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Abstract Let X be a pointed compact metric space such that lip0(X) has the uniform
separation property. We prove that every weakly compact composition operator on
spaces of Lipschitz functions lip0(X) and Lip0(X) is compact.
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1 Introduction

A composition operator Cφ on a function space F(X) over a set X is a linear operator
from F(X) into itself defined by Cφ( f ) = f ◦ φ, where φ is a map from X into X
called the symbol of Cφ . Boundedness and compactness of operators Cφ have been
intensively studied in terms of the properties of φ for different function spaces. See the
monograph by Singh and Manhas [7] and the references therein for a comprehensive
treatment of this subject.

Our aim in this paper is to study weakly compact composition operators on spaces
of Lipschitz functions. Let X and Y be metric spaces. We use the letter d to denote
the distance in any metric space. A map f : X → Y is said to be Lipschitz if
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sup

{
d( f (x), f (y))

d(x, y)
: x, y ∈ X, x �= y

}
< ∞;

and supercontractive if

lim
d(x,y)→0

d( f (x), f (y))

d(x, y)
= 0,

meaning that the following property holds:

∀ε > 0, ∃δ > 0 : x, y ∈ X, 0 < d(x, y) < δ ⇒ d( f (x), f (y))

d(x, y)
< ε.

Constant maps are Lipschitz and supercontractive but, for example, the identity func-
tion on R is Lipschitz, but not supercontractive; whereas the function n 
→ n2 on N

is supercontractive, but not Lipschitz. A supercontractive Lipschitz function is often
called a little Lipschitz function.

Let X be a pointed compact metric space with a base point which we always will
denote by 0, and let K be the field of real or complex numbers. The Lipschitz space
Lip0(X) is the Banach space of all Lipschitz functions f : X → K for which f (0) = 0,
endowed with the Lipschitz norm

Lipd( f ) = sup

{ | f (x) − f (y)|
d(x, y)

: x, y ∈ X, x �= y

}
,

and the little Lipschitz space lip0(X) is the closed subspace of Lip0(X) formed by all
little Lipschitz functions. These spaces have been largely investigated along the time.
We refer the reader to Weaver’s book [8] for a complete study on them.

There are lip0 spaces containing only the zero function as, for instance, lip0[0, 1]
with the usual metric, but there exist also some large classes of lip0 spaces which
separate points, even uniformly, in the sense introduced by Weaver [8, Definition 3.2.1]
as follows. Given a pointed compact metric space X , it is said that lip0(X) separates
points uniformly if there exists a constant a > 1 such that, for every x, y ∈ X , there
exists f ∈ lip0(X) with Lipd( f ) ≤ a such that f (x) = d(x, y) and f (y) = 0. This
happens, for example, when X is uniformly discrete meaning that d(x, y) ≥ δ for all
x, y ∈ X with x �= y for some δ > 0; or when X is the middle-thirds Cantor set with
the metric inherited from [0, 1]. Also, lip0(Xα) has the uniform separation property,
where Xα = (X, dα) for some 0 < α < 1 (see [8, Proposition 3.2.2]). Lipschitz
functions on Xα are called Hölder functions of exponent α. It is worth to point out
that, by [8, Corollary 4.4.9], for any pointed compact metric space X , there exists a
pointed compact metric space Y such that lip0(Y ) has the uniform separation property
and lip0(X) is isometrically isomorphic to lip0(Y ).

The composition operators on spaces of Lipschitz functions have been studied
by some authors. N. Weaver characterized in [8, Proposition 1.8.2] the boundedness
of composition operators Cφ on Lip0(X) by means of the Lipschitz condition of
their symbols, when X is a pointed complete metric space. The completeness on
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X is not restrictive in view of [8, Proposition 1.2.3]. Assuming that X is a compact
metric space and in terms of the supercontractive property of their symbols, Kamowitz
and Scheinberg [6] gave a complete description of compact composition operators
Cφ on both spaces Lip(X) of scalar-valued Lipschitz functions on X with the norm
max{Lipd · ‖·‖∞} and spaces lip(Xα) (0 < α < 1) of scalar-valued little Lipschitz
functions on Xα with the norm max{Lipdα · ‖·‖∞}. For pointed metric spaces X ,
not necessarily compact, this characterization was extended in [5] to both spaces
lip0(X) satisfying the uniform separation property on bounded subsets of X and spaces
Lip0(X). Botelho and Jamison [3] provided a characterization of compact weighted
composition operators on spaces of vector valued Lipschitz functions.

