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Let @:expLip(X1) — exp Lip(X2) be a surjective mapping where X; and Xo are
compact metric spaces. We prove that if & satisfies the non-symmetric-quotient
norm condition for the uniform norm:

5+ -18-

7 (/) 1Hoo (f, g € expLip(X1)),

then @ is of the form

@ ify € K,
qs(f)(y)_{ MW f(oly) ifye

S(1)(y)f(o(y)) ify € X2\K (f € expLip(X1)),

where ¢: Xo — X7 is a homeomorphism and K is a closed open subset of X2. On
the other hand, if & satisfies the non-symmetric-quotient norm condition for the
Lipschitz algebra norm:

Rl IR
Hf R

we show that & is of the form

(f,g € expLip(X1)),

I R e P

L

D(f)(y) =) (W) f(¢(y)) (v € Xa, f € expLip(X1)),

or

D(f)(y) =2(1) (W) f(o(y)) (v € X2, f€expLip(X1)),

where ¢: X2 — X is a surjective isometry.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Non-symmetrically norm preserving maps were initially studied in [5] motivated by the seminal paper
of Molnar [13] on the multiplicatively spectrum preserving surjections on certain Banach algebras. It was
proved that multiplicatively non-symmetrically spectral-radius preserving maps on commutative Banach
algebras are closely related to the isomorphisms on these algebras, and it turns several authors’ atten-
tion to the subject [9,2,7,4,12]. Miura, Honma and Shindo [12] considered the non-symmetrically quotient
spectral-radius preserving maps on semisimple unital commutative Banach algebras. They showed that such
maps are real algebra isomorphisms followed by multiplications. It is interesting to study such maps for the
original norms of the given Banach algebras, but it seems that there has not yet been a literature on the
non-symmetrically original norm preserving maps other than uniform norms. In this paper we give a result
for maps preserving (Banach algebra) norms of non-symmetrical quotients between groups of exponentials
of Lipschitz functions.

Throughout the paper, (X,d) denotes a compact metric space and let Lip(X) be the algebra of all
complex-valued Lipschitz functions f on X with the norm || - || = - |lcc + || - ||z, Where

[ flloc = sup{|f(2)|: = € X}

and

Iz :inf{K > 0: ‘f(:r) —f(y)! < Kd(z,y), Va,y € X}.

It is known (see [16]) that Lip(X) is a semisimple unital commutative Banach algebra. The unity of Lip(X),
denoted by 1, is the function constantly equal to 1 on X, and the maximal ideal space of Lip(X) is
homeomorphic to X. Hence the spectral radius coincides with the uniform norm on X for every function
in Lip(X). The group of all invertible elements in Lip(X) is denoted by Lip(X)~! and expLip(X) =
{exp(f): f € Lip(X)}. Note that exp Lip(X) is the principal component (the connected component of
Lip(X)~! which contains the function 1) of Lip(X)~!.

From [12, Theorem 3.2] we infer that a surjection @: Lip(X1)~! — Lip(X3) ™! satisfies the equality

P
171~ 55 -]
for every f,g € Lip(X;)~?! if and only if there exists a homeomorphism ¢: Xo — X; and a closed open
subset K of X5 such that

S(F)(y) = { P)W)f(8ly) ifyeK,

P(1)(y)f(o(y) ifye Xo\K,

for every f € Lip(X;)~!. In Theorem 1, we show that this result also holds for surjective mappings
& :expLip(X;1) — expLip(Xz). Then we give in Corollary 2 some sufficient conditions for @ to be ex-
tendible to an algebra isomorphism. Our method of proof of Theorem 1 is an adaptation of the reasoning
used in [2,9].

On the other hand, surjective isometries with respect to the Lipschitz Banach norm | - || + || - ||
between groups exp Lip(X) are of a much restrictive form. Namely, we show in the main result of this
paper, Theorem 8, that @ satisfies the non-symmetric-quotient norm condition for the Lipschitz algebra
norm:

E-mail addresses: hatori@math.sc.niigata-u.ac.jp (O. Hatori), ajimenez@ual.es (A. Jiménez-Vargas), moises.villegas@Quca.es
(M. Villegas-Vallecillos).
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2(g) 2(g)

A A R I

g _ g _
I3

if and only if there exists a surjective isometry ¢: Xo — X7 such that

(f,g € expLip(X1)),

L

for all y € X5 and f € exp Lip(X3), or

for all y € X5 and f € exp Lip(X1). Note that if, in addition, ¢(1) = 1, then @ is extendible to either an
isometric complex-linear algebra isomorphism or an isometric conjugate-linear algebra isomorphism.

For the proof of Theorem 8, we first show by adapting the proof of Jarosz’s theorem on isometries in
semisimple commutative Banach algebras [8] that every real-linear isometry with respect to the Lipschitz
Banach norm T from Lip(X;) onto Lip(Xs) such that 7(1) = 1 and either T'(i1) = i1 or T(il) = —il,
is an isometry from Lip(X7) onto Lip(X32) for the uniform norm. Apart from this fact, our approach for
proving Theorem 8 requires the use of tools concerning d-preserving maps between groups [3], continuous
one-parameter groups of functions [14], the famous theorems of Mazur-Ulam and Stone—Weierstrass and
real-linear isometries between function algebras [11]. We remark that the proof of Theorem 8 has been
motivated by the proof of Theorem 1 in [6].

We point out in a final remark that similar results to those above are valid for surjections @ between
groups exp lip,, (X) of spaces of little Lipschitz complex-valued functions on compact metric spaces (X, d®)
with o € (0, 1).

2. Case: Uniform norm

Our purpose in this section is to obtain the following result.

Theorem 1. Let Xy and Xo be compact metric spaces and let @ be a surjective mapping from exp Lip(X1)
to exp Lip(X2). Then & satisfies the non-symmetric-quotient norm condition for the uniform norm:

R R

[e.e]

if and only if there exists a homeomorphism ¢ : X9 — X1 and a closed open subset K C Xy such that

(f)(y) =

{®(1)(y)f(¢(y)) ify € K,
(1) (y) f(e(y)) ify € X2\K,

for all f € expLip(X7).

From the description given for @, we give sufficient conditions for @ to be extendable to be an algebra
isomorphism.

