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Let Φ : exp Lip(X1) → exp Lip(X2) be a surjective mapping where X1 and X2 are
compact metric spaces. We prove that if Φ satisfies the non-symmetric-quotient
norm condition for the uniform norm:∥∥∥∥ gf − 1

∥∥∥∥
∞

=
∥∥∥∥Φ(g)
Φ(f)

− 1
∥∥∥∥
∞

(
f, g ∈ exp Lip(X1)

)
,

then Φ is of the form

Φ(f)(y) =
{
Φ(1)(y)f(φ(y)) if y ∈ K,

Φ(1)(y)f(φ(y)) if y ∈ X2\K
(
f ∈ exp Lip(X1)

)
,

where φ :X2 → X1 is a homeomorphism and K is a closed open subset of X2. On
the other hand, if Φ satisfies the non-symmetric-quotient norm condition for the
Lipschitz algebra norm:∥∥∥∥ gf − 1

∥∥∥∥
∞

+
∥∥∥∥ gf − 1

∥∥∥∥
L

=
∥∥∥∥Φ(g)
Φ(f)

− 1
∥∥∥∥
∞

+
∥∥∥∥Φ(g)
Φ(f)

− 1
∥∥∥∥
L

(
f, g ∈ exp Lip(X1)

)
,

we show that Φ is of the form

Φ(f)(y) = Φ(1)(y)f
(
φ(y)

) (
y ∈ X2, f ∈ exp Lip(X1)

)
,

or

Φ(f)(y) = Φ(1)(y)f
(
φ(y)

) (
y ∈ X2, f ∈ exp Lip(X1)

)
,

where φ :X2 → X1 is a surjective isometry.
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1. Introduction

Non-symmetrically norm preserving maps were initially studied in [5] motivated by the seminal paper
of Molnár [13] on the multiplicatively spectrum preserving surjections on certain Banach algebras. It was
proved that multiplicatively non-symmetrically spectral-radius preserving maps on commutative Banach
algebras are closely related to the isomorphisms on these algebras, and it turns several authors’ atten-
tion to the subject [9,2,7,4,12]. Miura, Honma and Shindo [12] considered the non-symmetrically quotient
spectral-radius preserving maps on semisimple unital commutative Banach algebras. They showed that such
maps are real algebra isomorphisms followed by multiplications. It is interesting to study such maps for the
original norms of the given Banach algebras, but it seems that there has not yet been a literature on the
non-symmetrically original norm preserving maps other than uniform norms. In this paper we give a result
for maps preserving (Banach algebra) norms of non-symmetrical quotients between groups of exponentials
of Lipschitz functions.

Throughout the paper, (X, d) denotes a compact metric space and let Lip(X) be the algebra of all
complex-valued Lipschitz functions f on X with the norm ‖ · ‖ = ‖ · ‖∞ + ‖ · ‖L, where

‖f‖∞ = sup
{∣∣f(x)

∣∣: x ∈ X
}

and

‖f‖L = inf
{
K > 0:

∣∣f(x) − f(y)
∣∣ � Kd(x, y), ∀x, y ∈ X

}
.

It is known (see [16]) that Lip(X) is a semisimple unital commutative Banach algebra. The unity of Lip(X),
denoted by 1, is the function constantly equal to 1 on X, and the maximal ideal space of Lip(X) is
homeomorphic to X. Hence the spectral radius coincides with the uniform norm on X for every function
in Lip(X). The group of all invertible elements in Lip(X) is denoted by Lip(X)−1 and exp Lip(X) =
{exp(f): f ∈ Lip(X)}. Note that exp Lip(X) is the principal component (the connected component of
Lip(X)−1 which contains the function 1) of Lip(X)−1.

From [12, Theorem 3.2] we infer that a surjection Φ : Lip(X1)−1 → Lip(X2)−1 satisfies the equality∥∥∥∥ gf − 1
∥∥∥∥
∞

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
∞

for every f, g ∈ Lip(X1)−1 if and only if there exists a homeomorphism φ :X2 → X1 and a closed open
subset K of X2 such that

Φ(f)(y) =
{

Φ(1)(y)f(φ(y)) if y ∈ K,

Φ(1)(y)f(φ(y)) if y ∈ X2\K,

for every f ∈ Lip(X1)−1. In Theorem 1, we show that this result also holds for surjective mappings
Φ : expLip(X1) → expLip(X2). Then we give in Corollary 2 some sufficient conditions for Φ to be ex-
tendible to an algebra isomorphism. Our method of proof of Theorem 1 is an adaptation of the reasoning
used in [2,9].

On the other hand, surjective isometries with respect to the Lipschitz Banach norm ‖ · ‖∞ + ‖ · ‖L
between groups expLip(X) are of a much restrictive form. Namely, we show in the main result of this
paper, Theorem 8, that Φ satisfies the non-symmetric-quotient norm condition for the Lipschitz algebra
norm:

E-mail addresses: hatori@math.sc.niigata-u.ac.jp (O. Hatori), ajimenez@ual.es (A. Jiménez-Vargas), moises.villegas@uca.es
(M. Villegas-Vallecillos).
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∥∥∥∥
∞

+
∥∥∥∥ gf − 1

∥∥∥∥
L

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
∞

+
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
L

(
f, g ∈ exp Lip(X1)

)
,

if and only if there exists a surjective isometry φ :X2 → X1 such that

Φ(f)(y) = Φ(1)(y)f
(
φ(y)

)
for all y ∈ X2 and f ∈ expLip(X1), or

Φ(f)(y) = Φ(1)(y)f
(
φ(y)

)
for all y ∈ X2 and f ∈ exp Lip(X1). Note that if, in addition, Φ(1) = 1, then Φ is extendible to either an
isometric complex-linear algebra isomorphism or an isometric conjugate-linear algebra isomorphism.

For the proof of Theorem 8, we first show by adapting the proof of Jarosz’s theorem on isometries in
semisimple commutative Banach algebras [8] that every real-linear isometry with respect to the Lipschitz
Banach norm T from Lip(X1) onto Lip(X2) such that T (1) = 1 and either T (i1) = i1 or T (i1) = −i1,
is an isometry from Lip(X1) onto Lip(X2) for the uniform norm. Apart from this fact, our approach for
proving Theorem 8 requires the use of tools concerning d-preserving maps between groups [3], continuous
one-parameter groups of functions [14], the famous theorems of Mazur–Ulam and Stone–Weierstrass and
real-linear isometries between function algebras [11]. We remark that the proof of Theorem 8 has been
motivated by the proof of Theorem 1 in [6].

We point out in a final remark that similar results to those above are valid for surjections Φ between
groups exp lipα(X) of spaces of little Lipschitz complex-valued functions on compact metric spaces (X, dα)
with α ∈ (0, 1).

2. Case: Uniform norm

Our purpose in this section is to obtain the following result.

Theorem 1. Let X1 and X2 be compact metric spaces and let Φ be a surjective mapping from expLip(X1)
to expLip(X2). Then Φ satisfies the non-symmetric-quotient norm condition for the uniform norm:∥∥∥∥ gf − 1

∥∥∥∥
∞

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
∞
, ∀f, g ∈ exp Lip(X1),

if and only if there exists a homeomorphism φ :X2 → X1 and a closed open subset K ⊂ X2 such that

Φ(f)(y) =
{

Φ(1)(y)f(φ(y)) if y ∈ K,

Φ(1)(y)f(φ(y)) if y ∈ X2\K,

for all f ∈ expLip(X1).

From the description given for Φ, we give sufficient conditions for Φ to be extendable to be an algebra
isomorphism.

Corollary 2. Let X1 and X2 be compact metric spaces and let Φ be a surjective mapping from expLip(X1) to
expLip(X2) satisfying the non-symmetric-quotient norm condition for the uniform norm. Then the following
assertions are satisfied:
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(1) If Φ(1) = 1, then Φ is extendible to a real-linear algebra isomorphism.
(2) If Φ(1) = 1 and Φ(1i) = 1i, then Φ is extendible to a complex-linear algebra isomorphism.
(3) If Φ(1) = 1 and Φ(1i) = −1i, then Φ is extendible to a conjugate-linear algebra isomorphism.

Given a compact metric space X and x ∈ X, denote

Fx(X) =
{
f ∈ exp Lip(X):

∣∣f(x)
∣∣ = ‖f‖∞ = 1

}
.

We prepare the proof of Theorem 1 proving first the following lemma.

