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1. Introduction and background

Spectral preserver problems involve analyzing mappings between Banach algebras that preserve certain spectral pro-
perties. Molnar [13] initiated the study in algebras of continuous functions by showing that if X were a first-countable,
compact Hausdorff space and T: C(X) — C(X) were a surjection with a(T(f) T(g)) = o(fg) for all f,g € C(X), then T is
a weighted composition operator and that, if T(1) =1, then T is a sup-norm isometric algebra isomorphism. This result
was reminiscent of the classical Banach-Stone Theorem by demonstrating a connection between the spectral structure
of C(X) and its linear and multiplicative structures, as well as to the underlying topological structure of X. A wide
range of spectral preserver problems have now been studied, and a variety of spectrum-type properties have also been
shown to relate to the linear and multiplicative structures of uniform algebras [4, 11, 14], but also to more general unital,
semi-simple commutative Banach algebras [3, 5, 6]. See [2] for a recent survey of spectral preservers.

It is an important and separate question whether the results proven for uniform algebras carry over to function algebras
with norms other than the uniform norm. In this work, we explore a question in algebras of Lipschitz functions on compact
metric spaces, and in this case there are several layers of structure to be analyzed that uniform algebras do not have.

In a uniform algebra, the range of a function need not be equal to its spectrum, so the spectral condition considered by
Molnar was not equivalent to a range condition. Nonetheless, the peripheral range,

Ran,(f) = {f(x) : x € X, |[f(x)| = | ]l }.

i.e. the set of range values of f of maximum modulus, is equal to the peripheral spectrum, the set of spectral values of
maximum modulus [12]. Spectral preserver problems then progressed from spectral conditions like Molnar’s to related
peripheral spectrum conditions [12, 16], and it is natural to view these as peripheral range conditions, allowing the
results for uniform algebras to be adapted to non-unital algebras, such as pointed Lipschitz algebras. Given a compact
metric space (X, d) with distinguished base point ey, the pointed Lipschitz algebra on (X, d) is the set

Lipy(X) = {f ccx): sup M= e o o}

X, yeX x#y d(X' y)

of K-valued Lipschitz functions mapping the base point to 0, where K is either C or R. The Lipschitz constant is a norm
on this space, making Lip,(X) into a weak commutative Banach algebra in the sense that there exists K > 0 such that
Ly, (fg) < KLgy(f)La,(g), for all f, g € Lipy(X), where Ly, (-) denotes the Lipschitz constant.

In [9], it was shown that if T: Lipy(X) — Lipy(Y) is a surjection satisfying Ran,(T(f) T(g)) = Ran,(fg) for all f,g €
Lipy(X), then T is a weighted composition operator and, potentially, an isometric algebra isomorphism for the sup-norm,
under some slight further assumptions. Similar mappings between the collections of all Lipschitz functions (i.e. the set
Lip(X)) on a compact metric space were also characterized. In this setting, the spectrum o(f) coincides with its range,
so Ran,(f) is precisely the spectral values of maximum modulus.

These results of [9] were extended in [8], by showing that, in fact, it is not necessary to multiplicatively preserve the entire
peripheral range, but rather only to satisfy Ran,(7(f) T(g)) N Ran,(fg) # @ for all f,g € Lipy(X). Such mappings are
called weakly peripherally multiplicative, and in this work we generalize the notion of weak peripheral multiplicativity
and show that the previous results fit within a more general framework.

Main Theorem.
Let (X, dx) and (Y, dy) be pointed compact metric spaces. If Ty, T,: Lipy(X) — Lipy(Y) and S;, Sz Lipy(X) — Lipy(X)
are surjective mappings that satisfy

Ran,(T:(f) T2(g)) N Rana(51(f) S2(g)) # @ M

for all f,g € Lipy(X), then there exist mappings @1, ¢2: Y — K with ¢1(y)@2(y) =1 for all y € Y and a base-point
preserving Lipschitz homeomorphism ¢y: Y — X such that

TiN) = @i (y) Si(N(dly).,  j=1.2 2

for all f € Lipy(X) and all y € Y.
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Notice that the converse of Main Theorem holds true. This is to say that, given mappings ¢, ¢2: ¥ — K with
@1(y)-@2(y) =1 for all y € Y and given a base-point preserving Lipschitz homeomorphism ¢: Y — X such that

Ti(O(y) = @ily) S;(Nly)),  j=1.2,

for all f € Lipy(X) and all y € Y, then the mappings Ty, 75, Sy, and S, satisfy (1). Maps that satisfy (1) are known as
jointly weakly peripherally multiplicative. Studying multiple mappings that jointly satisfy spectral conditions has recently
received attention [3, 10, 15]. In addition to being a natural extension, studying multiple mappings at once answers a wide
range of possible questions. For example, surjective mappings T: C(X) — C(Y) that satisfy Ran,(T(f) T(g)) = Ran(fg)
for all f, g € C(X) where characterized by Honma in [7], and this situation can be converted into the four mapping case,
where T; is the conjugation of T, T, = T, S; is conjugation, and S; is the identity mapping.

Section 2 contains basic material on Lipschitz algebras and some preliminary results that hold in general (pointed)
Lipschitz algebras, including a new characterization of Lipschitz functions in terms of sequences of function values.
Results characterizing jointly weakly peripherally multiplicative maps are outlined in Section 3, with the proof of Main
Theorem being given in Section 4. Some immediate corollaries of Main Theorem — including sufficient conditions to
ensure that Ty and T, are sup-norm isometric algebra isomorphisms — are given in subsection 4.1.

2. Preliminaries and prior results

In this section we outline the properties of Lipschitz algebras that will be required for the proof of Main Theorem.

2.1. Background on Lipschitz algebras

Let (X, dx) and (Y, dy) be metric spaces. A map f: X — Y is said to be Lipschitz if there exists a constant k > 0 such
that

dy(f(x), f(y)) < k-dx(x,y) forall x,y € X.