Our aim in this paper is to prove that every weakly compact composition operator
Cφ on both lip0(X) and Lip0(X) is compact provided that lip0(X) has the uniform
separation property. The key tool to prove this result is the fact, stated in [8, Corollary
3.3.5], that lip0(X) has the uniform separation property if and only if lip0(X)∗∗ is
isometrically isomorphic to Lip0(X).

2 The results

We prepare the proof of our main result by stating first a new characterization of
supercontractive functions. Given a metric space X , for x ∈ X and r > 0, we denote
by B(x, r) the open ball in X of center x and radius r . See [4] for an analogous
characterization of Lipschitz functions.

Lemma 2.1 Let X be a pointed compact metric space and let φ : X → X be a
continuous map. If φ is not supercontractive, then there exist a real number ε > 0,
two sequences {xn} and {yn} in X converging to a point x0 ∈ X such that 0 <

d(xn, yn) < 1/n and ε < d(φ(xn), φ(yn))/d(xn, yn) for all n ∈ N, and a function
f ∈ Lip0(X) such that f (φ(xn)) = d(φ(xn), φ(yn)) and f (φ(yn)) = 0 for all n ∈ N.

Proof Since φ is not supercontractive, we can take a real number ε > 0 and two
sequences {pn} and {qn} in X such that

0 < d(pn, qn) <
1

n
, ε <

d(φ(pn), φ(qn))

d(pn, qn)

for all n ∈ N. Since X is compact, passing to a subsequence if necessary, we may
suppose that {pn} converges to a point x0 in X . It is clear that {qn} also converges to
x0.

We will construct two sequences {xn} and {yn} in X converging to x0 such that

0 < d(xn, yn) <
1

n
, ε <

d(φ(xn), φ(yn))

d(xn, yn)
, d(φ(yn), φ(x0)) ≤ d(φ(xn), φ(x0))

for all n ∈ N, and a sequence of pairwise disjoint open balls {B(φ(xn), rn)} such that

φ(yn) /∈
∞⋃
j=1

B(φ(x j ), r j )
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for all n ∈ N. To this end, we consider the sets

A = {n ∈ N : φ(pn) = φ(x0)} , B = {n ∈ N : φ(qn) = φ(x0)}

and distinguish two cases.

Case 1 Suppose that A or B are infinite. If A is infinite, then there exists a
strictly increasing map σ : N → N such that φ(pσ(n)) = φ(x0) for all n ∈ N.
Notice that φ(qσ(n)) �= φ(pσ(n)) = φ(x0) for each n ∈ N and {φ(qσ(n))} →
φ(x0). Hence there is a subsequence {qσ(υ(n))} such that d(φ(qσ(υ(n+1))), φ(x0)) <

(1/3)d(φ(qσ(υ(n))), φ(x0)) for all n ∈ N. For each n ∈ N, define xn = qσ(υ(n)) and
yn = pσ(υ(n)). Then we have

0 < d(xn, yn) <
1

σ(υ(n))
≤ 1

n
, ε <

d(φ(xn), φ(yn))

d(xn, yn)
,

d(φ(yn), φ(x0)) = 0 < d(φ(xn), φ(x0)).

Moreover, d(φ(xn+1), φ(x0)) < (1/3)d(φ(xn), φ(x0)) for all n ∈ N. Set

rn = 1

2
min {d(φ(xn), φ(x0)), d(φ(xn), φ(yn))}

for each n ∈ N. As φ(yn) = φ(x0) for all n ∈ N, it follows that rn =
d(φ(xn), φ(x0))/2. Note that if n < m, then rm < rn/3 and d(x, φ(x0)) < 3rm < rn

for any x ∈ B(φ(xm), rm). This implies that, for each n ∈ N and any m > n,
we have B(φ(xm), rm) ⊂ B(φ(x0), rn). As B(φ(xn), rn) ∩ B(φ(x0), rn) = ∅

for all n ∈ N, we conclude that the balls B(φ(xn), rn) are pairwise disjoint and
φ(yn) = φ(x0) �∈ ∪∞

j=1 B(φ(x j ), r j ) for all n ∈ N. Therefore {xn} and {yn} satisfy
the required conditions. The same argument works if B is infinite.

Case 2 Suppose that A and B are both finite. Let r = max(A ∪ B). Note that
φ(pn+r ) �= φ(x0) and φ(qn+r ) �= φ(x0) for all n ∈ N. Define the sequences {tn} and
{sn} by

tn =
{

pn+r if d(φ(qn+r ), φ(x0)) ≤ d(φ(pn+r ), φ(x0)),

qn+r if d(φ(pn+r ), φ(x0)) < d(φ(qn+r ), φ(x0)),

sn =
{

qn+r if d(φ(qn+r ), φ(x0)) ≤ d(φ(pn+r ), φ(x0)),

pn+r if d(φ(pn+r ), φ(x0)) < d(φ(qn+r ), φ(x0)).

