obvious. Assume |X| ≥ 4. Pick 
x3 ∈ X\{x, x1, x2} and suppose on the contrary that y /∈ ΛY (Γ(x, x3)). We can write ΛY (Γ(x, x1)) = {y, y1}
and ΛY (Γ(x, x2)) = {y, y2} for some y1, y2 ∈ Y with y1 �= y �= y2. In the light of Step 7, we obtain y1 �= y2. 
Since the cardinality of both sets ΛY (Γ(x, x3)) ∩ ΛY (Γ(x, x1)) and ΛY (Γ(x, x3)) ∩ ΛY (Γ(x, x2)) is 1, we 
deduce that ΛY (Γ(x, x3)) = {y1, y2}. This implies that Γ(x, x3) = (y1, y2) or Γ(x, x3) = (y2, y1). We shall 
only prove the first case and the other is similarly proven. Since λ(x, x3), λ(x, x1), λ(x, x2) ∈ S+

K , an easy 
argument yields the equation:

λ(x, x3)
f(x) − f(x3)
dX(x, x3)

= Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= dY (y1, y)
dY (y1, y2)

Δ(f)(y1) − Δ(f)(y)
dY (y1, y)

+ dY (y, y2)
dY (y1, y2)

Δ(f)(y) − Δ(f)(y2)
dY (y, y2)

= λ(x, x1)
dY (y1, y)
dY (y1, y2)

f(x) − f(x1)
dX(x, x1)

+ λ(x, x2)
dY (y, y2)
dY (y1, y2)

f(x) − f(x2)
dX(x, x2)

for all f ∈ Lip0(X). Taking first a function f ∈ Lip0(X) satisfying f(x) = f(x2) = 1 and f(x1) = f(x3) = 0, 
and after another f ∈ Lip0(X) for which f(x) = f(x1) = 1 and f(x2) = f(x3) = 0, we deduce that

λ(x, x3)
dY (y1, y2)
dX(x, x3)

= λ(x, x1)
dY (y1, y)
dX(x, x1)

= λ(x, x2)
dY (y, y2)
dX(x, x2)

.

Using this we can simplify the cited equation by obtaining f(x) = f(x1) +f(x2) −f(x3) for all f ∈ Lip0(X), 
a contradiction. This proves our claim.

We shall next prove the injectivity of ϕ. Suppose first |X| = 3, say X = {x1, x2, x3} (one of them is eX). If 
ϕ(x1) = ϕ(x2) = y1, then y1 ∈ ΛY (Γ(x1, x2)) ∩ΛY (Γ(x1, x3)) ∩ΛY (Γ(x2, x3)). As the cardinality of each one 
of the three sets in this intersection is 2, there are y2, y3, y4 ∈ Y \ {y1} such that ΛY (Γ(x1, x2)) = {y1, y2}, 
ΛY (Γ(x1, x3)) = {y1, y3} and ΛY (Γ(x2, x3)) = {y1, y4}. Applying Step 7 yields y2 �= y3 �= y4 �= y2, and thus 
|Y | ≥ 4 which contradicts that |X| = |Y |.

Assume now |X| ≥ 4. Let x1, x2 ∈ X be with x1 �= x2 and suppose ϕ(x1) = ϕ(x2) = y2. Take {z1, z2} ∈
X2 such that {z1, z2} ∩ {x1, x2} = ∅. We have y2 ∈ ΛY (Γ(x1, z1)) ∩ ΛY (Γ(x2, z2)); but since |ΛX(x1, z1) ∩
ΛX(x2, z2)| = 0, we have |ΛY (Γ(x1, z1)) ∩ΛY (Γ(x2, z2))| = 0 by Step 7, a contradiction. This completes the 
proof that ϕ is injective.
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For the second assertion, note that if (x1, x2) ∈ X̃, then ϕ(x1) and ϕ(x2) are distinct and belong to 
ΛY (Γ(x1, x2)) (see Step 4). Hence {ϕ(x1), ϕ(x2)} = ΛY (Γ(x1, x2)).

Step 9. There exist a nonempty subset Y0 ⊆ Y and a bijection φ : Y0 → X such that {y1, y2} =
ΛY (Γ(φ(y1), φ(y2))) for all y1, y2 ∈ Y0 with y1 �= y2.

Assume first |X| = 2. Then |Y | = 2 by Step 1. Hence X = {x, eX} and Y = {y, eY } for certain 
x ∈ X \ {eX} and y ∈ Y \ {eY }. Clearly, X̃ = {(x, eX), (eX , x)} and Ỹ = {(y, eY ), (eY , y)}. Since Γ is a 
map from X̃ to Ỹ , we have ΛY (Γ(x, eX)) = {y, eY }. Take Y0 = Y and the bijection φ : Y0 → X defined by 
φ(y) = x and φ(eY ) = eX , and the proof is finished if |X| = 2.

