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The approximation property

for spaces of Lipschitz functions
with the bounded weak* topology

Antonio Jiménez-Vargas

Abstract. Let X be a pointed metric space and let Lip0(X) be the space
of all scalar-valued Lipschitz functions on X which vanish at the base
point. We prove that Lip0(X) with the bounded weak* topology τbw∗

has the approximation property if and only if the Lipschitz-free Banach
space F(X) has the approximation property if and only if, for each Banach
space F , each Lipschitz operator from X into F can be approximated by
Lipschitz finite-rank operators within the unique locally convex topology
γτγ on Lip0(X,F ) such that the Lipschitz transpose mapping f �→ f t is a
topological isomorphism from (Lip0(X,F ), γτγ) to (Lip0(X), τbw∗)εF .

Introduction

Let (X, d) be a pointed metric space with a base point which we will always denote
by 0 and let F be a Banach space. The space Lip0(X,F ) is the Banach space of
all Lipschitz mappings f from X to F that vanish at 0, with the Lipschitz norm
defined by

Lip(f) = sup

{‖f(x)− f(y)‖
d(x, y)

: x, y ∈ X, x �= y

}
.

The elements of Lip0(X,F ) are frequently called Lipschitz operators. If K is the
field of real or complex numbers, Lip0(X,K) is denoted by Lip0(X). The closed
linear subspace of the dual of Lip0(X) spanned by the functionals δ(x) on Lip0(X)
with x ∈ X , given by δ(x)(f) = f(x), is a predual of Lip0(X). This predual is
called the Lipschitz-free space over X and denoted by F(X) in [11]. We refer the
reader to Weaver’s book [26] for the basic theory of Lip0(X) and its predual F(X),
which is called the Arens–Eells space of X and denoted by Æ(X) there.

The study of the approximation property is a topic of interest for many re-
searchers. Let us recall that a Banach space E has the approximation property
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(in short, (AP)) if for each compact set K ⊂ E and each ε > 0, there exists a
bounded finite-rank linear operator T : E → E such that supx∈K ‖T (x)− x‖ < ε.
If ‖T ‖ ≤ λ for some λ ≥ 1, it is said that E has the λ-bounded approximation
property (in short, λ-(BAP)).

Several authors have tackled the (AP) for Lip0(X). Johnson [17] observed that
if X is the closed unit ball of Enflo’s space [10], then Lip0(X) fails the (AP). Gode-
froy and Ozawa [12] showed that there exists a compact pointed metric space X
such that F(X) fails the (AP) and hence so does Lip0(X). For positive results,
Lip0([0, 1]) is isomorphic to L∞[0, 1] (see page 224 in [14]) and thus Lip0([0, 1])
has the (AP). If (X, d) is a doubling compact pointed metric space, in particular
a compact subset of a finite dimensional Banach space, and X(α) with α ∈ (0, 1)
denotes the metric space (X, dα), then the space Lip0(X

(α)) is isomorphic to �∞ by
Theorem 6.5 in [18], and therefore Lip0(X

(α)) has the (AP). In [16] (see also [15]),
Johnson proved that Lip0(X) has the (AP) if and only if, for each Banach space F ,
every Lipschitz compact operator from X to F can be approximated in the Lip-
schitz norm by Lipschitz finite-rank operators. Godefroy and Kalton [11] proved
that a Banach space E has the λ-(BAP) if and only if F(E) has the same property.

The most recent research on the (AP) has been directed toward F(X) rather
than to Lip0(X) (see [21] and the references therein). The results in those works
provide limited information about the (AP) for Lip0(X) since the (AP) of a Banach
space follows from the (AP) of its dual space but the converse does not always hold.

In this paper we follow an entirely different approach to the study of the (AP)
for the space Lip0(X) equipped with the bounded weak* topology. In the seminal
paper [2], Aron and Schottenloher initiated the investigation about the (AP) for
spaces of holomorphic mappings on Banach spaces. Mujica [20] extended this study
to the preduals of such spaces. Their techniques, based on the tensor product,
the ε-product and the linearization of holomorphic mappings, work just as well
for spaces of Lipschitz mappings. Our analysis is similar to that carried out by
Aron, Maestre and Rueda [1], Caliskan [5] and Dineen and Mujica [8] on the
approximation property for spaces of holomorphic functions on infinite dimensional
spaces.

We now describe the contents of this paper. In Section 1, we briefly recall some
topologies on spaces Lip0(X,F ), the approximation property and the ε-product,
and the linearization of Lipschitz mappings.

In Section 2, we address the study of the topology of bounded compact conver-
gence τγ on Lip0(X). It is the largest topology on Lip0(X) which coincides with
the compact-open topology τ0 on each norm bounded subset of Lip0(X). Its study
is motivated by the fact that F(X) agrees with the space of all linear functionals on
Lip0(X) whose restrictions to the closed unit ball of Lip0(X) are continuous with
respect to the topology τ0. In the terminology of Cooper [6], [7], we prove that τγ
is the mixed topology γ[Lip, τ0], and (Lip0(X), τγ) is a Saks space. Furthermore,
it is shown that τγ agrees with the bounded weak* topology τbw∗ . This description
of τbw∗ as a mixed topology provides a useful tool for obtaining their properties
easily. This approach was used by Prieto [22] to study strict and mixed topologies
on spaces of continuous and holomorphic functions on a Banach space.
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In Section 3, we give a pair of descriptions of τγ by means of seminorms. Assum-
ing X is compact, we first identify τγ with the classical strict topology β introduced
by Buck [4]. A second seminorm description for τγ motivates the introduction of
a very useful locally convex topology γτγ on Lip0(X,F ).