Amap f: X — Y is called a Lipschitz homeomorphism if f is bijective and both f and f~' are Lipschitz. If X and Y are
pointed metric spaces with distinguished base points ex and ey, it is said that f: X — Y is base point-preserving if
f(ex) = ey. For each x € X and 0 > 0, we denote by B;(x) the open ball of radius 0 centered at x, and the diameter
of (X, dx) is denoted by diam(X).

Let (X, dx) be a compact metric space. For a continuous function f: X — K, where K is either C or R, let

[fllc = sup{|f(x)| : x € X}, and LdX(f):sup{%:x,yeX,x;&y}.

We denote by Lip(X) the Banach algebra of all real- or complex-valued Lipschitz functions f on X, with the norm
[ llax = max{[Ifllos, Lay(f)}-
If, in addition, X has a distinguished base point ey, then Lipy(X) is the (weak) Banach algebra of all scalar-valued

Lipschitz functions f on X such that f(ex) = 0, endowed with the norm Ly, (-). Every Lip, space is clearly a subspace
of a Lip space, but it is also well known that every Lip space can be identified with a Lip, space, see [17, Section 1.7].

2.2. A Lipschitz version of Bishop’s Lemma for uniform algebras

Given f € Lipy(X), the maximizing set of f is the set M(f) = {x € X : |f(x)| = ||fllw}, and the peripheral range of f is
the image of the maximizing set, that is

Ran,(f) = {f(x) : x € X, |f(x)] = [|f]loo}-
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A function h € Lip,y(X) is a peaking function f Ran,(h) = {1}, and the set of all peaking functions is denoted
by P(Lipy(X)). Peaking functions can be used to isolate points in the underlying domain, so, given x € X \ {ex}, the
peaking functions that peak at x are denoted by

P (Lipo(X)) = {h € P(Lipy(X)) : x € M(h)}.

We begin with a lemma that demonstrates the existence of peaking functions with special properties. This result, which
is essentially the pointed Lipschitz algebra version of Bishop’s Lemma for uniform algebras [1, Theorem 2.4.1], is proven
in [8, Lemma 2.1].

Lemma 2.1.
Let (X, dx) be a compact metric space with distinguished base point ex and let f € Lipy(X). Then for each xo € X\ {ex},

(@) There exists a peaking function h € P (Lip,(X)) such that M(h) = {xo}.

(b) If f(xo) # O, then there exists a peaking function h € P, (Lipy(X)) such that M(h) = M(fh) = {xo}. In particular,
Ran,(fh) = {f(x0)}.

(c) If f(xo) = O, then, given € > O, there exists a peaking function h € Py (Lip,(X)) such that ||fh| < €.

Following the arguments in [8], for each x € X we define the set
Fu(Lipg(X)) = {f € Lipg(X) : [flloc = [f(x)] =1}

Notice that P,(Lipy(X)) C Fi(Lipy(X)), and, if f, g € F(Lipy(X)), then fg € F(Lipy(X)). A useful property of these sets
is that they single out elements of X, as shown by the following lemma.

Lemma 2.2.
Let (X, dx) be a compact metric space with distinguished base point ex and x,x" € X\ {ex}. Then F,(Lipy(X)) C
Fy(Lipy(X)) if and only if x = x".

Proof. Suppose that F,(Lipy(X)) C Fe(Lipy(X)) and x # x’. By Lemma 2.1(a), there exists a peaking function
h € P(Lipy(X)) such that M(h) = {x}, thus |h(x')] < 1, contradicting F,(Lipy(X)) C Fy(Lipy(X)). The reverse direction
is clear. O

2.3. A characterization of Lipschitz functions

In the proof of Main Theorem we will use the following result, which is of more general interest as it gives a new
characterization of Lipschitz functions.

Lemma 2.3.
Let (X,dx) and (Y, dy) be compact metric spaces, and let ): Y — X be a continuous map. If ¢ is not Lipschitz, then
there exist sequences {y,} and {z,} in Y converging to a point y € Y such that y, # z, and

dx(¢(yn) Y(z0))

n <
dY(yn: Zn)

for all n € N and a function f € Lip(X) such that f((y,)) = dx(Y(yn), Y(z,)) and f(Y(z,)) =0 for all n € N.
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Proof. Since ¢ is not Lipschitz, we can find sequences {p,} and {g,} in Y such that p, # g, and n <
dx(Y(pn), W(gn))/dy(pn, gn) for all n € N. Note that ¢(p,) # (q,) for all n € N. By the compactness of Y, tak-
ing a subsequence if necessary, we may suppose that {p,} converges to a point y € Y. Since

di X di X
Q) (o) < dyl(pny) + 22X

d o < d nr doldiln ) dila -\
v(qny) < dy(p y)+dx(¢l(pn),¢’(%)) !

for all n € N, it follows that {g,} also converges to y.

Next, we construct two sequences {y,} and {z,} in Y converging to y such that

d njr n
gtz < PULEED g 40), gi9) < drily.). )

holds for all n € N. In addition, we will show that there exists pairwise disjoint balls B, (¢(y,)), where r, =

(172) min{dx((yn), ¥(y)), dx(@(yn), Y(20))}, such that

Y(za) & | By (¢(y))).

j=1
for all n € N. To do this, we distinguish two cases.