Lemma 3. Let X be a compact metric space and f, g ∈ Lip(X).

i) If x ∈ X and f(x) �= 0, then there exists hf,x ∈ exp Lip(X) such that hf,x(X) ⊂ (0, 1], hf,x(x) = 1 and,
for all z ∈ X with z �= x, hf,x(z) < 1 and |hf,x(z)f(z)| < |f(x)|.

ii) If x, z ∈ X and Fx(X) ⊂ Fz(X), then z = x.
iii) |f | � |g| if and only if ‖fh‖∞ � ‖gh‖∞ for all h ∈ expLip(X).

Proof. i) Let x ∈ X with f(x) �= 0, g1, g2 :X → (−∞, 0] be defined by

g1(z) = min
{

0, 1 − |f(z)|
|f(x)|

}
,

g2(z) = −d(x, z),

and let hf,x = exp(g1 + g2). Clearly g1, g2 ∈ Lip(X) and, taking into account that e1−t � 1/t for all t � 1,
it is easy to prove that hf,x satisfies the conditions given in the statement i).

ii) Given x, z ∈ X with Fx(X) ⊂ Fz(X), just consider h1,x ∈ Fx(X) to see that z = x.
iii) If |f | � |g|, it is clear that ‖fh‖∞ � ‖gh‖∞ for all h ∈ expLip(X). Reciprocally, assume that

‖fh‖∞ � ‖gh‖∞ for all h ∈ expLip(X). Let x ∈ X. Suppose |g(x)| < |f(x)| and let ε be a real number such
that |g(x)| < ε < |f(x)|. By the continuity of g at x, there exists δ > 0 such that |g(z)| < ε for all z ∈ X

with d(x, z) < δ. Let h be in expLip(X) defined by

h(z) = exp
(
−d(x, z)

δ
ln
(
ε + ‖g‖∞

ε

))
, ∀z ∈ X.

An easy calculation shows that ‖gh‖∞ < ε. Therefore

ε <
∣∣f(x)

∣∣ =
∣∣f(x)h(x)

∣∣ � ‖fh‖∞ � ‖gh‖∞ < ε,

which yields a contradiction. This proves that |f | � |g|. �
Our next purpose is to show that each surjection Φ : expLip(X1) → exp Lip(X2) that satisfies the non-

symmetric-quotient norm condition for the uniform norm gives rise to a homeomorphism φ :X2 → X1 in
such a way that |Φ(f)(y)| = |f(φ(y))| for all y ∈ X2 and f ∈ expLip(X1).

Proposition 4. Let X1 and X2 be compact metric spaces and let Φ be a surjective mapping from exp Lip(X1)
to expLip(X2) such that Φ(1) = 1 and∥∥∥∥ gf − 1

∥∥∥∥
∞

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
∞
, ∀f, g ∈ exp Lip(X1).

Then the following assertions hold:



Author's personal copy

O. Hatori et al. / J. Math. Anal. Appl. 415 (2014) 825–845 829

i) Φ is injective.
ii) ‖g/f‖∞ = ‖Φ(g)/Φ(f)‖∞ for all f, g ∈ expLip(X1).
iii) ‖g‖∞ = ‖Φ(g)‖∞ for all g ∈ exp Lip(X1).
iv) Given f, g ∈ expLip(X1), |f | � |g| if and only if |Φ(f)| � |Φ(g)|.
v) For each x ∈ X1 there is a unique y ∈ X2 such that Φ(Fx(X1)) ⊂ Fy(X2).
vi) There exists a homeomorphism φ :X2 → X1 such that |Φ(f)(y)| = |f(φ(y))| for all y ∈ X2 and f ∈

expLip(X1).

Proof. i) If f, g ∈ expLip(X1) satisfy Φ(f) = Φ(g), then ‖g/f − 1‖∞ = ‖Φ(g)/Φ(f) − 1‖∞ = 0, thereupon
f = g.

ii) Let f, g ∈ expLip(X1) and ε > 0. It is clear that∥∥∥∥Φ(2
ε
g

)
1

Φ(g)

∥∥∥∥
∞

�
∥∥∥∥Φ(2

ε
g

)
1

Φ(g) − 1
∥∥∥∥
∞

+ 1 =
∣∣∣∣2ε − 1

∣∣∣∣+ 1 � 2
ε

+ 2.

Hence

2
ε

∥∥∥∥ gf
∥∥∥∥
∞

− 1 �
∥∥∥∥2
ε

g

f
− 1

∥∥∥∥
∞

=
∥∥∥∥Φ(2

ε
g

)
1

Φ(f) − 1
∥∥∥∥
∞

�
∥∥∥∥Φ(2

ε
g

)
1

Φ(f)

∥∥∥∥
∞

+ 1

=
∥∥∥∥Φ(2

ε
g

)
1

Φ(g)
Φ(g)
Φ(f)

∥∥∥∥
∞

+ 1 �
(

2
ε

+ 2
)∥∥∥∥Φ(g)

Φ(f)

∥∥∥∥
∞

+ 1,

that is, ‖g/f‖∞ � (1 + ε)‖Φ(g)/Φ(f)‖∞ + ε. By the arbitrariness of ε, we deduce that ‖g/f‖∞ �
‖Φ(g)/Φ(f)‖∞. As Φ is bijective by the assumption on Φ and i), Φ−1 is well defined and the opposite
inequality results from the fact that Φ−1 has the same properties as Φ.

iii) follows immediately from ii) taking into account that Φ(1) = 1.
iv) Fix f, g ∈ exp Lip(X1) and suppose that |f | � |g|. Then ‖f/h‖∞ � ‖g/h‖∞ for all h ∈ exp Lip(X1).

By ii), it follows that ‖Φ(f)/Φ(h)‖∞ � ‖Φ(g)/Φ(h)‖∞ for all h ∈ expLip(X1). Given k ∈ expLip(X2), as
Φ is surjective, there is h ∈ expLip(X1) such that Φ(h) = 1/k. Therefore ‖Φ(f)k‖∞ � ‖Φ(g)k‖∞ for all
k ∈ expLip(X2). Thus, by Lemma 3, |Φ(f)| � |Φ(g)|. Conversely, assume that |Φ(f)| � |Φ(g)|. Since Φ−1

has the same properties as Φ, we infer that |f | = |Φ−1(Φ(f))| � |Φ−1(Φ(g))| = |g|.
v) We follow here the method of proof used in [15]. Let x ∈ X1. For every f ∈ Fx(X1), define

P (f) =
{
y ∈ X2:

∣∣Φ(f)(y)
∣∣ = 1

}
.

Since X2 is compact, we deduce from iii) that P (f) is nonempty. Furthermore, it is easy to prove that the
family {P (f): f ∈ Fx(X1)} has the finite intersection property simply by considering f1, . . . , fn ∈ Fx(X1)
and taking g = f1 · · · fn. Consequently,

⋂
f∈Fx(X1) P (f) is nonempty, and picking y ∈

⋂
f∈Fx(X1) P (f), it is

clear that Φ(Fx(X1)) ⊂ Fy(X2).
To prove the uniqueness of y, pick z ∈ X2 with Φ(Fx(X1)) ⊂ Fz(X2). Let g ∈ expLip(X1) and h ∈

expLip(X2) be the functions defined by

g(w) = e−d1(w,x), ∀w ∈ X1; h(w) = e−d2(w,y), ∀w ∈ X2.

Since Φ is surjective, Φ(f) = Φ(g)h for some f ∈ exp Lip(X1). Obviously, |Φ(f)| = |Φ(g)|h � |Φ(g)|.
Then, by iv), it follows that |f | � |g|. Moreover, as g ∈ Fx(X1), it holds that Φ(g) ∈ Fy(X2) ∩ Fz(X2).
Thus

‖f‖∞ =
∥∥Φ(f)

∥∥
∞ =

∥∥Φ(g)h
∥∥
∞ =

∣∣Φ(g)(y)h(y)
∣∣ = 1.
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Now an easy calculation shows that f ∈ Fx(X1). By assumption, Φ(f) ∈ Fz(X2), whereupon

1 =
∣∣Φ(f)(z)

∣∣ =
∣∣Φ(g)(z)

∣∣h(z) = e−d2(z,y),

and this implies that z = y.
vi) Let ψ :X1 → X2 be the map that takes every point x ∈ X1 to the unique point ψ(x) ∈ X2 satisfying

Φ(Fx(X1)) ⊂ Fψ(x)(X2). Analogously, we can define a map φ :X2 → X1 such that Φ−1(Fy(X2)) ⊂ Fφ(y)(X1)
for all y ∈ X2. From Lemma 3, it follows that φ is bijective and φ−1 = ψ. Moreover, given f ∈ exp Lip(X1)
and x ∈ X1, it is obvious that the function h1/f,x obtained in Lemma 3 belongs to Fx(X1). Thus Φ(h1/f,x) ∈
Fψ(x)(X2) and we have

1
|Φ(f)(ψ(x))| =

∣∣∣∣Φ(h1/f,x)(ψ(x))
Φ(f)(ψ(x))

∣∣∣∣ �
∥∥∥∥Φ(h1/f,x)

Φ(f)

∥∥∥∥
∞

=
∥∥∥∥h1/f,x

f

∥∥∥∥
∞

= 1
|f(x)| .

