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Abstract Given a compact pointed metric space X and a weight v on the complement
of the diagonal set in X × X , we prove that the Banach space lipv(X) of all weighted
little Lipschitz scalar-valued functions on X vanishing at the basepoint, equipped with
theweightedLipschitz norm, embeds almost isometrically into c0. This result hasmany
consequences on the structure of those Banach spaces and their duals. Moreover, we
prove that this isomorphism can never be an isometric embedding whenever X is a T-
balanced subset containing 0 and compact for some metrizable topology of a complex
Banach space and v is a radial 0-weight.
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334 A. Jiménez-Vargas, P. Rueda

1 Introduction

Let (X, d) be a pointed metric space with a basepoint e, let K be the field of real or
complex numbers and let ˜X be the set {(x, y) ∈ X × X : x �= y}.

The Lipschitz space Lip0(X) is the Banach space of all functions f from X to K

for which f (e) = 0 such that

sup

{ | f (x) − f (y)|
d(x, y)

: (x, y) ∈ ˜X

}

< ∞,

endowed with the Lipschitz norm:

Lip( f ) = sup

{ | f (x) − f (y)|
d(x, y)

: (x, y) ∈ ˜X

}

.

The little Lipschitz space lip0(X) is the closed linear subspace of Lip0(X) consisting
of all those functions f which satisfy the property:

∀ε > 0, ∃δ > 0 : (x, y) ∈ ˜X , d(x, y) < δ ⇒ | f (x) − f (y)|
d(x, y)

< ε.

Sometimes, we will write Lip0(X, d) and Lip( f, d) instead of Lip0(X) and Lip( f ),
respectively. We denote by T and D the unit sphere and the unit closed ball of C,
respectively.

Let us recall that a function ω : [0,∞) → [0,∞) is a gauge if it is continuous,
increasing and subadditive with ω(0) = 0 and ω(t) ≥ t for all 0 ≤ t ≤ 1. A gauge ω

is normalized if ω(1) = 1 and nontrivial if limt→0 ω(t)/t = ∞. The most important
examples of normalized nontrivial gauges are ω(t) = tα and ω(t) = max{t, tα}
with α ∈ (0, 1). A normalized nontrivial gauge permits to replace the metric d on X
with the new metric ω ◦ d and define so the generalized spaces of Hölder functions
Lip0(X, ω ◦ d). In the special case ω(t) = tα , we write Lip(α)

0 (X).

The isomorphic representation of lip(α)
0 spaces with 0 < α < 1 has been widely

studied. See, for example, the paper [23] by Kalton and the references therein. A
known result of Bonic et al. [5] (corrected in [28]) asserts that lip(α)

0 (X) is isomorphic
to c0 whenever X is a compact subset of the Euclidean space R

n . Weaver [28, page
98] asked whether this is true for every compact metric space. In [23, Section 8],
Kalton answered this question negatively by showing that if X is a compact convex
subset of �2 containing 0, then lip

(α)
0 (X) is isomorphic to c0 if and only if X is finite-

dimensional. Moreover, he conjectured that if X is an infinite-dimensional compact
convex subset of any Banach space, then lip(α)

0 (X) cannot be isomorphic to c0, and
obtained some general results of this type.

On the other hand, the isometric representation of those spaces was also dealt in
Wulbert’s article [29]. If X is a compact metric space and 0 < α ≤ 1, his surprising
result (corrected in [3]) states that a point separating space lip(α)

0 (X) can only be
isometrically isomorphic to c0 if α = 1 and X is isometric to a nowhere dense subset
of R.
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Isometric representations of weighted spaces of… 335

In this paper, we will prove that lip(α)
0 (X) (0 < α < 1) is not isometrically isomor-

phic to a subspace of c0 whenever X is a T-balanced subset containing 0 and compact
for somemetrizable topology of a complex Banach space.We say that X isT-balanced
if λx ∈ X for all x ∈ X and λ ∈ T. In particular, we show that lip(α)

0 (T ∪ {0}) and
lip(α)

0 (D) are not isometrically isomorphic to subspaces of c0. In fact, we will prove
muchmore general results in the context of weighted Banach spaces of Lipschitz func-
tions that we present below. The isometric structure of weighted spaces of analytic
functions and harmonic functions was studied by Boyd and the second author in a
series of papers (see [8–10] and the references therein).

Let us recall that a function v : ˜X → R is called a weight on ˜X if it is (strictly)
positive and continuous. The weighted Lipschitz space Lipv(X) is the Banach space
of all functions f in Lip0(X) such that

sup

{

v(x, y)
| f (x) − f (y)|

d(x, y)
: (x, y) ∈ ˜X

}

< ∞,

under the weighted Lipschitz norm:

Lipv( f ) = sup

{

v(x, y)
| f (x) − f (y)|

d(x, y)
: (x, y) ∈ ˜X

}

.

The weighted little Lipschitz space lipv(X) is the closed linear subspace of Lipv(X)

formed by all those functions f such that

lim
t→0

sup

{

v(x, y)
| f (x) − f (y)|

d(x, y)
: 0 < d(x, y) < t

}

= 0.

Thus Lipv(X) may be regarded as all Lipschitz scalar-valued functions f on X van-
ishing at e such that | f (x) − f (y)|/d(x, y) satisfies a growth condition of order
O(1/v(x, y)) while lipv(X) are those functions for which | f (x) − f (y)|/d(x, y) has
a growth rate of order o(1/v(x, y)).