Note that d(φ(sn), φ(x0)) ≤ d(φ(tn), φ(x0)) for all n ∈ N. As {tn} converges to x0,
take a subsequence {tσ(n)} for which

d(φ(tσ(n+1)), φ(x0)) <
1

3
min{d(φ(sσ(n)), φ(x0)), d(φ(tσ(n)), φ(sσ(n)))}
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for all n ∈ N. Let xn = tσ(n) and yn = sσ(n). Then

0 < d(xn, yn) <
1

σ(n) + r
<

1

σ(n)
≤ 1

n
, ε <

d(φ(xn), φ(yn))

d(xn, yn)
,

d(φ(yn), φ(x0)) ≤ d(φ(xn), φ(x0))

for all n ∈ N. Moreover, a straightforward induction yields that, for each n ∈ N and
any m > n,

d(φ(xm), φ(x0)) <
1

3
min {d(φ(yn), φ(x0)), d(φ(xn), φ(yn))} .

For each n ∈ N, take

rn = 1

2
min {d(φ(xn), φ(x0)), d(φ(xn), φ(yn))} .

Fix n, m ∈ N such that m > n. As d(φ(xm), φ(x0)) < d(φ(yn), φ(x0))/3 ≤
d(φ(xn), φ(x0))/3 and d(φ(xm), φ(x0)) < d(φ(xn), φ(yn))/3, we have d(φ(xm),

φ(x0)) < 2rn/3. Also, rm ≤ d(φ(xm), φ(x0))/2 < rn/3 and it is easy to check
that B(φ(xm), rm) ⊂ B(φ(x0), rn). Since B(φ(xn), rn) ∩ B(φ(x0), rn) = ∅, it
follows that B(φ(xn), rn) ∩ B(φ(xm), rm) = ∅. Moreover, as d(φ(ym), φ(x0)) ≤
d(φ(xm), φ(x0)) < 2rn/3, it is clear that φ(ym) /∈ B(φ(xn), rn). Finally, from the
inequalities

rm ≤ d(φ(xm), φ(x0))

2
<

d(φ(yn), φ(x0))

6
< d(φ(yn), φ(x0)) − d(φ(yn), φ(x0))

3
< d(φ(yn), φ(x0)) − d(φ(xm), φ(x0)) ≤ d(φ(yn), φ(xm)),

we infer that φ(yn) �∈ B(φ(xm), rm). Then we can conclude that the balls B(φ(xn), rn)

are pairwise disjoint and φ(yn) �∈ ∪∞
j=1 B(φ(x j ), r j ) for all n ∈ N.

We now prove that there exists a function f ∈ Lip0(X) such that f (φ(xn)) =
d(φ(xn), φ(yn)) and f (φ(yn)) = 0 for all n ∈ N. Indeed, for each n, let

hn(x) = max

{
0, 1 − d(x, φ(xn))

rn

}
.

Notice that hn is Lipschitz with Lipd(hn) ≤ 1/rn , hn(φ(xn)) = 1 and hn(x) = 0 for
all x ∈ X\B(φ(xn), rn). Define g : X → R by

g(x) =
∞∑

n=1

d(φ(xn), φ(yn))hn(x).

Observe that g(x) = 0 for any x /∈ ∪∞
j=1 B(φ(x j ), r j ) and so g(φ(yn)) = 0 for all

n ∈ N. As the balls B(φ(xn), rn) are pairwise disjoint, if x ∈ ∪∞
j=1 B(φ(x j ), r j ),

then g(x) = d(φ(xm), φ(ym))hm(x) for some fixed m ∈ N (depending only
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on x) and, in particular, g(φ(xn)) = d(φ(xn), φ(yn)) for all n ∈ N. Moreover, as
d(φ(xn), φ(yn)) ≤ 2d(φ(xn), φ(x0)), it follows that d(φ(xn), φ(yn)) ≤ 4rn , hence
Lipd(d(φ(xn), φ(yn))hn) ≤ 4 and so g is Lipschitz.

