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1. Introduction

The study of 2-local isometries between Banach spaces has received considerable attention in recent years.
This class of maps was introduced by Molnar [15], motivated by the paper [18] of Semrl who obtained the
first results on 2-local automorphisms and 2-local derivations between Banach algebras.

Given two Banach spaces E and F, a mapping A: E — F (no linearity nor surjectivity are assumed)
is called a 2-local isometry if for every x,y € FE, there exists a surjective linear isometry T, ,: £ — F,
depending possibly on « and y, such that A(z) = T, ,(x) and A(y) = Ty (y). It is immediate that every
2-local isometry A preserves the distance between points. A problem addressed in the literature by different
authors is to study when A is both linear and surjective.

A Banach space E is said to be 2-iso-reflexive if every 2-local isometry from FE into itself is linear and
surjective. Molnar [15] proved that the C*-algebra B(H) of all bounded linear operators on a separable
infinite-dimensional Hilbert space H is 2-iso-reflexive. In [16], he raised to study the 2-iso-reflexivity for
the space C(X) of all continuous scalar-valued functions on a first countable compact Hausdorff space X,
endowed with the supremum norm. This problem was solved by Gy&ry [4], who showed that Cy(X) — the
space of all continuous complex-valued functions vanishing at infinity on a first countable o-compact Haus-
dorff space X — is 2-iso-reflexive. Al-Halees and Fleming [1] extended Gy&ry’s result for 2-local isometries
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between spaces of continuous vector-valued functions. Hatori, Miura, Oka and Takagi [7] and Hosseini [8]
considered 2-local isometries on uniform algebras and on spaces of continuously differentiable functions,
respectively.

The research on 2-local isometries between spaces of Lipschitz functions was initiated in [9]. Given a
metric space X, let Lip(X) be the Banach space of all scalar-valued bounded Lipschitz functions f on X
equipped with some of the natural norms: max {||f|| ., ,Lip(f)} or ||f|l., + Lip(f), where Lip(f) denotes
the Lipschitz constant of f. The isometry group of Lip(X) is said to be canonical if every surjective linear
isometry of Lip(X) can be expressed as a weighted composition operator of the form A - (f o ¢) for all
f € Lip(X), where X is an unimodular constant and ¢ is a surjective isometry of X. In [9], we proved that if
X is bounded and separable and the isometry group of Lip(X) is canonical, then Lip(X) is 2-iso-reflexive.

This study was subsequently extended in several directions. In [10], Li, Peralta, Wang, Wang and the first
author studied 2-local isometries between spaces of vector-valued Lipschitz functions. Li, Peralta, Wang and
Wang [13] also established some spherical reformulations of the Gleason-Kahane—Zelazko and Kowalski-
Stodkowski theorems [3,11,12] that were used to describe 2-weak-local isometries on Lipschitz algebras and
uniform algebras. Recently, this spherical variant of the Kowalski-Stodkowski theorem has been extended
and applied by Oi [17] to prove that 2-local maps in the set of all surjective isometries (without assuming
linearity) on several function spaces are surjective isometries (see also the paper [6] by Hatori and Oi).

We now present the pointed Lipschitz spaces. Let (X,dx) be a pointed metric space with a basepoint
designated by ex, let X denote the set

{(z,y) e X x X:z £y},

and let K be the field of real or complex numbers. The pointed Lipschitz space Lip,(X) is the Banach space
of all Lipschitz functions f: X — K for which f(ex) = 0, endowed with the norm defined by

[f(x) = f(y)]

Lip(f) = Sup{ ix(@.9)

:(x,y)ef(}.

In this paper, we study 2-local isometries between spaces Lip,(X). Namely, under the conditions of com-
pleteness and uniform concavity on the metric spaces X and Y — which are necessary to have a convenient
description of the surjective linear isometries from Lip,(X) to Lipy(Y) — we obtain in Section 3 a repre-
sentation of 2-local isometries from Lipy(X) to Lipy(Y) as the sum of a weighted composition operator
and a homogeneous Lipschitz functional on, at least, a certain subspace Yy of Y which is isometric to Y.
Moreover, for a suitable choice of basepoint in Yy, we show that every 2-local isometry from Lipy(X) to
Lipy(Y) induces a linear isometry from Lip,(X) onto Lipy(Yp). In Section 4, when X is also separable, we
prove that Y coincides with Y, and thus every 2-local isometry of Lip,(X) to Lipy(Y) is both linear and
surjective. Hence Lipy(X) is 2-iso-reflexive.

Our method of proof to obtain the representation of 2-local isometries between spaces Lipy(X) follows
the strategy of Gydry [4] in his study on 2-local isometries of the spaces Co(X), but also adapts to Lip,
spaces a technique employed by Gyéry and Molnar [5] and Cabello Sanchez [2] to describe the form of
diameter-preserving linear bijections of C'(X).

First, we shall need a representation of the surjective linear isometries between Lip, spaces and one
difficulty is that such isometries do not admit, in general, a representation as a weighted composition
operator. Furthermore, there exists a considerable literature on the study of the isometry group of the
spaces Lip under the maximum or sum norms, but to our knowledge only the references [14,19,20] deal with
the isometry group of Lip, spaces. To this point we devote the following section.
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2. Preliminaries

Given « €]0, 1] and two compact pointed metric spaces (X,dx) and (Y, dy), the linear isometries from
Lipy (X, d%) onto Lipy(Y, d§) were characterized by Mayer-Wolf in [14, Theorem 3.3]. The following exten-
sion of this result for linear isometries from Lip,(X) onto Lip,(Y') is due to Weaver (see [20, Theorem 3.56]
for the real-valued case, and [19, Theorem 2.7.3] joint to [20, Theorem 3.39] for the real and complex-valued
cases).

Let us recall that given metric spaces (X, dx) and (Y,dy) and a number a > 0, a map ¢: Y — X is an
a-dilation if dx (¢(y1), p(y2)) = a - dy (y1,y=2) for all y1,y2 € Y. We denote by Sk the set of all unimodular
scalars in K. Moreover, S = {1} if K =R and Sf = {e": t € [0, [} if K = C.

Theorem 2.1. [19,20]. Let X andY be uniformly concave complete pointed metric spaces. A linear operator
T': Lipy(X) — Lipy(Y) is a surjective isometry if and only if there exists a number \ € Sk and a surjective
a-dilation ¢: Y — X such that T is of the form

T(f)(y) = A" (f(6(y)) — f(dlev)))
for all f € Lipg(X) and y € Y.
According to [20, Definition 3.33], a metric space X is said to be concave if
d(z,y) < d(z,z) +d(z,v)

for any triple of distinct points x,y, 2z € X, and uniformly concave if for every distinct points =,y € X and
every € > 0, there exists § > 0 such that

for all z € X such that min {d(z, 2),d(y, 2)} > . In Section 3.5 of [20], the following examples of uniformly
concave metric spaces are presented:

1
2

(1) Any closed subset of R™ with the inherited Euclidean norm in which no three points are colinear.
(2)
(3) The unit sphere of any uniformly convex Banach space.
(4)

Any compact subset of a strictly convex Banach space in which no three points are colinear.