Case 1. Suppose that {n € N : ¢(p,) = ¢(y)} or {n € N : Y(q,) = ¢(y)} are infinite. If the first set is infinite,
then there exists a strictly increasing mapping o: N — N such that )(p,(m) = ¢(y) for all n € N. Note that ()(qs()) #
Y(Ppom) = Yly) for each n € N and ¢(qq(m) — Y(y), @s Gon) — y. Thus there exists a subsequence {Gqw(ny} such that

1
dx (¢ (qounr). ly)) < 3 dx(U(Goimy). ¢(y)) forall néeN.
Given n € N, let y, = G and z, = Py, then y, # z,,

dx(¢(yn), P(za))

n < a(v(n)) < dv(yn. 20)

dx(P(za), P(y)) = 0 < dx(d(yn), Y(y))-

Moreover, dx (t(yas1), (y)) < (1/3)dx(@(ya). ¥y)) for all n € N. Set r, = (1/2) min{dx((y.). ¥(y)), dx((y,), $(z.)}
for each n € N. As ((z,) = ¢(y) for all n € N, it follows that r, = dx(¥(y.), Y(y))/2. Note that if n < m, then
rm < rp/3 and dx(x, Y(y)) < 3r, < r, for any x € B, (Y(yn)). This implies that for each n € N and any m > n, we have
B..(¢(ym)) C B ((y)). As B, ((y,)) N B, (Y(y)) = @ for all n € N, we conclude that the balls B, ((y,)) are pairwise
disjoint and (z,) = Yly) ¢ U;’; By, ((y))) for all n € N. Therefore {y,} and {z,} satisfy the required conditions. The
same argument applies if {n € N: ¢(q,) = ¢(y)} is infinite.

Case 2. Suppose that the sets {n € N : ¢(p,) = ¢Y(y)} and {n € N : (q,) = Y(y)} are both finite. Let M be the
maximum of the union of these sets. Note that ¢(p,+m) # Y(y) and Y(q,+m) F Y(y) for all n € N. Define the sequences

{t,} and {s,} by

. {anrM it dx((gnim) YY) < dx((paim) Ply)),
Goim & dx(@(pnim), YY) < dx(p(qnim), YY),

. _ {qn+/\/l i dx(d(gnim), YY) < dx(@(paim), P(y)),
Posm U dx(@(paim), YY) < dx(d(qnim), Ply))-
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Note that dx((s,), Y(y)) < dx((t,), Y(y)) holds for all n € N. As {t,} converges to y, we can find a subsequence
{ts(m} such that

dx (¢(toinsn). Ply)) < % min{dx (¥(Som), ¥(y)), dx ((tow), Y(Sowm)) }

forall n € N. Let y, = t5(s) and z, = So(n), then y, # z,, n < a(n) < dx(P(yna), Y(za))ldy(yn, z,), and dx(P(z,), Ply)) <
dx((yn), Y(y)) holds for all n € N. Moreover, a straightforward induction yields that, for each n € N and any m > n,
we have

dx(dlym) Ply) < % min{dx(i)(z), Y(y)), dx(P(yn), P(za)) }-

Let r, = (1/2) min{dx(¢¥(y,), ¥(y)), dx(P(yn), Y(2z,)} for each n € N. Fix n,m € N such that m > n.

As dx(@lym), YY) < dx((za), ()3 < dx(Plyn) ¢(y))/3 and dx(dlym). dly)) < dx(d(yn). Y(2,))/3, we have
dx(Ylym), Yly)) < 2r,/3. Also, we have that r, < dx(¥(ym) Y(y))/2 < r,/3, hence it is easy to check that

B, ((ym)) C B(¢ly)). Since By (d(ya)) N B, (dly)) = 2, we have that B, ((ys)) N B, (Y(yn)) = &. Moreover, as
dx(Y(zm), Y(y)) < dx(Ylym), Yly)) < 2r,/3, it is clear that ¢(z,) € B, (¥(y,)). Finally, from the inequalities,

< dx(g(za), Yly)) — M

< dx(((za), Y(y)) = dx(@lym). Ply)) < dx((za). Y(ym))

rm <

dx((yn). YW) _ dx((zs). Y(y))
2 6

we deduce that ¢(z,) ¢ B, (¥(ym)). Therefore, we can conclude that the balls B, (¢(y,)) are pairwise disjoint and
Y(z,) & U;’; B (¢(y)) forall n € N.

Finally, we show that there exists a function f & Lip(X) satisfying f(¢(y,)) = dx(¢(yn). ¢(z,)) and f(P(z,)) = O for
all n € N. Indeed, for each n, let h,(x) = max{0,1 — dx(x, Y(yn))/r,}. Note that h, is Lipschitz with Ly (h,) < 1/ry,
ha(¢(y,)) =1 and h,(x) =0 for all x € X\ B,,(¢(y,)) [8, Lemma 2.1]. Define f: X —» K by

F(x) = D dx(g(yn), th(za)) ha(x).

n=1

Note that f(x) = 0 for any x ¢ Uf; B, (dly;))). As the balls B ((y,)) are disjoint, if x € Uf; B, (¥(y;)), then
f(x) = dx(Y(ym), Y(zm)) hm(x) for some fixed m € N (depending only on x). In particular, f(Y(y,)) = dx(Y(y,), Y(zn)).
Finally, as dx(¢(yn). Y(z,) < 2dx(P(y,), ¥ly)), we have that dx(¢(y,), ¥(z,)) < 4r,, hence it must be that
La(dx((yn). Y(zn))hn) < 4. Therefore f is Lipschitz and satisfies the required conditions. O

Next we adapt the previous lemma to pointed Lipschitz algebras.

Lemma 2.4.

Let (X,dx) and (Y,dy) be pointed compact metric spaces, and let ¢: Y — X be a continuous map. If Y is not
Lipschitz, then there exist sequences {y,} and {z,} in Y converging to a point y € Y such that y, + z, and
n < dx(Y(yn). Y(z,))/dy(yn.z,) for all n € N and a function f & Lipy(X) such that f(Y(y,)) = dx(Y(ya), Y(za))
and f(Y(z,)) =0 for all n € N.

Proof. If ¢ is not Lipschitz, by Lemma 2.3 we have two sequences {y,} and {z,} in ¥ converging to a pointy € Y and

a function g € Lip(X) satisfying g(¢/(ys)) = dx((ys), Y(za)), g(Y(2,)) = 0, y, # z,, and n < dx(Y(ya), Y(z:))/dv(yn, z,)
for all n € N.