Corollary 2. Let X1 and Xo be compact metric spaces and let @ be a surjective mapping from exp Lip(X1) to
exp Lip(Xs) satisfying the non-symmetric-quotient norm condition for the uniform norm. Then the following
assertions are satisfied:
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(

(3) If #(1) =1 and $(1i) = —1i, then D is extendible to a conjugate-linear algebra isomorphism.

) If (1) =1, then @ is extendible to a real-linear algebra isomorphism.

\V]

) If (1) =1 and ¢(1i) = 1i, then P is extendible to a complez-linear algebra isomorphism.

Given a compact metric space X and z € X, denote
F.(X) = {f € exp Lip(X): |f(56)| =|flleo = 1}.
We prepare the proof of Theorem 1 proving first the following lemma.

Lemma 3. Let X be a compact metric space and f,g € Lip(X).

i) Ifx € X and f(x) # 0, then there exists hy , € exp Lip(X) such that hy .(X) C (0,1], hyz(x) =1 and,
forall z € X with z # x, hyo(2) <1 and |hy(2)f(2)] < |f(2)].
ii) If v,z € X and F,(X) C F,(X), then z = x.
iii) |f| < |g| if and only if || fh||cc < ||gh|leo for all h € exp Lip(X).

Proof. i) Let 2 € X with f(z) #0, g1,92: X — (—00,0] be defined by

N IE]
=) = {0’1 @) }
92(2) = —d(a;,z),

and let hy, = exp(g1 + g2). Clearly g1, g2 € Lip(X) and, taking into account that e!=* < 1/t for all t > 1,
it is easy to prove that hy , satisfies the conditions given in the statement i).

ii) Given z,z € X with F,(X) C F,(X), just consider hy , € F,(X) to see that z = x.

iii) If [f] < |g|, it is clear that ||fhllcc < ||gh|leo for all A € expLip(X). Reciprocally, assume that
| fhlloo < |lgh|loo for all A € expLip(X). Let x € X. Suppose |g(z)| < |f(z)| and let € be a real number such
that |g(x)| < e < |f(x)|. By the continuity of g at z, there exists > 0 such that |g(z)| < ¢ for all z € X
with d(x, z) < d. Let h be in exp Lip(X) defined by

h(z) = exp(—d(a;’ ?) 1n<‘E + lgloo)), VzeX.

An easy calculation shows that ||gh||s < &. Therefore
e <[f(@)] = [f(@)h(x)| <[ fhllo < llghllo <,
which yields a contradiction. This proves that |f| <|g|. O

Our next purpose is to show that each surjection @:exp Lip(X;) — exp Lip(X3) that satisfies the non-
symmetric-quotient norm condition for the uniform norm gives rise to a homeomorphism ¢: X — X; in
such a way that |[®(f)(y)| = |f(é(y))| for all y € X5 and f € exp Lip(Xy).

Proposition 4. Let X7 and Xo be compact metric spaces and let @ be a surjective mapping from exp Lip(X7)
to exp Lip(X2) such that #(1) =1 and

H% - 1”0o = H% - 1”00, Vf, g € exp Lip(Xy).

Then the following assertions hold:
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i) @ is injective.
i) 19/ flloe = |18(5)/8(/)loe for all f,g € expLip(X:).
i) lglloe = |9() o0 for all g € expLip(Xy).
iv) Given f.g € expLip(Xy), |f] < |g if and only if |9())] < |#(g)!
v) For each x € X there is a unique y € Xo such that (F(X,)) C Fy(X2).

) There exists a homeomorphism ¢: Xo — X1 such that |D(f)(y)| = |f(é(y))| for all y € X5 and f €
exp Lip(X1).

vi

Proof. i) If f, g € exp Lip(X;) satisfy @(f) = ®(g), then ||g/f — 1| = [|2(9)/P(f) — 1||cc = 0, thereupon
f=g
ii) Let f,g € expLip(X;) and € > 0. It is clear that

(o) atal. <o)t 2. 15

7l -+

f

Hence

29 a2 1 2\ 1
1) = e Co)atn L <[ Co)agn)
Jo(2) 9] e (20
‘F<£>aw Al T SET B0
that is, ||g/fllce < (1 + €)||2(9)/P(f)||« + €. By the arbitrariness of ¢, we deduce that ||g/f|lcc <

|8(9)/®(f)|lco- As @ is bijective by the assumption on @ and i), #~1 is well defined and the opposite
inequality results from the fact that ®~! has the same properties as ®.

+1,

‘ oo

iii) follows immediately from ii) taking into account that ¢(1) = 1.

iv) Fix f,g € expLip(X;) and suppose that |f| < |g|. Then ||f/h|lco < |lg/h|co for all h € exp Lip(X7).
By ii), it follows that || 2(f)/®(h)|lec < [|2(9)/P(h)||oo for all A € exp Lip(X7). Given k € exp Lip(X2), as
& is surjective, there is h € exp Lip(X;) such that &(h) = 1/k. Therefore || D(f)k|s < ||P(9)k|loc for all
k € expLip(X3). Thus, by Lemma 3, |®(f)| < |@(g)|. Conversely, assume that |®(f)] < |&(g)|. Since &1
has the same properties as @, we infer that |f| = [®~2(®(f))| < |2~ 1(®(9))| = |g|-

v) We follow here the method of proof used in [15]. Let x € X;. For every f € F,(X1), define

= {y € X2 [2(f)(y)] = 1}.

Since X5 is compact, we deduce from iii) that P(f) is nonempty. Furthermore, it is easy to prove that the
family {P(f): f € F,(X1)} has the finite intersection property simply by considering fi,..., fn, € Fp(X1)
and taking g = f1--- f. Consequently, nfeFI(Xl) P(f) is nonempty, and picking y € ﬂfer(Xl) P(f), it is
clear that ®(F,(X1)) C F,(X2).

To prove the uniqueness of y, pick z € Xy with &(F,(X;1)) C F,(X2). Let g € expLip(X;) and h €
exp Lip(X3) be the functions defined by

glw) =D Vwe Xy h(w) = e BV, Yu € Xa.
Since @ is surjective, ¢(f) = @(g)h for some f € expLip(X;). Obviously, |2(f)| = |2(g)|h < |P(9)].