4) Any metric space (X,w o d), where w: (0,00) — (0,00) is a strictly concave distortion function. In
particular, any Holder metric space (X, d*) with « €]0,1[.

Another important tool in our study is the following peaking functions h(,, ,,) borrowed from the proof
of [20, Theorem 3.39].

Lemma 2.2. [20]. Let X be a concave pointed metric space and (x1,x2) € X. Consider the functions
91 ,w2) My ,e) s X — R defined by

_ d($1,$2)d(2;$2)
g(mumz)(z) B d(z,z1) + d(z,23)’

h(rl,rg)(z) = 9(11,12)(2) - g(ml,mg)(eX)

for all z € X. Then hy, ,) belongs to Lipy(X), and satisfies that
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Pay 20)(T1) = Ray 20 (T2)

=1
d($1,$2)

and

‘h(fﬂhf’?'z) (2) — h(wl,zz) (w) |
d(z,w)

<1

for all (z,w) € X \ {(z1, 22), (T2, 21) }.
3. Representation of 2-local isometries

We shall first describe the form of the 2-local isometries between Lip, spaces.

Theorem 3.1. Let X and Y be uniformly concave complete pointed metric spaces and let A be a 2-local
isometry from Lipy(X) to Lipg(Y). Then there exist a subspace Yo of Y which is isometric to' Y, a number
A € Sk and a surjective a-dilation ¢: Yy — X such that

A1) = AF)(y2) = Aa™ (F(6(y1) = F(8(12)))

for all y1,y2 € Yy and f € Lipy(X).

Proof. The proof will be divided into a sequence of steps. The following one will be frequently applied
without any explicit mention.

Step 1. For any f,g € Lipy(X), there are a constant Af, € Sk and a surjective ay g-dilation ¢¢ 4 from Y
onto X such that

AN ) = AUN2) _ [(0591)) = [(by,9(y2))
dy (Y1, y2) P9 dx (95.9(01), 01.(02))

and

Alg)(y1) = AWY(y2) _y  9(d74(y1)) = 9(Dr,(y2))
dy (y1,92) P9 dx (01,6 (11): 61,9 (92)

for all (y1,y2) € Y. In the case f = g, we shall simply write A\f, ay and ¢y.

Let f,g € Lipy(X). By hypothesis, there exists a linear isometry T}, from Lipy(X) onto Lipy(Y') sat-
isfying A(f) = Ty,4(f) and A(g) = Ty ,4(g). Applying Theorem 2.1, there are a constant A\f, € Sk and a
surjective ar o-dilation ¢¢, from Y onto X such that

Ty g(R)(y) = Ar.gas s (Mbr.q(y) = h(drg(ex)))

for all h € Lipy(X) and y € Y. Hence

A1) = AN 2) _ Trg(f) ) = Tre(f)(y2)
dy (y1,y2) dy (y1,y2)
- -1 f(¢f g(yl)) (¢f7g(l/2))
19%1.9 dy (y1,92)
f(¢f,g(y1)) - f(¢f 9(112))
9 dX(¢f,q( 1), 0} ,9(92))
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for all (y1,y2) € Y. Similarly, we have

dy (41, v2) ~ (01,9 (y1), D1.9(y2))

AW)y) — A1) _y 9(0r9(y1)) —9(Sr.(y2))

for all (y1,y2) € Y.

By Theorem 2.1 and the definition of 2-local isometry, there exists a bijection from Y onto X. Hence
|Y'| = | X|, where |S| denotes the cardinality of the set S. Since Theorem 3.1 is easy to verify when |Y| =1,
we shall suppose |Y| > 2 from now on.

Step 2. For each (x1,z2) € X, define the sets:

_ > A ) AU (y2) | f(@1) — f(2) :
B(wl,wQ),f - {((y17y2)7)\) E Y X SK' dy(yl,yQ) - A dX(ml,xQ) } (f E LlpO(X))7
B(wl’wZ) = m B(wl,zz),f'
f€Lipy (X)

Then {Bz, 2,): (1,22) € X} is a family of nonempty subsets of ¥ x Sk.

Let (z1,22) € )?, [ € Lipy(X) and consider the function h(,, .,y € Lipy(X) defined in Lemma 2.2.
We shall first show that B(m,wz),h(ml,zz>
Ahia; ag)f € Sk and a surjective ap, . p-dilation ¢p, . - r: Y — X such that

is a nonempty subset of Y x Sk. By Step 1, there exist a number

Ar(ar,20) Y1) = Alhie, ) (y2) Pay 22) (Bhin, mny ot (V1)) = P(ay 20) (Phis, wny o (Y2))
dy (Y1, y2) Marea)] Ax (Phyy gy f (Y1) Phiyy 0y £ (Y2))
and
AN (y) = A )(y2) _ \ F(@hiay apy ot W1)) = f(Bnin, gyt (Y2))
dy (y1,¥2) Marea) S AX (Phny gy f Y1)s Phiay way ot (Y2))

for all (y1,y2) € Y. From the first equality, we deduce that

—1 -1 —1 -1
<(¢h(11,m2)7f(x1), ¢h(11,m2)7f(x2)) ’ /\h<11,r2)7f) ’ ((¢h(m1,w2)7f(x2)7 ¢h(11,w2)7f($1))7 _)\h(zl=12)7f>

belong to B(I17x2)7h(m1,m2)7 and hence B(m11x2)7h(m1.m2) is nonempty, as desired.