Note that for v being the function constantly 1 on ˜X , the spaces Lipv(X) and
lipv(X) are just Lip0(X) and lip0(X), respectively. Therefore, weighted spaces of
Lipschitz functions recover Lipschitz spaces. However, weighted Lipschitz spaces
provide a much refined way to see any Lipschitz space in the following sense: we can
use the weights in order to keep the original metric on the space and then to see a
Lipschitz space as a weighted space of Lipschitz functions with respect to the original
metric. More concretely, given a pointed metric space (X, d), we can identify any
space Lip0(X, d ′), being d ′ a metric on X , with the space Lipv(X) taking the weight
v = d/d ′ on ˜X . From this approach, it is possible to give a distinguished representation
as a Lipv space of this type for the generalized spaces of Hölder functions: if ω is a
gauge, notice that Lip0(X, ω ◦ d) = Lipv(X) and Lip( f, ω ◦ d) = Lipv( f ) for all
f ∈ Lip0(X, ω ◦ d), being v = d/(ω ◦ d) on ˜X .
Little is known about the Banach spaces Lipv(X) and lipv(X), except their duality

theory addressed in [20]. Moreover, those spaces appear closely connected to the
classical strict topology β on Lip0(X) (see [19, Definition 3.2]) introduced by Buck
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336 A. Jiménez-Vargas, P. Rueda

[11].Wewill prove in this note that the space lipv(X) is isomorphic to a closed subspace
of c0 whenever X is compact. In fact, lipv(X) is almost isometric to a subspace of
c0. This means that, for any ε > 0, there exists a closed subspace Xε of c0 such that
d(lipv(X), Xε) ≤ 1 + ε, where

d(lipv(X), Xε) = inf
{

‖T ‖
∥

∥

∥T −1
∥

∥

∥ | T : lipv(X) → Xε is an onto isomorphism
}

denotes the Banach–Mazur distance of lipv(X) and Xε . This theorem extends the
related result for lip0 spaces (see [23, Theorem 6.6]). Analogous results were stated
for the little Bloch space by Kalton and Werner [22], weighted spaces of holomorphic
functions by Bonet andWolf [4], and weighted spaces of harmonic functions by Jordá
and Zarco [21]. We will apply our result to obtain a series of properties on the Banach
spaces lipv(X) and their duals (see Corollaries 1–11).

2 Almost isometric representations

We begin with the main result of this section. We borrow the strategy to prove it from
the proof of Theorem 6.6 in the work [23] of Kalton, who in turn acknowledges that
Yoav Benyamini showed this proof to him.

Theorem 1 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then lipv(X) is isomorphic to a closed subspace of c0. In fact, lipv(X) embeds almost
isometrically into c0. More precisely, for any ε > 0, there exists a linear mapping
T : lipv(X) → c0 such that

(1 − ε)Lipv( f ) ≤ ‖T ( f )‖∞ ≤ Lipv( f )

for all f ∈ lipv(X).

Proof We may suppose ε ∈ ]0, 1[. Consider the set X × X with the metric

d((x, y), (x ′, y′)) = max
{

d(x, x ′), d(y, y′)
}

.

For (x, y) ∈ X × X and r > 0, we denote

D((x, y), r) = {

(x ′, y′) ∈ X × X : d((x ′, y′), (x, y)) ≤ r
}

.

For each k ∈ Z, define the set

Ck =
{

(x, y) ∈ X × X : d(x, y) ≤ 2k
}

.

Clearly, Ck is a compact subset of X2 and Ck ⊂ Ck+1 for all k ∈ Z. For each k ∈ Z,
we denote

mk = min {v(x, y) : (x, y) ∈ Ck} ,

Mk = max {v(x, y) : (x, y) ∈ Ck} .
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Isometric representations of weighted spaces of… 337

For each f ∈ lipv(X) and k ∈ Z, note that

mkLip
(k)( f ) ≤ Lip(k)

v ( f ),

where

Lip(k)( f ) = sup

{ | f (x) − f (y)|
d(x, y)

: (x, y) ∈ Ck

}

,

Lip(k)
v ( f ) = sup

{

v(x, y)
| f (x) − f (y)|

d(x, y)
: (x, y) ∈ Ck

}

.

For each k ∈ Z, consider now the compact set

Dk =
{

(x, y) ∈ X × X : 2k−1 ≤ d(x, y) ≤ 2k
}

.

It is clear that

Dk ⊂
⋃

(x,y)∈Dk

{

(x ′, y′) ∈ ˜X : d((x ′, y′), (x, y)) < δk,
∣

∣v(x ′, y′) − v(x, y)
∣

∣ < δk
}

,

where δk is chosen satisfying that

0 < δk < 2k−3ε, δk

(

1

mk
+ Mk

2k−2mk+3

)

<
ε

2
.

Since Dk is compact, there is a finite set Fk ⊂ Dk such that

Dk ⊂
⋃

(x,y)∈Fk

{

(x ′, y′) ∈ ˜X : d((x ′, y′), (x, y)) < δk,
∣

∣v(x ′, y′) − v(x, y)
∣

∣ < δk
}

.

Then the set F = ∪k∈ZFk is countable.
Define now the mapping T : lipv(X) → K

F by

T ( f ) =
(

v(x, y)
f (x) − f (y)

d(x, y)

)

(x,y)∈F
.

We claim that T ( f ) ∈ c0(F) for each f ∈ lipv(X). Indeed, let f ∈ lipv(X) and
ε′ > 0. Hence there exists δ > 0 such that v(x, y)| f (x) − f (y)|/d(x, y) < ε′
whenever 0 < d(x, y) < δ. Let m ∈ N be such that 2−m < δ and let k ∈ Z be with
k ≤ −m. If (x, y) ∈ Fk , then d(x, y) ≤ 2k < δ, hence |T ( f )(x, y)| < ε′, and this
proves our claim.