Then, by iv), it follows that |f| < |g|. Moreover, as g € F,(X1), it holds that ®(g) € F,(X2) N F.(X2).
Thus

1flle = |2, = |29)R| . = |2(9)(W)h(y)| = 1.
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Now an easy calculation shows that f € F,(X7). By assumption, ¢(f) € F,(X2), whereupon
L= |¢(f)(z)} = |¢(g)(2)|h(z) — e—dz(z,y)’

and this implies that z = y.

vi) Let ¢: X7 — X5 be the map that takes every point x € X; to the unique point ¢(z) € X5 satisfying
B(Fy(X1)) C Fy(z)(X2). Analogously, we can define a map ¢ : X3 — X7 such that = (F,(X3)) C Fy,(X1)
for all y € Xo. From Lemma 3, it follows that ¢ is bijective and ¢~! = 1. Moreover, given f € exp Lip(X})
and z € X, it is obvious that the function h; /¢, obtained in Lemma 3 belongs to F.(X1). Thus ®(hy,y,,) €
Fy(z)(X2) and we have

L (@U@ S| [P .
r¢<f><w<x>>r“ () (@) ‘gH &(f) LO‘H [ ek

Hence | f(z)| < |@(f)(x(2))|. Similarly, |g(y)| < [®71(g)(¢(y))| for ally € X5 and g € exp Lip(Xs). Therefore
[f ()| = 12(f)(y)] for all y € X5 and f € exp Lip(Xy).
Now, we prove that ¢ is continuous. Let yg € X2 and € > 0. Consider h € exp Lip(X;) defined by

dy(z, ¢(y0))

>, Ve € X,
9

h(z) = exp (—
and fix U = {y € Xo: |®(h)(y)| > 1/e}. Notice that U is an open neighborhood of yo in X5. Furthermore,
given y € U, we have 1/e < |@(h)(y)| = |h(¢(y))|, and thus di(¢(y), ¢(yo)) < €. Hence ¢ is continuous at yo.
As ¢ is bijective and continuous, X5 is compact and X is Hausdorff, then ¢ is a homeomorphism. O

The following straightforward lemma will facilitate the reading of the subsequent proofs.

Lemma 5. Let o, 5 € C.

i) If la—1| =8|+ 1 and |a| = |B], then a = —|f|.
i) If 18| =al, | =1 < |a—=1| and |5+ 1| < |a + 1], then =« or f = @.

Next we study the homogeneity of the mapping @ on constant functions.

Lemma 6. Let X1 and X5 be compact metric spaces, P :exp Lip(X;) — exp Lip(X2) be a surjective mapping
such that ®(1) = 1 and

R R

and let ¢: X9 — X1 be the homeomorphism obtained in Proposition 4. Then:
i) @(ah)(y) = @(al)(y) for all « € C\{0}, y € Xo and h € Fy,)(X1) with h(¢(y)) = 1.

ii) @(—al) = —&(al) for all a € C\{0}.

iii) Given y € Xa, either ®(i1)(y) =i or ®(il)(y) = —i.

iv) Ify € Xy and ®(i1)(y) =i, then $(al)(y) = « for all o € C\{0}.

v) If y € Xy and &(i1)(y) = —i, then ®(al)(y) = @ for all o € C\{0}.

Proof. i)-ii) Let y € Xy, a € C\{0}, h € Fy,)(X1) with h(¢(y)) = 1, and let g € Fy(,)(X1) be de-
fined by g(z) = exp(—di(z,é(y))) for all z € X;. Since ||P(ag)/P(—a/h) — 1| = |[-gh — 1||oc = 2
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and X, is compact, we can find z € X5 such that |®(ag)(z)/®(—a/h)(z) — 1| = 2. Proposition 4 iv)
yields

®(ag)(2)
b(—a/h)(z)

This clearly forces z = y. Consequently, we have

2< +1= [a ()16 +1 < g(6(2)) +1= @@ 11

\M _ 1\ i ‘M
P(—a/h)(y) ’ d(—a/h)(y)

By Lemma 5 i), it follows that ®(ag)(y) = —®(—a/h)(y). Analogously, ®(ah)(y) = —P(—a/g)(y). Since h
is arbitrary, in particular,

-

P(ag)(y) = —2(—al)(y),  P(ag)(y) = —P(—a/g)(y) = (al)(y),
and thus
—&(—al)(y) = P(ag)(y) = P(al)(y).

iii) Let y € X5 and o € C\{0}. From Proposition 4 iv) we can deduce that |®(a1)(y)| = |a|. By using ii),
it follows that

P(—al)

|P(al)(y) + 1] < [|@(ed) + 1| = H O 1”00 = |a+1].
Moreover
|P(a1)(y) — 1| < Hq;?ll)) - 1HOO =la—1].
Now Lemma 5 ii) gives
P(al)(y) =a or P(al)(y) =a. (2.1)

In particular, for a = 4, it holds @(i1)(y) =i or ®(i1)(y) = —i.
We next show that iv) and v) follow analogously. So, fix y € X5 and assume @(i1)(y) = i. Let a € C\{0}.
Then assertion ii) gives

- ﬁ,l‘:ua—ly
—1

|id(a1)(y) — 1| = ‘ P(al)(y) 1‘ - H P(al)

P(—i1)(y) P(—i1)

and, similarly, [i®(al)(y) + 1| < |ia + 1|. Moreover, by Proposition 4 vi), it is clear that |i®(al)(y)| =
licel. Thus, taking into account Lemma 5 ii), it follows that Re(i®(al)(y)) = Re(ia), or equivalently
Im(®(al)(y)) = Im(«). From (2.1), we deduce that ¢(al)(y) = «. O

H()O

We now are ready to prove Theorem 1.

Proof of Theorem 1. It is straightforward to check that every surjective mapping @ of the form given in the
statement of Theorem 1 verifies
g ?(g) H .
=—1f| =|=5-1|| , Vf,g€ expLip(Xy). 2.2
i I ) 22

o0
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Let us prove the contrary implication. Suppose first that & satisfies #(1) = 1 and (2.2), and let
¢:Xs — X; be the homeomorphism obtained in Proposition 4. Let f € expLip(X;), y € X, and
ha/f.6(y) € Fory)(X1) be the function given in Lemma 3 i). Set

o Z2DW) - Re(a) + B(i1) () Tm(a).