Assume now |X| ≥ 3. Let ϕ : X → Y be the injective map defined in Step 8. Then Y0 = ϕ(X) and 
φ = ϕ−1 : Y0 → X satisfy the required conditions.

Step 10. There exist numbers a ∈ R+ and λ ∈ SK such that φ : Y0 → X is an a-dilation and

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X).

Let Y0 ⊆ Y and φ : Y0 → X be the set and the bijection given in Step 9. Let y1, y2 ∈ Y0 with y1 �= y2. By 
Step 9, {y1, y2} = ΛY (Γ(φ(y1), φ(y2))). Hence either Γ(φ(y1), φ(y2)) = (y1, y2) or Γ(φ(y1), φ(y2)) = (y2, y1). 
By Step 5, we have

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= β(φ(y1), φ(y2))
f(φ(y1)) − f(φ(y2))
dX(φ(y1), φ(y2))

for all f ∈ Lip0(X), where β(φ(y1), φ(y2)) ∈ {±λ(φ(y1), φ(y2))} and λ(φ(y1), φ(y2)) ∈ S+
K .

We now claim that β(φ(y1), φ(y2)) and dY (y1, y2)/dX(φ(y1), φ(y2)) do not depend on their variables 
y1, y2. It is clear when |Y0| = 2 because β(φ(y1), φ(y2)) = β(φ(y2), φ(y1)) by Step 5. Otherwise, let y3 ∈ Y0
be with y3 /∈ {y1, y2}. We have the equation:

β(φ(y1), φ(y2))
dY (y1, y2)

dX(φ(y1), φ(y2))
(f(φ(y1)) − f(φ(y2)))

= Δ(f)(y1) − Δ(f)(y2)

= (Δ(f)(y1) − Δ(f)(y3)) + (Δ(f)(y3) − Δ(f)(y2))

= β(φ(y1), φ(y3))
dY (y1, y3)

dX(φ(y1), φ(y3))
(f(φ(y1)) − f(φ(y3)))

+ β(φ(y3), φ(y2))
dY (y3, y2)

dX(φ(y3), φ(y2))
(f(φ(y3)) − f(φ(y2)))

for all f ∈ Lip0(X). For each i ∈ {1, 2}, consider the set

Fi = {φ(y1), φ(y2), φ(y3)} \ {φ(yi)}

and the functions gi, fi : X → R defined, respectively, by

gi(z) = dX(z, Fi)
dX(z, φ(yi)) + dX(z, Fi)

,

fi(z) = gi(z) − gi(eX).
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Clearly, fi ∈ Lip0(X), and taking f = fi for i = 1, 2 in the equation above, it follows that

β(φ(y1), φ(y3))
dY (y1, y3)

dX(φ(y1), φ(y3))
= β(φ(y1), φ(y2))

dY (y1, y2)
dX(φ(y1), φ(y2))

= β(φ(y3), φ(y2))
dY (y3, y2)

dX(φ(y3), φ(y2))
,

as claimed. Since β(φ(·), φ(·)) has the unit modulus, we deduce that

dY (y1, y3)
dX(φ(y1), φ(y3))

= dY (y1, y2)
dX(φ(y1), φ(y2))

= dY (y3, y2)
dX(φ(y3), φ(y2))

and therefore

β(φ(y1), φ(y3)) = β(φ(y1), φ(y2)) = β(φ(y3), φ(y2)).

By the arbitrariness of y1, y2 and y3, the first equality in the two preceding equations means that the two 
functions dY (·, ·)/dX(φ(·), φ(·)) and β(φ(·), φ(·)) does not depend on the second variable, while the second 
equality in both equation says us that the same occurs with the first one. Hence there exist two constants 
a ∈ R+ and λ ∈ SK such that

dX(φ(y1), φ(y2)) = a · dY (y1, y2),

and

β(φ(y1), φ(y2)) = λ,

for all y1, y2 ∈ Y0 with y1 �= y2. Therefore φ is an a-dilation from Y0 onto X. Since X is complete, so also 
is Y0.

Finally, we have

Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= β(φ(y1), φ(y2))
f(φ(y1)) − f(φ(y2))
dX(φ(y1), φ(y2))

= λa−1 f(φ(y1)) − f(φ(y2))
dY (y1, y2)

for all y1, y2 ∈ Y0 with y1 �= y2 and f ∈ Lip0(X) and therefore

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X).