Hence |f(x)| � |Φ(f)(ψ(x))|. Similarly, |g(y)| � |Φ−1(g)(φ(y))| for all y ∈ X2 and g ∈ expLip(X2). Therefore
|f(φ(y))| = |Φ(f)(y)| for all y ∈ X2 and f ∈ expLip(X1).

Now, we prove that φ is continuous. Let y0 ∈ X2 and ε > 0. Consider h ∈ expLip(X1) defined by

h(x) = exp
(
−d1(x, φ(y0))

ε

)
, ∀x ∈ X1,

and fix U = {y ∈ X2: |Φ(h)(y)| > 1/e}. Notice that U is an open neighborhood of y0 in X2. Furthermore,
given y ∈ U , we have 1/e < |Φ(h)(y)| = |h(φ(y))|, and thus d1(φ(y), φ(y0)) < ε. Hence φ is continuous at y0.
As φ is bijective and continuous, X2 is compact and X1 is Hausdorff, then φ is a homeomorphism. �

The following straightforward lemma will facilitate the reading of the subsequent proofs.

Lemma 5. Let α, β ∈ C.

i) If |α− 1| = |β| + 1 and |α| = |β|, then α = −|β|.
ii) If |β| = |α|, |β − 1| � |α− 1| and |β + 1| � |α + 1|, then β = α or β = α.

Next we study the homogeneity of the mapping Φ on constant functions.

Lemma 6. Let X1 and X2 be compact metric spaces, Φ : exp Lip(X1) → expLip(X2) be a surjective mapping
such that Φ(1) = 1 and ∥∥∥∥ gf − 1

∥∥∥∥
∞

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
∞
, ∀f, g ∈ exp Lip(X1);

and let φ :X2 → X1 be the homeomorphism obtained in Proposition 4. Then:

i) Φ(αh)(y) = Φ(α1)(y) for all α ∈ C\{0}, y ∈ X2 and h ∈ Fφ(y)(X1) with h(φ(y)) = 1.
ii) Φ(−α1) = −Φ(α1) for all α ∈ C\{0}.
iii) Given y ∈ X2, either Φ(i1)(y) = i or Φ(i1)(y) = −i.
iv) If y ∈ X2 and Φ(i1)(y) = i, then Φ(α1)(y) = α for all α ∈ C\{0}.
v) If y ∈ X2 and Φ(i1)(y) = −i, then Φ(α1)(y) = α for all α ∈ C\{0}.

Proof. i)–ii) Let y ∈ X2, α ∈ C\{0}, h ∈ Fφ(y)(X1) with h(φ(y)) = 1, and let g ∈ Fφ(y)(X1) be de-
fined by g(x) = exp(−d1(x, φ(y))) for all x ∈ X1. Since ‖Φ(αg)/Φ(−α/h) − 1‖∞ = ‖−gh − 1‖∞ = 2
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and X2 is compact, we can find z ∈ X2 such that |Φ(αg)(z)/Φ(−α/h)(z) − 1| = 2. Proposition 4 iv)
yields

2 �
∣∣∣∣ Φ(αg)(z)
Φ(−α/h)(z)

∣∣∣∣+ 1 =
∣∣g(φ(z)

)∣∣∣∣h(φ(z)
)∣∣+ 1 � g

(
φ(z)

)
+ 1 = e−d1(φ(z),φ(y)) + 1.

This clearly forces z = y. Consequently, we have∣∣∣∣ Φ(αg)(y)
Φ(−α/h)(y) − 1

∣∣∣∣ = 2,
∣∣∣∣ Φ(αg)(y)
Φ(−α/h)(y)

∣∣∣∣ = 1.

By Lemma 5 i), it follows that Φ(αg)(y) = −Φ(−α/h)(y). Analogously, Φ(αh)(y) = −Φ(−α/g)(y). Since h

is arbitrary, in particular,

Φ(αg)(y) = −Φ(−α1)(y), Φ(αg)(y) = −Φ(−α/g)(y) = Φ(α1)(y),

and thus

−Φ(−α1)(y) = Φ(αg)(y) = Φ(α1)(y).

iii) Let y ∈ X2 and α ∈ C\{0}. From Proposition 4 iv) we can deduce that |Φ(α1)(y)| = |α|. By using ii),
it follows that

∣∣Φ(α1)(y) + 1
∣∣ �

∥∥Φ(α1) + 1
∥∥
∞ =

∥∥∥∥Φ(−α1)
Φ(1) − 1

∥∥∥∥
∞

= |α + 1|.

Moreover

∣∣Φ(α1)(y) − 1
∣∣ �

∥∥∥∥Φ(α1)
Φ(1) − 1

∥∥∥∥
∞

= |α− 1|.

Now Lemma 5 ii) gives

Φ(α1)(y) = α or Φ(α1)(y) = α. (2.1)

In particular, for α = i, it holds Φ(i1)(y) = i or Φ(i1)(y) = −i.
We next show that iv) and v) follow analogously. So, fix y ∈ X2 and assume Φ(i1)(y) = i. Let α ∈ C\{0}.

Then assertion ii) gives

∣∣iΦ(α1)(y) − 1
∣∣ =

∣∣∣∣ Φ(α1)(y)
Φ(−i1)(y) − 1

∣∣∣∣ �
∥∥∥∥ Φ(α1)
Φ(−i1) − 1

∥∥∥∥
∞

=
∣∣∣∣ α−i

− 1
∣∣∣∣ = |iα− 1|

and, similarly, |iΦ(α1)(y) + 1| � |iα + 1|. Moreover, by Proposition 4 vi), it is clear that |iΦ(α1)(y)| =
|iα|. Thus, taking into account Lemma 5 ii), it follows that Re(iΦ(α1)(y)) = Re(iα), or equivalently
Im(Φ(α1)(y)) = Im(α). From (2.1), we deduce that Φ(α1)(y) = α. �

We now are ready to prove Theorem 1.

Proof of Theorem 1. It is straightforward to check that every surjective mapping Φ of the form given in the
statement of Theorem 1 verifies∥∥∥∥ gf − 1

∥∥∥∥
∞

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
∞
, ∀f, g ∈ expLip(X1). (2.2)
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Let us prove the contrary implication. Suppose first that Φ satisfies Φ(1) = 1 and (2.2), and let
φ :X2 → X1 be the homeomorphism obtained in Proposition 4. Let f ∈ expLip(X1), y ∈ X2 and
h1/f,φ(y) ∈ Fφ(y)(X1) be the function given in Lemma 3 i). Set

α = −Φ(f)(y)
|f(φ(y))| , λ = Re(α) + Φ(i1)(y) Im(α).

By applying Lemma 6, we obtain∣∣∣∣Φ(λh1/f,φ(y))(y)
Φ(f)(y) − 1

∣∣∣∣ =
∣∣∣∣Φ(λ1)(y)
Φ(f)(y) − 1

∣∣∣∣ =
∣∣∣∣ α

Φ(f)(y) − 1
∣∣∣∣ =

∣∣∣∣ −1
|f(φ(y))| − 1

∣∣∣∣ = 1
|f(φ(y))| + 1,

hence

1
|f(φ(y))| + 1 �

∥∥∥∥Φ(λh1/f,φ(y))
Φ(f) − 1

∥∥∥∥
∞

=
∥∥∥∥λh1/f,φ(y)

f
− 1

∥∥∥∥
∞
.