We shall next prove that B(,, ..,) is contained in By, 5,)5- Let ((y1,%2), ) € Bay,2,) be

Py 2g) Py 20)

arbitrary. We have

h(ﬂh,wz) (xl) - h(ﬂvl,«’m) (xQ)

A=A
dx(z1,x2)
_ A 20) 1) = Alhey 20)) (92)
dy (y1,92)

h(wl,wz)(qsh(wl,rz),f(yl)) - h(a:l,zz)(¢h(m1,z2),f(y2))
Ax (Phiyy gy f (Y1)s Phay oy (Y2))

= May e f

and therefore
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Pay 2) (Bhia, mgy ot (V1)) = Py 20) (Phis, amy o (Y2))
dx (¢h(11,12)7f(y1)7 ¢h(zl,12)7f(y2))

Now Lemma 2.2 implies either

(Phi, mgy f (Y1) Phy ooy £ (Y2)) = (71, 72),

or
(¢h(zl,z2)7f(y1)a ¢h(zl,zz)7.f(y2)) = (1‘2, 1‘1).
Hence N\, = X in the first case, or A\, = —\ in the second one. It follows that
(x1,20)+ ] (1,22)+ ]
AN y) = A (y2) A\ F@hiay gyt 1)) = f(Dhis, 0y (Y2))
dy (y1,Y2) @1e2)f Ax (Phiy, oy f (Y1) Phiy, oy £ (Y2))
_\f@1) — flz2)
dx (xy,x2)

hence ((y1,%2),A) € B(a, 2,),r and this proves that

B(thQ)vh(zl,mg) < B(Iurz)dc'

As a consequence, we obtain that B, ,,) = B(zl,m),hmm).

Step 3. For every (z1,25) € X, there exist (y1,72) € Y and \ € Sg such that

B(whxz) = {((yla y2)7 )‘)a ((yZayl)v _)‘)} .

Let (z1,22) € X. By Step 2, we can take some ((y1,12),\) € Bz, z,)- Observe that ((y2,y1), —A) €
Bz, 2,)- Let ((y3,4), B8) € B(ay,2,) be arbitrary. We have

A(f)(y1) — A(f)(y2) _ /\f(fﬂl) — f(z2)
dy (y1,v2) dx(z1,22)
A(f)(yg) - A(f)(y4) _ ﬁf(%) - f(l“z)
dy (Y3, Y1) dx (x1,22)

for all f € Lipy(X). Taking f = h(s, 4,) and applying Step 1, we deduce

\ f(@r(y1)) = f(9r(y2) _ \
! dx (oY1), o5 (y2)) ’
A f(D5(ys)) — f(Ds(ya)) =8
! dx (d5(y3), df(ya)) .

It follows that

[f(@r(w)) = F(Dr(2))l _ [f(95(y3)) — f(Dr(ya))l _ 1
dx (¢r(y1), 05(y2)) dx(¢5(ys), ¢5(ya)) ’

and in the light of Lemma 2.2 these equalities yield
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{65 (W1), 05 (y2)} = {0r(y3), ¢5(ya))} = {w1, 72} .

We have four possibilities:

(1) 21 =95(y1), 22 = ¢1(y2), 21 = & (y3), ¥2 = dy(ya)-
(2) 21 =95(y1), 22 = ¢5(y2), 21 = df(ya), ¥2 = by (y3).
(3) 1 =05(y2), 2= ¢r(y1), 21 = & (ya), ¥2 = by (y3).
(4) 1= 95(y2), 22 = ¢r(y1), 21 = ¢ (y3), ¥2 = (ya).

Using the injectivity of ¢, we infer that
((y3,y4), 8) € {((y1,92), A), ((y2, 1), =)} -
Therefore
B(acl,acg) = {((y1;y2)v A), ((y2, 1), —)\)}'
Finally, notice that either A € Sﬂ‘g or —\ € S]I‘(f.

Step 4. For every (z1,25) € X, the set

Apwran) = {(1.32) €V 130 € S ((91,32), ) € Boy o) |
is a singleton by Step 3. Let I': X — Y be the map given by
{L(z1,22)} = Ay )
We have (yo,y1) = (29, 21) if (y1,y2) = T'(z1, x2).

Let (z1,22) € X and assume that (y1,y2) = I'(#1, 22). Then (y1,y2) € A(z1,2,)- Therefore ((y1,12),A) €
B(z, z,) for some A € Sﬁg. It follows that ((y2,%1),A) € B(ay,z,), hence (y2,y1) € A(a,,2,) and thus (yo,y1) =
I'(x9, 1), as required.

Step 5. For every (z1,25) € X, there exists a number A(z1,25) € Sg such that

A(f)(?h) - A(f)(yz)
dy (y1,92)

f(x1) — f(z2)

dx (x1,x2)

= )\(fhifg)
for all f € Lipy(X), where (y1,y2) = I'(x1, 2). Furthermore, A(z1,x2) = A(z2, 21).

Let (x1,22) € X and (y1,y2) = T'(x1,x2). By Step 4, there is a number \(x1,x29) € ng' such that

A(f) (1) — A)(y2)
dy (y1,92)

fz1) — f(x2)

dx (z1,x2)

= A(Q?l,xg)

for all f € Lipy(X). Since (y2,y1) = I'(x2,21) by Step 4, we also have

A(f)(y2) = Af) (1) f(@2) — f(z1)
dy (y2,91) dx (x2, 1)

= )\(.’1?2,.’131)

for all f € Lipy(X). Combining the equations obtained above, we infer that
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Moy, ag) L@ =T (@2) _ AW w) ~ AU)(w2)

dx(z1,2) dy (y1,Y2)
A (y2) = AS) (Y1)
dy (y2,y1)
flaz) = f(21)
dx(r2,21)
_ /\(x%xl)f(fl) — f(=2)

dx(z1,22)

= —)\((L‘Q, 1‘1)

for all f € Lipy(X), and taking f = h(z, 2, yields A(z1,22) = Mz2, 71).

Step 6. The map I is a bijection from X to U(wl,m)e};A(mhm).

Let (y1,y2) € U (1,22) exA(asl,a:z) Then (y1,y2) € Az, ,2,) for some (z1,22) € X. By Step 4, Az, ,20) =

{(y1,y2)}, and thus I'(x1,z2) = (y1,y=2). Hence T is surjective.
In order to prove that it is injective, let (z1,22), (z3,24) € X be such that

(y1,y2) =T(z1,22) = T'(23,24),

where (y1,y2) € Ular, mz)eXA(m s)- By Step 5, we have

fla) = fx2) _ ANw) = A @2) _ (o
Al 22) dx(z1,m2) dy (y1,¥2) = Mas, 74)

f(x3) — f(z4)

dx(x3,x4)

for all f € Lipy(X), with A(z1,z2), A(z3,24) € Sﬂ‘g. Taking f = h(z, 2,), we deduce that either (z1,22) =
(x4,x3) or (z1,22) = (x3,24). In the former case, we would have A(z1,22) = —A(x3,24), which is impossible.
Therefore (21, x2) = (x3,24).