[f (@)’

By applying Lemma 6, we obtain

PWhapew)) | (SO0 | || ||,
o(f)(y) o(f)(w) o(f) () [f(o(y))] [few)l
hence
1 DAy s.6) H H My f.(y) H
I<||l—7——-1| =||——F77-1] .
7wl ST N -
From Proposition 4 vi) and Lemma 6 iv), v) we have |A\| = |a| = 1, hence
Ah1ygo) () 1’ ’)‘hl/f@(y)(x) ) 1 .
= ST T S e
for all x € Xy with  # ¢(y). Now the compactness of X; gives
‘ A ‘ _ ‘Ahl/f,¢<y>(¢(y)) _ 1' _ H)‘hl/f,¢(y) _ 1” __ 1
f(o() f(o() f o 1F(8))]

In view of Lemma 5 i), this shows that A/ f(¢(y)) = —1/|f(¢(y))|- As a consequence,

{é(f)(y) if 2(i1)(y) = 1,
e(f)y) it &(i1)(y) = —i,

that is,

Flol) i Bi1)y) = i
] =< 7
) {ﬂd@)ﬁ@mxwz—ﬂ

Now, if &(1) # 1, we can take &y = &/P(1). Then P, is surjective, Po(1) = 1 and ||g/f — 1|0 =
|20(9)/Po(f) — 1||c for all f,g € expLip(X;). By above-proved there is a homeomorphism ¢: Xy — X3
such that

P(1)(y) f(P(y)) if P(i1)(y) = iP(1)(y),

& _ T
() {@(1)(y)f(¢(y)) if ¢(i1)(y) = —iP(1)(y),

for every f € exp Lip(X7). Finally, just take

K ={ye Xy Oo(il)(y) =i} = {y € Xo:

which is a closed open subset by Lemma 6 iii). O
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3. Case: Lipschitz algebra norm

Let C(Y') be the algebra of all continuous complex-valued functions on a compact Hausdorff space Y. The
following proposition is a weaker version of the main theorem of Jarosz in [8] on surjective complex-linear
isometries 7' with 7(1) = 1 between complex-linear subspaces of C(Y) that contain constant functions
equipped with certain natural norms. Instead of these assumptions on T, we will assume here that T is a
surjective real-linear isometry with 7'(1) = 1 and 7'(i1) = i1 or —i1 between spaces Lip(X). We will apply
this proposition to prove the main theorem of this paper.

We first need the following terminology and notation introduced in [8]. Let A be a complex-linear subspace
of C(Y) that contains the function 1. By Ch A we denote the Choquet boundary of A, that is, the subset of
all points x € Y such that the evaluation functional at z, from A to C, is an extreme point of the unit ball of
(A, || - [loo)*- Recall that A is said to be regular if for any € > 0, any xp € Ch A and any open neighborhood
U of g, there is an f € A with || f|lcc < 1+4¢, f(zo) =1, and |f(z)| <eforz € Y\ U.

It is known (see [16]) that (Lip(X),| - loc + | - ||z, 1) is a semisimple commutative Banach algebra with
unit and the maximal ideal space of Lip(X) is homeomorphic to X. Then Lip(X) is a regular subspace of
C(X) by [8, Proposition 2].

If K and H are subsets of C, we represent by co(K) the convex hull of K and

K+H={w+z wekK, z€ H}.
If f € Lip(X), we put o(f) = co(f(X)). For zy € C and r > 0, we write
K(z0,7) ={z€C: |z — 2| <r}, K(r)=K(0,r),
and, for K C C and 2y € K, we denote

p(K,z0) =sup{r > 0: 3z € K, zp € K(z,7) C K},
p(K)=inf{p(K,z): z€ K}.
Proposition 7. Let X; and X5 be compact metric spaces and let T be a real-linear isometry from

(Lip(X1), || - ln) onto (Lip(Xa), || - ll2), where |- l; = | - llo + I - Iz for j = 1,2, with T(1) = 1 and
either T(i1) =il or T(il) = —il. Then T is an isometry from (Lip(X1), || - ||so) onto (Lip(X2), || - ||co)-

Proof. We only give a proof when 7'(i1) = i1. The case T(il) = —il can be deduced from the case

T(i1) = il considering the mapping T from Lip(X;) onto Lip(Xs) defined by T(f) = T(f) for every
f € Lip(X1).

We follow essentially the proof of [8, Theorem| although some parts have to be revised to fit for our 7.
For any nonempty bounded convex subset K C C and any ¢ € [0, 27), define

¢(K,p) =sup{a € R: there is a b € R with (a + ib)e’? € K }.
For j =1, 2, define the functions
¢j:Lip(X;) x [0,2m) = R, ¢;(f,0) = c(5(f), 0),
and

rj:Lip(X;) x RT x [0,2m) = RY,  rj(f,t,0) = ||f + 1] .
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For every ¢ € [0,27), f € Lip(X;) and t € RT, we have

(o) <ri(fite) <\ (E+ ¢ (f0) + 1%

and therefore

lim (r;(fit,0) —t) = c;(f, ). (3.1)

t—-+o00

Fix f € Lip(X;). Using that T is a real-linear isometry, 7(1) = 1 and 7'(i1) = i1, a simple calculation
yields

ri(fits o) + 1 flle = r2(T ()t o) + || TP,

for any t € RT and ¢ € [0,27). Using (3.1), it follows that

2(T(f).¢) —er(f0) = Il = |T(HI] (3.2)

for all f € Lip(X;1) and ¢ € [0, 27).
For every f € Lip(Xy), set Af = ||fllz — [|T(f)||z- Since T is an isometry from (Lip(X3),] - ||1) onto
(Lip(X2), [ - [l2), we get that

Af =T = I flloo- (3.3)

For any r > 0 and any nonempty compact convex subset K C C, we have that
c(K+K(r),¢) =cK,o)+r (3.4)
for all ¢ € [0,27). By (3.2) and [8, Lemma 1|, we have

A

f F(T(f)) =o(f) + K(Af),
Af

0 =
0 = () =5(T() + K(-Af). (3.5)

NV

Since T~ satisfies the same conditions as T, the proof will be finished if we show that

7Dy = 1flloc = AF >0 (3.6)
for all f € Lip(X3). For every € > 0, denote
A = {f € Lin(X1): p(3(f)) <=).
The inequality in (3.6) follows from the following assertions:
(1) T is a continuous mapping from (Lip(X7), || - ||eo) onto (Lip(X2), || - ||oo)-
(2) For each € > 0, the set A. is dense in (Lip(X1),| - ||oo)-

(3) For each € > 0 and each f € A., we have that || T(f)||c = || fllcc — €.