From Proposition 4 vi) and Lemma 6 iv), v) we have |λ| = |α| = 1, hence∣∣∣∣λh1/f,φ(y)(x)
f(x) − 1

∣∣∣∣ �
∣∣∣∣λh1/f,φ(y)(x)

f(x)

∣∣∣∣+ 1 <
1

|f(φ(y))| + 1

for all x ∈ X1 with x �= φ(y). Now the compactness of X1 gives∣∣∣∣ λ

f(φ(y)) − 1
∣∣∣∣ =

∣∣∣∣λh1/f,φ(y)(φ(y))
f(φ(y)) − 1

∣∣∣∣ =
∥∥∥∥λh1/f,φ(y)

f
− 1

∥∥∥∥
∞

= 1
|f(φ(y))| + 1.

In view of Lemma 5 i), this shows that λ/f(φ(y)) = −1/|f(φ(y))|. As a consequence,

f
(
φ(y)

)
=
{

Φ(f)(y) if Φ(i1)(y) = i,

Φ(f)(y) if Φ(i1)(y) = −i,

that is,

Φ(f)(y) =
{

f(φ(y)) if Φ(i1)(y) = i,

f(φ(y)) if Φ(i1)(y) = −i.

Now, if Φ(1) �= 1, we can take Φ0 = Φ/Φ(1). Then Φ0 is surjective, Φ0(1) = 1 and ‖g/f − 1‖∞ =
‖Φ0(g)/Φ0(f) − 1‖∞ for all f, g ∈ exp Lip(X1). By above-proved there is a homeomorphism φ :X2 → X1
such that

Φ(f)(y) =
{

Φ(1)(y)f(φ(y)) if Φ(i1)(y) = iΦ(1)(y),
Φ(1)(y)f(φ(y)) if Φ(i1)(y) = −iΦ(1)(y),

for every f ∈ exp Lip(X1). Finally, just take

K =
{
y ∈ X2: Φ0(i1)(y) = i

}
=
{
y ∈ X2:

Φ(i1)(y)
Φ(1)(y) = i

}
which is a closed open subset by Lemma 6 iii). �
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3. Case: Lipschitz algebra norm

Let C(Y ) be the algebra of all continuous complex-valued functions on a compact Hausdorff space Y . The
following proposition is a weaker version of the main theorem of Jarosz in [8] on surjective complex-linear
isometries T with T (1) = 1 between complex-linear subspaces of C(Y ) that contain constant functions
equipped with certain natural norms. Instead of these assumptions on T , we will assume here that T is a
surjective real-linear isometry with T (1) = 1 and T (i1) = i1 or −i1 between spaces Lip(X). We will apply
this proposition to prove the main theorem of this paper.

We first need the following terminology and notation introduced in [8]. Let A be a complex-linear subspace
of C(Y ) that contains the function 1. By ChA we denote the Choquet boundary of A, that is, the subset of
all points x ∈ Y such that the evaluation functional at x, from A to C, is an extreme point of the unit ball of
(A, ‖ · ‖∞)∗. Recall that A is said to be regular if for any ε > 0, any x0 ∈ ChA and any open neighborhood
U of x0, there is an f ∈ A with ‖f‖∞ � 1 + ε, f(x0) = 1, and |f(x)| < ε for x ∈ Y \ U .

It is known (see [16]) that (Lip(X), ‖ · ‖∞ + ‖ · ‖L,1) is a semisimple commutative Banach algebra with
unit and the maximal ideal space of Lip(X) is homeomorphic to X. Then Lip(X) is a regular subspace of
C(X) by [8, Proposition 2].

If K and H are subsets of C, we represent by co(K) the convex hull of K and

K + H = {w + z: w ∈ K, z ∈ H}.

If f ∈ Lip(X), we put σ̃(f) = co(f(X)). For z0 ∈ C and r � 0, we write

K(z0, r) =
{
z ∈ C: |z − z0| � r

}
, K(r) = K(0, r),

and, for K ⊂ C and z0 ∈ K, we denote

ρ(K, z0) = sup
{
r � 0: ∃z ∈ K, z0 ∈ K(z, r) ⊂ K

}
,

ρ(K) = inf
{
ρ(K, z): z ∈ K

}
.

Proposition 7. Let X1 and X2 be compact metric spaces and let T be a real-linear isometry from
(Lip(X1), ‖ · ‖1) onto (Lip(X2), ‖ · ‖2), where ‖ · ‖j = ‖ · ‖∞ + ‖ · ‖L for j = 1, 2, with T (1) = 1 and
either T (i1) = i1 or T (i1) = −i1. Then T is an isometry from (Lip(X1), ‖ · ‖∞) onto (Lip(X2), ‖ · ‖∞).

Proof. We only give a proof when T (i1) = i1. The case T (i1) = −i1 can be deduced from the case
T (i1) = i1 considering the mapping T from Lip(X1) onto Lip(X2) defined by T (f) = T (f) for every
f ∈ Lip(X1).

We follow essentially the proof of [8, Theorem] although some parts have to be revised to fit for our T .
For any nonempty bounded convex subset K ⊂ C and any ϕ ∈ [0, 2π), define

c(K,ϕ) = sup
{
a ∈ R: there is a b ∈ R with (a + ib)eiϕ ∈ K

}
.

For j = 1, 2, define the functions

cj : Lip(Xj) × [0, 2π) → R, cj(f, ϕ) = c
(
σ̃(f), ϕ

)
,

and

rj : Lip(Xj) × R+ × [0, 2π) → R+, rj(f, t, ϕ) =
∥∥f + eiϕt1

∥∥
∞.
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For every ϕ ∈ [0, 2π), f ∈ Lip(Xj) and t ∈ R+, we have

t + cj(f, ϕ) � rj(f, t, ϕ) �
√(

t + cj(f, ϕ)
)2 + ‖f‖2

∞,

and therefore

lim
t→+∞

(
rj(f, t, ϕ) − t

)
= cj(f, ϕ). (3.1)

Fix f ∈ Lip(X1). Using that T is a real-linear isometry, T (1) = 1 and T (i1) = i1, a simple calculation
yields

r1(f, t, ϕ) + ‖f‖L = r2
(
T (f), t, ϕ

)
+
∥∥T (f)

∥∥
L

for any t ∈ R+ and ϕ ∈ [0, 2π). Using (3.1), it follows that

c2
(
T (f), ϕ

)
− c1(f, ϕ) = ‖f‖L −

∥∥T (f)
∥∥
L

(3.2)

for all f ∈ Lip(X1) and ϕ ∈ [0, 2π).
For every f ∈ Lip(X1), set Δf = ‖f‖L − ‖T (f)‖L. Since T is an isometry from (Lip(X1), ‖ · ‖1) onto

(Lip(X2), ‖ · ‖2), we get that

Δf =
∥∥T (f)

∥∥
∞ − ‖f‖∞. (3.3)

For any r � 0 and any nonempty compact convex subset K ⊂ C, we have that

c
(
K + K(r), ϕ

)
= c(K,ϕ) + r (3.4)

for all ϕ ∈ [0, 2π). By (3.2) and [8, Lemma 1], we have

Δf � 0 ⇒ σ̃
(
T (f)

)
= σ̃(f) + K(Δf),

Δf � 0 ⇒ σ̃(f) = σ̃
(
T (f)

)
+ K(−Δf). (3.5)

Since T−1 satisfies the same conditions as T , the proof will be finished if we show that∥∥T (f)
∥∥
∞ − ‖f‖∞ = Δf � 0 (3.6)

for all f ∈ Lip(X1). For every ε > 0, denote

Aε =
{
f ∈ Lip(X1): ρ

(
σ̃(f)

)
� ε

}
.

The inequality in (3.6) follows from the following assertions:

(1) T is a continuous mapping from (Lip(X1), ‖ · ‖∞) onto (Lip(X2), ‖ · ‖∞).
(2) For each ε > 0, the set Aε is dense in (Lip(X1), ‖ · ‖∞).
(3) For each ε > 0 and each f ∈ Aε, we have that ‖T (f)‖∞ � ‖f‖∞ − ε.

The proof of the second and third assertions is the same as in the proof of [8, Theorem]. The proof of the first
one is slightly different from the corresponding in [8, p. 69]. This change is rather ambitious. We also point
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out that the terms −π/2 and π/2 which appear in the formulae (7) and (8) in [8] seem not be appropriate;
they read, for example, as 3π/4 and π/4, respectively.