Finally, if φ(x0) = 0, then {g(φ(yn))} → g(0), but since g(φ(yn)) = 0 for all n, it
follows that g(0) = 0 and so g ∈ Lip0(X). Hence take f = g and the lemma follows.
Otherwise, if φ(x0) �= 0, take ε = d(φ(x0), 0)/2 > 0. Since {φ(xn)} converges to
φ(x0), there exists m ∈ N such that ε ≤ d(φ(xn+m), 0) for all n ∈ N. Then the
sequences {xn+m} and {yn+m} and the function f : X → R, defined by

f (x) =
(

1 − max

{
0, 1 − d(x, 0)

ε

})
g(x),

satisfy the required conditions in the lemma. ��
A second tool that we will use to prove the main result is the fact that the Arens

product on lip0(X)∗∗ coincides with the pointwise product on lip0(X)∗∗ whenever
lip0(X) separates points uniformly (see [2, Theorem 3.8] for the case lip(Xα) with
0 < α < 1).

Let A be a commutative Banach algebra. The Arens product on A∗∗ is defined in
stages as follows (see [1]). For any a, b ∈ A, f ∈ A∗ and F, G ∈ A∗∗, define

( f � a)(b) = f (ab), (F � f )(a) = F( f � a), (F � G)( f ) = F(G � f ).

Then A∗∗ is a Banach algebra under this product and it is denoted by (A∗∗,�). The
algebra A is said to be Arens regular if the algebra (A∗∗,�) is commutative.

By [8, Theorems 3.3.3 and 2.2.2], lip0(X)∗∗ is isometrically isomorphic to Lip0(X)

provided that lip0(X) separates points uniformly, via the map � : lip0(X)∗∗ →
Lip0(X) defined by

�(F)(x) = F(δx ) (F ∈ lip0(X)∗∗, x ∈ X). (1)

In fact, this identification is the most natural since

�(Q X ( f ))(x) = (Q X ( f ))(δx ) = δx ( f ) = f (x) ( f ∈ lip0(X), x ∈ X), (2)

where Q X denotes the canonical injection from lip0(X) into lip0(X)∗∗. We now can
prove the following.

Lemma 2.2 Let X be a pointed compact metric space and assume that lip0(X) sepa-
rates points uniformly. Then the Arens product on lip0(X)∗∗ coincides with the point-
wise product on lip0(X)∗∗, and so lip0(X) is Arens regular.

Proof Let x ∈ X , f, g ∈ lip0(X) and F, G ∈ lip0(X)∗∗. First, we have

(δx � f )(g) = δx ( f g) = f (x)g(x) = f (x)δx (g),
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and so δx � f = f (x)δx . Now, using (1), we compute

(G � δx )( f ) = G(δx � f ) = G( f (x)δx ) = f (x)G(δx ) = G(δx )δx ( f ),

and so G � δx = G(δx )δx . Finally, we have

(F � G)(δx ) = F(G � δx ) = F(G(δx )δx ) = F(δx )G(δx ) = (FG)(δx ).

Since the closed linear hull of the set {δx : x ∈ X} in Lip0(X)∗ coincides with lip0(X)∗
by [8, Theorem 3.3.3], we infer that (F � G)(γ ) = (FG)(γ ) for all γ ∈ lip0(X)∗,
and so F � G = FG, as desired. ��

We now are ready to prove the main result of this paper.

Theorem 2.3 Let X be a pointed compact metric space and let φ : X → X be a base
point-preserving Lipschitz map. Suppose that lip0(X) separates points uniformly. Then
every weakly compact operator Cφ : lip0(X) → lip0(X) is compact.

Proof By Gantmacher’s Theorem, the operator Cφ : lip0(X) → lip0(X) is weakly
compact if and only if C∗∗

φ (lip0(X)∗∗) is contained in Q X (lip0(X)).
We claim that this inclusion means that Cφ(Lip0(X)) is contained in lip0(X). To

prove this, consider lip0(X)∗∗ as a Banach algebra with the Arens product �. Since
Cφ is an algebra endomorphism of lip0(X), then C∗∗

φ is an algebra endomorphism of
(lip0(X)∗∗,�). Indeed, for any F, G ∈ lip0(X)∗∗ and γ ∈ lip0(X)∗, it is clear that
C∗∗

φ (F)(γ ) = (F ◦ C∗
φ)(γ ) = F(γ ◦ Cφ), and, by applying Lemma 2.2, we have

C∗∗
φ (F � G)(γ ) = (F � G)(γ ◦ Cφ) = (FG)(γ ◦ Cφ) = F(γ ◦ Cφ)G(γ ◦ Cφ)

= C∗∗
φ (F)(γ )C∗∗

φ (G)(γ ) = (C∗∗
φ (F)C∗∗

φ (G))(γ )

= (C∗∗
φ (F) � C∗∗

φ (G))(γ ).