Step 11. There exists a surjective isometry ψ : Y → Y0.

For all y1, y2 ∈ Y0 and f ∈ Lip0(X), we have

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2))) ,

with Y0, λ, a, φ being as in the statement of Step 10.
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Pick y1, y2 ∈ Y0 with y1 �= y2, and denote x1 = φ(y1) and x2 = φ(y2). By Step 1, we have

Δ(f)(y) = λh(x1,x2)a
−1
h(x1,x2)

(
f
(
φh(x1,x2)(y)

)
− f

(
φh(x1,x2)(eY )

))
for all y ∈ Y and f ∈ Lip0(X). Hence

λ = λ
h(x1,x2)(x1) − h(x1,x2)(x2)

dX(x1, x2)

=
Δ(h(x1,x2))(y1) − Δ(h(x1,x2))(y2)

dY (y1, y2)

= λh(x1,x2)
h(x1,x2)(φh(x1,x2)(y1)) − h(x1,x2)(φh(x1,x2)(y2))

dX(φh(x1,x2)(y1), φh(x1,x2)(y2))
.

By Lemma 2.2, it follows that

(φh(x1,x2)(y1), φh(x1,x2)(y2)) ∈ {(x1, x2), (x2, x1)} .

Define the mapping ψ = φ−1 ◦ φh(x1,x2) : Y → Y . Clearly, Y0 = ψ(Y ) and

dY (ψ(z1), ψ(z2)) = a−1dX(φh(x1,x2)(z1), φh(x1,x2)(z2)) = a−1ah(x1,x2)dY (z1, z2)

for all z1, z2 ∈ Y . In particular, we have

dY (ψ(y1), ψ(y2)) = a−1ah(x1,x2)dY (y1, y2),

but

dY (ψ(y1), ψ(y2)) = dY (φ−1(φh(x1,x2)(y1), φ−1(φh(x1,x2)(y2)))

= dY (φ−1(x1), φ−1(x2)) = dY (y1, y2).

Therefore a−1ah(x1,x2) = 1, and thus ψ : Y → Y0 is an isometry. This completes the proof of Theorem 3.1. �
This theorem can be reformulated as follows.

Corollary 3.2. Let X and Y be uniformly concave complete pointed metric spaces and let Δ be a 2-local 
isometry from Lip0(X) to Lip0(Y ). Then there exist a subspace Y0 of Y which is isometric to Y , a surjective 
a-dilation φ : Y0 → X, a number λ ∈ SK and a homogeneous Lipschitz function μ : Lip0(X) → K such that

Δ(f)(y) = λa−1f(φ(y)) + μ(f)

for all y ∈ Y0 and f ∈ Lip0(X).

Proof. For every y1, y2 ∈ Y0 and f ∈ Lip0(X), we can write

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2))) ,

with Y0, λ, a, φ being as in the statement of Theorem 3.1. Define μ : Lip0(X) → K by

μ(f) = Δ(f)(y) − λa−1f(φ(y))
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for all f ∈ Lip0(X), where y is an arbitrary point in Y0. Note that μ(f) does not depend on y, and μ is 
well-defined.

Given λ ∈ K and f ∈ Lip0(X), by hypothesis there is a linear isometry Tf,λf from Lip0(X) onto Lip0(Y )
such that Δ(f) = Tf,λf (f) and Δ(λf) = Tf,λf (λf). We have

Δ(λf) = Tf,λf (λf) = λTf,λf (f) = λΔ(f),

and thus Δ is homogeneous. Hence so is μ.
In order to prove that μ is Lipschitz, let us recall first that Δ is an isometry. Observe also that for any 

x ∈ X, the evaluation functional δx : Lip0(X) → K, given by δx(f) = f(x) for all f ∈ Lip0(X), is linear and 
continuous with ‖δx‖ = d(x, eX).

Finally, given f, g ∈ Lip0(X), we have

|μ(f) − μ(g)| =
∣∣(Δ(f)(y) − Δ(g)(y)) + λa−1(f(φ(y)) − g(φ(y)))

∣∣
=

∣∣δy(Δ(f) − Δ(g)) + λa−1δφ(y)(f − g)
∣∣

≤ ‖δy‖Lip(Δ(f) − Δ(g)) + a−1 ∥∥δφ(y)
∥∥Lip(f − g)

=
(
dY (y, eY ) + a−1dX(φ(y), eX)

)
Lip(f − g). �

In relation to Theorem 3.1, notice that the basepoint of Y is not necessarily in the set Y0, but for a 
suitable choice of basepoint in Y0, we can see that every 2-local isometry from Lip0(X) to Lip0(Y ) induces 
a linear isometry from Lip0(X) onto Lip0(Y0), as follows.