We now proceed to prove the first statement. Aiming for a contradiction, suppose that T is not continuous
from (Lip(X1), ‖ · ‖∞) to (Lip(X2), ‖ · ‖∞). Let ε be a positive real number less than 1/100. Then there is a
function f0 ∈ Lip(X1) such that ‖f0‖∞ � ε and ‖T (f0)‖∞ = 1. Then there exist y0 ∈ X2 and ϕ0 ∈ [0, 2π)
such that T (f0)(y0) = eiϕ0 . Note that if T is complex-linear, we may assume without loss of generality that
ϕ0 = 0 as in [8], but we cannot assume this here for our T .

From (3.3) and (3.5), we deduce that Δf0 = ‖T (f0)‖∞−‖f0‖∞ � 1− ε and σ̃(T (f0)) = σ̃(f0)+K(Δf0).
Thus we have

K(1 − 2ε) ⊂ σ̃
(
T (f0)

)
⊂ K(1). (3.7)

Consider the open neighborhood U0 of y0 in X2 given by

U0 =
{
y ∈ X2:

∣∣T (f0)(y) − eiϕ0
∣∣ < ε

}
.

We infer that U0 is a proper subset of X2 by (3.7). Then, by [8, Lemma 2], there exists g ∈ Lip(X2) such
that ‖g‖∞ � 1 + ε, g(y0) = 1, |g(y) + 1| < ε for every y ∈ X2\U0 and | Im g(y)| < ε for all y ∈ X2. If H
denotes the closed rectangle whose vertices are the four points ±(1 + ε) ± εi, we have

σ̃(g) ⊂ H. (3.8)

Consider now the set

L =
{
ei(3π/4+ϕ0)z: |z| � 1, Re z � 1 − 2ε

}
.

We claim that T (f0)(X2)∩L �= ∅. Suppose that T (f0)(X2)∩L = ∅. Then (3.7) gives T (f0)(X2) ⊂ K(1)\L.
Hence σ̃(T (f0)) is contained in the convex set K(1)\L. On the other hand, (1−2ε)ei(3π/4+ϕ0) ∈ K(1−2ε) ⊂
σ̃(T (f0)) by (3.7). As (1 − 2ε)ei(3π/4+ϕ0) ∈ L, this contradicts to σ̃(T (f0)) ⊂ K(1)\L, and this proves our
claim. Hence there is y ∈ X2 with T (f0)(y) ∈ L. As ε � 1/100, it follows that |T (f0)(y) − eiϕ0 | � ε and so
y ∈ X2\U0. Hence

∣∣(T (f0)(y) − eiϕ0
)
−
(
eiϕ0g(y) + T (f0)(y)

)∣∣ =
∣∣g(y) + 1

∣∣ < ε,

and this says us that eiϕ0g(y) + T (f0)(y) is in K(T (f0)(y) − eiϕ0 , ε). Then eiϕ0g(y) + T (f0)(y) is in L −
eiϕ0 + K(ε). Thus we have

1 +
√

2
2 − 3ε � c2

(
eiϕ0g + T (f0),

3π
4 + ϕ0

)
. (3.9)

We claim that

σ̃
(
eiϕ0g + T (f0)

)
⊂ co

(
K
(
−eiϕ0 , 1

)
∪
{
2eiϕ0

})
+ K(3ε).

Let x ∈ X2. We distinguish two cases. Suppose first that |T (f0)(x)− eiϕ0 | < ε. Since eiϕ0g(X2) ⊂ eiϕ0H by
(3.8), we have

T (f0)(x) + eiϕ0g(x) ∈ K
(
eiϕ0 , ε

)
+ eiϕ0H = eiϕ0(H + 1) + K(ε). (3.10)
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Secondly suppose that |T (f0)(x)−eiϕ0 | � ε. Then x ∈ X2\U0 and so |eiϕ0g(x)+eiϕ0 | < ε. Hence |eiϕ0g(x)+
T (f0)(x) − (T (f0)(x) − eiϕ0)| < ε and thus eiϕ0g(x) + T (f0)(x) is in K(T (f0)(x) − eiϕ0 , ε). Moreover,
|T (f0)(x)| � 1. Therefore we have

eiϕ0g(x) + T (f0)(x) ∈ K(1) − eiϕ0 + K(ε) = K
(
−eiϕ0 , 1

)
+ K(ε). (3.11)

It follows from (3.10) and (3.11) that(
eiϕ0g + T (f0)

)
(X2) ⊂

(
K
(
−eiϕ0 , 1

)
∪ eiϕ0(H + 1)

)
+ K(ε).

Furthermore, it is easy to see that H ⊂ co(K(−2, 1) ∪ {1}) + K(2ε), whereupon

K
(
−eiϕ0 , 1

)
∪ eiϕ0(H + 1) ⊂ co

(
K
(
−eiϕ0 , 1

)
∪
{
2eiϕ0

})
+ K(2ε).

Hence

σ̃
(
eiϕ0g + T (f0)

)
⊂ co

(
K
(
−eiϕ0 , 1

)
∪
{
2eiϕ0

})
+ K(3ε)

as is claimed. Therefore we have

c2

(
eiϕ0g + T (f0),

π

4 + ϕ0

)
�

√
2 + 3ε. (3.12)

Put f1 = T−1(eiϕ0g). We claim that Δf1 � ε. If Δf1 < 0, there is nothing to prove. Suppose that
Δf1 � 0. Then, by (3.5), we have

σ̃
(
eiϕ0g

)
= σ̃(f1) + K(Δf1). (3.13)

Since σ̃(eiϕ0g) ⊂ eiϕ0H by (3.8), it follows that eiϕ0H ⊃ σ̃(f1) + K(Δf1). As eiϕ0H does not include a
closed disk with the radius greater than ε, we conclude that Δf1 � ε.

In the following we will consider two cases: 0 � Δf1 � ε and Δf1 < 0. Suppose first that 0 � Δf1 � ε.
Then (3.8) and (3.13) yield

eiϕ0H ⊃ σ̃
(
eiϕ0g

)
= σ̃(f1) + K(Δf1) ⊃ σ̃(f1).

From ‖f0‖∞ � ε we deduce that σ̃(f0) ⊂ K(ε). From (3.4) we infer that

c1

(
f1 + f0,

3π
4 + ϕ0

)
� c

(
eiϕ0H + K(ε), 3π

4 + ϕ0

)
= c

(
eiϕ0H,

3π
4 + ϕ0

)
+ ε

=
√

2
2 + (1 +

√
2)ε. (3.14)

By (3.13) and eiϕ0 = eiϕ0g(y0), we deduce that eiϕ0 ∈ σ̃(f1) + K(Δf1). Thus there is z ∈ σ̃(f1) such that
|z − eiϕ0 | � Δf1. It follows that

√
2/2 − Δf1 � c1(f1, π/4 + ϕ0), hence we have
√

2
2 − 2ε � c1

(
f1 + f0,

π

4 + ϕ0

)
(3.15)

as ‖f0‖∞ � ε and 0 � Δf1 � ε.



Author's personal copy

O. Hatori et al. / J. Math. Anal. Appl. 415 (2014) 825–845 837

Since T (f1 + f0) = eiϕ0g + T (f0), from (3.9) and (3.14) we obtain that

1 − (4 +
√

2)ε � c2

(
T (f1 + f0),

3π
4 + ϕ0

)
− c1

(
f1 + f0,

3π
4 + ϕ0

)
. (3.16)

We also get by (3.12) and (3.15) that

c2

(
T (f1 + f0),

π

4 + ϕ0

)
− c1

(
f1 + f0,

π

4 + ϕ0

)
�

√
2

2 + 5ε. (3.17)

On the other hand, c2(T (f1 + f0), ϕ)− c1(f1 + f0, ϕ) does not depend on ϕ by (3.2). From (3.16) and (3.17)
we deduce that ε � (2 −

√
2)/2(9 +

√
2) and this contradicts that ε � 1/100.