Section 4 deals with the (AP) for (Lip0(X), τγ). For every f ∈ Lip0(X,F ),
the Lipschitz transpose f t : F ′ → Lip0(X), ψ 	→ ψ ◦ f for ψ ∈ F ′, is a bounded
linear mapping. The Lipschitz transpose mapping f 	→ f t identifies the space
(Lip0(X,F ), γτγ) with the ε-product of (Lip0(X), τγ) and F , and this permits us
to prove that (Lip0(X), τγ) has the (AP) if and only if F(X) has the (AP) if and
only if every Lipschitz operator from X into F can be approximated by Lipschitz
finite-rank operators within the topology γτγ for all Banach spaces F .

In Section 5, we establish a representation of the dual space of (Lip0(X,F ), γτγ).

1. Preliminaries

Topologies on spaces of Lipschitz functions

Let X be a pointed metric space and let F be a Banach space. The compact-open
topology or topology of compact convergence on Lip0(X,F ) is the locally convex
topology generated by the seminorms of the form

|f |K = sup
x∈K

‖f(x)‖ , f ∈ Lip0(X,F ),

where K varies over the family of all compact subsets of X . We denote by τ0 the
compact-open topology on Lip0(X,F ), or on any vector subspace of Lip0(X,F ).

The topology of pointwise convergence on Lip0(X,F ) is the locally convex
topology τp generated by the seminorms of the form

|f |G = sup
x∈G

‖f(x)‖ , f ∈ Lip0(X,F ),

where G ranges over the family of all finite subsets of X .
Finally, we denote by τLip the topology on Lip0(X,F ) generated by the Lip-

schitz norm Lip. It is clear that τp ⊂ τ0, and the inclusion τ0 ⊂ τLip follows
easily since |f |K ≤ Lip(f) diam(K ∪ {0}) for all f ∈ Lip0(X,F ) and each compact
set K ⊂ X .

Approximation property and epsilon-product

Let E and F be locally convex Hausdorff spaces. Let L(E;F ) denote the vector
space of all continuous linear mappings from E into F , let Lb(E;F ) denote the
vector space L(E;F ) with the topology of uniform convergence on the bounded
subsets of E and let Lc(E;F ) denote the vector space L(E;F ) with the topol-
ogy of uniform convergence on the convex balanced compact subsets of E. That
last topology coincides with the compact-open topology if the closed convex hull
of each compact subset of E is compact (for example, if E is quasi-complete).
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When F = K, we write E′ instead of L(E;K), E′
b in place of Lb(E;K), and E′

c in-
stead of Lc(E;K). Unless stated otherwise, if E and F are normed spaces, L(E;F )
is endowed with its natural norm topology. Let E ⊗ F denote the tensor product
of E and F , then E′ ⊗ F can be identified with the subspace of all finite-rank
mappings in L(E;F ).

A locally convex space E is said to have the approximation property (in short,
(AP)) if the identity mapping on E lies in the closure of E′ ⊗ E in Lc(E;E).
This is Schwartz’s definition of the (AP) in [24], which is slightly different from
Grothendieck’s definition in [13], though both definitions coincide for quasi com-
plete locally convex spaces.

The ε-product of E and F , denoted by EεF and introduced by Schwartz
([24], [25]), is the space Lε(F

′
c;E), that is, the vector space L(F ′

c;E), with the
topology of uniform convergence on the equicontinuous subsets of F ′. Notice that
if F is a normed space, then equicontinuous sets and norm bounded sets in F ′

coincide. The topology on Lε(F
′
c;E) is generated by the seminorms

αεβ(T ) = sup {|〈T (μ), ν〉| : μ ∈ F ′, |μ| ≤ α, ν ∈ E′, |ν| ≤ β} , T ∈ Lε(F
′
c;E),

where α ranges over the continuous seminorms on F and β over the continuous
seminorms on E.

We will use the subsequent results which follow from results of Grothendieck [13],
Schwartz [24] and Bierstedt and Meise [3].

Proposition 1.1 ([24]). Let E and F be locally convex spaces. Then the transpose
mapping T 	→ T t from EεF to FεE is a topological isomorphism.

Theorem 1.2 ([3], [13], [24]). A locally convex space E has the (AP) if and only
if E ⊗ F is dense in EεF for every Banach space F .

Proposition 1.3 ([3], [13], [24]). A locally convex space E has the (AP) if E′
c has

the (AP).

Detailed proofs of the preceding results can be found in the paper [8] by Dineen
and Mujica.

Linearization of Lipschitz mappings

The study of the preduals of Lip0(X) was approached by Weaver [26] by using a
procedure to linearize Lipschitz mappings. A similar process of linearization was
presented by Mujica for bounded holomorphic mappings on Banach spaces in [20].

Theorem 1.4 ([26]). Let X be a pointed metric space.

(i) The Dirac mapping δ = δX : x 	→ δ(x) is an isometric embedding from X
into F(X).

(ii) For each Banach space F and each f ∈ Lip0(X,F ), there is a unique operator
Tf ∈ L(F(X);F ) such that Tf ◦ δ = f . Furthermore, the evaluation mapping
f 	→ Tf from Lip0(X,F ) to L(F(X);F ), defined by Tf(ϕ) = ϕ(f), is an
isometric isomorphism.
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(iii) F(X) coincides with the space of all linear functionals ϕ on Lip0(X) such that
the restriction of ϕ to the closed unit ball BLip0(X) of Lip0(X) is continuous
when BLip0(X) is equipped with the compact-open topology τ0.

The statements (i)–(ii) follow from Theorem 2.2.4 in [26]. The affirmation (iii)
was stated in Lemma 1.1 of [15] when BLip0(X) is endowed with the topology τp,
and let us recall that τp agrees with τ0 on the equicontinuous subsets of Lip0(X)
and, in particular, on BLip0(X).