Corollary 3.3. Let X and Y be uniformly concave complete pointed metric spaces and let Δ be a 2-local 
isometry from Lip0(X) to Lip0(Y ). Then there exists an uniformly concave complete pointed metric space 
Y0 such that if R : Lip0(Y ) → Lip0(Y0) is the map given by R(f) = f |Y0

− f(eY0) for all f ∈ Lip0(Y ), then 
R ◦ Δ: Lip0(X) → Lip0(Y0) is a surjective linear isometry.

Proof. By Theorem 3.1, we have

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X), where Y0 is a subspace of Y , isometric to Y , λ ∈ SK and φ : Y0 → X is 
a surjective a-dilation. Consider Y0 as a pointed metric space with the metric induced by dY and basepoint 
eY0 := φ−1(eX), and let R : Lip0(Y ) → Lip0(Y0) be the map defined in the statement. From above we 
deduce that

(R ◦ Δ)(f)(y) = λa−1f(φ(y)) (y ∈ Y0, f ∈ Lip0(X)) ,

and therefore R ◦ Δ is a linear isometry from Lip0(X) onto Lip0(Y0). �
4. 2-Iso-reflexivity

In this section, we shall prove that every 2-local isometry from Lip0(X) to Lip0(Y ) is a surjective linear 
isometry whenever X and Y are separable complete uniformly concave pointed metric spaces, and therefore 
Lip0(X) will be 2-iso-reflexive.

For its proof we shall need some peaking functions with additional properties. The construction of such 
functions begins in the next lemma.
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Lemma 4.1. Let X be a concave pointed metric space, (x1, x2) ∈ X̃ and 0 < δ < d(x1, x2). Consider the 
functions g1, g2, g3 : X → R defined by

g1(z) = 2d(x1, x2) − δ

2d(x1, x2)
max {0, d(x1, x2) − d(z, x1)} −

δ

2d(x1, x2)
max {0, d(x1, x2) − d(z, x2)} ,

g2(z) = max
{
g1(z),−

1
2 max {0, δ − d(z, x2)}

}
,

g3(z) = min
{
g2(z),

4d(x1, x2) − 2δ
4d(x1, x2) − δ

max
{

0, d(x1, x2) −
δ

4 − d(z, x1)
}}

.

Then, for each k ∈ {1, 2, 3}, the function gk is Lipschitz with

gk(x1) − gk(x2)
d(x1, x2)

= 1

and enjoys the condition i):

|gk(z) − gk(w)|
d(z, w) < 1, ∀(z, w) ∈ X̃ \ {(x1, x2), (x2, x1)}.

Furthermore, g3 satisfies the conditions:

ii) g3(z) = 0 if d(z, x1) ≥ d(x1, x2) − δ/4 and d(z, x2) ≥ δ,
iii) g3(z) ≥ 0 if d(z, x2) ≥ δ,
iv) g3(z) ≥ −δ/2 for all z ∈ X.

Proof. Evaluating gk for k = 1, 2, 3 at x1 and x2, it is immediate that

gk(x1) − gk(x2)
d(x1, x2)

= 1.

We now prove that g1 has the property i). Given (z, w) ∈ X̃ \{(x1, x2), (x2, x1)}, we can distinguish 16 cases 
according to the relations between (z, w) and (x1, x2). We only check 5 cases and the rest can be verified 
similarly.

1) If max {d(z, x1), d(z, x2), d(w, x1), d(w, x2)} ≤ d(x1, x2), we have

g1(z) = 2d(x1, x2) − δ

2d(x1, x2)
(d(x1, x2) − d(z, x1)) + δ

2d(x1, x2)
(−d(x1, x2) + d(z, x2))

and therefore

|g1(z) − g1(w)| ≤ 2d(x1, x2) − δ

2d(x1, x2)
|d(w, x1) − d(z, x1)| +

δ

2d(x1, x2)
|d(z, x2) − d(w, x2)| .

Since (x1, x2) �= (z, w) �= (x2, x1), it follows that

|d(w, x1) − d(z, x1)| < d(z, w)

or



A. Jiménez-Vargas, M. Villegas-Vallecillos / J. Math. Anal. Appl. 491 (2020) 124359 15
|d(z, x2) − d(w, x2)| < d(z, w)

by the concavity of X. Hence

|g1(z) − g1(w)|
d(z, w) <

2d(x1, x2) − δ + δ

d(z, w)2d(x1, x2)
d(z, w) = 1.