Note also that � is an algebra homomorphism from (lip0(X)∗∗,�) to Lip0(X) since

�(F � G)(x) = (F � G)(δx ) = (FG)(δx ) = F(δx )G(δx )

= �(F)(x)�(G)(x) = (�(F)�(G))(x)

for all x ∈ X . It follows that �C∗∗
φ �−1 is an algebra endomorphism of lip0(X). By [8,

Corollary 4.5.6], �C∗∗
φ �−1 is of the form Cϕ for some base point-preserving Lipschitz

map ϕ : X → X . Using the equalities (2) and Q X Cφ = C∗∗
φ Q X , we infer that

Cφ( f ) = �(Q X (Cφ( f ))) = �(C∗∗
φ (Q X ( f ))) = Cϕ(�(Q X ( f ))) = Cϕ( f )

for all f ∈ lip0(X). Hence Cφ = Cϕ on lip0(X), which implies φ = ϕ since lip0(X)

separates points. It follows that

C∗∗
φ (lip0(X)∗∗) ⊂ Q X (lip0(X)) ⇔ �C∗∗

φ �−1(Lip0(X))

⊂ lip0(X) ⇔ Cφ(Lip0(X)) ⊂ lip0(X),
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and this proves our claim. Hence Cφ : lip0(X) → lip0(X) is weakly compact if and
only if f ◦ φ ∈ lip0(X) for all f ∈ Lip0(X).

Assume now that Cφ : lip0(X) → lip0(X) is not compact. Then φ is not super-
contractive by the version of [5, Theorem 1.3] for lip0 spaces (see [6] for the case
lip(Xα) with 0 < α < 1). By applying Lemma 2.1, there exist a real number
ε > 0, two sequences {xn} and {yn} in X such that 0 < d(xn, yn) < 1/n and
ε < d(φ(xn), φ(yn))/d(xn, yn) for all n ∈ N and a function f ∈ Lip0(X) such that
f (φ(xn)) = d(φ(xn), φ(yn)) and f (φ(yn)) = 0 for all n ∈ N. Then we have

|( f ◦ φ)(xn) − ( f ◦ φ)(yn))|
d(xn, yn)

= d(φ(xn), φ(yn))

d(xn, yn)
> ε

for all n ∈ N. Since {d(xn, yn)} → 0 as n → ∞, we infer that f ◦ φ is not in lip0(X)

and thus Cφ : lip0(X) → lip0(X) is not weakly compact. This completes the proof of
the theorem. ��

From Theorem 2.3 we derive the following.

Corollary 2.4 Let X be a pointed compact metric space and let φ : X → X be a base
point-preserving Lipschitz map. Suppose that lip0(X) separates points uniformly. Then
every weakly compact operator Cφ : Lip0(X) → Lip0(X) is compact.

Proof Assume that Cφ : Lip0(X) → Lip0(X) is weakly compact. Hence �−1Cφ� :
lip0(X)∗∗ → lip0(X)∗∗ is weakly compact. Given F ∈ lip0(X)∗∗ and x ∈ X , we have

(�−1Cφ�)(F)(δx ) = ((Cφ�)(F))(x) = Cφ(�(F))(x) = �(F)(φ(x))

= F(δφ(x)) = F(δx ◦ Cφ) = (F ◦ C∗
φ)(δx ) = C∗∗

φ (F)(δx ).

Since linear combinations of elements of the form δx are dense in lip0(X)∗, it follows
that �−1Cφ� = C∗∗

φ . Hence C∗∗
φ : lip0(X)∗∗ → lip0(X)∗∗ is weakly compact and

so also is Cφ : lip0(X) → lip0(X). Then, by Theorem 2.3, Cφ : lip0(X) → lip0(X)

is compact. Hence φ is supercontractive by the version of [5, Theorem 1.3] for lip0
spaces, and finally Cφ : Lip0(X) → Lip0(X) is compact by [5, Theorem 1.2]. ��
Remark 2.1 Analogous versions of the preceding results can be established for com-
position operators Cφ from lip0(X) to lip0(Y ) and from Lip0(X) to Lip0(Y ). Moreover,
every space Lip(X) is isometrically isomorphic to a certain space Lip0(X0) by [8, The-
orem 1.7.2], and an analogous isometric isomorphism identifies the spaces lip(X) and
lip0(X0) (see [8, p. 74]). Using these identifications, it is easy to show that Theorem
2.3 and Corollary 2.4 are valid also for composition operators from lip(X) to lip(Y )

and from Lip(X) to Lip(Y ).
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