For the second case, suppose next that Δf1 < 0. Then, by (3.5), we have

σ̃(f1) = σ̃
(
eiϕ0g

)
+ K(−Δf1), (3.18)

and, by (3.8), it follows that σ̃(f1) ⊂ eiϕ0H + K(−Δf1). Moreover, σ̃(f0) ⊂ K(ε) since ‖f0‖∞ � ε. Using
(3.4), we infer that

c1

(
f1 + f0,

3π
4 + ϕ0

)
� c

(
eiϕ0H + K(−Δf1) + K(ε), 3π

4 + ϕ0

)
= c

(
eiϕ0H,

3π
4 + ϕ0

)
+ (−Δf1) + ε

=
√

2
2 + (1 +

√
2)ε + (−Δf1). (3.19)

By (3.18), we obtain that σ̃(f1) ⊃ eiϕ0g(X2) + K(−Δf1), and as eiϕ0g(y0) = eiϕ0 , we infer that σ̃(f1) ⊃
eiϕ0 + K(−Δf1). Hence

√
2/2 + (−Δf1) � c1(f1, π/4 + ϕ0), so that

√
2

2 + (−Δf1) − ε � c1

(
f1 + f0,

π

4 + ϕ0

)
(3.20)

as ‖f0‖∞ � ε. Since T (f1 + f0) = eiϕ0g + T (f0), we obtain by (3.9) and (3.19) that

1 − (4 +
√

2)ε− (−Δf1) � c2

(
T (f1 + f0),

3π
4 + ϕ0

)
− c1

(
f1 + f0,

3π
4 + ϕ0

)
. (3.21)

We also obtain by (3.12) and (3.20) that

c2

(
T (f1 + f0),

π

4 + ϕ0

)
− c1

(
f1 + f0,

π

4 + ϕ0

)
�

√
2

2 + 4ε− (−Δf1). (3.22)

Since c2(T (f1 + f0), ϕ) − c1(f1 + f0, ϕ) does not depend on ϕ by (3.2), from (3.21) and (3.22) we deduce
that ε � (2 −

√
2)/2(8 +

√
2) and this is impossible since ε � 1/100. This completes the proof of the

proposition. �
The following is the main result in this paper.

Theorem 8. Let X1 and X2 be compact metric spaces, let Φ be a mapping from expLip(X1) into expLip(X2)
and let ‖ · ‖j = ‖ · ‖∞ + ‖ · ‖L for j = 1, 2. Then Φ is a surjective mapping that satisfies the non-symmetric-
quotient norm condition for the Lipschitz algebra norm:
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∥∥∥∥

1
=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
2
, ∀f, g ∈ expLip(X1),

if and only if there exists a surjective isometry φ :X2 → X1 such that

Φ(f)(y) = Φ(1)(y)f
(
φ(y)

)
for all y ∈ X2 and f ∈ exp Lip(X1), or

Φ(f)(y) = Φ(1)(y)f
(
φ(y)

)
for all y ∈ X2 and f ∈ expLip(X1). If, in addition, Φ(1) = 1, then Φ is extendable to either an isometric
complex-linear algebra isomorphism or an isometric conjugate-linear algebra isomorphism.

From the description given for Φ, we give sufficient conditions for Φ is extendable to be an isometrical
algebra isomorphism.

Corollary 9. Let X1 and X2 be compact metric spaces and let Φ be a surjective mapping from exp Lip(X1)
to expLip(X2) satisfying the non-symmetric-quotient norm condition for the Lipschitz algebra norm. Then
the following assertions are satisfied:

(1) If Φ(1) = 1 and Φ(1i) = 1i, then Φ is extendable to an isometrical complex-linear algebra isomorphism.
(2) If Φ(1) = 1 and Φ(1i) = −1i, then Φ is extendable to an isometrical conjugate-linear algebra isomor-

phism.

Proof of Theorem 8. Suppose that Φ has the form of a weighted composition operator as in the statement
of Theorem 8. Using that φ is bi-Lipschitz, we infer that Φ is surjective. A simple calculation shows that Φ

satisfies the non-symmetric-quotient norm condition.
Suppose conversely that Φ is surjective and obeys the non-symmetric-quotient norm condition. For j =

1, 2, define

dj(f, g) =
∥∥∥∥ gf − 1

∥∥∥∥
j

+
∥∥∥∥fg − 1

∥∥∥∥
j

(
f, g ∈ exp Lip(Xj)

)
.

Clearly, dj(f, g) � 0, and dj(f, g) = 0 holds only if f = g. Now define

Φ0(f) = Φ(f)
Φ(1)

(
f ∈ expLip(X1)

)
.

By an easy verification we deduce that Φ0 : expLip(X1) → expLip(X2) is bijective and satisfies the equality
d2(Φ0(f), Φ0(g)) = d1(f, g) for all f, g ∈ exp Lip(X1). We claim that

Φ0(gfg) = Φ0(g)Φ0(f)Φ0(g)

for every pair f, g ∈ expLip(X1). We will use [3, Corollary 3.9] to prove this equality. Let f = exp(u) and
g = exp(v) be in expLip(X1) for u, v ∈ Lip(X1). Let ε be a positive real number with ε(3ε/2 + 5) < 1/4.
We infer there is a positive integer n with∥∥∥∥exp

(
±(u− v)

2n−1

)
− 1

∥∥∥∥
∞

<
ε

4 ,
∥∥∥∥exp

(
±(u− v)

2n−1

)
− 1

∥∥∥∥
L

<
ε

4 . (3.23)
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For 0 � k � 2n, put

fk = exp
(
u− k(u− v)

2n−1

)
.

Then f0 = f , f2n−1 = g and f2n = gf−1g. We also have fk+2 = fk+1f
−1
k fk+1 for 0 � k � 2n − 2. For

0 � k � 2n − 2, set

Lfk,fk+1 =
{
h ∈ expLip(X1): d1(fk, h) = d1(fk+2, h) = d1(fk, fk+1)

}
.

Note that d1(fk+2, fk+1) = d(fk, fk+1), hence fk+1 ∈ Lfk,fk+1 . Note also that d1(fk, fk+1) < ε by (3.23)
since fk+1/fk = exp(−(u − v)/2n−1). We first observe that d1(h, fk+1) < 1/4 for every h ∈ Lfk,fk+1 . To
prove this, let h ∈ Lfk,fk+1 . Since

max
{∥∥∥∥fkh

∥∥∥∥
L

,

∥∥∥∥fkh − 1
∥∥∥∥
∞

}
� d1(fk, h) = d1(fk, fk+1) < ε,

we have ∥∥∥∥fk+1
h

− 1
∥∥∥∥
L

�
∥∥∥∥fkh

∥∥∥∥
L

∥∥∥∥exp
(
−(u− v)

2n−1

)∥∥∥∥
∞

+
∥∥∥∥fkh

∥∥∥∥
∞

∥∥∥∥exp
(
−(u− v)

2n−1

)∥∥∥∥
L

� d1(fk, fk+1)
(∥∥∥∥exp

(
−(u− v)

2n−1

)
− 1

∥∥∥∥
∞

+ 1
)

+
(∥∥∥∥fkh − 1

∥∥∥∥
∞

+ 1
)∥∥∥∥exp

(
−(u− v)

2n−1

)∥∥∥∥
L

� d1(fk, fk+1)
(
ε

4 + 1
)

+
(
d1(fk, fk+1) + 1

)ε
4 � ε

(
5
4 + ε

2

)
.

In a similar way we obtain ∥∥∥∥ h

fk+1
− 1

∥∥∥∥
L

� ε

(
5
4 + ε

2

)
.

On the other hand, we check that∥∥∥∥fk+1
h

− 1
∥∥∥∥
∞

=
∥∥∥∥fk exp(−(u−v)

2n−1 )
h

− 1
∥∥∥∥
∞

�
∥∥∥∥fkh − 1

∥∥∥∥
∞

(∥∥∥∥exp
(
−(u− v)

2n−1

)
− 1

∥∥∥∥
∞

+ 1
)

+
∥∥∥∥exp

(
−(u− v)

2n−1

)
− 1

∥∥∥∥
∞

� d1(fk, h)
(
ε

4 + 1
)

+ ε

4 � ε

(
ε

4 + 5
4

)
.

Similarly, we get ∥∥∥∥ h

fk+1
− 1

∥∥∥∥
∞

� ε

(
ε

4 + 5
4

)
.

Finally, we obtain the desired inequality

d1(h, fk+1) � 2ε
(

5
4 + ε

2

)
+ 2ε

(
ε

4 + 5
4

)
= ε

(
3ε
2 + 5

)
<

1
4 (3.24)
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for every h ∈ Lfk,fk+1 . We also have∥∥∥∥(fk+1
h

)2
− 1

∥∥∥∥
L

=
∥∥∥∥(fk+1

h
− 1

)(
fk+1
h

− 1 + 21
)∥∥∥∥

L

� 2
∥∥∥∥fk+1

h
− 1

∥∥∥∥
L

−
∥∥∥∥(fk+1

h
− 1

)2∥∥∥∥
L

� 2
∥∥∥∥fk+1

h
− 1

∥∥∥∥
L

− 2
∥∥∥∥fk+1

h
− 1

∥∥∥∥
∞

∥∥∥∥fk+1
h

− 1
∥∥∥∥
L

� 2
(
1 − d1(h, fk+1)

)∥∥∥∥fk+1
h

− 1
∥∥∥∥
L

,

and ∥∥∥∥( h

fk+1

)2
− 1

∥∥∥∥
L

� 2
(
1 − d1(h, fk+1)

)∥∥∥∥ h

fk+1
− 1

∥∥∥∥
L

.