2) If max {d(z, x1), d(z, x2), d(w, x1)} ≤ d(x1, x2) and d(w, x2) > d(x1, x2), we have

g1(w) = 2d(x1, x2) − δ

2d(x1, x2)
(d(x1, x2) − d(w, x1)) ,

hence

g1(z) − g1(w) = 2d(x1, x2) − δ

2d(x1, x2)
(d(w, x1) − d(z, x1)) −

δ

2d(x1, x2)
(d(x1, x2) − d(z, x2)) ,

and therefore

|g1(z) − g1(w)|
d(z, w) ≤ 2d(x1, x2) − δ

2d(x1, x2)
+ δ

2d(x1, x2)
|d(x1, x2) − d(z, x2)|

d(z, w)

<
2d(x1, x2) − δ

2d(x1, x2)
+ δ

2d(x1, x2)
d(w, x2) − d(z, x2)

d(z, w) ≤ 1.

3) If max {d(z, x1), d(z, x2)} ≤ d(x1, x2) and min {d(w, x1), d(w, x2)} > d(x1, x2), then g1(w) = 0 and 
g1(z) − g1(w) = g1(z). Hence

|g1(z) − g1(w)|
d(z, w) ≤ 2d(x1, x2) − δ

2d(x1, x2)
d(x1, x2) − d(z, x1)

d(z, w) + δ

2d(x1, x2)
d(x1, x2) − d(z, x2)

d(z, w)

<
2d(x1, x2) − δ

2d(x1, x2)
d(w, x1) − d(z, x1)

d(z, w) + δ

2d(x1, x2)
d(w, x2) − d(z, x2)

d(z, w) ≤ 1.

4) If d(z, x2) ≤ d(x1, x2) and min {d(z, x1), d(w, x1), d(w, x2)} > d(x1, x2), then

|g1(z) − g1(w)|
d(z, w) = δ

2d(x1, x2)
d(x1, x2) − d(z, x2)

d(z, w) <
d(w, x2) − d(z, x2)

d(z, w) ≤ 1.

5) If min {d(z, x1), d(z, x2), d(w, x1), d(w, x2)} > d(x1, x2), then

|g1(z) − g1(w)|
d(z, w) = 0 < 1.

We can check similarly that the functions g2 and g3 satisfy the property i). Finally, we prove the conditions 
ii), iii) and iv) for g3. If d(z, x1) ≥ d(x1, x2) − δ/4 and d(z, x2) ≥ δ, then g2(z) = max {g1(z), 0} ≥ 0 and 
thus g3(z) = min {g2(z), 0} = 0; if d(z, x2) ≥ δ, then g2(z) = max {g1(z), 0} ≥ 0 and therefore g3(z) ≥ 0; 
and if z ∈ X, we have

−δ

2 ≤ − δ

2d(x1, x2)
max {0, d(x1, x2) − d(z, x2)} ≤ g1(z) ≤ g2(z),

and therefore g3(z) ≥ −δ/2. �
We are now ready to define the announced functions.
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Lemma 4.2. Let X be a concave metric space and let x1, x2, x3 ∈ X be three distinct points such that 
d(x1, x2) = d(x1, x3). Given δ ∈]0, d(x1, x2)[, assume that the set

C = {z ∈ X : d(z, x1) ≥ d(x1, x2), d(z, x2) ≥ 3δ, d(z, x3) ≥ 3δ}

contains a countable subset R = {rn : n ∈ N} of pairwise distinct points. Then there exist two Lipschitz 
functions f, g : X → R satisfying:

i) (f(x1) − f(x2))/d(x1, x2) = 1 = (g(x1) − g(x3))/d(x1, x3),
ii) |f(z) − f(w)| /d(z, w) < 1 for all (z, w) ∈ X̃ \ {(x1, x2), (x2, x1)},
iii) |g(z) − g(w)| /d(z, w) < 1 for all (z, w) ∈ X̃ \ {(x1, x3), (x3, x1)},
iv) {x ∈ C : (f(x), g(x)) = (f(rn), g(rn))} = {rn} for each n ∈ N.

Proof. By [9, Proposition 3.2], there are two Lipschitz functions f0, g0 : C → [0, 1] with Lip(f0) ≤ 1 and 
Lip(g0) ≤ 1 such that

{x ∈ C : (f0(x), g0(x)) = (f0(rn), g0(rn))} = {rn}

for each n ∈ N. Consider the set

W =
{
z ∈ X : d(z, x1) < d(x1, x2) −

δ

8

}
∪ {z ∈ X : d(z, x2) < 2δ} ∪ {z ∈ X : d(z, x3) < 2δ} .