Clearly, ‖T ( f )‖∞ ≤ Lipv( f ) for all f ∈ lipv(X). Our next aim is to show that
(1− ε)Lipv( f ) ≤ ‖T ( f )‖∞ for all f ∈ lipv(X). For it, let f ∈ lipv(X) and (x, y) ∈
˜X . If (x, y) ∈ F , we trivially have

v(x, y)
| f (x) − f (y)|

d(x, y)
≤ ‖T ( f )‖∞ ≤ ε

2
Lipv( f ) +

(

1 − ε

2

)−1 ‖T ( f )‖∞ .
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338 A. Jiménez-Vargas, P. Rueda

Assume that (x, y) /∈ F . We can find k ∈ Z such that (x, y) ∈ Dk and therefore there
exists a point (z, w) ∈ Fk with (z, w) �= (x, y) such that d((z, w), (x, y)) < δk and
|v(z, w) − v(x, y)| < δk . Since

d(z, y) ≤ d(z, x) + d(x, y) ≤ δk + 2k < 2k−1ε + 2k < 2k+1

we have (x, z) ∈ D((x, y), 2k+1). Similarly, (w, y) ∈ D((x, y), 2k+1). Besides, any
(a, b) ∈ D((x, y), 2k+1) satisfies

d(a, b) ≤ d(a, x) + d(x, y) + d(y, b) ≤ 2k+1 + 2k + 2k+1 < 2k+3,

and then D((x, y), 2k+1) ⊂ Ck+3. Finally, note that

d(x, y) ≥ d(z, w) − d(z, x) − d(y, w) > d(z, w) − 2δk

> d(z, w) − ε

2
2k−1 ≥ d(z, w)

(

1 − ε

2

)

.

We next assume z �= x and w �= y. In the others two cases, z �= x and w = y, or
z = x and w �= y, the following inequality can be obtained similarly. We have

v(x, y)
| f (x) − f (y)|

d(x, y)
≤ |v(x, y) − v(z, w)| | f (x) − f (y)|

d(x, y)
+ v(z, w)

| f (x) − f (y)|
d(x, y)

≤ δk
Lip(k)

v ( f )

mk
+ v(z, w)

( | f (x) − f (z)|
d(x, y)

+ | f (w) − f (y)|
d(x, y)

)

+ v(z, w)
| f (z) − f (w)|

d(x, y)

≤ δk
Lip(k)

v ( f )

mk
+ Mkδk

d(x, y)

( | f (x) − f (z)|
d(x, z)

+ | f (w) − f (y)|
d(w, y)

)

+
(

1 − ε

2

)−1
v(z, w)

| f (z) − f (w)|
d(z, w)

≤ δk
Lip(k)

v ( f )

mk
+ Mkδk

2k−1

2Lip(k+3)
v ( f )

mk+3
+

(

1 − ε

2

)−1
v(z, w)

| f (z) − f (w)|
d(z, w)

≤ δk

(

1

mk
+ Mk

2k−2mk+3

)

Lipv( f ) +
(

1 − ε

2

)−1 ‖T ( f )‖∞

≤ ε

2
Lipv( f ) +

(

1 − ε

2

)−1 ‖T ( f )‖∞ ,

and taking supremum over (x, y), we infer that

(

1 − ε

2

)

Lipv( f ) ≤
(

1 − ε

2

)−1 ‖T ( f )‖∞ .

This implies that (1 − ε)Lipv( f ) ≤ ‖T ( f )‖∞, as required. ��
Remark. Observe that the proof of Theorem 1 can be adapted to show that Lipv(X)

is almost isometrically isomorphic to a subspace of �∞. Furthermore, note that if X is
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Isometric representations of weighted spaces of… 339

a compact pointed metric space, then ˜X has a countable dense subset D and the map

f �→
(

v(x, y)
f (x) − f (y)

d(x, y)

)

(x,y)∈D

is an isometric embedding of Lipv(X) into �∞(D).

In the rest of this section, we give some corollaries from Theorem 1. The first
corollary gathers some simple, but interesting consequences.

Corollary 1 Let X be a compact pointed metric space, let v be a weight on ˜X and let
Av(X) be a closed infinite-dimensional subspace of lipv(X).

(i) Av(X) has a complemented subspace almost isometric to c0.
(ii) Av(X) is not reflexive.
(iii) Av(X) is not weakly sequentially complete.
(iv) Av(X) fails the Radon–Nikodým property.
(v) Av(X) is not complemented in Av(X)∗∗.
(vi) Av(X) is not isomorphic with a dual space.
(vii) Av(X) is not injective.
(viii) Av(X) is not a Grothendieck space.

Proof (i) By Theorem 1, Av(X) is a closed infinite-dimensional subspace of c0. Hence
Av(X) contains a complemented subspace isomorphic to c0 by [24, Proposition 2.a.2].
Now we obtain (i) by [16, Proposition 1].

(ii), (iii) and (iv) follow from the fact that c0 is not reflexive, is not weak sequentially
complete and does not have the Radon–Nikodým property and that these properties
are stable by taking closed subspaces and are invariant under isomorphisms.

(v) and (vi) follow from [12, Proposition 2.4.5], and (vii) from [12, Proposition
2.5.7].

Since a Grothendieck space cannot contain a complemented copy of c0, (i) shows
that (viii) holds. ��

In order to obtain some properties of the fixed-point theory for lipv(X), we recall
the following concepts.

A Banach space X is said to contain an asymptotically isometric copy of c0 if there
is a null sequence (εn) in (0, 1) and a sequence (xn) in X such that

sup
n∈N

(1 − εn) |tn| ≤
∥

∥

∥

∥

∥

∞
∑

n=1

tn xn

∥

∥

∥

∥

∥

≤ sup
n∈N

|tn|

for all (tn) ∈ c0.
A Banach space X is said to contain an asymptotically isometric copy of �1 if there

is a null sequence (εn) in (0, 1) and a sequence (xn) in X such that

∞
∑

n=1

(1 − εn) |tn| ≤
∥

∥

∥

∥

∥

∞
∑

n=1

tn xn

∥

∥

∥

∥

∥

≤
∞
∑

n=1

|tn|
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340 A. Jiménez-Vargas, P. Rueda

for all (tn) ∈ �1.
Let X be a Banach space. A mapping T : C ⊂ X → X is nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖ for all x, y ∈ C . The fixed point set of T is Fix(T ) :=
{x ∈ C : T x = x}. We say that the space X has the fixed point property if for every
nonempty closed bounded convex subset C of X and every nonexpansive mapping
T : C → C , we have Fix(T ) �= ∅. A mapping T : X → X is said to be asymptotically
nonexpansive if ‖T n x − T n y‖ ≤ kn ‖x − y‖ for all x, y ∈ X and for all n ∈ N, where
(kn) is a sequence of real numbers converging to 1.