Viewing Lip0(X) as the dual of F(X), we can consider its weak* topology.
We recall that the weak* topology on Lip0(X) is the locally convex topology τw∗

generated by the seminorms of the form

pG(f) = sup
ϕ∈G

|ϕ(f)| , f ∈ Lip0(X),

where G ranges over the family of all finite subsets of F(X). Let us recall that τw∗

is the smallest topology for Lip0(X) such that, for each ϕ ∈ F(X), the linear
functional f 	→ ϕ(f) on Lip0(X) is continuous with respect to that topology. It is
easy to check that τp ⊂ τw∗ ⊂ τLip.

Let E be a locally convex space, M ⊂ E and N ⊂ E′. The polar of M and the
prepolar of N are denoted by

M◦ =
{
f ∈ E′ : sup

x∈M
|f(x)| ≤ 1

}
, N◦ =

{
x ∈ E : sup

f∈N
|f(x)| ≤ 1

}
,

respectively. ΓM stands for the closed, convex, balanced hull of M in E.

2. Topology of bounded compact convergence for Lip0(X)

According Definition I.3.2 in [7], we recall that a Saks space is a triple (E, ‖·‖ , τ),
where E is a vector space, τ is a locally convex topology on E and ‖·‖ is a norm
on E so that the closed unit ball BE of (E, ‖·‖) is τ -bounded and τ -closed.

Given a pointed metric space X , we consider on Lip0(X) the topologies:

• τp : the topology of pointwise convergence.

• τ0 : the topology of compact convergence.

• τw∗ : the weak* topology.

• τLip : the norm topology.

The triple (Lip0(X),Lip, τ0) is a Saks space since BLip0(X) is τ0-compact by
the Ascoli theorem. Then we can form the mixed topology γ[Lip, τ0] on Lip0(X)
(see I.3.4 in [7]). Following Definition I.1.4 of [7], γ[Lip, τ0] is the locally convex
topology on Lip0(X) generated by the base of neighborhoods of zero {γ(U)}, where
U = {Un} is a sequence of convex balanced τ0-neighborhoods of zero and γ(U)
denotes

∞⋃
n=1

(
U1 ∩BLip0(X) + U2 ∩ 2BLip0(X) + U3 ∩ 3BLip0(X) + · · ·+ Un ∩ nBLip0(X)

)
.
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Since τp ⊂ τw∗ ⊂ τ0 on BLip0(X) (the second inclusion follows from Theo-
rem 1.4 (iii)) and BLip0(X) is τ0-compact, we have τp = τw∗ = τ0 on BLip0(X).
Then Corollary I.1.6 of [7] yields

γ[Lip, τp] = γ[Lip, τw∗ ] = γ[Lip, τ0],

and we denote this topology by τγ . We gather next some properties of τγ .

Theorem 2.1. Let X be a pointed metric space.

(1) τ0 is smaller than τγ , and τγ is smaller than τLip.

(2) τγ coincides with τ0 on each norm bounded subset of Lip0(X).

(3) If F is a locally convex space and T : Lip0(X) → F is linear, then T is τγ-
continuous if and only if T |B is τ0-continuous for all norm bounded subsets B
of Lip0(X).

(4) A sequence in Lip0(X) is τγ-convergent to zero if and only if it is norm bounded
and τ0-convergent to zero.

(5) A subset of Lip0(X) is τγ-bounded if and only if it is norm bounded.

(6) A subset of Lip0(X) is τγ-compact if and only if it is norm bounded and τ0-
compact.

(7) (Lip0(X), τγ) is a complete semi-Montel space.

(8) τγ is the largest topology on Lip0(X) which agrees with τ0 on each norm
bounded subset of Lip0(X).

(9) A subset U of Lip0(X) is open (closed ) in (Lip0(X), τγ) if and only if the set
U ∩ nBLip0(X) is open (closed) in (nBLip0(X), τ0) for each n ∈ N.

Proof. It follows from Proposition 1 in [6], which gives the main properties of
mixed topologies. For (8) and (9), see Corollary I.4.2 in [7]. �

Remark 2.2. (1) All assertions of Theorem 2.1 are valid if the topology τ0 is
replaced by τp or τw∗ .

(2) The property (2) justifies the name of topology of bounded compact con-
vergence for τγ .

Let us recall that if E is a Banach space, then the bounded weak* topology
on its dual E′, denoted by τbw∗ , is the largest topology on E′ agreeing with the
topology τw∗ on norm bounded sets (see Definition V.5.3 in [9]). According to the
Banach–Dieudonné theorem (see Lemma V.5.4 in [9]), τbw∗ is just the topology of
uniform convergence on sequences in E which tend in norm to zero.

Since τw∗ = τ0 on BLip0(X), the assertion (8) of Theorem 2.1 gives the following.

Corollary 2.3. Let X be a pointed metric space. On the space Lip0(X), the
bounded weak* topology τbw∗ is the topology τγ .

The next theorem follows from Theorem 2.1 and some facts on (DFC)-spaces.
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Theorem 2.4. Let X be a pointed metric space.

(i) (Lip0(X), τγ) is a (DFC)-space. More precisely, (Lip0(X), τγ)
′
b is a Fréchet

space and the evaluation mapping from (Lip0(X), τγ) to ((Lip0(X), τγ)
′
b)

′
c is

a topological isomorphism.

(ii) F(X) = (Lip0(X), τγ)
′
b = (Lip0(X), τγ)

′
c.

(iii) The evaluation mapping f 	→ Tf from (Lip0(X), τγ) to F(X)′c is a topological
isomorphism.

Proof. (i) Using Theorem 2.1, we can check that {nBLip0(X)} is an increasing
sequence of convex, balanced and τγ-compact subsets of Lip0(X) with the property
that a set U ⊂ Lip0(X) is τγ-open whenever U∩nBLip0(X) is open in (nBLip0(X), τγ)
for every n ∈ N. Then (i) follows by applying Theorem 4.1 of [19].