Note that d(C, W ) ≥ δ/8, and define the functions h1, h2 : C ∪W → R by

h1(x) =

⎧⎨⎩
δ2

16(δ+1)2 f0(x), if x ∈ C,

−δ2

16(δ+1)2 , if x ∈ W,

and

h2(x) =

⎧⎨⎩
δ2

16(δ+1)2 g0(x), if x ∈ C,

−δ2

16(δ+1)2 , if x ∈ W.

Clearly, h1 and h2 are Lipschitz and bounded, with

Lip(hk) ≤ max
{

δ2

16(δ + 1)2 ,
δ

(δ + 1)2

}
< 1, ‖hk‖∞ ≤ δ2

16(δ + 1)2

for k = 1, 2. By [20, Theorem 1.33], for k = 1, 2 there exist a function fk : X → R such that 
fk|C∪W = hk, ‖fk‖∞ = ‖hk‖∞ and Lip(fk) = Lip(hk). By Lemma 4.1, we can take two Lipschitz functions 
g(x1,x2,δ), g(x1,x3,δ) : X → R such that∣∣g(x1,x2,δ)(z) − g(x1,x2,δ)(w)

∣∣
d(z, w) < 1 =

g(x1,x2,δ)(x1) − g(x1,x2,δ)(x2)
d(x1, x2)

, ∀(z, w) ∈ X̃ \ {(x1, x2), (x2, x1)},

g(x1,x2,δ)(z) = 0, ∀z ∈ X : d(z, x1) ≥ d(x1, x2) −
δ

4 , d(z, x2) ≥ δ,

g(x1,x2,δ)(z) ≥ 0, ∀z ∈ X : d(z, x2) ≥ δ,

g(x1,x2,δ)(z) ≥ −δ

2 , ∀z ∈ X,



A. Jiménez-Vargas, M. Villegas-Vallecillos / J. Math. Anal. Appl. 491 (2020) 124359 17
and∣∣g(x1,x3,δ)(z) − g(x1,x3,δ)(w)
∣∣

d(z, w) < 1 =
g(x1,x3,δ)(x1) − g(x1,x3,δ)(x3)

d(x1, x3)
, ∀(z, w) ∈ X̃ \ {(x1, x3), (x3, x1)},

g(x1,x3,δ)(z) = 0, ∀z ∈ X : d(z, x1) ≥ d(x1, x3) −
δ

4 , d(z, x3) ≥ δ,

g(x1,x3,δ)(z) ≥ 0, ∀z ∈ X : d(z, x3) ≥ δ,

g(x1,x3,δ)(z) ≥ −δ

2 , ∀z ∈ X.

Consider the functions

f = f1 + δ2

16(δ + 1)2 + g(x1,x2,δ), g = f2 + δ2

16(δ + 1)2 + g(x1,x3,δ).

Note that

f |X\W = f1|X\W + δ2

16(δ + 1)2 , g|X\W = f2|X\W + δ2

16(δ + 1)2

and

f |W = g(x1,x2,δ)
∣∣
W

, g|W = g(x1,x3,δ)
∣∣
W

.

We now prove that f and g satisfy the conditions i)–iv). Since x1, x2, x3 ∈ W , i) holds. To prove ii), let 
(z, w) ∈ X̃ \ {(x1, x2), (x2, x1)}. If z, w ∈ W , we have

|f(z) − f(w)|
d(z, w) =

∣∣g(x1,x2,δ)(z) − g(x1,x2,δ)(w)
∣∣

d(z, w) < 1;

if z, w ∈ X \W ,

|f(z) − f(w)|
d(z, w) = |f1(z) − f1(w)|

d(z, w) ≤ Lip(f1) = Lip(h1) < 1;

if z ∈ X \W , w ∈ W and g(x1,x2,δ)(w) ≥ f1(z) + δ2/16(δ + 1)2, we have

|f(z) − f(w)|
d(z, w) =

∣∣∣f1(z) + δ2

16(δ+1)2 − g(x1,x2,δ)(w)
∣∣∣

d(z, w) =
g(x1,x2,δ)(w) −

(
f1(z) + δ2

16(δ+1)2

)
d(z, w)

≤
g(x1,x2,δ)(w)

d(z, w) =
∣∣g(x1,x2,δ)(w) − g(x1,x2,δ)(z)