A Banach space X has the generalized Gossez–Lami Dozo property if, whenever
(xn) is a weakly null sequence in X that is not norm null, then lim infn ‖xn‖ <

lim supn lim supm ‖xn − xm‖. ABanach space X has property asymptotic (P) if, when-
ever (xn) is a weakly null sequence in X that is not norm null, then lim infn ‖xn‖ <

diama{xn}, where diama{xn} = limn diam{xk : k ≥ n} is the asymptotic diameter of
the sequence (xn). Sims and Smyth [27] have shown that the generalizedGossez–Lami
Dozo property and property asymptotic (P) are equivalent.

A nonempty bounded and convex subset K of a Banach space X is said to have
normal structure if for every convex subset H of K that contains more than one
point, there is a point x0 ∈ H such that sup {‖x0 − y‖ : y ∈ H} < diam(H), where
diam(H) = sup {‖x − y‖ : x, y ∈ H} denotes the diameter of H. A Banach space
X is said to have normal structure if every bounded convex subset of X has normal
structure. A Banach space X is said to have weak normal structure if for each weakly
compact convex set K of X that contains more than one point has normal structure.

Corollary 2 Let X be a compact pointed metric space, let v be a weight on ˜X and let
Av(X) be a closed infinite-dimensional subspace of lipv(X).

(i) Av(X) contains an asymptotically isometric copy of c0.
(ii) Neither Av(X) nor Av(X)∗ has the fixed point property, and Av(X)∗∗ cannot

even be renormed to have the fixed point property.
(iii) Av(X) fails to have the fixed point property for asymptotically nonexpansive

mappings.
(iv) Av(X) fails to have the generalized Gossez–Lami Dozo property.
(v) Av(X) fails to have weak normal structure.
(vi) Av(X)∗ contains an asymptotically isometric copy of �1.
(vii) Av(X)∗∗ contains an isometric copy of L1([0, 1]).
(viii) Av(X)∗∗ contains an isometric copy of C([0, 1])∗.

Proof (i) follow by [15, Theorem 2.5], (ii) by [15, Corollary 2.33], (iii) by [15, The-
orem 2.27], (iv) by [15, Theorem 2.29], (v) by [15, Theorem 2.30] and (vi) by [15,
Theorem 2.32]. Finally, [14, Theorem 2] shows that (vi), (vii) and (viii) are equivalent.

��
Let us recall that a Banach space X is said to be almost reflexive if every bounded

sequence in X has a weak Cauchy subsequence.

Corollary 3 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then lipv(X) is almost reflexive.
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Isometric representations of weighted spaces of… 341

Proof By Rosenthal’s �1-theorem [26], a Banach space X is almost reflexive if and
only it does not contain a subspace isomorphic to �1. Since c0 does not contain a
subspace isomorphic to �1, so also does lipv(X) by Theorem 1. ��

Let us recall that a closed subspace J of a Banach space X is called an M-ideal if
there is a closed subspace J0 of X∗ such that X∗ is the �1-sum J⊥ ⊕1 J0, where J⊥
is the annihilator of J in X∗. This notion was introduced by Alfsen and Effros in [1].
Given a Banach space X , we will denote by B(X) the closed unit ball of X . By [17,
Theorem I.2.2], a closed subspace J of a Banach space X is an M-ideal in X if and
only if J satisfies the (restricted) 3-ball property, that is, for all y1, y2, y3 ∈ B(J ), all
x ∈ B(X) and all ε > 0, there is y ∈ J such that ‖x + yi − y‖ ≤ 1+ε for i = 1, 2, 3.

Corollary 4 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then lipv(X) is an M-ideal in its bidual.

Proof Let g1, g2, g3 ∈ B(lipv(X)), f ∈ B(lipv(X)∗∗) and ε > 0. By Theorem 1,
there exists a closed subspace Xε of c0 and an isomorphism T : lipv(X) → Xε such
that ‖T ‖ ≤ 1 and

∥

∥T −1
∥

∥ ≤ 1+ε. Then T (g1), T (g2), T (g3) are in B(Xε) and T ∗∗( f )

in B(X∗∗
ε ). Since c0 is an M-ideal in its bidual by [17, Examples III.1.4 (a)] and the

property of being an M-ideal in its bidual passes to subspaces by [17, Theorem III.1.6
(a)], it follows that Xε is anM-ideal in its bidual. Hence there exists h ∈ X∗∗

ε such that
‖T ∗∗( f ) + T (gi ) − h‖ ≤ 1 + ε for i = 1, 2, 3. Therefore,

∥

∥ f + gi − T −1(h)
∥

∥ ≤
(1 + ε)2 for i = 1, 2, 3. This proves that lipv(X) is an M-ideal in its bidual. ��

In [20], it is studied the biduality problem as to when Lipv(X) is naturally isomet-
rically isomorphic to the bidual of lipv(X) for pointed compact metric spaces X , and
was showed that this is the case whenever lipv(X) is an M-ideal in Lipv(X) and

sup

{ | f (x) − f (y)|
d(x, y)

: f ∈ B(lipv(X))

}

= sup

{ | f (x) − f (y)|
d(x, y)

: f ∈ B(Lipv(X))

}

for all (x, y) ∈ ˜X .
The next application is relative to the property (V) introduced by Pełczyński in

[25]. A series
∑

n∈N xn in a Banach space X is called weakly unconditionally Cauchy
(wuC for short) if it satisfies

∑∞
n=1 | f (xn)| < ∞ for all f ∈ X∗. A Banach space

X has property (V) if for any (bounded) non relatively weakly compact set H ⊂ X∗,
there is a wuC-series

∑

n∈N xn in X such that sup f ∈H | f (xn)| does not converge to
zero.

Corollary 5 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then lipv(X) has property (V).