(ii) From Theorem 1.4 (iii) and Theorem 2.1 (3), we deduce that F(X) =
(Lip0(X), τγ)

′ algebraically. Since F(X) is a linear subspace of (Lip0(X), τLip)
′

by its very definition, and both spaces (Lip0(X), τLip) and (Lip0(X), τγ) have the
same bounded sets by Theorem 2.1 (5), we infer that F(X) = (Lip0(X), τγ)

′
b. The

identification (Lip0(X), τγ)
′
b = (Lip0(X), τγ)

′
c follows from Theorem 2.1 (7).

(iii) follows from (i) and (ii). �

3. Seminorm descriptions of τγ on Lip0(X)

Our aim in this section is to give a pair of descriptions for τγ by means of semi-
norms. For our purposes, we will need the next lemma. Given a pointed metric
space X , we denote

X̃ =
{
(x, y) ∈ X2 : x �= y

}
.

For f ∈ Lip0(X) and A ⊂ X̃ , define

LipA(f) = sup
{ |f(x)− f(y)|

d(x, y)
: (x, y) ∈ A

}
.

Notice that if F ⊂ X̃ is finite, then LipF (f) = pG(f) (see Section 1), where G is
the finite subset of F(X) given by

G =
{δ(x) − δ(y)

d(x, y)
: (x, y) ∈ F

}
,

and hence, for ε > 0, the set {f ∈ Lip0(X) : LipF (f) ≤ ε} is a neighborhood of
zero in (Lip0(X), τw∗).

Lemma 3.1. Let X be a pointed metric space. Then the sets of the form

U =

∞⋂
n=1

{
f ∈ Lip0(X) : LipFn

(f) ≤ λn
}
,

where {Fn} is a sequence of finite subsets of X̃ and {λn} is a sequence of positive
numbers tending to ∞, form a base of neighborhoods of zero in (Lip0(X), τγ).



644 A. Jiménez-Vargas

Proof. We first claim that if {Fk} and {λk} are sequences as above, then the set

∞⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
}

is a neighborhood of zero in (Lip0(X), τγ). Indeed, given n ∈ N, if m ∈ N is chosen
so that λk ≥ n for k > m, then

∞⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ∩ nBLip0(X)

=
m⋂

k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ∩ nBLip0(X).

The latter is a neighborhood of zero in (nBLip0(X), τw∗), and our claim follows by
Theorem 2.1 (9).

We now must prove that if U is a neighborhood of zero in (Lip0(X), τγ), then
there are sequences {Fk} and {λk} as above for which

∞⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ⊂ U.

Indeed, by Theorem 2.1 (9), we can take a set U ⊂ Lip0(X) such that U∩nBLip0(X)

is an open neighborhood of zero in (nBLip0(X), τw∗) for every n ∈ N. In particular,
U∩BLip0(X) is a neighborhood of zero in (BLip0(X), τLip) and then there exists ε > 0

such that εBLip0(X) ⊂ U . In order to prove that there exists a finite set F1 ⊂ X̃
such that {

f ∈ Lip0(X) : LipF1
(f) ≤ ε

} ∩BLip0(X) ⊂ U,

assume on the contrary that the set

{f ∈ Lip0(X) : LipF (f) ≤ ε} ∩ (BLip0(X) \ U)

is nonempty for every finite set F ⊂ X̃ . These sets are closed in (BLip0(X) \U, τw∗)
and have the finite intersection property. Since the set BLip0(X) \ U is a closed,
and therefore compact, subset of (BLip0(X), τw∗), we infer that there exists some

f ∈ BLip0(X) \ U such that LipF (f) ≤ ε for each finite set F ⊂ X̃. This implies
that f ∈ εBLip0(X) \ U which is impossible, and thus proving our assertion.

Proceeding by induction, suppose that we can find finite subsets F1, . . . , Fn

of X̃ such that
n⋂

k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ∩ nBLip0(X) ⊂ U ∩ nBLip0(X),

where λ1 = ε and λk = k− 1 for k > 1. We will prove that there exists a finite set
Fn+1 ⊂ X̃ such that

n+1⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ∩ (n+ 1)BLip0(X) ⊂ U ∩ (n+ 1)BLip0(X).
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We argue by contradiction. If no such finite set Fn+1 exists, then the set

CF :=

n⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ∩ {f ∈ Lip0(X) : LipF (f) ≤ n}

has nonempty intersection with the τw∗-compact set (n+ 1)BLip0(X) \ U for each

finite set F ⊂ X̃. So, by the finite intersection property, there exists an element
f0 ∈ (

(n+ 1)BLip0(X) \ U
) ∩ (∩FCF ). Therefore LipF (f0) ≤ n for each F and

so Lip(f0) ≤ n. Then f0 ∈ U ∩ nBLip0(X) ⊂ U ∩ (n + 1)BLip0(X) which is a
contradiction.

Then we can construct, by induction, a sequence {Fk} of finite subsets of X̃ so
that

n⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ∩ nBLip0(X) ⊂ U

for every n ∈ N. Since Lip0(X) = ∪∞
n=1nBLip0(X), we conclude that

∞⋂
k=1

{
f ∈ Lip0(X) : LipFk

(f) ≤ λk
} ⊂ U. �

A first characterization of τγ by means of seminorms uses the concept of strict
topology, introduced by Buck in [4], for spaces of continuous functions on locally
compact spaces. Our result is essentially an adaptation of Proposition 3 in [6].

LetX be a pointed metric space. Let Cb(X̃) be the space of bounded continuous

scalar-valued functions on X̃ with the supremum norm, and let Φ be de Leeuw’s
mapping from Lip0(X) into Cb(X̃) defined by

Φ(f)(x, y) =
f(x)− f(y)

d(x, y)
.