We distinguish two cases. Firstly, if ¢(y) = ex, then g(¢(z,)) — g(ex) by the continuity of ¢ and g, but since
g(Y(z,)) = 0 for all n, it follows that g(ex) = 0. Hence we can take f = g and the lemma follows. Secondly, if ¢(y) # ex.
take € = dx(¢(y), ex)/2 > 0. Since {Y(y,)} converges to Y(y), there exists an m € N such that € < dx(Y(ynim). €x)
for all n € N. Then the sequences {y,+n} and {z,.n} and the function f(x) = (1 —max{0,1 — d(x, ex)/e})- g(x) satisfy
the required conditions of the lemma. O
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e
3. Jointly sup-norm multiplicative maps

Given compact metric spaces (X,dx) and (Y,dy) with distinguished base points ex and ey, four surjections
T1, Ty Lipo(X) — Lipg(Y) and Sy, St Lipy(X) — Lipy(X) are called jointly sup-norm multiplicative if

I T3(f) T2(g) oo = 1S1() S2(9) | oo 3)

for all f,g € Lipy(X). In this section we prove a collection of results that are generalized from [10] and hold for any
jointly sup-norm multiplicative surjections. We assume throughout this section that (3) holds.

Lemma 3.1.
Let f,g € Lipy(X) and j € {1,2}. Then |S;(f)(x)] < |Si(g)(x)| for all x € X if and only if | T;(f)(y)| < |T;(9)(y)| for all
yey.

Proof. Fix the pair (j, i) = (1,2) or (j, i) = (2,1). Suppose that |S;(f)(x)| < |S;(g)(x)| for all x € X, then ||S;(f)h]e <
[S;(g) hlls holds for all h € Lipy(X). If k € P(Lipy(Y)) and h € Lipy(X) is such that T;(h) = k, then, by (3),

ITi(N)klloo = I TN Ti(Mloo = [15;(F) Si(M)lloo < 151(g) Si(M)lleo = [ Ti(g) Ti()][oo = I Tj(g) K lloo-

Since k € P(Lipy(Y)) was chosen arbitrarily, we have that |T;(f)(y)| < |T;(g)(y)| for all y € Y, see e.g. [8, Lemma 2.2].

Conversely, suppose that | T;(f)(y)| < |T;(g)(y)| for all y € Y, then | T;(f) Ti(h)| < || T;(g) Ti(h)||e for any h & Lipy(X).
If k € P(Lipy(X)) and h € Lipy(X) is such that S;(h) = k, then

IS;(A)kllso = IIS;(A) Si(M) e = T (F) Te(h)lloo < [ T3(g) Ti(M) oo = 1S1(9) Si(h)lloe = [ S;(g) Klloo-
As k € P(Lipy(X)) was arbitrarily chosen, we have that |S;(f)(x)| < |S;(g)(x)| for all x € X, proving the result. O

Given h, k € Lipy(X) such that Sy(h), S2(k) € Fy(Lipy(X)), then (3) implies that || T1(h) Ta(k)||leo = [|S1(h) S2(k)|lc = 1 and
therefore M(T;(h) Ta(k)) = {y € Y : |T1(h)(y) T2(k)(y)| = 1}. For each x € X\ {ex}, we define A; = S;'[F,(Lipy(X))],
Ay = S3[F.(Lipy(X))], and

A = ﬂ M(T:(h) T2 (k).

heAq,keA;

Lemma 3.2.
For each x € X\ {ex}, the set A, is nonempty.

Proof. Let hy,..., h, € Ay and let kq, ..., k, € Ay. As Si(h1)-...-Si(h,) € Fi(Lipy(X)) and Sy(ki)- ... Sa(ks) €
Fy(Lipy(X)), there exist h € Ay and k € A, such that Si(h) = Si(hq)-...-Si(h,) and Sy(k) = Sa(kq)- ... - Sa(kn).
Since |Si(hy)] < 1 and |Sa(k)] < 1 for all 1 < i < n, |Si(h)| < |Si(hy)| and [Sa(k)] < |Sa(ki)| for any 1 < i < n.
Lemma 3.1 implies that |T;(h)(y)| < |Ta(h:)(y)| and |T2(k)(y)| < |Ta(ki)(y)| for any 1 < i < n and all y € Y. Since
Y is compact, there exists yo € M(T;(h) T2(k)). Hence 1 = |T1(h)(yo) T2(k)(yo)| < |T1(h:)(yo) T2(k:)(yo)] < 1 for each
1 < i < n, thus | Ti(h:)(yo) T2(ki)(yo)| = 1 for each 1 < i < n. So, it must be that yo € (i, M(T1(h;) Ta(k:)). Therefore,
{M(T1(h) T2(k)) : h € A4, k € Ay} has the finite intersection property, and, since maximizing sets are closed subsets of
the compact set Y, A, is nonempty. O

Notice that ey ¢ A, for any x € X\ {ex}.

Lemma 3.3.
Let f,g € Lipy(X). Then for each x € X\ {ex} and each y € A,, S:1(f)S2(g) € F«(Lipy(X)) if and only if T;(f) T2(g) €
Fy(Lipy(Y))
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Proof, Let x € X\ {ex}; let y € A,; and suppose that Tq(f) To(g) € Fy(Lipy(Y)). Then 1 = | T1(f) T2(g) | =
|51(f) S2(g) || o, @and we need only to show |S;(f)(x) S2(g)(x)| = 1. If S1(f)(x) S2(g)(x) = 0, then, without loss of generality,
we can assume that Si(f)(x) = 0. Hence Lemma 2.1 (c) implies that there exists a peaking function h € P,(Lipy(X))
such that ||Si(f)h]e < 1/]|S2(9)]lco- Let k1, ka € Lipy(X) be such that Si(ki) = Sy(k;) = h. As y € A,, then y €
M(Ti(ki) T2(k2)), and since || Ti(ki) T2(k2)[leo = |S1(k1) S2(k2) [0 = [|H ]2 = 1 this implies that Ti(ki) Ta(k2) € Fy(Lipg(Y))-
Thus