Proof It follows from Theorem 1 because c0 has property (V) and this property is
stable under isomorphisms and passes to closed subspaces [25]. ��

We now give some applications for bounded linear operators on lipv(X). A linear
operator between Banach spaces T : X → Y is said to be:
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(i) compact if T maps bounded sets into relatively norm compact sets.
(ii) completely continuous if T maps weakly compact sets into relatively norm

compact sets.
(iii) weakly compact if T maps bounded sets into relatively weakly compact sets.
(iv) almost weakly compact if, whenever T has a bounded inverse on a closed

subspace M of X , then M is reflexive.
(v) strictly singular if for each infinite dimensional subspace X1 ⊂ X , T is not an

isomorphism on X1.
(vi) unconditionally converging if T does not fix a copy of c0. It is said that T fixes

a copy of c0 if X contains a subspace isomorphic to c0 such that the restriction
of T to this subspace is an isomorphism.

(vii) conditionally weakly compact if T maps bounded sets into weakly precompact
sets.

(viii) strictly cosingular if a closed subspaceY1 ⊂ Y hasfinite codimensionwhenever
Q ◦ T is a surjection, where Q is the quotient map from Y onto Y/Y1.

It is well-known that the sets of compact, weakly compact, conditionally weakly
compact, strictly singular and strictly cosingular operators form ideals of operators.

Pełczyński [25] showed that X having the property (V) is equivalent to the fact that
any bounded linear operator T from X into a Banach space Y is either weakly compact
or fixes a copy of c0. Hence, from Corollary 5, we deduce the two following results.

Corollary 6 Let X be a compact pointed metric space, let v be a weight on ˜X and let
Y be a Banach space. Then every bounded linear operator T : lipv(X) → Y is either
compact or fixes a copy of c0.

Corollary 7 Let X be a compact pointed metric space, let v be a weight on ˜X and
let Y be a Banach space not containing c0. Then every bounded linear operator
T : lipv(X) → Y is compact.

Let us recall that a Banach space X is said to have the Dunford–Pettis property if
for each Banach space Y , every weakly compact operator from X to Y is completely
continuous. We refer to the survey [13] about the Dunford–Pettis property by Diestel.

Corollary 8 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then lipv(X) has the Dunford–Pettis property.

Proof For any set 
, every closed linear subspace of c0(
) has the Dunford–Pettis
property by [13, Theorem 4]. Hence the corollary follows from Theorem 1. ��

Let us recall that a Banach space X is said to have the Schur property if every
weakly convergent sequence in X is norm convergent in X .

Corollary 9 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then lipv(X)∗ has the Schur property and, therefore, the Dunford–Pettis property as
well.

Proof Since lipv(X) is almost reflexive and has the Dunford–Pettis property by Corol-
laries 3 and 8, we apply [13, Theorem 3]. ��
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Since c0 has not the Schur property and this property is stable under isomorphisms
and passes to subspaces, we deduce from Corollary 9 that lipv(X)∗ does not contain
a subspace isomorphic to c0. Moreover, we have:

Corollary 10 Let X be a compact pointed metric space and let v be a weight on
˜X. Then every infinite-dimensional closed subspace of lipv(X)∗ contains a subspace
isomorphic to �1.

Proof Since lipv(X)∗ has the Schur property by Corollary 9, the first assertion follows
from Rosenthal’s �1-theorem [26]. ��

We next characterize compact operators on lipv(X).

Corollary 11 Let X be a compact pointed metric space, let v be a weight on ˜X and
let Y be a Banach space. For any bounded linear operator T : lipv(X) → Y , the
following assertions are equivalent:

(i) T is compact.
(ii) T is completely continuous.
(iii) T is weakly compact.
(iv) T is almost weakly compact.
(v) T is strictly singular.
(vi) T is unconditionally converging.
(vii) T is conditionally weakly compact.
(viii) T is strictly cosingular.

Proof It is known that every compact operator between Banach spaces satisfies all
the properties (ii)–(viii). For the converse, note that the conditions (ii)–(vi) are equiv-
alent by [18, Theorem 2.3] since lipv(X) has properties (V) and Dunford–Pettis by
Corollaries 5 and 8. Since lipv(X) is also almost reflexive by Corollary 3, we have
that (vi) implies (i) by [18, Corollary 2.5]. Finally, (vii) [respectively, (viii)] implies
(i) by Corollary 6. ��

3 Isometric representations

Concerning Theorem 1, our objective in this section is to prove that such an almost
isometric isomorphism of lipv(X) onto a closed closed of c0 cannot become an isome-
try whenever X is a T-balanced subset containing 0 and compact for some metrizable
topology of a complex Banach space and v is a radial 0-weight on ˜X . In fact, we
establish a more general result: lipv(X) cannot be isometrically isomorphic to a linear
subspace of C(K ) for some scattered compact Hausdorff space K . Let us recall that
a closed subset of a topological space K is called perfect if it has no isolated points,
and if K contains no perfect subsets it is said to be scattered (dispersed).

For this we need to fix some notation and recall and introduce some concepts. Given
a Banach space E over K, we denote by S(E), B(E) and Ext(B(E)) the unit sphere
of E , the unit closed ball of E and the set of extreme points of B(E), respectively. In
the particular case E = C, we will write T and D instead of S(C) and B(C).
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Definition 1 Let X be a pointedmetric space. Aweight v on ˜X is said to be a 0-weight
if for every ε > 0, there exists δ > 0 such that v(x, y) < ε whenever 0 < d(x, y) < δ.

Let X be a nonempty subset of a complex Banach space. Let us recall that X is said
to be balanced if λx ∈ X for all x ∈ X and λ ∈ D. We will say that X is T-balanced
if λx ∈ X for all x ∈ X and λ ∈ T. If X is a T-balanced subset of a complex Banach
space containing 0 (in particular, if X is a nonempty balanced subset), we can consider
X as a pointed metric space with the metric induced by its norm and basepoint 0.

Definition 2 Let X be a T-balanced subset of a complex Banach space containing
0. We say that a weight v on ˜X is radial if v(λx, λy) = v(x, y) for all λ ∈ T and
(x, y) ∈ ˜X .

For instance, if X is a T-balanced subset of a complex Banach space containing 0
and ω is a normalized nontrivial gauge, then v = ‖·‖ /(ω ◦ ‖·‖) is a radial 0-weight
on ˜X .