The proof of the second and third assertions is the same as in the proof of [8, Theorem|. The proof of the first
one is slightly different from the corresponding in [8, p. 69]. This change is rather ambitious. We also point
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out that the terms —7/2 and 7/2 which appear in the formulae (7) and (8) in [8] seem not be appropriate;
they read, for example, as 37/4 and 7 /4, respectively.

We now proceed to prove the first statement. Aiming for a contradiction, suppose that 1" is not continuous
from (Lip(X1), || - |loo) to (Lip(X2), || - ||cc)- Let & be a positive real number less than 1/100. Then there is a
function fy € Lip(X1) such that || fo|lco < € and || T(fo)|lcoc = 1. Then there exist yo € X2 and ¢q € [0,27)
such that T'(fo)(yo) = €'¥°. Note that if T" is complex-linear, we may assume without loss of generality that
o = 0 as in [8], but we cannot assume this here for our 7'

From (3.3) and (3.5), we deduce that Afy = ||T(f0)]loco — || folloo = 1 —€ and a(T'(fo)) = (fo) + K(Afo).
Thus we have

K(1—2¢) ca(T(fo)) C K(1). (3.7)
Consider the open neighborhood Uy of o in X, given by
UO = {y € X21 ‘T(fg)(y) — 61'%00‘ < 6}.

We infer that Uj is a proper subset of X by (3.7). Then, by [8, Lemma 2|, there exists g € Lip(X3) such
that ||gllec < 1+¢, g(yo) =1, |g(y) + 1| < & for every y € X2\Up and |Img(y)| < € for all y € Xo. If H
denotes the closed rectangle whose vertices are the four points +(1 + ¢) 4 €i, we have

o(g) C H. (3.8)
Consider now the set
L= {Gm/490) 2] <1, Rez > 1 -2}
We claim that T'(fo)(X2) N L # (0. Suppose that T'(fo)(X2) N L = 0. Then (3.7) gives T'(fo)(X2) C K(1)\L.
Hence &(T'(fo)) is contained in the convex set K (1)\L. On the other hand, (1 —2¢)e!37/4+¢0) ¢ K(1—2¢) C
a(T(fo)) by (3.7). As (1 — 2¢)e?®3/4+¢0) ¢ [, this contradicts to (T (f)) € K(1)\L, and this proves our

claim. Hence there is y € X3 with T(fo)(y) € L. As ¢ < 1/100, it follows that |T'(fo)(y) — €*?°| > € and so
y € X2\Up. Hence

[(T(fo)(y) =€) — (e g(y) + T(fo)W))| = |9(y) + 1| <&,

and this says us that e*#°g(y) + T'(fo)(y) is in K(T(fo)(y) — €*¥°,¢). Then e**°g(y) + T(fo)(y) is in L —
e"0 + K(g). Thus we have

S

; 3
1+ 7 —3e < ¢ (6“’009 + T(fo), Zﬂ- + QO()) . (39)

We claim that
g(e"°g+T(fo)) C co(K(—e*,1) U {2e"°}) + K(3e).

Let © € X5. We distinguish two cases. Suppose first that |T'(fo)(z) — e'#°| < €. Since e*¥0g(X5) C ¥ H by
(3.8), we have

T(fo)(x) + eog(z) € K(ewo, 5) + e H =0 (H + 1) + K(e). (3.10)
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Secondly suppose that |T'(fo)(x) —e'¥°| > . Then z € X5\Up and so |e??0g(x) +e'¥°| < €. Hence |e??°g(x)+
T(fo)(z) — (T(fo)(z) — €¥0)] < e and thus e*og(z) + T(fo)(z) is in K(T(fo)(x) — €'?°, ). Moreover,
|T(fo)(x)| < 1. Therefore we have

e¥og(z) + T(fo)(z) € K(1) — "%° + K(c) = K(—€%°,1) + K(e). (3.11)
It follows from (3.10) and (3.11) that
(ewog +T(fo0))(X2) C (K(—ewo, 1Hu e (H + 1)) + K(e).
Furthermore, it is easy to see that H C co(K(—2,1) U {1}) + K(2¢), whereupon
K(—e"°,1) Ue™(H +1) C co(K(—€°,1) U {2e"°}) + K(2¢).
Hence
g(e"°g+T(fo)) C co(K(—e*?,1) U {2e#°}) 4+ K (3¢)

as is claimed. Therefore we have
Co (ewog +T(fo), — + g00> <V2+ 36 (3.12)

Put fi = T 1(e¥0g). We claim that Af; < e. If Af; < 0, there is nothing to prove. Suppose that
Afi =2 0. Then, by (3.5), we have

g(e'0g) = (f1) + K(Afr). (3.13)

Since 7 (e'¥0g) C e*°H by (3.8), it follows that e H D &(f1) + K(Af1). As €0 H does not include a
closed disk with the radius greater than e, we conclude that Af; <e

In the following we will consider two cases: 0 < Af; < e and Af; < 0. Suppose first that 0 < Af; < e.
Then (3.8) and (3.13) yield

PO H > 5(ei"’og) =0a(f1) + K(Af1) D a(f1).