Step 7. Let (x1,x2), (x3,24) € X, (y1,y2) = I'(z1,22) and (y3,ys) = I'(x3,24). Then

H{z1, x2} N {zs, 24} = [{y1, 2} N {ys, ya}|

By Step 5, we have the equalities:

AU ) = AN _ ;. o) = Flaw)
dy (y1,y2) b dx (xy,x2)
AUYm) = AN _ ;) = fla)
dy (y3,Ya) PV (w3, 4)

for all f € Lipy(X), where A(z1,z2), A(zs,x4) € Sﬁg. To simplify the writing, we denote g = h(,, 4,) and
h = h(z,2,)- Taking f = g in the former equality and f = h in the latter one, we obtain

N g(qu, (1)) — 9(dg,n(y2))
dX(¢g h(yl 7¢g,h(y2))

A ) = M) _ o bga) ~ M)

7 P dx (Gg,n(ys), dgn(ya))

= /\(xl, .1?2)

By Lemma 2.2, it follows that {¢g n(y1), ¢g.n(y2)} = {x1, 2} and {¢g.n(ys), Pg.n(ya)} = {3, 24}, respec-
tively, and the step holds.
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Let X5 stand for the family of all subsets of X having exactly two elements. Step 7 can be reformulated as
follows: if Ax: X — X3 and Ay: Y — Y5 are the maps defined by Ax (1, x2) = {x1,22} and Ay (y1,92) =
{y1,y=2}, respectively, we have

[Ax (21, 22) 0 Ax (23, 24)| = [Ay (I'(21, 22)) O Ay (T' (23, 24))|
for all (1‘171‘2), ($3,l‘4) € )N(

Step 8. Assume |X| > 3. For each z € X and any (x1,22) € X with 2 # x # w9, there exists a unique
point, depending only on x and denoted by ¢(z), in the intersection

Ay(F(x,:L’l)) N Ay(F(CB,.’Eg)).
The map ¢: X — Y is injective and {p(z1), o(x2)} = Ay (T'(x1,x2)) for every (x1,x2) € X.

Let z € X and let x1,x2 € X be with z1 # x2 and x1 # x # x2. By Step 7, there exists a unique point,
denoted here by y, in the intersection Ay (I'(x,z1)) N Ay (T'(z, 22)).

We claim that y € Ay (T'(x,z3)) for every x3 € X with 3 # x, what shows that y does not depend
on z1 and zo and thus it depends only on z. Indeed, if |X| = 3, this is obvious. Assume |X| > 4. Pick
z3 € X\{z, z1,22} and suppose on the contrary that y ¢ Ay (I'(z, z3)). We can write Ay (I'(z, 1)) = {y, 1}
and Ay (T'(z,22)) = {y, y2} for some yy,ys € Y with y; # y # y2. In the light of Step 7, we obtain y; # yo.
Since the cardinality of both sets Ay (T'(z,z3)) N Ay (T'(z,21)) and Ay (T'(z,z3)) N Ay (T(x,22)) is 1, we
deduce that Ay (I'(z,23)) = {y1,y2}. This implies that I'(x,x3) = (y1,y2) or I'(z,z3) = (y2,y1). We shall
only prove the first case and the other is similarly proven. Since A(z,x3), \(z,21), Mz, z2) € Sif, an easy
argument yields the equation:

A(%xg)f(iv)—f(m)_ﬁ(f)( y1) = A (y2)

dx(z,z3) dy (y1,Y2)
_ dr(yny) AN — AN | dr(y.y2) AH) — AS)(2)
dy (y1,92) dy (Y1, ) dy (y1,¥2) dy (Y, y2)
dy (y1,y) f(x) — f(z1) dy (y,y2) f(x) — f(z2)
_A(%Il)dy(yhyﬁ dx(z, 1) +>\(x7x2)dY(y1,y2) dx (z,x2)

for all f € Lipy(X). Taking first a function f € Lipy(X) satistying f(x) = f(xz2) =1 and f(z1) = f(x3) =0,
and after another f € Lip,(X) for which f(x) = f(z1) =1 and f(z2) = f(x3) = 0, we deduce that

dy (y,92)
dx(x,x2)

Using this we can simplify the cited equation by obtaining f(z) = f(z1)+ f(z2) — f(x3) for all f € Lipy(X),
a contradiction. This proves our claim.

dy (y1,y)
dx(x, 1)

dy (y1,v2)

Az, x3) dx (7. 73)

:)‘(xaml) = )‘(l'axQ)

We shall next prove the injectivity of . Suppose first | X| = 3, say X = {x1,z2, 23} (one of them is ex). If
o(x1) = p(x2) = y1, then y1 € Ay (T(x1, 22))NAy (T(21, 23)) NAy (T'(22, 23)). As the cardinality of each one
of the three sets in this intersection is 2, there are ya,ys,ys € Y \ {y1} such that Ay (T'(x1,22)) = {y1, 92},
Ay (D(z1,23)) = {y1,ys} and Ay (I'(z2,x3)) = {y1,y4}. Applying Step 7 yields yo # y3 # ys # y2, and thus
|Y'| > 4 which contradicts that |X| = |Y].

Assume now |X| > 4. Let 21,22 € X be with z1 # x5 and suppose p(z1) = p(z2) = y2. Take {21,202} €
X5 such that {z1, 22} N {z1, 22} = 0. We have y2 € Ay (I'(21, 21)) N Ay (I'(22, 22)); but since [Ax(z1,21) N
Ax(z2,22)| =0, we have |[Ay (T'(z1, 21)) N Ay (T'(22, 22))| = 0 by Step 7, a contradiction. This completes the
proof that ¢ is injective.
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For the second assertion, note that if (z1,2z2) € X, then o(z1) and @(zq) are distinct and belong to
Ay (T'(z1,22)) (see Step 4). Hence {p(z1), p(z2)} = Ay (I'(x1, z2)).

Step 9. There exist a nonempty subset Yy C Y and a bijection ¢: Yy — X such that {y,y2} =
Ay (T(¢(y1), d(y2))) for all y1,y2 € Yo with y1 # ys.

Assume first |X| = 2. Then |Y| = 2 by Step 1. Hence X = {z,ex} and Y = {y,ey} for certain
z € X \{ex}and y € Y\ {ey}. Clearly, X = {(z,ex), (ex,z)} and Y = {(y,ey), (ey,y)}. Since T is a
map from X to Y, we have Ay (T(z,ex)) = {y,ey}. Take Yy =Y and the bijection ¢: Yy — X defined by
o(y) = = and ¢(ey) = ex, and the proof is finished if | X| = 2.

Assume now |X| > 3. Let ¢: X — Y be the injective map defined in Step 8. Then Yy = ¢(X) and
¢ =@ 1: Yy — X satisfy the required conditions.

Step 10. There exist numbers a € R™ and A € Sk such that ¢: Yy — X is an a-dilation and

A1) = AF)(y2) = Aa™" (F(6(y1) = F(8(12)))

for all y1,y2 € Yy and f € Lipy(X).