Our approach requires a previous study of the extreme points of B(lipv(X)∗).
This viewpoint is inspired by the papers [6,7] where analogous results are stated in
the context of holomorphic functions. As usual, C(X) denotes the Banach space of
all scalar-valued bounded continuous functions on a compact Hausdorff space X ,
and C0(X) the Banach space of all scalar-valued continuous functions which vanish
at infinity on a locally compact Hausdorff space X , both spaces endowed with the
supremum norm.

Let X be a compact pointed metric space and consider the weak* topology w∗ on
lipv(X)∗. By the Krein–Milman theorem, the set Ext(B(lipv(X)∗)) is nonempty. For
every x ∈ X , δx denotes the evaluation functional at x defined on lipv(X), and for any
(x, y) ∈ ˜X , we denote by δv

(x,y) the functional on lipv(X) given by

δv
(x,y) = v(x, y)

δx − δy

d(x, y)
.

Note that δv
(x,y) ∈ B(lipv(X)∗). We first have a simple result which gives a somewhat

description of extreme points of B(lipv(X)∗).
Proposition 1 Let X be a compact pointed metric space and let v be a weight on ˜X.
Then Ext(B(lipv(X)∗)) is contained in the set {λδv

(x,y) : λ ∈ S(K), (x, y) ∈ ˜X}.
Proof Let γ ∈ Ext(B(lipv(X)∗)). Since the map �v : lipv(X) → C0(˜X), given by

�v( f )(x, y) = v(x, y)
f (x) − f (y)

d(x, y)

for all f ∈ lipv(X) and (x, y) ∈ ˜X , is an isometric linear embedding, there exists
F ∈ Ext(B(C0(˜X)∗) such that �∗

v(F) = γ . By the Arens–Kelley theorem, F is of
the form λψ(x,y) where λ ∈ S(K) and ψ(x,y) is the evaluation functional at a point
(x, y) ∈ ˜X defined on C0(˜X). An easy verification gives

γ ( f ) = �∗
v(λψ(x,y))( f ) = λψ(x,y)(�v( f )) = λ�v( f )(x, y) = λv(x, y)

δx − δy

d(x, y)
( f )
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for all f ∈ lipv(X), and thus γ has the desired form. ��
For any (x, y) ∈ ˜X , it is easy to see that δv

(x,y) ∈ Ext(B(lipv(X)∗)) if and only if
λδv

(x,y) ∈ Ext(B(lipv(X)∗)) for all λ ∈ S(K). Taking this observation into account,
we introduce the following concept.

Definition 3 Let X be a compact pointed metric space and let v be a weight on
˜X . The little Lipschitz v-boundary of ˜X , denoted by Bl

v(
˜X), is the nonempty set

{(x, y) ∈ ˜X : δv
(x,y) ∈ Ext(B(lipv(X)∗))}.

Lemma 1 Let X be a compact pointed metric space and let v be a 0-weight on ˜X.
Then Lip0(X) ⊂ lipv(X) and Lipv( f ) ≤ ‖v‖∞ Lip( f ) for all f ∈ Lip0(X). As a
consequence, lipv(X) separates the points of X.

Proof Since v is a 0-weight and X is compact, we have that v is bounded on ˜X . Let
f ∈ Lip0(X). Then f ∈ Lipv(X) also because

v(x, y)
| f (x) − f (y)|

d(x, y)
≤ ‖v‖∞ Lip( f )

for all (x, y) ∈ ˜X , and Lipv( f ) ≤ ‖v‖∞ Lip( f ). But even more is true: as v is a
0-weight, f belongs to lipv(X) because

v(x, y)
| f (x) − f (y)|

d(x, y)
≤ v(x, y)Lip( f )

for all (x, y) ∈ ˜X . For the consequence, if (x, y) ∈ ˜X , then the function fy : z �→
d(z, y) − d(e, y) defined on X , is in Lip0(X) and fy(x) − fy(y) = d(x, y). This
completes the proof. ��
Lemma 2 Let X be a compact pointed metric space and let v be a 0-weight on ˜X.

(i) If (x, y), (x ′, y′) ∈ ˜X and λ, λ′ ∈ S(K), then λδv
(x,y) = λ′δv

(x ′,y′) implies that

either λ = λ′ and (x, y) = (x ′, y′) or, λ = −λ′ and (x, y) = (y′, x ′).
(ii) If (x, y), (x ′, y′) ∈ ˜X, then δv

(x,y) = δv
(x ′,y′) implies that (x, y) = (x ′, y′).

Proof (i) Suppose that λδv
(x,y) = λ′δv

(x ′,y′). We first show that {x, y} = {x ′, y′}.
Otherwise, there would exist at least a point in {x, y, x ′, y′} which is distinct of the
others three. There is no loss of generality in assuming that such a point is x . Let
ε = d(x, {y, x ′, y′}) > 0 and define g : X → R by g(z) = h(z)− h(e) where h(z) =
max{0, ε−d(z, x)} for all z ∈ X . It is easily seen that g is in Lip0(X), hence in lipv(X)

by Lemma 1, and an easy computation shows that δv
(x,y)(g) = εv(x, y)/d(x, y) and

δv
(x ′,y′)(g) = 0. This contradicts that v(x, y)ε �= 0 and so {x, y} = {x ′, y′}, as required.
This implies that either (x, y) = (x ′, y′) or (x, y) = (y′, x ′). In the former case we
would have λδv

(x,y) = λ′δv
(x,y) which implies λ = λ′ because lipv(X) separates the

points of X by Lemma 1. In the latter case we would have λδv
(x,y) = λ′δv

(y,x) which
implies v(x, y) = v(y, x), hence λ = −λ′ and this completes the proof of (i). The
assertion (ii) follows from (i). ��
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Finally, we give an easy observation which permits to simplify the next proof.

Lemma 3 Let X be a compact pointed metric space and let v be a weight on ˜X.
Define vm(x, y) = max{v(x, y), v(y, x)} for any (x, y) ∈ ˜X. Then vm is a symmetric
weight on ˜X (that is, vm(x, y) = vm(y, x) for all (x, y) ∈ ˜X), Lipv(X) = Lipvm

(X),
lipv(X) = lipvm

(X) and Lipv = Lipvm
.