Clearly, Φ is an isometric isomorphism from Lip0(X) onto the closed subspace

Φ(Lip0(X)) of Cb(X̃).

Definition 3.2. Let X be a compact pointed metric space. The strict topology β
on Lip0(X) is the strict topology on Φ(Lip0(X)), that is, the locally convex topology
generated by the seminorms of the form

‖f‖φ = sup
(x,y)∈ ˜X

|φ(x, y)| |f(x)− f(y)|
d(x, y)

, f ∈ Lip0(X),

where φ runs through the space C0(X̃) of continuous functions from X̃ into K

which vanish at infinity.

Theorem 3.3. Let X be a compact pointed metric space. On the space Lip0(X),
the strict topology β is the topology τγ .

Proof. We first show that the identity is a continuous mapping from (Lip0(X), τγ)
to (Lip0(X), β). By Theorem 2.1 (3), it is enough to show that the identity on
nBLip0(X) is continuous from (nBLip0(X), τ0) to (nBLip0(X), β) for every n ∈ N.
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Let n ∈ N and fix φ ∈ C0(X̃) and ε > 0. Then there is a compact set K ⊂ X̃

such that |φ(x, y)| < ε/2n if (x, y) ∈ X̃ \K. Take

U =
{
f ∈ Lip0(X) : sup

(x,y)∈K

|f(x)− f(y)|
d(x, y)

≤ ε

2(1 + ‖φ‖∞)

}
.

We now prove that U is a neighborhood of zero in (Lip0(X), τγ). Indeed, define

σ : X̃ → F(X) by

σ(x, y) =
δ(x) − δ(y)

d(x, y)
.

Since the mappings x 	→ δ(x) and (x, y) 	→ d(x, y) are continuous, so is σ. Then
σ(K) is a compact subset of F(X) and therefore the polar

σ(K)◦ =
{
F ∈ F(X)′ : sup

(x,y)∈K

|F (σ(x, y))| ≤ 1
}

is a neighborhood of zero in F(X)′c. Then, by Theorem 2.4 (iii), the set

{f ∈ Lip0(X) : Tf ∈ σ(K)◦} ,
that is, {

f ∈ Lip0(X) : sup
(x,y)∈K

|f(x)− f(y)|
d(x, y)

≤ 1
}
,

is a neighborhood of zero in (Lip0(X), τγ), and hence so is U as required. It follows
that U ∩nBLip0(X) is a neighborhood of zero in (nBLip0(X), τ0) by Theorem 2.1 (9).
If f ∈ U ∩ nBLip0(X), we have

‖f‖φ ≤ sup
(x,y)∈K

|φ(x, y)| |f(x)− f(y)|
d(x, y)

+ sup
(x,y)∈ ˜X\K

|φ(x, y)| |f(x)− f(y)|
d(x, y)

≤ ‖φ‖∞
ε

2(1 + ‖φ‖∞)
+

ε

2n
n < ε.

Conversely, let U be a neighborhood of zero in (Lip0(X), τγ). By Lemma 3.1, we
can suppose that

U =
∞⋂

n=1

{
f ∈ Lip0(X) : LipFn

(f) ≤ λn
}
,

where {Fn} is a sequence of finite subsets of X̃ and {λn} is a sequence of positive
numbers tending to ∞. We can further suppose that Fn ⊂ Fn+1 and λn < λn+1

for all n ∈ N. We can construct a function φ in C0(X̃) with

{(x, y) ∈ X̃ : φ(x, y) �= 0} ⊂
∞⋃

n=1

Fn,

so that φ(x, y) = 1/λ1 if (x, y) ∈ F1 and 1/λn+1 ≤ φ(x, y) ≤ 1/λn for all (x, y) in
Fn+1 \ Fn. Then {f ∈ Lip0(X) : ‖f‖φ ≤ 1} ⊂ U and this proves the theorem. �

The second description of τγ in terms of seminorms is the following.
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Theorem 3.4. Let X be a pointed metric space. The topology τγ is generated by
the seminorms of the form

p(f) = sup
n∈N

αn
|f(xn)− f(yn)|

d(xn, yn)
, f ∈ Lip0(X),

where {αn} varies over all sequences in R
+ tending to 0 and {(xn, yn)} runs over

all sequences in X̃.

Proof. Let V be the base of neighborhoods of zero in (Lip0(X), τγ) formed by the
sets of the form

U =

∞⋂
n=1

{
f ∈ Lip0(X) : LipFn

(f) ≤ λn
}
,

where {Fn} and {λn} are sequences as in Lemma 3.1. If, for each U ∈ V , pU is the
Minkowski functional of U , then the family of seminorms {pU : U ∈ V} generates
the topology τγ on Lip0(X), but justly we have

pU (f) = sup
n∈N

λ−1
n LipFn

(f)

for all f ∈ Lip0(X), and the result follows. �

4. The approximation property for (Lip0(X), τγ)

We devote this section to the study of the (AP) for the space (Lip0(X), τγ). For
it, we introduce the subsequent topology on Lip0(X,F ).

Definition 4.1. Let X be a pointed metric space and let F be a Banach space.
The topology γτγ on Lip0(X,F ) is the locally convex topology generated by the
seminorms of the form

q(f) = sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)
, f ∈ Lip0(X,F ),

where {αn} ranges over the sequences in R
+ tending to 0 and {(xn, yn)} over the

sequences in X̃.

We now study the relationships between the topologies γτγ , τγ and τ0. We
will first need the next lemma, which is a special case of a well-known result on
compact sets in Banach spaces.

Lemma 4.2. Let X be a pointed metric space. A closed subset L of F(X) is

compact if and only if there exist sequences {αn} ∈ c0(R
+) and {(xn, yn)} ∈ X̃N

such that

L ⊂ Γ
{
αn

δ(xn)− δ(yn)

d(xn, yn)
: n ∈ N

}
.