From || fo||so < € we deduce that (fp) C K(¢). From (3.4) we infer that

<f1+f0,3—+</90> <C<€WOH+K( ), 34 +<Po>

= c(eon — 4+ <p0>

= g + (14 V2)e. (3.14)

By (3.13) and e = e¥?0g(yy), we deduce that e € 5(f1) + K(Af1). Thus there is z € 5(f1) such that
|z — eto| < Afy. It follows that v/2/2 — Afy < c1(f1,7/4 + o), hence we have

V2

5~ 2 < (fl + fo, + @0) (3.15)

as [[folle <eand 0 < Afy <e.
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Since T'(f1 + fo) = e*°g + T(fo), from (3.9) and (3.14) we obtain that

1—(4+V2)e< ( (f1+ fo), — +g00> - <f1+f0,3 —HOo) (3.16)
We also get by (3.12) and (3.15) that
( (fr+ fo)s + <Po> —c <f1 + fo, + 900> < g + 5e. (3.17)

On the other hand, co(T'(f1+ fo), ¢) — c1(f1 + fo, ) does not depend on ¢ by (3.2). From (3.16) and (3.17)
we deduce that € > (2 — v/2)/2(9 + v/2) and this contradicts that ¢ < 1/100.
For the second case, suppose next that Af; < 0. Then, by (3.5), we have

a(f1) = o (e"*°g) + K(—Af), (3.18)

and, by (3.8), it follows that o(f1) C e H + K(—Af1). Moreover, 5(fy) C K(¢) since || fo]loo < €. Using
(3.4), we infer that

<f1+f07 +<P0>

/—\

3
e H + K(—Afy) + K(e), Zﬂ +<P0>

/—\

37
€O H, +g00> +(-Af1) +e

+(1+V2)e + (Af). (3.19)

[

By (3.18), we obtain that o(f1) D e™0g(X2) + K(—=Af1), and as e?°g(yg) = e'°, we infer that (f1) D
€0 + K(—Afy). Hence v2/2 + (—=Af1) < e1(f1, /4 + ¢o), so that

? +(-Af) - <f1 + fo, + <Po> (3.20)
as || folleo < &. Since T(f1 + fo) = €'?°g + T(fy), we obtain by (3.9) and (3.19) that
1= (Ve - (-af) < T+ . 5 o) —aa (5t fo 2 4 ) (3.21)
We also obtain by (3.12) and (3.20) that
( (fi+ fo), 7 + <p0> - (fl + fo, + <po> < ? +4e — (=Afy). (3.22)

Since co(T(f1 + fo), ) — c1(f1 + fo, ) does not depend on ¢ by (3.2), from (3.21) and (3.22) we deduce
that ¢ > (2 — v/2)/2(8 + v/2) and this is impossible since ¢ < 1/100. This completes the proof of the
proposition. O

The following is the main result in this paper.

Theorem 8. Let X1 and X5 be compact metric spaces, let @ be a mapping from exp Lip(X1) into exp Lip(Xs)
and let || - |l; = |- oo + || - || for j = 1,2. Then ® is a surjective mapping that satisfies the non-symmetric-
quotient norm condition for the Lipschitz algebra norm:
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Z_1

7 , Vf,g € expLip(Xy),

I
2

D(g)
'% !

1 ‘

if and only if there exists a surjective isometry ¢: Xo — X1 such that

for ally € Xo and f € exp Lip(X1), or

for ally € Xo and f € expLip(X1). If, in addition, ®(1) = 1, then ® is extendable to either an isometric
complez-linear algebra isomorphism or an isometric conjugate-linear algebra isomorphism.

From the description given for @, we give sufficient conditions for @ is extendable to be an isometrical
algebra isomorphism.

Corollary 9. Let X1 and X be compact metric spaces and let @ be a surjective mapping from exp Lip(X1)
to exp Lip(X2) satisfying the non-symmetric-quotient norm condition for the Lipschitz algebra norm. Then
the following assertions are satisfied:

(1) If #(1) = 1 and &(1i) = 1i, then @ is extendable to an isometrical complez-linear algebra isomorphism.
(2) If (1) = 1 and ®(1i) = —1i, then ® is extendable to an isometrical conjugate-linear algebra isomor-
phism.

Proof of Theorem 8. Suppose that @ has the form of a weighted composition operator as in the statement
of Theorem 8. Using that ¢ is bi-Lipschitz, we infer that @ is surjective. A simple calculation shows that @
satisfies the non-symmetric-quotient norm condition.

Suppose conversely that @ is surjective and obeys the non-symmetric-quotient norm condition. For j =
1,2, define

dj(f,g)zHg—l g—l (f,9 € expLip(X;)).

f

4

J J

Clearly, d;(f,g) = 0, and d;(f,g) = 0 holds only if f = ¢g. Now define

2(f) .
Do(f) = a(1) (f € expLip(X1)).
By an easy verification we deduce that @ : exp Lip(X;1) — exp Lip(X2) is bijective and satisfies the equality
da(Po(f), Po(g)) = di(f,g) for all f,g € expLip(X;). We claim that

D0(9f9) = Po(9)Po(f)Po(9)

for every pair f,g € exp Lip(X7). We will use [3, Corollary 3.9] to prove this equality. Let f = exp(u) and
g = exp(v) be in exp Lip(X;) for u,v € Lip(X;). Let € be a positive real number with £(3¢/2 +5) < 1/4.
We infer there is a positive integer n with
+(u —v)
exp (W) -1

e
<= (3.23)
L 4
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For 0 < k < 27, put

fr :exp<u— %)

Then fo = f, fon-1 = g and for = gf 'g. We also have fiio = fk+]_fk_1fk+1 for 0 < k < 2" — 2. For
0<k<2" -2, set

Ly frp = {h € expLip(X1): di(fx, h) = di(frra, h) = di(fe, fuy1)}-

Note that di(frt2, fer1) = d(fx, fes1), hence fry1 € Ly, 5., ,- Note also that di(fx, fr41) < € by (3.23)
since fr41/fe = exp(—(u —v)/2""1). We first observe that dy(h, fx11) < 1/4 for every h € Ly, ,.,. To
prove this, let h € Ly, 7, .. Since

max{‘% R %—1“ }gdl(fk,h):dl(fkafk+l)<€
L oo
we have
o < () 4] (52

di(fxs fk:+1)<

()]
(o ()

dl(fk,fm)(i ) (d(Fis firr) +1) 7 < G+§)

In a similar way we obtain

o 9
fet1 L \4 2)
On the other hand, we check that
T N /e =
h oo h o0

<

oo o5 -

5
caun(5+1)+S<o(542).

h e b
-1 L<el-4+-].