Let Yy C Y and ¢: Yy — X be the set and the bijection given in Step 9. Let y1,y2 € Yy with y; # yo. By

Step 9, {y1,92} = Ay (D'(¢(y1), ¢(y2))). Hence either I'(d(y1), ¢(y2)) = (y1,y2) or L'(d(y1), ¢(y2)) = (y2,y1)-
By Step 5, we have

A() (1) — Af)(y2) f(oyr)) — f(9(y2))
dy (y1,Y2) dx (¢(y1), ¢(y2))

for all f € Lipy(X), where B(é(y1), ¢(y2)) € {£A(@(y1), d(y2))} and M(y1), ¢(y2)) € S -
We now claim that 8(¢(y1), ¢(y2)) and dy (y1,y2)/dx(é(y1), ¢(y2)) do not depend on their variables

(y
y1,y2. It is clear when |Yp| = 2 because 8(¢(y1), 9(y2)) = B(é(y2), ¢(y1)) by Step 5. Otherwise, let y3 € Yo
be with ys ¢ {y1,y2}. We have the equation:

= B(o(y1), #(y2))

mmm»wmnajggﬁﬁiﬁcﬂww»—fw@a»

= (f)(?h) - A(f)(yz)
= (A1) — A)(ys)) + (A (ys) — A(f)(y2))

=Mdmhdmﬂzj%%%§iﬁtﬂdwﬂ—f@@@»

+mw%»wm»zj%%%ﬁigcﬂm%»—fwwn»

for all f € Lipy(X). For each i € {1,2}, consider the set

Fi = {o(w1), ¢(y2), d(y3)} \ {o(y:)}

and the functions g;, f;: X — R defined, respectively, by

o) = X (&F)
’ dx (2, ¢(yi)) + dx (2, Fi)’

fi(2) = gi(2) — gilex).
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Clearly, f; € Lipy(X), and taking f = f; for i = 1,2 in the equation above, it follows that

dy(yi,y3) dy (Y1, y2)

dy (Y3, y2)

= 5(¢(y3)a¢(yz))m,

as claimed. Since B(¢(+), ¢(+)) has the unit modulus, we deduce that

dy (y,ys) — _ dv(yiye) dy(ys,y2)
dx(o(y1), d(y3)) dx (o(y1), #(y2)) dx ((y3), d(y2))

and therefore

Blo(yr), d(ys)) = B(o(y1), ¢(y2)) = B((y3), ¢(y2))-

By the arbitrariness of yi1, y2 and ys, the first equality in the two preceding equations means that the two
functions dy (-, -)/dx (¢(-), ¢(+)) and B(p(-), ¢(-)) does not depend on the second variable, while the second
equality in both equation says us that the same occurs with the first one. Hence there exist two constants
a € RT and )\ € Sk such that

dx (¢(y1), ¢(y2)) = a - dy (y1,Y2),

and

B(d(y1), (y2)) = A,

for all y1,ys € Yy with y; # yo. Therefore ¢ is an a-dilation from Y, onto X. Since X is complete, so also
is Yo.
Finally, we have

A(f)(y1) — A)(y2)
dy (y1,y2)

-1 f(o(y1)) — f(¢(y2))
dy (y1,v2)

= Aa

for all y1,y2 € Yy with y1 # y2 and f € Lipy(X) and therefore
A(F) (1) = AF)(y2) = Aa™! (f(8(y1)) — f((y2)))
for all y1,y2 € Yy and f € Lipy(X).
Step 11. There exists a surjective isometry ¢: Y — Y.
For all y1,y2 € Yy and f € Lipy(X), we have

A1) = AN (y2) = Aa™" (f(6(y1) — F(9(y2))

with Yy, A, a, ¢ being as in the statement of Step 10.
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Pick y1,y2 € Yy with y1 # y2, and denote 21 = ¢(y1) and z3 = ¢(y=2). By Step 1, we have

A(f)(y) = Ah(wl,wz)a;(lxl,xz) (f (¢h(m1,m2)(y)) - f (¢h(w1,m2)(eY)))

for all y € Y and f € Lipy(X). Hence

h’(l’l,l’z)(xl) - h(Il,Iz)(x2)
dx(x1,12)
_ AW 22) Y1) = Albe,wa)) (42)
dy (y1,y2)
h($1,$2)(¢h($1,$2)(y1)) - h(zl,z2)(¢h(zl,12)(y2)).
Ax (Dh(zy,20) (Y1), Phar,20) (Y2))

A=A

- )‘h(:cl,:cg)

By Lemma 2.2, it follows that
(Ph(er,w0) (Y1), Ph(ar,w0) (¥2)) € {(21,22), (22, 21)} -
Define the mapping ¢ = ¢! 0 ¢z, 4,): ¥ — Y. Clearly, Yy = 4(Y) and
dy (Y(21),¥(22)) = a7 dX (Pn(ar 29) (21), Ph(ar wa) (22)) = a7 nay wg)dy (21, 22)
for all z1, 2 € Y. In particular, we have

dy (Y (1), (y2)) = @ an ey o dy (Y1, 92),

but

dy(w(yl)a 1/’(%)) = dY(QSil(qsh(wl,wz)(yl)a ¢71(¢h(I1,I2)(y2)))
= dy (¢~ (21), ¢ (22)) = dy (y1,y2)-

Therefore a‘lah(zl,m) =1, and thus¢: Y — Y| is an isometry. This completes the proof of Theorem 3.1. O
This theorem can be reformulated as follows.
Corollary 3.2. Let X and Y be uniformly concave complete pointed metric spaces and let A be a 2-local

isometry from Lipy(X) to Lipy(Y'). Then there exist a subspace Yy of Y which is isometric to'Y , a surjective
a-dilation ¢: Yo — X, a number X\ € Sk and a homogeneous Lipschitz function p: Lipy(X) — K such that

A(H)(y) = A" f((y) + u(f)
for ally € Yy and f € Lipy(X).
Proof. For every y;,y» € Yp and f € Lipy(X), we can write
A1) = AU (y2) = Aa™ (f(d(y1)) — f(6(y2)))

with Yg, A, a, ¢ being as in the statement of Theorem 3.1. Define u: Lipy(X) — K by

u(f) = A y) — ra™ f(d(y))
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for all f € Lipy(X), where y is an arbitrary point in Yy. Note that p(f) does not depend on y, and p is
well-defined.

Given A € K and f € Lipy(X), by hypothesis there is a linear isometry T »¢ from Lip,(X) onto Lipy(Y’)
such that A(f) = Ty ar(f) and A(Nf) = Ty ap(Af). We have

A(Nf) =Trap(Mf) = Ny ap(f) = MNA(S),

and thus A is homogeneous. Hence so is p.