1= |T(f) Ta(g) Th (ki) Ta(ko)[loe < [ITH(F) To(k2) oo - 1 T2 (K1) T2(9) |l oo

= [151(f) hleo - 152(9) hle < [5209)llee = 1,

1
152(9) |
which is a contradiction. Hence Si(f)(x) # 0 # S2(g)(x), and by Lemma 2.1 (b) there exist functions hy, hy € P,(Lipy(X))

such that M(hy) = M(S:(f) hy) = {x} and M(hy) = M(Sa2(g)h1) = {x}. If ki, ka € Lipy(X) are such that S;(ky) = hy and
Sy(k2) = hy, then since y € A,, the definition of A, implies that Ty (ki) T2(k2) € Fy(Lipy(Y)), so

151(1)(¥) S2(g) (X = [51(F) h2lles - 152(9) hilles = [ T2 (F) Ta(k2)lloo - [I T2 (K1) T2(g)lleo = [ T2 (F) T2(g) T (k1) Ta(k2)[|oo = 1-
Therefore |S:(f)(x) S2(g)(x)| = 1, showing Si(f) Sa2(g) € Fi(Lipy(X)). The reverse implication follows analogously. O

Not only is A, nonempty, but the following lemma shows that it contains only a single point.

Lemma 3.4.
For each x € X'\ {ex}, the set A, is a singleton.

Proof. Fix x € X\ {ex}, and let y,y’ € A,. If y # v/, then, by Lemma 2.1 (a), there exists a peaking function k €
P, (Lipo(Y)) such that M(k) = {y}, implying |k(y')] < 1. If hy, hy € Lipy(X) are such that Ty(h1) = To(h2) = k, then
Lemma 3.3 implies that S;(h1)Sa(h2) € Fi(Lipy(X)). Again, by Lemma 3.3, k2 = T;(h1) T2(h) € Fy(Lipy(Y)), which is a
contradiction. Therefore y = y’, i.e. A, is a singleton. O

Given the correspondence between x and the singleton A,, define the map 7: X — Y by t(ex) = ey and

{t0)} = A 4

for x € X\ {ex}. Note that 7(x) # ey for any x # ex. If the mappings Ty, T2, Sy, and S, were all injective, then we could
follow a similar construction with their formal inverses to construct ¢y: Y — X that acts as the analogue of 7. We could
then show directly that 7 and ¢ are inverses to gain that 7 is a bijection. In fact, it is not necessary for us to assume
that any of the four maps is injective; we can construct ¢ nonetheless and show that 7 and ¢ are mutual inverses.

Lemma 3.5.
The map t: X — Y defined by (4) is bijective.

Proof. Let x,x' € X. If either x = ex or X' = ey, then 7(x) = 7(x) implies that X’ = x. Suppose that x,x’ €
X\ {ex} and choose h € F,(Lipy(X)). Let hy, h, € Lipy(X) be such that S;(hy) = Sy(h2) = h, then, by Lemma 3.3,
Ti(h1) Ta(h2) € Fry(Lipo(Y)). If T(x) = t(x’), then Ty(hy) Ta(h2) € Frpw)(Lipo(Y)), which, again by Lemma 3.3, gives that
h? = Sy(h1)Sa(h2) € Fu(Lipy(X)) and thus h € F(Lipo(X)). Lemma 2.2 then gives x = X/, i.e. T is injective.

Now, we prove that 7 is surjective. Let y € Y\ {ey}. Given h, k € F,(Lipy(Y)). let f, g € Lip,(X) be such that T(f) = h
and T5(g) = k, then [[S1(f) S2(g)lle = [[T1(F) T2(g)llec = 1. implying M(5:1(F) S2(g)) = {x € X : [S1(F)(x) S2(g)(x)| = 1}
Let By = T '[Fy(Lipo(Y))], B2 = T5'[F,(Lipg(Y))] and define the set

B, = [ M(Si(NS:(q)) (5)

feBqy,9eB,
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We will show that the family {M(S:(f)Sa(g)) : f € B4, g € By} has the finite intersection property. Let fi,. .., f, € By
and let g4, ..., gn € Bo. As Ti(fy)- ... - Th(fy) € Fy(Lipy(Y)) and To(g1)- ... - Ta(gn) € Fy(Lipy(Y)), there exists f € By
and g € B, such that Ty(f) = Tq(f1)- ... - T1(f,) and Ta(g) = Ta(g1)- ... - Ta(gs). Since |T1(f;)] < 1 and |T3(g:)| < 1 for
all1 < i < n, |Th(f)] < |Th(f)] and | T2(g)] < |T2(g:)| for any 1 < i < n. Lemma 3.1 implies that |Sy(f)(x)| < |S1(f:)(x)]
and |S2(g)(X)| < |S2(g:)(x)| for any 1 < i < n and all x € X. Since X is compact, there exists xo € M(S;(f)S2(g))-
Hence 1 = |Si(f)(x0) S2(g)(x0)| < |S1(f:)(%0) S2(g:)(x0)| < 1 for each 1 < i < n, thus |Si(fi)(x0) S2(g:)(x0)| = 1 for each
1 < i< n. So, it must be that xp € (i M(S1(f1)S2(g:)). Therefore, {M(S51(f)S2(g)) : f € By, g € By} has the finite
intersection property as claimed, and, since maximizing sets are closed subsets of the compact set X, B, is nonempty.

Let x € B, and let k € Fy(Lipy(Y)). If hy, hy € Lipy(X) are such that T;(h1) = T,(h2) = k, then, by (5), S1(h1)Sa2(h;) €
Fy(Lipg(Y)). Lemma 3.3 implies that k% = Ti(h1) Ta(h2) € Fr(Lipy(Y)), thus k € Fry(Lipg(Y)). Consequently, by
Lemma 2.2, 7(x) = y, L.e. T is surjective. O

Lemma 3.6.
Let f, g € Lipy(X) and x € X, then | T1(f)(t(x)) T2(g)(t(x))| = |S1(f)(x) S2(g)(x)].

Proof. If any of Si(f), S2(g), T1(f), T2(g) is identically O, then the result follows by (3), so we may assume that none
of Si(f), Sa(g), T1(f), T2(g) is identically 0. Since T(ex) = ey, it is true that

Si(f)(ex) Sa(g)(ex) = 0 = T(f)(z(ex)) Ta(g)(7(ex)),

and we may assume that x # ex.