Finally, we obtain the desired inequality

5 € e 5 3e 1
dl(h,fk+1)\2€<4+2>+2€(4+4> 6(2 +5><4 (3 )

)]

Similarly, we get
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for every h € Ly, r,.,. We also have

I(5)

A Srrr Sr+1
) (B maen)

L
ot - (5
h L h L
> 9 fer1 _2’ Je1 _lH ‘f}c-&-l 1
h L h wll B L
Sr+1
2(1_d1(h>fk+1)) h =1y
L
and
no\2
PN | s e —an H .
H(fk—i—l) L > 2 1k fit1) Jet1 L
On the other hand, we get
Jr41 2_1 >2fk+1_1 fk+1_12
h oo oo h o0
Jr+1
> 2(1—di(h, fru+1)) i 1y
and
) 7=l
-1 1 —dy(h, .
|(75) 220w sz ],
It follows that
di (fe1h ™ frsr, h) = 2(1 = dy(h, frg1))da(frgrs h)
3
> 2<1 — 6<?8 + 5)>d1(fk+1,h)
3
= §d1(fk+lvh) (3.25)
for every h € Ly, 7. ,. By a simple calculation we have
di (fes1F " frsts for1 G fign) = da(F, G) (3.26)

for every F,G € exp Lip(X1). By [3, Definition 3.2], we have proved that the pair (exp Lip(X1), d1) satisfies
the condition B(fx, fx+1) for every 0 < k < 2™ —2 by (3.24), (3.25) and (3.26). Moreover, it is easy to see
that the pair (exp Lip(X2),ds) satisfies the condition C1(Po(fx), Po(frt1fy  frt1)) (cf. [3, Definition 3.3]).
Then, by [3, Corollary 3.9], the equation

Py (frrrfi frrr) = Po(fer1)@o(fr) ' Dol frsr)

holds for every 0 < k < 2" — 2. Applying [3, Lemma 4.2], we deduce that

Bo (fon-1 [y fan-1) = Po(fan-1)Po(fo) ' Po(fon-1).
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Since fo = f and fon—1 = g, we have
Do (9f7"9) = Po(9)Po(f) ™ Po(9)
for every pair f, g € expLip(X7). Letting g = 1 in (3.27) yields
Go(f~1) =Po(f)!
for every f € expLip(X7). Then, by (3.27), we conclude that

Do(g9fg) = Po(9)Po(f)Po(9)

for every pair f, g € expLip(X7), and this proves our claim.
Then, it is easy to deduce from (3.28) and (3.29) that

Py (f") = Do (f)"

for every f € exp Lip(X;) and n € Z.
Pick u € Lip(X;) and define S,: R — exp Lip(X3) by

Su(t) = P (exp(tu)).

841

(3.27)

(3.28)

(3.29)

(3.30)

We assert that S, is a continuous one-parameter group with the values in exp Lip(X2). Suppose that to € R

and ¢ — tg. Then we check that

exp(tu) 1” o exp(tu) N
exp(tou) - ’ exp(tou) L
and
exp(tou) i 5o exp(tou) il 5o
exp(tu) - ’ exp(tu) I ’
hence

da (Do (exp(tu)), Po (exp(tou))) = di (exp(tu), exp(tou)) — 0

as t — to. Hence S, is continuous with respect to || - [|2. Notice that 5,,(0) = $¢(1) = 1. We now prove that
Su(t+ 1) = S,(t)S,(t') for every t,t' € R. First select rational numbers n/m and n’/m’ with integers m,

m/, n, n’. We compute
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Since S, is continuous, we obtain that S, (t +t') = S, (t)S.(t') for all ¢,¢ € R. Hence S, is a continuous
one-parameter group. Then, by [14, Proposition 6.4.6], there exists a unique v’ € Lip(X3) such that S, (t) =
exp(tu’) holds for every ¢ € R.

Define a mapping 7" : Lip(X;) — Lip(X3) for which

®o (exp(tu)) = Su(t) = exp(t(T(uv))) (t € R, u € Lip(Xy)).

Considering ;' in the place of &y, we infer that there is a mapping T":Lip(X2) — Lip(X;) such that
@yt (exp(tw)) = exp(tT'(w)) holds for every w € Lip(X3) and ¢ € R. This easily implies that w = T(T"(w))
for all w € Lip(X2). Hence T is a surjection from Lip(X;) onto Lip(Xs).

We next prove that T is an isometry from (Lip(Xy), || - [|1) onto (Lip(X2), || - ||2). Since

exp(tT(u))
exp({T(v))

exp(tu)
exp(tv)

2

1

for all t € R and u,v € Lip(X;), we obtain

exp(t(T'(u) = T(v))) — 1
t

exp(t(u—wv))—1
t

(3.31)

2

1

for t # 0. Given j € {1,2} and w € Lip(Xj), it is known that the function ¢ — exp(tw) from R to Lip(X;)
is derivable and its derivative function is ¢ — wexp(tw). In particular, the derivative of this function at 0
is w, that is, lim;_,¢(exp(tw) — 1)/t = w. Then lim;_,¢ ||(exp(tw) — 1)/t||; = ||w]||;. Letting ¢ — 0 for the
both sides of Eq. (3.31), we obtain that ||T'(u) — T'(v)||2 = ||u — v]||1 for every u,v € Lip(X;). Hence T is
a surjective isometry from (Lip(X1), | - ||1) onto (Lip(X2),| - ||2). We denote by 0 the function constantly
equal to 0. By the definition of 7', T'(0) = 0 is easily to be deduced. Then the celebrated Mazur—Ulam
theorem asserts that 7' is real-linear.

We claim that (1) = 1. In order to prove it, we first show that @y (e'/™1) = e!/"1 for all n € N. Suppose
that ||Bo(e'/™1)/e?/"1| s < 1 for some n € N. Then we have

()

as m — oo. Since @y(1) = 1 and Py (f™) = Po(f)™ for any f € exp Lip(X;) and m € N, we obtain that

@0(61/711)
el/n

—0

B (el/m1) Hm—l
L

= 1/n
L H el/

o0

em/n1 — 1

_ —m/n:
1—e ey

1
Do(em/"1) — 1

em/n

2

@0(61/711)
el/n

@O(Cm/nl)

S em/n

— 0
L

m
H +em/”+‘

as m — oo, which is a contradiction. Thus
|20 (/1) || = et/ (3.32)

for all n € N. We compute
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e S
= [[@o(e""1) — 1],
> [[@o(e 1)l o =1+ [[@o(e/"1) ~ 1]
> et/ — 14 ||Po(e/m1) — 1,

Hence we infer that ||@g(e'/"1) — 1|/ = 0, and thus @o(e'/™1) is a constant function. By
1/n 1/n 1/n 1/n
/" =1 =l 1) = [[@o (/1) = 1|, = [|o (/1) — 1]
and (3.32), we obtain that @y(e!/"1) = e'/*1. Thus, by the definition of T, it follows that
exp(1/nT(1)) = Pg (61/"1) =et/mM

for all n € N. Hence n(e7(M/? —1) = n(e'/"1 —1) for all n € N, and letting n — oo we infer that 7(1) = 1.