In order to prove that p is Lipschitz, let us recall first that A is an isometry. Observe also that for any
x € X, the evaluation functional d,: Lipy(X) — K, given by 6,.(f) = f(z) for all f € Lipy(X), is linear and
continuous with ||d,|| = d(z,ex).

Finally, given f, g € Lipy(X), we have

1(f) = ()l = [(A() (W) = Alg)(y)) + ra™ (f(8(y)) — 9(o(1)))]
= [0, (A(f) = A(g)) + Aa™ o) (f — 9)|
< 110, | Lip(A(f) = A(9)) +a™ [|d4,) || Lin(f — 9)
= (dy(y,ey) +a tdx(6(y),ex)) Lip(f —g). O

In relation to Theorem 3.1, notice that the basepoint of Y is not necessarily in the set Y, but for a
suitable choice of basepoint in Yy, we can see that every 2-local isometry from Lipy(X) to Lip,(Y") induces
a linear isometry from Lipy(X) onto Lip,(Yp), as follows.

Corollary 3.3. Let X and Y be uniformly concave complete pointed metric spaces and let A be a 2-local
isometry from Lipy(X) to Lipy(Y). Then there exists an uniformly concave complete pointed metric space
Yo such that if R: Lipy(Y') — Lipy(Yo) is the map given by R(f) = fly, — f(ey,) for all f € Lipy(Y'), then
Ro A: Lipy(X) — Lipy(Yo) is a surjective linear isometry.

Proof. By Theorem 3.1, we have

A1) = A (y2) = Aa™" (F(6(y1) — F(8(12)))

for all y1,y2 € Yy and f € Lipy(X), where Y} is a subspace of Y, isometric to Y, A € Sk and ¢: Yy — X is
a surjective a-dilation. Consider Yy as a pointed metric space with the metric induced by dy and basepoint
ey, = ¢ 1(ex), and let R: Lipy(Y) — Lipy(Yy) be the map defined in the statement. From above we
deduce that

(RoA)(f)(y) = ™' f(é(y))  (y € Yo, f € Lipy(X)),

and therefore R o A is a linear isometry from Lipy(X) onto Lipy(Yp). O
4. 2-Iso-reflexivity

In this section, we shall prove that every 2-local isometry from Lip,(X) to Lipy(Y) is a surjective linear
isometry whenever X and Y are separable complete uniformly concave pointed metric spaces, and therefore
Lipy(X) will be 2-iso-reflexive.

For its proof we shall need some peaking functions with additional properties. The construction of such
functions begins in the next lemma.
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Lemma 4.1. Let X be a concave pointed metric space, (x1,%2) € X and 0 < § < d(x1,x2). Consider the
functions g1, g2,93: X — R defined by

o 2d($1,$2) —(5 5

g1(z) = 2d(y, 2) max {0,d(x1,z2) —d(z,21)} — (@) max {0,d(x1,z2) — d(z,22)},

ga(e) = max {1 (2). 5 max 0.0 =z} |

g5(2) = min {gg(z), % max {O,d(axl,xg) - g —d(z, ml)}} .

Then, for each k € {1,2,3}, the function gy, is Lipschitz with

gk(ﬂh) _gk(332>

=1
d(xlva)

and enjoys the condition i):

9% (2) — gx(w)]

d(z,w) <1, Y(zw) € X\ {(z1,22), (w2, 1)}

Furthermore, g3 satisfies the conditions:

ii) gs(z) =0 if d(z, 1) > d(x1,22) — /4 and d(z,z2) > 0,
iil) g3(2) = 0 if d(z,z2) > 6,
iv) g3(z) > —=6/2 for all z € X.

Proof. Evaluating g; for kK = 1,2,3 at x1 and xo, it is immediate that

gk(®1) — gr(2)

=1.
d(’l‘l, 1152)

We now prove that g; has the property i). Given (z,w) € )N(\ {(z1,x2), (£2,21)}, we can distinguish 16 cases
according to the relations between (z,w) and (z1,2z3). We only check 5 cases and the rest can be verified

similarly.
1) If max {d(z,z1),d(z,x2),d(w,x1),d(w,x2)} < d(x1,z2), we have

o 2d(a:1,x2)75 )

q1(z) = 2d(, 3) (d(z1,22) —d(z,71)) + Sd(@1.7) (—d(z1,72) + d(z,22))

and therefore

2d(1’1,1’2) ) )
l91(2) — g1(w)| < W |d(w, x1) — d(2,z1)| + m |d(z, x2) — d(w, z2)] .

Since (z1,2) # (2, w) # (z2, 1), it follows that
|[d(w,z1) — d(z,z1)| < d(z,w)

or



A. Jiménez-Vargas, M. Villegas-Vallecillos / J. Math. Anal. Appl. 491 (2020) 124359 15

|d(z,x2) — d(w, z2)| < d(z,w)
by the concavity of X. Hence

191(2) = g1 ()| _ 2d(z1,22) =5+
d(z, w) d(z, w)2d(x1, x2)

d(z,w) = 1.

2) If max {d(z,x1),d(z, x2),d(w,z1)} < d(x1,z2) and d(w, z2) > d(x1,z2), we have

() = 2500 (o) — dw).
hence
() 1 (0) = ZGIETE ) — d(z00) gt () — d(eaz).

and therefore

l91(2) — g1 (w)] < 2d(x1,x2) — 0 N 0 |d(x1, x2) — d(z, x2)]

d(z,w) T 2d(wy,72) 2d(x1, x2) d(z,w)
2d(xy,2) — 4 d(w,z2) — d(z,z2) <1
2d(z1, x2) 2d(z1,2) d(z,w) -

3) If max{d(z,z1),d(z,22)} < d(x1,22) and min{d(w,z1),d(w,z2)} > d(z1,22), then g;(w) = 0 and
91(z) — g1(w) = g1(z). Hence

lg1(2) — g1(w)] < 2d(xz1,x2) — 0 d(x1,x2) — d(2, 1) n 1) d(xy,22) — d(z,x2)

d(z,w) — 2d(z1,z2) d(z,w) 2d(x1,x9) d(z,w)
2d(x1,x2) — 0 d(w,x1) — d(z,x1) ) d(w, z2) — d(z,z2)
2d(z1, ) d(z,w) + 2d(x1, x2) d(z,w) =1

4) If d(z,22) < d(z1,x2) and min {d(z, z1), d(w, x1), d(w, z2)} > d(z1,z2), then

l91(2) —g1(w)| & d(@i,mp) —d(z,22) _ d(w,x3) — d(2,22)
d(z,w) - 2d(z1, 29) d(z,w) < d(z,w) =1