On the other hand, we get∥∥∥∥(fk+1
h

)2
− 1

∥∥∥∥
∞

� 2
∥∥∥∥fk+1

h
− 1

∥∥∥∥
∞

−
∥∥∥∥fk+1

h
− 1

∥∥∥∥2

∞

� 2
(
1 − d1(h, fk+1)

)∥∥∥∥fk+1
h

− 1
∥∥∥∥
∞
,

and ∥∥∥∥( h

fk+1

)2
− 1

∥∥∥∥
∞

� 2
(
1 − d1(h, fk+1)

)∥∥∥∥ h

fk+1
− 1

∥∥∥∥
∞
.

It follows that

d1
(
fk+1h

−1fk+1, h
)

� 2
(
1 − d1(h, fk+1)

)
d1(fk+1, h)

� 2
(

1 − ε

(
3ε
2 + 5

))
d1(fk+1, h)

� 3
2d1(fk+1, h) (3.25)

for every h ∈ Lfk,fk+1 . By a simple calculation we have

d1
(
fk+1F

−1fk+1, fk+1G
−1fk+1

)
= d1(F,G) (3.26)

for every F,G ∈ expLip(X1). By [3, Definition 3.2], we have proved that the pair (expLip(X1), d1) satisfies
the condition B(fk, fk+1) for every 0 � k � 2n − 2 by (3.24), (3.25) and (3.26). Moreover, it is easy to see
that the pair (exp Lip(X2), d2) satisfies the condition C1(Φ0(fk), Φ0(fk+1f

−1
k fk+1)) (cf. [3, Definition 3.3]).

Then, by [3, Corollary 3.9], the equation

Φ0
(
fk+1f

−1
k fk+1

)
= Φ0(fk+1)Φ0(fk)−1Φ0(fk+1)

holds for every 0 � k � 2n − 2. Applying [3, Lemma 4.2], we deduce that

Φ0
(
f2n−1f−1

0 f2n−1
)

= Φ0(f2n−1)Φ0(f0)−1Φ0(f2n−1).
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Since f0 = f and f2n−1 = g, we have

Φ0
(
gf−1g

)
= Φ0(g)Φ0(f)−1Φ0(g) (3.27)

for every pair f, g ∈ expLip(X1). Letting g = 1 in (3.27) yields

Φ0
(
f−1) = Φ0(f)−1 (3.28)

for every f ∈ exp Lip(X1). Then, by (3.27), we conclude that

Φ0(gfg) = Φ0(g)Φ0(f)Φ0(g) (3.29)

for every pair f, g ∈ expLip(X1), and this proves our claim.
Then, it is easy to deduce from (3.28) and (3.29) that

Φ0
(
fn
)

= Φ0(f)n (3.30)

for every f ∈ exp Lip(X1) and n ∈ Z.
Pick u ∈ Lip(X1) and define Su: R → expLip(X2) by

Su(t) = Φ0
(
exp(tu)

)
.

We assert that Su is a continuous one-parameter group with the values in exp Lip(X2). Suppose that t0 ∈ R
and t → t0. Then we check that∥∥∥∥ exp(tu)

exp(t0u) − 1
∥∥∥∥
∞

→ 0,
∥∥∥∥ exp(tu)

exp(t0u) − 1
∥∥∥∥
L

→ 0

and ∥∥∥∥exp(t0u)
exp(tu) − 1

∥∥∥∥
∞

→ 0,
∥∥∥∥exp(t0u)

exp(tu) − 1
∥∥∥∥
L

→ 0,

hence

d2
(
Φ0
(
exp(tu)

)
, Φ0

(
exp(t0u)

))
= d1

(
exp(tu), exp(t0u)

)
→ 0

as t → t0. Hence Su is continuous with respect to ‖ · ‖2. Notice that Su(0) = Φ0(1) = 1. We now prove that
Su(t + t′) = Su(t)Su(t′) for every t, t′ ∈ R. First select rational numbers n/m and n′/m′ with integers m,
m′, n, n′. We compute

Su

(
n

m
+ n′

m′

)
= Φ0

(
exp

(
nm′ + n′m

mm′ u

))

= Φ0

(
exp

(
1

mm′u

))nm′+n′m

= Φ0

(
exp

(
nm′

mm′u

))
Φ0

(
exp

(
n′m

mm′u

))
= Su

(
n

m

)
Su

(
n′

m′

)
.
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Since Su is continuous, we obtain that Su(t + t′) = Su(t)Su(t′) for all t, t′ ∈ R. Hence Su is a continuous
one-parameter group. Then, by [14, Proposition 6.4.6], there exists a unique u′ ∈ Lip(X2) such that Su(t) =
exp(tu′) holds for every t ∈ R.

Define a mapping T : Lip(X1) → Lip(X2) for which

Φ0
(
exp(tu)

)
= Su(t) = exp

(
t
(
T (u)

)) (
t ∈ R, u ∈ Lip(X1)

)
.

Considering Φ−1
0 in the place of Φ0, we infer that there is a mapping T ′ : Lip(X2) → Lip(X1) such that

Φ−1
0 (exp(tw)) = exp(tT ′(w)) holds for every w ∈ Lip(X2) and t ∈ R. This easily implies that w = T (T ′(w))

for all w ∈ Lip(X2). Hence T is a surjection from Lip(X1) onto Lip(X2).
We next prove that T is an isometry from (Lip(X1), ‖ · ‖1) onto (Lip(X2), ‖ · ‖2). Since

∥∥∥∥exp(tT (u))
exp(tT (v)) − 1

∥∥∥∥
2

=
∥∥∥∥exp(tu)

exp(tv) − 1
∥∥∥∥

1

for all t ∈ R and u, v ∈ Lip(X1), we obtain

∥∥∥∥exp(t(T (u) − T (v))) − 1
t

∥∥∥∥
2

=
∥∥∥∥exp(t(u− v)) − 1

t

∥∥∥∥
1

(3.31)

for t �= 0. Given j ∈ {1, 2} and w ∈ Lip(Xj), it is known that the function t �→ exp(tw) from R to Lip(Xj)
is derivable and its derivative function is t �→ w exp(tw). In particular, the derivative of this function at 0
is w, that is, limt→0(exp(tw) − 1)/t = w. Then limt→0 ‖(exp(tw) − 1)/t‖j = ‖w‖j . Letting t → 0 for the
both sides of Eq. (3.31), we obtain that ‖T (u) − T (v)‖2 = ‖u − v‖1 for every u, v ∈ Lip(X1). Hence T is
a surjective isometry from (Lip(X1), ‖ · ‖1) onto (Lip(X2), ‖ · ‖2). We denote by 0 the function constantly
equal to 0. By the definition of T , T (0) = 0 is easily to be deduced. Then the celebrated Mazur–Ulam
theorem asserts that T is real-linear.

We claim that T (1) = 1. In order to prove it, we first show that Φ0(e1/n1) = e1/n1 for all n ∈ N. Suppose
that ‖Φ0(e1/n1)/e1/n1‖∞ < 1 for some n ∈ N. Then we have

∥∥∥∥(Φ0(e1/n1)
e1/n

)m∥∥∥∥
L

� m

∥∥∥∥Φ0(e1/n1)
e1/n

∥∥∥∥m−1

∞

∥∥∥∥Φ0(e1/n1)
e1/n

∥∥∥∥
L

→ 0

as m → ∞. Since Φ0(1) = 1 and Φ0(fm) = Φ0(f)m for any f ∈ expLip(X1) and m ∈ N, we obtain that

1 − e−m/n =
∥∥∥∥em/n1 − 1

em/n

∥∥∥∥
1

=
∥∥∥∥Φ0(em/n1) − 1

em/n

∥∥∥∥
2

�
∥∥∥∥Φ0(e1/n1)

e1/n

∥∥∥∥m
∞

+ e−m/n +
∥∥∥∥Φ0(em/n1)

em/n

∥∥∥∥
L

→ 0

as m → ∞, which is a contradiction. Thus

∥∥Φ0
(
e1/n1

)∥∥
∞ � e1/n (3.32)

for all n ∈ N. We compute
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e1/n − 1 =
∥∥e1/n1 − 1

∥∥
1

=
∥∥Φ0

(
e1/n1

)
− 1

∥∥
2

�
∥∥Φ0

(
e1/n1

)∥∥
∞ − 1 +

∥∥Φ0
(
e1/n1

)
− 1

∥∥
L

� e1/n − 1 +
∥∥Φ0

(
e1/n1

)
− 1

∥∥
L
.