∣∣
d(z, w) < 1;

if z ∈ X \W , w ∈ W and 0 ≤ g(x1,x2,δ)(w) < f1(z) + δ2/16(δ + 1)2, we have

|f(z) − f(w)|
d(z, w) =

f1(z) + δ2

16(δ+1)2 − g(x1,x2,δ)(w)
d(z, w) ≤ f1(z) − f1(w)

d(z, w) ≤ Lip(f1) < 1;

and if z ∈ X \W , w ∈ W and g(x1,x2,δ)(w) < 0, then d(w, x2) < δ and



18 A. Jiménez-Vargas, M. Villegas-Vallecillos / J. Math. Anal. Appl. 491 (2020) 124359
|f(z) − f(w)|
d(z, w) =

f1(z) + δ2

16(δ+1)2 − g(x1,x2,δ)(w)
d(z, w)

≤
δ2

8(δ+1)2 + δ
2

d(z, w) <
δ

d(z, w) = 2δ − δ

d(z, w) <
d(z, x2) − d(w, x2)

d(z, w) ≤ 1.

Similarly, it is proved that g satisfies iii). Finally, given n ∈ N and x ∈ C with (f(x), g(x)) = (f(rn), g(rn)), 
it follows that (f0(x), g0(x)) = (f0(rn), g0(rn)), hence x = rn and this proves iv). �

We shall also need the following result.

Lemma 4.3. Let X and Y be uniformly concave complete pointed metric spaces and let Δ be a 2-local isometry 
from Lip0(X) to Lip0(Y ). Let Y0 ⊆ Y be as in Theorem 3.1 and assume |Y0| ≥ 3. If Y0 �= Y , y ∈ Y \Y0 and 
y1 ∈ Y0, then there exists a sequence {zn} of points in Y0 such that dY (zn, y1) = dY (y, y1) for all n ∈ N, 
and dY (zn, zm) ≥ dY (y, Y0) > 0 for all n, m ∈ N with n �= m.

Proof. Let y1, y2, y3 ∈ Y0 be three distinct points and denote xk = φ(yk) for k = 1, 2, 3. We shall first 
construct an isometry ϕ of Y onto Y0 for which ϕ(yk) = yk for k = 1, 2, 3. The argument is similar to the 
proof of Step 11. We have

Δ(f)(z1) − Δ(f)(z2) = λa−1 (f(φ(z1)) − f(φ(z2)))

for all z1, z2 ∈ Y0 and f ∈ Lip0(X), with Y0, λ, a, φ being as in the statement of Theorem 3.1. Consider 
g = h(x1,x2), h = h(x1,x3) ∈ Lip0(X) as in Lemma 2.2. By Step 1, there exist a number λg,h ∈ SK and a 
surjective ag,h-dilation φg,h : Y → X such that

Δ(f)(z1) − Δ(f)(z2)
dY (z1, z2)

= λg,h
f(φg,h(z1)) − f(φg,h(z2))
dX(φg,h(z1), φg,h(z2))

for all (z1, z2) ∈ Ỹ and f ∈ {g, h}. Hence

λ
h(x1,xk)(x1) − h(x1,xk)(xk)

dX(x1, xk)
=

Δ(h(x1,xk))(y1) − Δ(h(x1,xk))(yk)
dY (y1, yk)

= λg,h

h(x1,xk)(φg,h(y1)) − h(x1,xk)(φg,h(yk))
dX(φg,h(y1), φg,h(yk))

for k = 2, 3. By Lemma 2.2, it follows that

(φg,h(y1), φg,h(y2)) ∈ {(x1, x2), (x2, x1)}

and

(φg,h(y1), φg,h(y3)) ∈ {(x1, x3), (x3, x1)} .

Therefore φg,h(yk) = xk for k = 1, 2, 3. Define now the mapping ϕ = φ−1 ◦φg,h : Y → Y . Clearly, Y0 = ϕ(Y )
and

dY (ϕ(z1), ϕ(z2)) = a−1dX(φg,h(z1), φg,h(z2)) = a−1ag,hdY (z1, z2)

for all z1, z2 ∈ Y . In particular, we have
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dY (ϕ(y1), ϕ(y2)) = a−1ag,hdY (y1, y2),

but

dY (ϕ(y1), ϕ(y2)) = dY (φ−1(φg,h(y1), φ−1(φg,h(y2))) = dY (φ−1(x1), φ−1(x2)) = dY (y1, y2).

Therefore a−1ag,h = 1, and thus ϕ is an isometry. Note that ϕ(yk) = yk for k = 1, 2, 3.
Finally, assume Y0 �= Y and let y ∈ Y \ Y0 and y1 ∈ Y0. Define zn = ϕn(y) ∈ Y0 for all n ∈ N. Clearly, 

dY (zn, y1) = dY (ϕn(y), ϕn(y1)) = dY (y, y1) for all n ∈ N, and dY (zn, zm) = dY (ϕn−m(y), y) ≥ dY (y, Y0)
for all n, m ∈ N with n > m. �

We are now in position to prove the announced result.