5) If min {d(z,x1),d(z, x2), d(w, z1),d(w,x2)} > d(z1,x2), then

191(2) — 91 (w)] —0<1
) .

d(z,w

We can check similarly that the functions go and g3 satisfy the property i). Finally, we prove the conditions
ii), iii) and iv) for gs. If d(z,x1) > d(x1,22) — §/4 and d(z,22) > 6, then g2(z) = max{g1(z),0} > 0 and
thus g3(z) = min{ga2(2),0} = 0; if d(z,22) > J, then go(z) = max{g1(z),0} > 0 and therefore g5(z) > 0;
and if z € X, we have

0 5

—3 = T d(wr ) max {0, d(w1,v2) — d(2,22)} < g1(2) < g2(2),

and therefore g3(z) > —§/2. O

We are now ready to define the announced functions.
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Lemma 4.2. Let X be a concave metric space and let x1,x2,x3 € X be three distinct points such that
d(x1,x2) = d(x1,23). Given § €]0,d(x1,x2)[, assume that the set

C={ze€X:d(z,21) > d(z1,22), d(z,22) > 35, d(z,23) > 36}

contains a countable subset R = {r,: n € N} of pairwise distinct points. Then there exist two Lipschitz
functions f,g: X — R satisfying:

(f(z1) = f(@2))/d(z1,22) = 1 = (9(21) — g(23))/d(21,23),

— f(w)] /d(z,w) < 1 for all (z,w) € X \ {(x1,22), (x2,21)},
g(w)| /d(z,w) < 1 for all (z,w) € X\ {(z1,23), (x3,71)},
D (f(®@),9(2)) = (f(rn), 9(rn))} = {rn} for each n € N.

Proof. By [9, Proposition 3.2], there are two Lipschitz functions fy,g0: C — [0,1] with Lip(fo) < 1 and
Lip(go) < 1 such that

{z e C: (fo(x),90(2)) = (fo(rn) go(rn))} = {rn}

for each n € N. Consider the set
W = {z € X:d(z,x1) < d(z1,x2) — g} U{z € X:d(z,22) <26} U{z € X:d(z,23) < 2}.
Note that d(C, W) > §/8, and define the functions hy, he: CUW — R by

e folx), it zeC,

hl([]}') = )
-5 .
T6(6+1)2° if zeW,
and
52 .
ho () — Tz do(®), if zeC,
2(z) = o .
66+12° if zeW.
Clearly, hy and hy are Lipschitz and bounded, with
52 5 5
Lip(hi) < 7 -1 bl P
ip( k)_maX{16(5+1)2 (5+1)2} Ielle < 1655172

for k = 1,2. By [20, Theorem 1.33], for & = 1,2 there exist a function fx: X — R such that
Trleow = P | fxlloo = 1|l and Lip(fx) = Lip(h). By Lemma 4.1, we can take two Lipschitz functions
9(z1,22,6)r 9(w1,23,6) * X — R such that

|g(w17w27§) (Z) — Y(x1,22,) (w)| Y(x1,32,6) (331) = 9(z1,22,8) (xQ) -
L= v X
d(z,w) < d(z1,22) » V(zw) € X\ {(21,22), (22, 21)},

)
I(zr,22,0)(2) =0, Vz € X:d(z,21) > d(w1,22) — 7 d(z,x9) > 0,

G(z1,20,6)(2) >0, Vze X:d(z,z2) >0,

)
g($1,$2,5)(2) > Ty Vz e X,
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and

|9(21,25.6) (2) = oy 05,0) (W) <1 Jaress) (1) = Y(w1,25.,0)(T3)
d(z,w) d(z1,3) ’

V(z,w) € X\ {(21,23), (23,21)},
I(zr,25,6)(2) =0, Vz € X:d(z,21) > d(w1,23) — g, d(z,x3) > 0,
Gz ,25,6)(2) 20, Vz e X:d(z,23) >,
91 ,3,0)(2) = —g, Vze X.

Consider the functions

52 52
f:fl+m+g(w17w275)a g:f2+m+g(a;l,az3,6)~

Note that
5 6
f|X\W: f1|X\W+m, 9|X\w: f2\x\w+m
and
f|W = g(x17x2,6)|W7 g|W = 9(21,23,9) w

We now prove that f and g satisfy the conditions i)-iv). Since 1, 22,23 € W, i) holds. To prove ii), let
(z,w) € X \ {(x1,22), (x2,21)}. If z,w € W, we have

F(2) = F@)] _ 961,020 () = Jarwan)@)] _
d(z,w) d(z,w) ’
if z,we X\ W,

[f(z) = fw)| _ [f1(2) = fi(w)]
d(z,w) d(z,w)

< Lip(f1) = Lip(h1) < 1;
if ze X\W,weW and g, 4,6 (w) > fi1(2) + 62/16(6 4+ 1)?, we have

1f(z) — fw)| _ |i&) + Ty — g(m,m,a)(w)‘ s (W) — (fl(z) + 16(35%)2)
d(z,w) d(z,w) N d(z,w)

< Jmmo(®) _ 961,22, () = I a0 ()] _ T
d(z,w) d(z,w)

ifze X\W,weW and 0 < gz, 4,6 (w) < f1(2) + 62/16(6 + 1)?, we have

1) = )| _ h&)+ wie ~ waa @) _ ()= fi(w) _ .
d(z,w) B Jc;(z,w) < d(z, w) < Lip(f1) < 1;

and if z € X \ W, w € W and g(5, 4,.5)(w) <0, then d(w,z2) < ¢ and
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£(2) = Fw)| 1)+ s — 9enann (W)
d(z,w) d(z,w)

é;(({;T)z+% 5 :26—6<d(z,x2)—d(w,w2)<1
d(z,w) d(z,w)  d(z,w) d(z,w) -

Similarly, it is proved that g satisfies iii). Finally, given n € N and = € C with (f(z), g(z)) = (f(rn), 9(rn)),
it follows that (fo(x), go(x)) = (fo(rn), go(rs)), hence & = r,, and this proves iv). O

We shall also need the following result.

Lemma 4.3. Let X andY be uniformly concave complete pointed metric spaces and let A be a 2-local isometry
from Lipy(X) to Lipy(Y). Let Yo C Y be as in Theorem 3.1 and assume |Yy| > 3. If Yo Y, y € Y\ Yy and
y1 € Yo, then there exists a sequence {z,} of points in Yy such that dy (zn,y1) = dy (y,y1) for alln € N,
and dy (zn, zm) = dy (y,Yy) > 0 for all n,m € N with n # m.