If Si(f)(x)S2(g)(x) = 0O, then, without loss of generality, we can assume that S;(f)(x) = 0. Given an € > 0, Lemma 2.1 (c)
implies that there exists a peaking function h € P(Lipy(X)) such that || Si(f)h|le < €/[|S2(g)||lco- Let h1, ha € Lipy(X)
be such that S;(h1) = Sy(h2) = h, then Lemma 3.3 implies T1(h1) T2(h2) € Frp(Lipo(Y)), thus

[T (F)(r () Talg)(r () < [T (1) Ta(g) Ta (1) Ta(h2) o < ||T1 Ta(h2)lleo - [IT2 (1) T2(9) oo

= [151(H) hlles - [152(9) hlloo < 1152(9)]lee = €.

1152(9) oo )Ilm

Therefore T;(f)(t(x)) T2(g)(t(x)) = 0, by the liberty of the choice of €. A symmetric argument shows that
T()(t(x)) Ta(g)(7(x)) = O implies Si(f)(x) Sa(g)(x) =

If S1(F)(x)Sa2(g)(x) # 0, then Sq(f)(x), Sz(g)( ) # 0. Hence, by Lemma 21 (b) there exist peaking functions hq, h, €
P, (Lipo(X)) such that M(hy) = M(S:(f)h2) = {x} and M(hy) = M(Sa(g)h1) = {x}. Let ki, kz € Lipy(X) be such that
Si(k1) = hy and Sy(ko) = hy. Since 51(k1)52(k2) € Fi(Lipo(X)), Lemma 3‘3 implies that Tq(k1) To(k2) € Frp(Lipg(Y)),
hence

[ T2 () (T(x) T2(g) (T (D] < T2 (F) Ta(g) Ta(ka) Ta(k2)lloo < I1TH(F) T2(k2)lloo - | Ta (K1) T2(g) oo
= [S1(f) h2||oo “1152(9) h1lleo = 151(f)(x) Sa(g)(x)|-

Since Ty(f)(t(x)) T2(g)(t(x)) = 0 if and only if Si(f)(x)S2(g)(x) = 0, we have Si(f)(x)S:(g)(x) # O implies that
T1(f)(t(x)) T2(g)(t(x)) # 0. Therefore, we have that T;(f)(t(x)) # 0 and T(g)(t(x)) # 0, and Lemma 2.1 (b) implies
that there exists ki, ky € Pry(Lipy(Y)) such that M(ky) = M(Ty(f)k,) = {t(x)} and M(k) = M(T(g9) ki) = {t(x)}.
Let hy,h, € Lipy(X) be such that Ti(hy) = ki and Ty(h2) = ko. As kik, € Fry(Lipg(Y)), Lemma 3.3 gives
Si(h1) Sa(h2) € Fi(Lipy(X)), so

151(F)(x) S2(g) (x)] < [151(F) S2(g) S1(h1) Sa(h2)llee < [151(F) Sa(h2)lloo - [152(9) S1(h1) oo
= 1T (Nk2lloo - 1 T2(g) k1 lloo = IT1(F)((x)) T2(g)(T(x))]-

Therefore |T1(f)(z(x)) T2(g)(z(x))] = |Si(F)(x) Sa(g)(x)| for all x € X. O
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Denoting the formal inverse of T by ¢, Lemma 3.6 implies that

IT1(F)(y) T2g) ()] = [S1(N)((y)) S2(g)(b(y))]
for all f,g € Lipy(X) and y € Y.

Lemma 3.7.
The map t: X — Y defined by (4) is a homeomorphism.

Proof. As 1 is bijective, X is compact and Y is Hausdorff, it is only yet to show that T is continuous. Let xo €
X\ {ex} and let U be an open neighborhood of t(xo). As 7(xo) # ey, Lemma 2.1 (a) implies that there exists a peaking
function h € Py (Lipy(Y)) such that M(h) = {r(x)}, thus there exists an even n € N such that [h"| < 1/2 on YV \ U.
Set k = h"2. Let f, g € Lipy(X) be such that T;(f) = k and T>(g) = k, and let V = {x € X : |S;()(x)Sa2(g)(x)| > 1/2}.
For each { € V, we have

k()] = [T (N(T() T2(g)(z(C))] = [S1(N(C) S2(9)(Q)] > %

As |k?| = |h"| < 1/2 on Y\ U, it must be that t({) € U, hence { € t7'[U]. Therefore V is an open set such that
xo € V C 77'[U), and it follows that T is continuous at xg.

We now demonstrate the continuity of T at ex. Let {x,} C X be such that x, — ex and let g &€ Lipy(Y) be the function
defined by g(y) = dy(y, ey). If f1,f, € Lipy(X) are such that T;(f;) = T>(f,) = g, then Lemma 3.6 implies that

lg(t(xa))* = | T1(F1)(t(xa)) ToAf2)(T(xa))] = [S1(F1)(xa) S2(f2) (xa)]
for all n € N. As S;(f1)(x,) Sa2(f2)(x,) — O, it follows that
dy(t(xa), T(ex)) = dy(t(xn), ey) = g(t(x,)) — O.

Therefore 7 is continuous at ey. O

4. Jointly weakly peripherally multiplicative maps
Suppose that Ty, T5: Lipy(X) — Lipy(Y) and Sy, Sy Lipy(X) — Lipy(X) are surjective mappings that satisfy
Ran,(71(f) T2(g)) N Ranx(5:(f) Sa2(g)) # @ (6)

for all f, g € Lipy(X). Since any such foursome of maps automatically satisfies (3), we can apply the results of Section 3.

Given h € S7'[P.(Lipy(X))] and k € SV [P,(Lipy(X))], (6) implies that 1 € Ran, (T4 (h) T2(k)), so there exists y € Y such
that Ty(h)(y) T2(k)(y) = 1. As the next lemma shows, y can be chosen such that y = 7(x).