We are now in good condition to prove the following result.

Theorem 2 Let X be a compact pointed metric space and let v be a 0-weight on ˜X. If
lipv(X) is isometrically isomorphic to a linear subspace of C(K ) for some scattered
compact Hausdorff space K , then Bl

v(
˜X) is a countable subset of ˜X.

Proof By Lemma 3, we can assume that v is symmetric. Let K be a scattered com-
pact Hausdorff space and let M be a linear subspace of C(K ). Assume that there
is an isometric isomorphism T from lipv(X) onto M . Then T ∗ is an isometric iso-
morphism from M∗ onto lipv(X)∗ that maps Ext(B(M∗)) onto Ext(B(lipv(X)∗)).
Consider C(K )∗, M∗ and lipv(X)∗ endowed with the weak* topology.

The idea of the proof is to transfer the property of being scattered from K toBl
v(

˜X).
To do so, we are going to construct the following chain of homeomorphisms:

K
δ←→ Ext(B(C(K )∗))

∼
⊃

(Ext(B(M∗))
∼

)

˜T ∗←→
(Ext(B(lipv(X)∗))

≈
)

˜δv←→
(Bl

v(
˜X)

R

)

.

Our main task is to give sense to all involved symbols and create such a chain.
It is clear that the map δv : ˜X → lipv(X)∗, defined by δv(x, y) = δv

(x,y), is a contin-

uous map from ˜X to (lipv(X)∗, w∗) and, by Lemma 2 (ii), it is injective. Fortunately,
the map δv can be extended to X × X just defining δv(x, x) = 0 for all x ∈ X . Let us
see that δv : X × X → (lipv(X)∗, w∗) is continuous. If (x0, y0) ∈ X × X , consider
the subbasic neighbourhood of δv

(x0,y0)
in (lipv(X)∗, w∗) given by

N (δv
(x0,y0); f, ε) =

{

ϕ ∈ lipv(X)∗ :
∣

∣

∣ϕ( f ) − δv
(x0,y0)( f )

∣

∣

∣ < ε
}

,

where f ∈ lipv(X) and ε > 0. Since the map �v( f ) defined in the proof of the
Proposition 1 belongs to C0(˜X), it extends to a continuous functions on X × X which
is zero on the diagonal. Then the set

N ((x0, y0); ε) = {(x, y) ∈ X × X : |�v( f )(x, y) − �v( f )(x0, y0)| < ε}

is an open neighbourhood of (x0, y0) in X × X and δv(N ((x0, y0); ε)) ⊂
N (δv

(x0,y0)
; f, ε).

Next, we introduce a pair of equivalence relations: for φ1, φ2 ∈ lipv(X)∗,
define φ1≈φ2 if and only if there exists λ ∈ S(K) such that φ2 = λφ1; and for
(x, y), (x ′, y′) ∈ X × X , define (x, y)R(x ′, y′) if and only if (x, y) = (x ′, y′) or
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(x, y) = (y′, x ′). Then the map δv induces a continuous map ˜δv : (X × X)/R →
lipv(X)∗/≈ when both spaces are endowed with their respective quotient topologies,
defined by ˜δv([(x, y)]) = [δv

(x,y)]. In the proof of that ˜δv is well defined, we have

used that v is symmetric. By Lemma 2 (i),˜δv : (X × X)/R → lipv(X)∗/≈ is injec-
tive. As (X × X)/R is compact, it follows that˜δv is a uniform homeomorphism from
(X × X)/R onto its image.

Note that if (x, y) ∈ Bl
v(

˜X), we have [(x, y)] ⊂ Bl
v(

˜X); and if φ ∈
Ext(B(lipv(X)∗)), also [φ] ⊂ Ext(B(lipv(X)∗)). Hence ˜δv maps Bl

v(
˜X)/R onto

Ext(B(lipv(X)∗))/≈. Therefore the uniform homeomorphism˜δv fromBl
v(

˜X)/R onto

Ext(B(lipv(X)∗))/≈ has an extension˜δv : Bl
v(

˜X)/R → Ext(B(lipv(X)∗))/≈ that is
also an onto uniform homeomorphism.

Define a similar equivalence relation ∼ on φ1, φ2 ∈ C(K )∗: φ1 ∼ φ2 if and only if
there exists λ ∈ S(K) such that φ2 = λφ1. Note that if λ, λ′ ∈ S(K) and x, x ′ ∈ K ,
then λδx ∼ λ′δx ′ if and only if x = x ′. Any λδx is related to δx and [δx ] = ∪λ∈S(K)λδx .
By the Arens–Kelley theorem, we have

Ext(B(C(K )∗)) = {λδx : λ ∈ S(K), x ∈ K },

and so the set (Ext(B(C(K )∗))/ ∼) = {[δx ] : x ∈ K } is contained in C(K )∗/ ∼. Let
endow the quotient spaceC(K )∗/ ∼with the quotient topology qw∗ . Themap δ : K →
Ext(B(C(K )∗))/ ∼, defined by δ(x) = [δx ], is bijective and continuous, hence it is a
homeomorphism since K is compact. As K is a scattered compact Hausdorff space,
then Ext(B(C(K )∗))/ ∼ is a scattered compact Hausdorff space.

Note that Ext(B(M∗)) can be seen as a subset of Ext(B(C(K )∗)), and that if
λ ∈ S(K) and x ∈ K is such that δx ∈ Ext(B(M∗)), then λδx ∈ Ext(B(M∗)) and
hence [δx ] ⊂ Ext(B(M∗)). Therefore Ext(B(M∗))/ ∼ can be seen as a subset of
Ext(B(C(K )∗))/ ∼ and thus Ext(B(M∗))/ ∼ is also a scattered compact Hausdorff
space.