Proposition 4.3. Let X be a pointed metric space and let F be a Banach space.

(i) τγ agrees with γτγ on Lip0(X).

(ii) τ0 is smaller than γτγ on Lip0(X,F ).
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Proof. (i) is deduced immediately from Theorem 3.4 and Definition 4.1.
To prove (ii), let K be a compact subset of X . Then δ(K) is a compact

subset of F(X) and, by Lemma 4.2, there are sequences {αn} ∈ c0(R
+) and

{(xn, yn)} ∈ X̃N such that

δ(K) ⊂ Γ
{
αn

δ(xn)− δ(yn)

d(xn, yn)
: n ∈ N

}
.

Since that last set is justly

{ ∞∑
n=1

βnαn
δ(xn)− δ(yn)

d(xn, yn)
: {βn} ∈ B�1

}
,

it follows that

|f |K = sup
x∈K

‖f(x)‖ ≤ sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)
= q(f),

for all f ∈ Lip0(X,F ), and this proves (ii). �

Theorem 3.1 in [15] asserts that the Lipschitz transpose mapping f 	→ f t is
an isometric isomorphism from Lip0(X,F ) to L((F ′, τw∗); (Lip0(X), τw∗)). Our
next result shows that the mapping f 	→ f t is a topological isomorphism from
(Lip0(X,F ), γτγ) to Lε(F

′
c; (Lip0(X), τγ)). By Section 1, the seminorms

sup
{
αn

|T (ψ)(xn)− T (ψ)(yn)|
d(xn, yn)

: n ∈ N, ψ ∈ F ′, ‖ψ‖ ≤ 1
}

for all T ∈ (Lip0(X), τγ)εF , with {αn} and {(xn, yn)} being as in Definition 4.1,
determine the topology of (Lip0(X), τγ)εF .

Theorem 4.4. Let X be a pointed metric space and let F be a Banach space.
Then each of the mappings

f ∈ (Lip0(X,F ), γτγ) 	−→ f t ∈ (Lip0(X), τγ)εF

and
f ∈ (Lip0(X,F ), γτγ) 	−→ f tt ∈ Fε(Lip0(X), τγ) = Lε(F(X);F )

is a topological isomorphism.

Proof. If f ∈ Lip0(X,F ), the mapping f t : F ′ → Lip0(X) is continuous from F ′
c

into (Lip0(X), τγ). To prove this, let p be a continuous seminorm on (Lip0(X), τγ).
By Theorem 3.4, we can suppose that

p(g) = sup
n∈N

αn
|g(xn)− g(yn)|
d(xn, yn)

, g ∈ Lip0(X),

where {αn} is a sequence in R
+ tending to 0 and {(xn, yn)} is a sequence in X̃.

Since ∥∥∥αn
f(xn)− f(yn)

d(xn, yn)

∥∥∥ ≤ αn Lip(f)
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for all n ∈ N, the set

K =
{
αn

f(xn)− f(yn)

d(xn, yn)

}
∪ {0}

is compact in F . For each ψ ∈ F ′, we have

αn
|f t(ψ)(xn)− f t(ψ)(yn)|

d(xn, yn)
=

∣∣∣ψ(αn
f(xn)− f(yn)

d(xn, yn)

)∣∣∣ ≤ |ψ|K

for all n ∈ N, and consequently p(f t(ψ)) ≤ |ψ|K as required.
Clearly, the mapping f 	→ f t from Lip0(X,F ) to Lε(F

′
c; (Lip0(X), τγ)) is linear

and injective since F ′ separates the points of F . To prove that it is surjective,
let T ∈ Lε(F

′
c; (Lip0(X), τγ)). Then its transpose T t is in Lε((Lip0(X), τγ)

′
c;F ) =

Lε(F(X);F ) by Proposition 1.1 and Theorem 2.4 (ii). Notice that T belongs to
L(F ′; Lip0(X)) since the closed unit ball BF ′ of F ′ is a compact subset of (F ′, τ0),
so T (BF ′) is a bounded subset of (Lip0(X), τγ) and hence norm bounded by The-
orem 2.1 (5). Take f = T t ◦ δ. Clearly, f maps X into F , vanishes at 0 and is
Lipschitz since

‖f(x)− f(y)‖ ≤ ‖T t‖ ‖δ(x)− δ(y)‖ = ‖T ‖ d(x, y)
for all x, y ∈ X . For every ψ ∈ F ′ and x ∈ X , we have

f t(ψ)(x) = 〈ψ, f(x)〉 = 〈
ψ, T tδ(x)

〉
= 〈T (ψ), δ(x)〉 = T (ψ)(x),

and thus f t = T . Hence the mapping f 	→ f t is a linear bijection from Lip0(X,F )
onto (Lip0(X), τγ)εF with inverse given by T 	→ T t ◦ δ.

It remains to show that it is continuous with continuous inverse. For it, let
{αn} and {(xn, yn)} be sequences as above. By Definition 4.1,

q(f) = sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)
, f ∈ Lip0(X,F ),

is a continuous seminorm on (Lip0(X,F ), γτγ). If n ∈ N and ψ ∈ F ′ with ‖ψ‖ ≤ 1,
we have

αn
|f t(ψ)(xn)− f t(ψ)(yn)|

d(xn, yn)
= αn

|ψ(f(xn))− ψ(f(yn))|
d(xn, yn)

≤ αn
‖f(xn)− f(yn)‖

d(xn, yn)
,

therefore

sup
{
αn

|f t(ψ)(xn)− f t(ψ)(yn)|
d(xn, yn)

: n ∈ N, ψ ∈ F ′, ‖ψ‖ ≤ 1
}
≤ q(f),

and this proves that the mapping f 	→ f t is continuous. To see that its inverse
T 	→ T t ◦ δ is continuous, let q be a continuous seminorm on (Lip0(X,F ), γτγ). By
Definition 4.1, we can suppose that

q(f) = sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)
, f ∈ Lip0(X,F ),
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where {αn} and {(xn, yn)} are sequences as above. For each n ∈ N, take ψn ∈ BF ′

such that ∥∥T tδ(xn)− T tδ(yn)
∥∥ =

∣∣〈ψn, T
tδ(xn)− T tδ(yn)

〉∣∣
and then we have

αn
‖T tδ(xn)−T tδ(yn)‖

d(xn, yn)
= αn

|〈Tψn, δ(xn)−δ(yn)〉|
d(xn, yn)

= αn
|T (ψn)(xn)−T (ψn)(yn)|

d(xn, yn)
.