Lemma 4.1.
Let x € X\ {ex}. Then Ty(h)(t(x)) T2(k)(t(x)) = 1 for all pairs (h,k) satisfying h € S7'[P(Lipy(X))] and k €
S5 [PulLipg (X))}
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L
Proof. Let h € S7'[P,(Lipy(X))] and k € S5 [Pe(Lipy(X))). By Lemma 3.6, we have

1= 151(h)(x) S2k) ()| = [Ta(h)(z(x)) T2(k)(T(x))],

which gives that T;(h)(7(x)) T2(k)(7(x)) # 0. Therefore Lemma 2.1(b) implies that there exists a peaking function
g € Pry(Lipg(Y)) with M(g) = M(T1(h) T2(k) g) = {t(x)}. Notice that

[T (h) () T2(k) () g (y)*] < [Ta(h)(y) T2(K)(y) g(y)] < [Ta(h)(T(x)) To(k)(T(x)) g(T(x))]

for all y € Y\ {r(x)}, which implies M(T;(h) To(k)g) = {T(x)} = M(T1(h) T2(k) g?).
Let f1,f, € Lipy(X) be such that Ti(f1) = T1(h)g and T,(f,) = Ta(k)g. If xo € M(S:(f1) S2(k)), then, by Lemma 3.6,

[T1(h)(T(x0)) T2(k)(T(x0)) g (T(x0))| = [T1(F1)(T(x0)) T2(k)(T(x0))| = [S1(F1)(x0) Sa(k)(x0)]
= [S1(f) S2(K)llso = I T1(F1) T2(K) oo = [ T2 (h) T2(K) [l o-

Since M(Ty(h) T2(k)g) = {T(x)}. then T(xo) = T(x), and the injectivity of T gives x = xo. Therefore M(S;(f1) Sa(k)) = {x}
and Ran,(S1(f1)S2(k)) = {Si(f1)(x)}. A similar argument implies that M(S;(h)S:(f2)) = {x} and Ran,(Si(h)S:(f)) =
{Sa2(f2)(x)}-

If xo € M(S:1(f1)S2(f2)), then

T3 (h)(t(x0)) T2(K)((x0)) g*(7(x0))| = [S1(F1)(x0) Sa(F2)(xo0)| = [1S1(F1) Sa(F2) oo = 1T (F1) TaAF2)llow = [ T4(h) T2(K) G°|co-
Since M(Ty(h) To(k) g?) = {7(x)}, we have that T(x) = 7(x), which again implies that xo = x. Thus M(S5;(f1) Sz(f2)) = {x}

and Ran,(S;(f1) S:(f2)) = {S1(f1)(x) S2(F2)(x)}.

The following tabulates what has been proven thus far:

f Ran,(f)
(a) Ti(h) Ta(k) g* = Ta(fr) Ta(f2) {Ta(h)(t(x) T2(k)(z(x))}
(b)| T1(h) Ta(k) g = Ti(f1) To(k) = Ta(h) Ta(f2) | { Ta(h)(T(x)) Ta(k)(T(x))}
(c) Si(f1)Sa(k) {Si(f)(x)}
(d) S1(h) S2(f2) {Sa(f2)(x)}
(e) Si(f1) Sa(fa) {S1(f)(x) Sa(f2) (%)}

By (6), the peripheral ranges of (a) and (e) coincide, so
Ti(h)(z(x)) T2(k)(7(x)) = S1(f)(x) S2(F2) (x)-

Similarly, the peripheral ranges of (b), (c), and (d) coincide, yielding

Ta(h)(t(x) Ta(k)(T(x)) = S1(F)(x) = Sa(2)(x).
Therefore T (h)(t(x)) T2(k)(t(x)) = (T1(h)((x)) T2(k)((x)))?, which implies that T;(h)(z(x)) T2(k)(T(x)) = 1. O
Given h,k € S7P(Lipy(X))] and f € S;'[P(Lipy(X)), where x € X \ {ex}, Lemma 4.1 implies that
Ti(h)(t(x)) Ta(f)(t(x)) = 1 = Ti(k)(z(x)) T2(f)(r(x)). Thus Ti(h)(t(x)) = Ti(k)(t(x)) holds for any pair h,k €
ST Pe(Lipy(X))), and we define the map pi: X — K by pi(ex) = 1 and

pi(x) = Ta(h)(z(x)) 7)
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for x € X\ {ex} and h € S;'[P.(Lipy(X))]- Note that this assignment is independent of the choice of h. Similarly, we
define the map p,: X = K by ps(ex) =1 and

pa(x) = Ta(h)(z(x)) (8)

for x € X\ {ex} and h € S;"[P,(Lipy(X))]. which is again independent of the choice of h. Now, given an x € X \ {ex},
an h € S7YP(Lipy(X))] and a k € S '[P, (Lipy(X))], Lemma 4.1 implies that pi(x)pa(x) = T1(h)(t(x)) T2(k)(t(x)) = 1.
Thus p1(x) p2(x) = 1 for all x € X'\ {ex}, and since pi(ex) = pa(ey) = 1, we have that pi(x)p2(x) =1 for all x € X.

Lemma 4.2.
Let f € Lipy(X) and x € X. Then Ty(f)(t(x)) = p1(x) S1(f)(x) and T(f)(t(x)) = pa(x) Sa(f)(X).

Proof. Since pi(x)pa(x) = 1, we have To(f)(T(x)) = p2(x)S2(f)(x) if and only if Sy(f)(x) = p1(x) T2(f)(T(x)). If x = ey,
we have S)(f)(ex) = 0 = pi(ex) Ta(f)(t(ex)). Suppose x # ex and S,(f)(x) = 0, then, given € > 0, Lemma 2.1 (c)
implies that there exists a peaking function h € P,(Lipy(X)) such that ||hS;(f)|| < €. Choosing k € Lipy(X) such that
Si(k) = h, then, as k € S;1[P(Lipy(X))}, (7) yields that pi(x) = Tq(k)(t(x)). Hence

lo1 () To(F) (T ()| = [ Ta (k) (x(x)) To(A)(x (X)) < T2 (k) To)lloo = [151(K) S2(F) | = [[1S2(F) |0 < e

As € was chosen arbitrarily, pi(x) T2(f)(t(x)) = 0 = Sy(f)(x).