We now connect Ext(B(M∗))/ ∼ and Ext(B(lipv(X)∗))/≈ via the uniform home-
omorphism ˜T ∗ from Ext(B(M∗))/ ∼ onto Ext(B(lipv(X)∗))/≈, given by ˜T ∗([φ]) =
[T ∗(φ)] for all φ ∈ Ext(B(M∗)). Then Ext(B(lipv(X)∗))/≈ is a scattered compact
Hausdorff space too. Finally, we have that

Bl
v(

˜X)/R = (˜δv)−1(Ext(B(lipv(X)∗))/≈)

is a scattered compact Hausdorff space.
Since (X × X)/R is a compact metric space and Bl

v(
˜X)/R ⊂ (X × X)/R, we

conclude that Bl
v(

˜X)/R, and hence Bl
v(

˜X)/R, is countable. Therefore Bl
v(

˜X) is
countable. ��

The authors are grateful to one of the referees for showing us the following simple
proof of Theorem 2 when the linear subspace of C(K ) is strongly separating. Let us
recall that a linear subspace M of C0(K ) is strongly separating if given any pair of
distinct points x, y of the locally compact Hausdorff space K , then there exists f ∈ M
such that | f (x)| �= | f (y)| (see [2]).
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Let X and v be as in the statement of Theorem 2 and suppose that lipv(X) is
isometrically isomorphic to a strongly separating linear subspace of C(K ) for some
scattered compact Hausdorff space K . We next prove that Bl

v(
˜X) is a countable subset

of ˜X .
Indeed, let M be a strongly separating linear subspace of C(K ), T a linear isometry

from lipv(X) onto M and ι the inclusionmap from M intoC(K ). Suppose that (x, y) ∈
Bl

v(
˜X). Since ι ◦ T is an isometric linear embedding from lipv(X) into C(K ), there

exist some t ∈ K and λ ∈ S(K) such that (ι ◦ T )∗(λδt ) = δv
(x,y). In this way, we have

a map φ : Bl
v(

˜X) → K given by φ(x, y) = t . Next we check that φ is well-defined.
Assume there are t, t ′ ∈ K and λ, λ′ ∈ S(K) such that (ι ◦ T )∗(λδt ) = (ι ◦ T )∗(λ′δt ′).
Hence λT ( f )(t) = λ′T ( f )(t ′) for all f ∈ lipv(X). Taking modules and taking into
account that M is strongly separating, we infer that t = t ′ and thus φ is well-defined.

Finally, if (x, y), (x ′, y′) ∈ Bl
v(

˜X) and φ(x, y) = t = φ(x ′, y′), there are λ, λ′ ∈
S(K) so that δv

(x,y) = (ι ◦ T )∗(λδt ) and δv
(x ′,y′) = (ι ◦ T )∗(λ′δt ). Thus δv

(x,y) =
(λ/λ′)δv

(x ′,y′). By Lemma 2, this implies that either (x, y) = (x ′, y′) or (x, y) =
(y′, x ′). Therefore #(φ−1({t})) ≤ 2 for all t ∈ K . Since K is countable so is Bl

v(
˜X),

as required.
The following easy lemma will be crucial for our objective.

Lemma 4 If X is a T-balanced subset of a complex Banach space containing 0 and
compact for some metrizable topology and v is a radial weight on ˜X, then

Bl
v(

˜X) =
⋃

λ∈T
λBl

v(
˜X).

Proof Only one of the inclusions deserves attention. Take (x, y) ∈ ˜X\Bl
v(

˜X) and
λ ∈ T. Assume that δv

(x,y) = (1/2)(ϕ1 + ϕ2) for some ϕ1, ϕ2 ∈ B(lipv(X)∗) with
ϕ1 �= ϕ2. For i = 1, 2, consider (ϕi )λ( f ) = ϕi ( fλ) for all f ∈ lipv(X), where
fλ(x) = f (λx) for any x ∈ X . It is easy to check that δv

(λx,λy) = (1/2)((ϕ1)λ +(ϕ2)λ)

with (ϕ1)λ, (ϕ2)λ ∈ B(lipv(X)∗) and (ϕ1)λ �= (ϕ2)λ. Therefore λ(x, y) ∈ ˜X\Bl
v(

˜X)

and this completes the proof. ��
We now are ready to prove our announced result.

Theorem 3 Let E be a complex Banach space, let X be a T-balanced subset of E
containing 0 and compact for some metrizable topology, and let be v a radial 0-weight
on ˜X. Then lipv(X) cannot be isometrically isomorphic to a subspace of C(K ) with K
a scattered compact Hausdorff space. In particular, lipv(X) cannot be isometrically
isomorphic to a subspace of c0.

Proof By Lemma 4, Bl
v(

˜X) = ∪λ∈TλBl
v(

˜X). Theorem 2 gives now the result. ��
Theorem 3 can be applied now to get a wide family of instances where the space

lip0(X) is not isometrically isomorphic to a subspace of c0.

Corollary 12 If X is T-balanced subset of a complex Banach space containing 0 and
compact for some metrizable topology, and ω is a normalized nontrivial gauge, then
lip0(X, ω ◦ ‖·‖) is not isometrically isomorphic to a subspace of c0.

123

Author's personal copy



Isometric representations of weighted spaces of… 349

Proof Apply Theorem 3 to the radial 0-weight v = ‖·‖ /(ω ◦ ‖·‖) on ˜X . ��
Taking in Corollary 12 the normalized nontrivial gauge ω(t) = tα (0 < α < 1),

we obtain the following.

Corollary 13 If X is a T-balanced subset of a complex Banach space containing 0
and compact for some metrizable topology, and 0 < α < 1, then lip(α)

0 (X) is not

isometrically isomorphic to a subspace of c0. In particular, both lip(α)
0 (T ∪ {0}) and

lip(α)
0 (D) are not isometrically isomorphic to subspaces of c0.

Another application of Theorem 3 yields the following.

Corollary 14 If E is a separable complex Banach space and v is a radial 0-weight

on B̃(E∗) endowed with the weak* topology, then lipv(B(E∗)) is not isometrically
isomorphic to a subspace of c0.

Corollary 15 If E is a reflexive complex Banach space with separable dual and v is
a radial 0-weight on B̃(E) endowed with the weak topology, then lipv(B(E)) is not
isometrically isomorphic to a subspace of c0.
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