It follows that

q(T t ◦ δ) ≤ sup
{
αn

|T (ψ)(xn)− T (ψ)(yn)|
d(xn, yn)

: n ∈ N, ψ ∈ F ′, ‖ψ‖ ≤ 1
}
,

and this completes the proof that the first mapping is a topological isomorphism.
By Proposition 1.1, the second mapping is a topological isomorphism too. �

Our next aim is to show that the topological isomorphism of Theorem 4.4
induces a linear isomorphism from the space of all Lipschitz finite-rank operators
from X to F onto the tensor product Lip0(X)⊗ F . Let us recall that a mapping
f ∈ Lip0(X,F ) is called a Lipschitz finite-rank operator if the linear hull of f(X)
in F has finite dimension in which case this dimension is called the rank of f
and denoted by rank(f). We represent by Lip0F (X,F ) the vector space of all
Lipschitz finite-rank operators from X to F and gather some of their properties in
the next result.

Proposition 4.5. Let X be a pointed metric space and F a Banach space.

(i) If g ∈ Lip0(X) and u ∈ F , then the mapping g · u : X → F , given by (g ·
u)(x) = g(x)u, belongs to Lip0F (X,F ) and Lip(g ·u) = Lip(g) ‖u‖. Moreover,
rank(g · u) = 1 if g �= 0 and u �= 0.

(ii) Every element f ∈ Lip0F (X,F ) has a representation as f =
∑m

j=1 gj · uj,
where m = rank(f), g1, . . . , gj ∈ Lip0(X) and u1, . . . , um ∈ F .

(iii) If f =
∑m

j=1 gj ·uj ∈ Lip0F (X,F ) as in (ii), then the bounded linear operator

f t : F ′ → Lip0(X) has finite rank and f t =
∑m

j=1 κF (uj) ⊗ gj, where κF
denotes the canonical injection of F into its bidual F ′′.

(iv) If Y is a pointed metric space, E a Banach space, h ∈ Lip0(Y,X), f =∑m
j=1 gj · uj ∈ Lip0F (X,F ) as in (ii) and T ∈ L(F ;E), then Tfh belongs to

Lip0F (Y,E) and Tfh =
∑m

j=1(gj ◦ h) · T (uj).
(v) Lip0(X) ⊗ F is linearly isomorphic to Lip0F (X,F ) via the linear bijection

K : Lip0(X)⊗ F → Lip0F (X,F ) given by

K
( m∑

j=1

gm ⊗ uj

)
=

m∑
j=1

gj · uj.

Moreover, its inverse map K−1 : Lip0F (X,F ) → Lip0(X)⊗ F is given by

K−1
( m∑

j=1

gj · uj
)
=

( m∑
j=1

gj · uj
)t

.
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Proof. (i) Clearly, g · u is well-defined. Let x, y ∈ X . We have

‖(g · u)(x) − (g · u)(y)‖ = |g(x)− g(y)| ‖u‖ ≤ Lip(g)d(x, y) ‖u‖ ,
and so g · u ∈ Lip0(X,F ). By passing to the supremum over x, y ∈ X on both
sides of the equality, we obtain that Lip(g · u) = Lip(g) ‖u‖.

(ii) Suppose that the linear hull lin(f(X)) of f(X) in F ism-dimensional and let
{u1, . . . , um} be a base of lin(f(X)). Then, for each x ∈ X , the element f(x) is ex-

pressible in a unique form as f(x) =
∑m

j=1 λ
(x)
j uj with λ

(x)
1 , . . . , λ

(x)
m ∈ K. For each

j ∈ {1, . . . ,m}, define the linear mapping yj : lin(f(X)) → K by yj(f(x)) = λ
(x)
j

for all x ∈ X . Let gj = yj ◦ f . Clearly, gj ∈ Lip0(X) and f(x) =
∑m

j=1 λ
(x)
j uj =∑m

j=1 gj(x)uj for all x ∈ X . Hence f =
∑m

j=1 gj · uj .
(iii) Fix g ∈ Lip0(X) and u ∈ F . If x ∈ X and φ ∈ F ′, we have

(g · u)t(φ)(x) = (φ ◦ (g · u))(x) = φ(g(x)u)

= g(x)φ(u) = g(x)κF (u)(φ) = (κF (u)⊗ g)(φ)(x),

where we have used the identification of F ′′ ⊗ Lip0(X) with the space of bounded
linear operators of finite rank from F ′ to Lip0(X) (see page 8 in [23]). Hence
(g · u)t = κF (u)⊗ g and therefore f t =

∑m
j=1 κF (uj)⊗ gj .

(iv) Clearly, Tfh ∈ Lip0(Y,E). For any y ∈ Y , we have

Tfh(y) = T
( m∑

j=1

gj(h(y))uj

)
=

m∑
j=1

gj(h(y))T (uj).

Hence Tfh =
∑m

j=1(gj ◦ h) · T (uj) and thus Tfh ∈ Lip0F (Y,E).