Hence we infer that ‖Φ0(e1/n1) − 1‖L = 0, and thus Φ0(e1/n1) is a constant function. By

e1/n − 1 =
∥∥e1/n1 − 1

∥∥
1 =

∥∥Φ0
(
e1/n1

)
− 1

∥∥
2 =

∥∥Φ0
(
e1/n1

)
− 1

∥∥
∞

and (3.32), we obtain that Φ0(e1/n1) = e1/n1. Thus, by the definition of T , it follows that

exp
(
1/nT (1)

)
= Φ0

(
e1/n1

)
= e1/n1

for all n ∈ N. Hence n(eT (1)/n−1) = n(e1/n1−1) for all n ∈ N, and letting n → ∞ we infer that T (1) = 1.
We claim that T (i1) = i1 or T (i1) = −i1. By the definition of T and (3.30), we obtain that Φ0(−1) =

Φ0(exp(iπ)1) = exp(πT (i1)) and Φ0(−1)2 = 1. As Φ0 is injective and Φ0(1) = 1, we deduce that the
function Φ0(−1) takes the value −1. On the other hand, we compute

2 = ‖−1 − 1‖1 =
∥∥Φ0(−1) − 1

∥∥
2 =

∥∥Φ0(−1) − 1
∥∥
∞ +

∥∥Φ0(−1) − 1
∥∥
L
.

As Φ0(−1) takes the value −1, we obtain ‖Φ0(−1) − 1‖∞ = 2, hence ‖Φ0(−1) − 1‖L = 0, so that Φ0(−1)
is a constant function. As Φ0(−1) takes the value −1, we conclude that Φ0(−1) = −1. Thus

−1 = Φ0(−1) = Φ0
(
exp(iπ)1

)
= exp

(
πT (i1)

)
.

Hence, for every x ∈ X2, there is an integer lx such that T (i1)(x) = (2lx + 1)i. Since T is an isometry, we
compute

√
2 = ‖i1 − 1‖1 =

∥∥T (i1) − T (1)
∥∥

2 =
∥∥T (i1) − 1

∥∥
∞ +

∥∥T (i1) − 1
∥∥
L
.

Since T (i1)(x) = (2lx + 1)i, we obtain lx = 0 or lx = −1, and ‖T (i1) − 1‖L = 0. Hence we infer that
T (i1) = i1 or T (i1) = −i1.

By Proposition 7, we see that T is a surjective real-linear isometry from (Lip(X1), ‖ · ‖∞) onto
(Lip(X2), ‖ · ‖∞). Hence T can be extended to a surjective real-linear isometry T̃ from the uniform closure
of Lip(X1) onto the uniform closure of Lip(X2). By the Stone–Weierstrass theorem, the uniform closure
of Lip(Xj) is C(Xj), the algebra of all complex-valued continuous functions on Xj , j = 1, 2. Thus T̃ is a
surjective real-linear isometry from C(X1) onto C(X2). Applying a theorem of Miura [11, Theorem 1.1], for
example, there exists a homeomorphism φ from X2 onto X1 such that

T̃ (u) = u ◦ φ, ∀u ∈ C(X1)

if T (i1) = i1, or

T̃ (u) = u ◦ φ, ∀u ∈ C(X1)

if T (i1) = −i1. By the definition of T , we obtain that

Φ(f) = Φ(1) · (f ◦ φ), ∀f ∈ expLip(X1),
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or

Φ(f) = Φ(1) · (f ◦ φ), ∀f ∈ expLip(X1).

The rest of the proof is to observe that φ is an isometry. We can prove it in the same way as in the
proof of [1, Theorem 2.1]. Since T (0) = 0, T is an isometry from (Lip(X1), ‖ · ‖1) onto (Lip(X2), ‖ · ‖2), and
also an isometry from (Lip(X1), ‖ · ‖∞) onto (Lip(X2), ‖ · ‖∞), it follows that ‖T (f)‖L = ‖f‖L for every
f ∈ Lip(X1). Let x, y ∈ X2. Consider the function hy :X1 → R defined by

hy(z) = d1
(
z, φ(y)

)
(z ∈ X1).

For all z, w ∈ X1, we have

∣∣hy(z) − hy(w)
∣∣ =

∣∣d1
(
z, φ(y)

)
− d1

(
w, φ(y)

)∣∣ � d1(z, w).

Hence hy ∈ Lip(X1) and ‖hy‖L � 1, so that ‖T (hy)‖L � 1. Then

d1
(
φ(x), φ(y)

)
=
∣∣hy

(
φ(x)

)
− hy

(
φ(y)

)∣∣
=
∣∣T (hy)(x) − T (hy)(y)

∣∣
� d2(x, y).

Considering T−1 instead of T , we see in a similar way as above that d2(φ−1(z), φ−1(w)) � d1(z, w) for every
z, w ∈ X1. It follows that d1(φ(x), φ(y)) = d2(x, y) for all x, y ∈ X2. �
Remark 10. Given a real number α ∈ (0, 1) and a compact metric space (X, d), let Lipα(X) be the Banach
algebra of all complex-valued functions f on X such that

‖f‖Lα
= sup

{
|f(x) − f(y)|

d(x, y)α : x, y ∈ X, x �= y

}
< ∞,

endowed with the norm ‖f‖α = ‖f‖Lα
+‖f‖∞. Define lipα(X) as the subset of Lipα(X) formed by all those

functions f for which

lim
d(x,y)→0

|f(x) − f(y)|
d(x, y)α = 0.

Then lipα(X) is a closed subalgebra of Lipα(X) with maximal ideal space X and unity 1 (see [17]).
Let X1 and X2 be compact metric spaces and α in (0, 1). An analogous result to Theorem 1 can be stated

with a similar proof for surjections Φ : exp lipα(X1) → exp lipα(X2) satisfying the non-symmetric-quotient
norm condition for the uniform norm.

Analogously to Proposition 7, we may also show that if T is a real-linear isometry from (lipα(X1), ‖ · ‖α)
onto (lipα(X2), ‖ · ‖α) with T (1) = 1 and either T (i1) = i1 or T (i1) = −i1, then T is an isometry from
(lipα(X1), ‖ · ‖∞) onto (lipα(X2), ‖ · ‖∞). Using this result and following steps analogous to those of the
proof of Theorem 8 above, we obtain that if Φ is a mapping from exp lipα(X1) to exp lipα(X2), then Φ is a
surjection satisfying the equality∥∥∥∥ gf − 1

∥∥∥∥
α

=
∥∥∥∥Φ(g)
Φ(f) − 1

∥∥∥∥
α

, ∀f, g ∈ exp lipα(X1),
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if and only if Φ is of the form either Φ(f) = Φ(1) · (f ◦ φ) for all f ∈ exp lipα(X1), or Φ(f) = Φ(1) · (f ◦ φ)
for all f ∈ exp lipα(X1), where φ :X2 → X1 is a surjective isometry. We only need to make a modification
in the final part of the proof of Theorem 8 and substitute the functions hy by the following functions hxy

(cf. the proof of [1, Theorem 2.1]). Fix x, y ∈ X2, x �= y, choose β ∈ (α, 1) and define hxy :X1 → R by

hxy(z) = d(z, φ(y))β − d(z, φ(x))β
2d(φ(x), φ(y))β−α

.

Then hxy ∈ lipα(X1) and ‖hxy‖Lα
= 1 (see [10, p. 62]). An easy verification gives

d
(
φ(x), φ(y)

)α =
∣∣hxy

(
φ(x)

)
− hxy

(
φ(y)

)∣∣
=
∣∣T (hxy)(x) − T (hxy)(y)

∣∣
�
∥∥T (hxy)

∥∥
Lα

d(x, y)α

= d(x, y)α.

Hence we have d(φ(x), φ(y)) � d(x, y) for all x, y ∈ X2.
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