Theorem 4.4. Let X and Y be uniformly concave complete pointed metric spaces and let Δ be a 2-local 
isometry from Lip0(X) to Lip0(Y ). Assume that X is also separable. Then Y0 = Y and Δ is a linear 
isometry from Lip0(X) onto Lip0(Y ).

Proof. By Theorem 3.1, there are a nonempty subspace Y0 of Y which is isometric to Y , a number λ ∈ SK

and a surjective a-dilation φ : Y0 → X such that

Δ(f)(y1) − Δ(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X).
Since Y , X and Y0 have the same cardinality, if X is finite, then Y0 = Y , and we have finished by 

Theorem 2.1.
Suppose now that X is not finite. Assume, on the contrary, that there exists a point y ∈ Y \ Y0. Given 

y1 ∈ Y0, by Lemma 4.3 there are two distinct points y2, y3 ∈ Y0 for which dY (y2, y1) = dY (y, y1) = dY (y3, y1). 
Take δ = (a/6)dY (y, Y0) and denote x1 = φ(y1), x2 = φ(y2) and x3 = φ(y3). Consider the set

C = {z ∈ X : dX(z, x1) ≥ dX(x1, x2), dX(z, x2) ≥ 3δ, dX(z, x3) ≥ 3δ} .

If {zn} is the sequence given in Lemma 4.3, it is easy to see that X\C contains at most two points of {φ(zn)}. 
Therefore C is infinite. Let R = {rn : n ∈ N} be an infinite countable dense subset of pairwise distinct points 
of C. Apply Lemma 4.2 to the points x1, x2, x3 and get the functions f, g ∈ Lip0(X). By Theorem 2.1 and 
the definition of 2-local isometry, there are a number λf,g ∈ SK and a surjective af,g-dilation φf,g : Y → X

such that

Δ(h)(y) = λf,ga
−1
f,g (h (φf,g(y)) − h (φf,g(eY )))

for all y ∈ Y and h ∈ {f, g}. Define the mapping ϕ = φ−1 ◦ φf,g : Y → Y0. Similarly as in the proof 
of Lemma 4.3, it is proved that af,g = a and ϕ is an isometry with ϕ(yk) = yk for k = 1, 2, 3. Then 
φf,g(yk) = φ(ϕ(yk)) = xk for k = 1, 2, 3, and we have

λf,g = λf,g
f(x1) − f(x2)
dX(x1, x2)

= λf,ga
−1 f(φf,g(y1)) − f(φf,g(y2))

dY (y1, y2)

= Δ(f)(y1) − Δ(f)(y2)
dY (y1, y2)

= λ
f(x1) − f(x2)
dX(x1, x2)

= λ.

We now check that ϕ(φ−1(rn)) = φ−1(rn) for all n ∈ N. Indeed, given n ∈ N, we have
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λa−1(f(rn) − f(x1)) = Δ(f)(φ−1(rn))) − Δ(f)(y1)

= λf,ga
−1
f,g

(
f(φf,g(φ−1(rn))) − f(φf,g(y1))

)
= λa−1 (f(φf,g(φ−1(rn))) − f(x1)

)
,

which implies f(φf,g(φ−1(rn))) = f(rn). Similarly, we obtain g(φf,g(φ−1(rn))) = g(rn) for all n ∈ N. It 
follows that φf,g(φ−1(rn)) = rn, and thus ϕ(φ−1(rn)) = φ−1(rn) for all n ∈ N.

Observe that φf,g(y) ∈ C because

dX(φf,g(y), xk) = dX(φf,g(y), φf,g(yk)) = a dY (y, yk) ≥
{

a dY (y1, y2) = dX(x1, x2) if k = 1,
a dY (y, Y0) = 6δ if k = 2, 3

Therefore, by the density of {rn : n ∈ N} in C, there is n ∈ N such that

dY (ϕ(y), φ−1(rn)) = a−1dX(φf,g(y), rn) < dY (y, ϕ(y))/2.

Finally, since

dY (y, ϕ(y)) ≤ dY (y, φ−1(rn)) + dY (ϕ(y), φ−1(rn))

= dY (ϕ(y), ϕ(φ−1(rn))) + dY (ϕ(y), φ−1(rn))

= 2dY (ϕ(y), φ−1(rn)) < dY (y, ϕ(y)),

we arrive at a contradiction. This proves that Y0 = Y . �
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