(v) Let
∑m

j=1 gj⊗uj ∈ Lip0(X)⊗F . The mapping K is well defined. Indeed, if∑m
j=1 gj⊗uj = 0, then

∑m
j=1 ϕ(gj)uj = 0 for every ϕ ∈ Lip0(X)′ by Proposition 1.2

of [23]. In particular, we have that
∑m

j=1 δ(x)(gj)uj = 0 for every x ∈ X and thus∑m
j=1 gj · uj = 0 as required. Clearly, K is linear and, by (ii), is onto. To see that

it is one-to-one, assume that K(
∑m

j=1 gj ⊗ uj) = 0. Then
∑m

j=1 δ(x)(gj)uj = 0 for
every x ∈ X , and since {δ(x) : x ∈ X} is a separating subset of Lip0(X)′, we infer
that

∑m
j=1 gj ⊗ uj = 0 (see pages 3–4 in [23]). Finally, we have

K−1
( m∑

j=1

gj · uj
)
=

m∑
j=1

gj ⊗ uj =

m∑
j=1

κF (uj)⊗ gj =
( m∑

j=1

gj · uj
)t

for any
∑m

j=1 gj · uj ∈ Lip0F (X,F ). �

We now are ready to obtain the main result of this paper.

Theorem 4.6. Let X be a pointed metric space. The following are equivalent.

(i) (Lip0(X), τγ) has the (AP).

(ii) F(X) has the (AP).
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(iii) Lip0(X)⊗ F is dense in (Lip0(X), τγ)εF for every Banach space F .

(iv) F(X)⊗ F is dense in F(X)εF for every Banach space F .

(v) Lip0F (X,F ) is dense in (Lip0(X,F ), γτγ) for every Banach space F .

Proof. (i) ⇔ (ii): Assume that (Lip0(X), τγ) has the (AP). Since (Lip0(X), τγ) =
F(X)′c by Theorem 2.4 (iii), then F(X) has the (AP) by Proposition 1.3. Con-
versely, if F(X) has the (AP), we use that F(X) = (Lip0(X), τγ)

′
c by Theo-

rem 2.4 (ii) to obtain that (Lip0(X), τγ) has the (AP) by Proposition 1.3.

(i) ⇔ (iii) and (ii) ⇔ (iv) are deduced from Theorem 1.2, and (iii) ⇔ (v) follows
from Theorem 4.4 and Proposition 4.5 (v). �

5. The dual space of (Lip0(X,F ), γτγ)

The following theorem describes the dual of the space (Lip0(X,F ), γτγ). Recall
that a linear functional T on a topological vector space Y is continuous if and
only if there is a neighborhood U of zero in Y such that T (U) is a bounded subset
of K. Hence T ∈ (Lip0(X,F ), γτγ)

′ if and only if there exist a constant c > 0 and

sequences {αn} ∈ c0(R
+) and {(xn, yn)} ∈ X̃N such that

|T (f)| ≤ c sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)

for every f ∈ Lip0(X,F ).

Theorem 5.1. Let X be a pointed metric space and let F be a Banach space. Then
a linear functional T on Lip0(X,F ) is in the dual of (Lip0(X,F ), γτγ) if and only

if there exist sequences {φn} in F ′ and {(xn, yn)} in X̃ such that
∑∞

n=1 ‖φn‖ <∞
and

T (f) =

∞∑
n=1

φn

(f(xn)− f(yn)

d(xn, yn)

)
for all f ∈ Lip0(X,F ).

Proof. Assume that T is a linear functional on Lip0(X,F ) of the preceding form.
Since

∑∞
n=1 ‖φn‖ < ∞, we can take a sequence {λn} in R

+ tending to ∞ so that∑∞
n=1 λn ‖φn‖ = c <∞. Then we have

|T (f)| ≤
∞∑

n=1

‖φn‖ ‖f(xn)− f(yn)‖
d(xn, yn)

≤ c sup
n∈N

λ−1
n

‖f(xn)− f(yn)‖
d(xn, yn)

for all f ∈ Lip0(X,F ). This proves that T is continuous on (Lip0(X,F ), γτγ).

Conversely, if T ∈ (Lip0(X,F ), γτγ)
′, then there are sequences {αn} ∈ c0(R

+)

and {(xn, yn)} ∈ X̃N such that

|T (f)| ≤ sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)
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for every f ∈ Lip0(X,F ). Consider the linear subspace

Z =
{{

αn
f(xn)− f(yn)

d(xn, yn)

}
: f ∈ Lip0(X,F )

}
of c0(F ), and the functional S on Z given by

S
({
αn

f(xn)− f(yn)

d(xn, yn)

})
= T (f)

for every f ∈ Lip0(X,F ). It follows easily that S is well defined and linear. Since∣∣∣S({αn
f(xn)− f(yn)

d(xn, yn)

})∣∣∣ = |T (f)|

≤ sup
n∈N

αn
‖f(xn)− f(yn)‖

d(xn, yn)
=

∥∥∥{αn
f(xn)− f(yn)

d(xn, yn)

}∥∥∥
∞

for all f ∈ Lip0(X,F ), S is continuous on Z. By the Hahn–Banach theorem, S

has a norm-preserving continuous linear extension Ŝ to all of c0(F ). Since c0(F )
′

is just �1(F
′), there exists a sequence {ψn} in F ′ such that

∑∞
n=1 ‖ψn‖ = ||Ŝ|| and

Ŝ({un}) =
∑∞

n=1 ψn(un) for any {un} ∈ c0(F ). Taking φn = αnψn for each n ∈ N,

we conclude that
∑∞

n=1 ‖φn‖ ≤ ‖{αn}‖∞ ||Ŝ|| <∞ and, for all f ∈ Lip0(X,F ),

T (f) = Ŝ
({
αn

f(xn)− f(yn)

d(xn, yn)

})
=

∞∑
n=1

φn

(f(xn)− f(yn)

d(xn, yn)

)
. �
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