Proof. Let y1,y2,y3 € Yy be three distinct points and denote z; = ¢(yr) for £ = 1,2,3. We shall first
construct an isometry ¢ of Y onto Yy for which ¢(yx) = yi for k = 1,2, 3. The argument is similar to the
proof of Step 11. We have

A(f)(z1) = A(f)(z2) = a7 (f(d(21)) — f(6(22)))

for all z1,22 € Yy and f € Lipy(X), with Yo, A, a, ¢ being as in the statement of Theorem 3.1. Consider
9 = Ny z0)s B = Ny 2y € Lipg(X) as in Lemma 2.2. By Step 1, there exist a number A\, ; € Sk and a
surjective ag p-dilation ¢4 p: Y — X such that

A(f)(z1) = A(f)(z2)

dy (21, 22)

_ o, F@gn(21)) — f(g.n(22))
I dx (G n(21), Dy (22))

for all (21,22) € Y and f € {g, h}. Hence

/\h(xl;mk)(ml) B h(Il,Ik)(mk) _ A(h(wl,xk))(yl) - A(h(Ihwk))(yk)
dx (21, T) dy (Y1, Yr)

Pay ) (Bg,n (Y1) = Py ) (Dg,n(Yk))
dx (Pg.n(Y1)s bg.n(Yr))

= /\g,h

for k = 2,3. By Lemma 2.2, it follows that

(¢g,n (Y1), bg.n(y2)) € {(21,72), (T2, 71)}

and

(¢g,n(Y1), bg.n(y3)) € {(21,73), (z3,71)} -

Therefore ¢y 5 (yr) = z for k = 1,2, 3. Define now the mapping ¢ = ¢~ Lo¢,,: Y — Y. Clearly, Yo = p(Y)
and

dy (p(21), 0(22)) = a” "dx (dg,n(21), Bgn(22)) = a ag ndy (21, 22)

for all 21,29 € Y. In particular, we have
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dy (e(11), e(y2)) = a~ag ndy (y1,y2),

but

dy (1), 0(y2)) = dy (¢ (dg,n(y1), &~ (Bg,n(y2))) = dy (¢~ (x1), 0™ (x2)) = dy (y1,2)-

Therefore a~'a, , = 1, and thus ¢ is an isometry. Note that ¢(yx) = yi for k = 1,2,3.
Finally, assume Yy # Y and let y € Y\ Yy and y; € Yy. Define z,, = ¢"(y) € Yy for all n € N. Clearly,

dY(vayl) = dy(@n(y%@n(yl)) = dY(yvyl) for all n € N7 and dY(Z’n7zm) = dY(SOn_m(y)ay> Z dY(y7YO)
for all n,m € N with n >m. 0O

We are now in position to prove the announced result.

Theorem 4.4. Let X and Y be uniformly concave complete pointed metric spaces and let A be a 2-local
isometry from Lipy(X) to Lipy(Y). Assume that X is also separable. Then Yy =Y and A is a linear
isometry from Lipy(X) onto Lipy(Y).

Proof. By Theorem 3.1, there are a nonempty subspace Y; of Y which is isometric to Y, a number A € Sk
and a surjective a-dilation ¢: Yy — X such that

AN () = A (y2) = Aa™" (f(6(y1) — F(9(y2)))

for all y1,y2 € Yy and f € Lipy(X).

Since Y, X and Y; have the same cardinality, if X is finite, then Yy = Y, and we have finished by
Theorem 2.1.

Suppose now that X is not finite. Assume, on the contrary, that there exists a point y € Y\ Y. Given
y1 € Yy, by Lemma 4.3 there are two distinct points ys, y3 € Yy for which dy (y2, y1) = dy (y,y1) = dy (y3, y1)-
Take 6 = (a/6)dy (y, Yo) and denote z1 = ¢(y1), 2 = ¢(y2) and x5 = ¢(y3). Consider the set

C={z€ X:dx(z,21) >dx(x1,22), dx(2z,22) > 38, dx(z,23) > 35}.

If {2, } is the sequence given in Lemma 4.3, it is easy to see that X \ C contains at most two points of {¢(z,,)}.
Therefore C is infinite. Let R = {r,,: n € N} be an infinite countable dense subset of pairwise distinct points
of C. Apply Lemma 4.2 to the points x1, z2, 3 and get the functions f, g € Lipy(X). By Theorem 2.1 and
the definition of 2-local isometry, there are a number Ay, € Sk and a surjective ay g-dilation ¢ 4: YV — X
such that

A(h)(y) = Apgag, (h(954(y)) — h(¢r.4(ev)))

for all y € Y and h € {f,g}. Define the mapping ¢ = ¢! o ¢s,: Y — Y;. Similarly as in the proof
of Lemma 4.3, it is proved that ay, = a and ¢ is an isometry with ¢(yx) = yr for k& = 1,2,3. Then
b1.9(ur) = O(@(yx)) = xy for k =1,2,3, and we have

fz1) = f(x2) 1 f(b101)) = [(1,6(y2))

At = At dx (21, 72) =gt dy (y1,92)
_ A(f)(y1) — A(f)(y2) _ )\f($1) — f(z2) -
dy (y1,92) dx (x1,x2) .

We now check that ¢(¢~(r,)) = ¢~1(r,) for all n € N. Indeed, given n € N, we have
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Aa=H (f(rn) = f(x1)) = AU)(G 7 (rn))) = A(S) (1)
= A9y (f(059(07 (rn))) = F(d14(y1))
=Xa" (f(rg(¢7 (ra))) — fla1)),

which implies f(¢f,4(¢"1(rn))) = f(rn). Similarly, we obtain g(¢f4(¢~1(rn))) = g(ry) for all n € N. It
follows that ¢ 4(¢~1(rn)) = rn, and thus ©(¢~1(r,)) = ¢~ (r,) for all n € N.
Observe that ¢ 4(y) € C because

ady (y1,y2) = dx(z1,22) if k=1,
= — >
dX(¢f,Q(y)a$k) dX(¢f,g(y)7¢f,g(yk)) ady(y,yk) > ady(y’ YO) _ 66 g g 2’3

Therefore, by the density of {r,,: n € N} in C, there is n € N such that

dy (p(y), ¢ (rn)) = a Hdx (¢1,4(y), ) < dy (4, 0(y))/2.

Finally, since

dy (y, 0™ (rn)) + dy (p(y), ¢~ ()
dy (9(y), (¢~ (rn))) + dy (o(y), o' (rn))
2dy (p(y), ¢~ (rn)) < dy (y,9(y)),

dy (y,p(y)) <

we arrive at a contradiction. This proves that Yy =Y. O
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