We claim that T'(i1) = i1 or T'(i1) = —il. By the definition of T" and (3.30), we obtain that ®¢(—1) =
Do (exp(im)l) = exp(nT(il)) and Po(—1)? = 1. As &g is injective and Py(1) = 1, we deduce that the
function ®@¢(—1) takes the value —1. On the other hand, we compute

2=|-1-1| = |[®o(~1) — 1|, = ||Bo(~1) — 1| _ + ||@o(~1) — 1|,

As &y(—1) takes the value —1, we obtain ||@o(—1) — 1||cc = 2, hence ||@o(—1) — 1||z = 0, so that Po(—1)
is a constant function. As @y(—1) takes the value —1, we conclude that &¢(—1) = —1. Thus

—1 = Py(—1) = Py (exp(im)1) = exp(nT(il)).

Hence, for every = € X, there is an integer [, such that T'(i1)(x) = (2l + 1)i. Since T is an isometry, we
compute

V2 =it =1k = |[T@1) = T, = [|T@1) = 1] +[|T61) 1]

Since T'(i1)(z) = (2, + 1)i, we obtain I, = 0 or I, = —1, and ||T'(41) — 1|| = 0. Hence we infer that
T(i1) = i1 or T(i1) = —il.

By Proposition 7, we see that T is a surjective real-linear isometry from (Lip(X3i),]| - ||oo) onto
(Lip(X2), || - [|e)- Hence T' can be extended to a surjective real-linear isometry 7' from the uniform closure
of Lip(X1) onto the uniform closure of Lip(Xs). By the Stone-Weierstrass theorem, the uniform closure
of Lip(X;) is C(X;), the algebra of all complex-valued continuous functions on X;, j = 1,2. Thus T is a
surjective real-linear isometry from C'(X7) onto C(X32). Applying a theorem of Miura [11, Theorem 1.1], for
example, there exists a homeomorphism ¢ from X5 onto X; such that

T(u) =uop, YueC(Xy)
if T(i1) = i1, or

T(u) =0, YueC(Xy)
if T'(i1) = —i1. By the definition of T, we obtain that

O(f)=2(1)-(foe), VYfe€expLip(Xy),
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or

P(f) =P(1)-(fo¢), VfeexpLip(Xy).

The rest of the proof is to observe that ¢ is an isometry. We can prove it in the same way as in the
proof of [1, Theorem 2.1]. Since T'(0) = 0, T is an isometry from (Lip(X7), || -||1) onto (Lip(X2), || ||2), and
also an isometry from (Lip(X1),|| - [|eo) onto (Lip(Xa2),| - |lec), it follows that || T°(f)||r = || f]lz for every
f € Lip(X1). Let z,y € X,. Consider the function h, : X1 — R defined by

hy(2) = di(26(y)) (2 € X1).
For all z,w € X7, we have

|7y (2) = hy(w)] = [di(2,6(y)) = di(w, é(y))| < di(z,w).

Hence h, € Lip(X;) and ||hy||r < 1, so that ||T'(hy)||z < 1. Then

i ((2), () = |hy (¢(2)) = hy (6(v))]
= |T(hy)(z) — T(hy)(y)|
< do(z,y)

Considering T~ instead of T', we see in a similar way as above that da(¢~1(2), ¢~} (w)) < d1(z,w) for every
z,w € Xj. It follows that di(¢(x), p(y)) = da(z,y) for all x,y € Xo. O

Remark 10. Given a real number « € (0,1) and a compact metric space (X, d), let Lip, (X) be the Banach
algebra of all complex-valued functions f on X such that

f(z) = f(y)]

11z, =supd HEL= AL

xyy € X, :L‘;éy} < 00,
endowed with the norm ||f|lo = || f|lz.. + || f|lco- Define lip,, (X) as the subset of Lip, (X) formed by all those
functions f for which

d(g},ﬁ!o d(z,y)
Then lip, (X) is a closed subalgebra of Lip, (X) with maximal ideal space X and unity 1 (see [17]).

Let X7 and X5 be compact metric spaces and « in (0, 1). An analogous result to Theorem 1 can be stated
with a similar proof for surjections @:explip, (X1) — explip, (X2) satisfying the non-symmetric-quotient
norm condition for the uniform norm.

Analogously to Proposition 7, we may also show that if T is a real-linear isometry from (lip,, (X1), || [|«)
onto (lip,(X2), || - |la) with T(1) = 1 and either T'(i1) = i1l or T(:1) = —i1, then T is an isometry from
(lip,, (X1), ] - [loo) onto (lip, (X2), | - [loc). Using this result and following steps analogous to those of the
proof of Theorem 8 above, we obtain that if ¢ is a mapping from exp lip,, (X1) to explip,(X2), then @ is a
surjection satisfying the equality

2(g)

R

H?‘l

, Vf,g €explip,(X1),

o
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if and only if @ is of the form either &(f) = ®(1) - (f o ¢) for all f € explip,(X1), or &(f) = ®(1) - (f o ¢)
for all f € explip,(X1), where ¢: Xo — X7 is a surjective isometry. We only need to make a modification
in the final part of the proof of Theorem 8 and substitute the functions h, by the following functions h,,
(cf. the proof of [1, Theorem 2.1}). Fix x,y € Xa, x # y, choose 3 € (c, 1) and define hyy: X; — R by

d(Z, qs(y))ﬁ — d(za (b(x))ﬂ
2d(¢(x), d(y))P~

hay(2) =
Then hgy € lip,(X1) and ||hayl/z, =1 (see [10, p. 62]). An easy verification gives

d($(2),6(y))" = [hay (6(2)) — hay (¢(y))]
= |T(hay)(x) — T (hay) (v)]
T (hay)|| , dl,9)°
=d(z,y)".

Hence we have d(¢(z), ¢(y)) < d(z,y) for all z,y € Xo.
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