If S5(f)(x) # 0, then, by Lemma 2.1 (b), there exists a peaking function h € P, (Lipy(X)) such that M(h) = M(hS,(f)) = {x},
and note that Ran,(hS,(f)) = {S2(f)(x)}. If k € Lipy(X) is such that S;(k) = h and y € M(T;(k) T5(f)), then

Ih((y)) S2(N (W) = [S1(K) () S2(F) (D] = T2 (k) (y) T2(O)(y)] = [T1 (k) Ta(F)lleo = [151(k) Sa(F)llee = 1hS2(F)lloc-

Since M(hS,(f)) = {x}, we have that ¢(y) = x and y = 7(x), hence M(T1(k)T>(f)) = {z(x)}. This implies that
Ran,(T1(k) T2(f)) = {T1(k)(t(x)) T2(f)(z(x))}.

By (6), Rans(Si1(k)S2(f)) N Rany(Ti(k) To(f) # @, so Sa(f)(x) = Ta(k)(z(x)) T2()(T(x)) = p1(x) T2(f)(z(x)). A similar
argument shows Sy (f)(x) = pa(x) T1(F)(T(x)). As p1(x)pa(x) = 1 for all x € X, T+(F)(z(x)) = p1(x) S1(F)(x) and Ta(f)(t(x)) =
p2(x) Sa(f) (x). O

We now prove Main Theorem.

Proof of Main Theorem. The mappings T1, T2, Sy, and S, satisfy || T1(f) T2(9) [l = [1S1(f) S2(g)|leo for all f,g €
Lipy(X), thus we can apply all of the previous results. Let ¢y: Y — X be the formal inverse of the mapping 7 defined by (4).
Note that (ey) = ex and that Lemma 3.7 implies that ¢ is a homeomorphism. Define @1, ¢2: Y — K by ¢ = pioy
and ¢, = pyoy — where p; and p, are the mappings defined by (7) and (8), respectively — then ¢i(y)p2(y) = 1 for
all y € Y, and Lemma 4.2 implies that T;(f)(y) = @;(y) S;(f)(Y(y)), j = 1,2, for all f € Lipy(X) and all y € Y. Thus,
it is only to show that ¢ is a Lipschitz homeomorphism. Indeed, suppose that ¢ is not Lipschitz, then Lemma 2.4
gives sequences {y,} and {z,} in Y that converge to a point y € Y and a function f &€ Lipy(X) such that y, # z,,
n < dx(@(yn), Y(z:)dy(yn. zs), F(PW(ya)) = dx(¢(yn), Y(z,)), and f(P(z,)) = 0 for all n € N. Let h € Lipy(X) be such
that Si(h) = £, then

@1 (yn)ldx(d(yn), d(za)) _ |@1(yn) F(Y(yn)) — @1(20) F((20))]

nlei(ya)l < dy(Yn, zn) dy(yn, 21)
_ei(yn) S1h)(W(ya)) — @1(z2) Si(h)(W(z,))] [Ta(h)(ya) — Ta(h)(z,)]
- dY(yn:Zn) - dV(yn:Zn) < LdY(T1(h))

for all n € N, so ¢1(y,) — 0. By a similar argument ¢,(y,) — 0, and, consequently, ¢1(y,)@2(y,) — 0. However this
is not possible since @1(y,)@2(y,) = 1 for all n. This contradiction shows that ¢ is a Lipschitz function. An analogous
argument shows that ¢y~ = 7 is Lipschitz, which completes the proof. O
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The importance of this result is that it connects the range structure of the functions in Lipy(X) and Lipy(Y) — via the
generalized weak peripheral multiplicativity condition (6) — to the underlying topological structures of X and Y — via
the homeomorphism ¢y — and to the algebraic structures of Lip,(X) and Lip,y(Y) — via the resulting characterization of T;
and S; as generalized weighted composition operators (2).

4.1. Corollaries

In general, the mappings p; defined by (7) and (8) need not be continuous, cf. [8, Example 2.1]. However, given a proper,
open neighborhood U of ey, then p; is Lipschitz on X\ U.

Corollary 4.3.
Let U be a proper, open neighborhood of ex and let j € {1,2}. Then p; is Lipschitz on X \ U.

Proof. Set F = X\ U, then the function

_ d(x, ex)
"~ d(x, ex) + dist(x, F)

f(x)

is Lipschitz, f(ex) = 0, and f[F] = {1}. Thus f € P,(Lip,(X)) for each x € F. Let h € Lipy(X) be such that S;(h) = f,
then by definition pj;(x) = T;(h)(t(x)) for all x € F. By Main Theorem, 7 is Lipschitz, and, as T;(h) € Lipy(Y), it follows
that p; is Lipschitz on F = X'\ U. O

When S; and S, are identity mappings, then T; and T, are weighted composition operators.

Corollary 4.4.
Let (X, dx) and (Y, dy) be pointed compact metric spaces, and let Ty, T,: Lipy(X) — Lipy(Y) be surjective mappings that
satisfy

Ran,(T+1(f) T2(g)) N Ran,(fg) + @ for all f,g € Lipy(X).

Then there exist mappings @1, ¢2: Y — K with ¢i(y)@2(y) = 1 for all y € Y and a base-point preserving Lipschitz
homeomorphism s: Y — X such that

TiO() = @) (ly))  forall felipX), yeV, j=12

In particular,
1. T(f) = ¢y T1(f) = foy is a sup-norm-preserving algebra isomorphism.
2. If Ty =T, =T, then T(f) = ¢-(foy) where ¢ is a mapping from Y to {—1,1}.

Given any f € Lipy(X), notice that the function f: X — C defined by f(x) = f(x) is again Lipschitz. Another case of
Main Theorem concerns the situation when T is the conjugation of T, S; is conjugation, and S, is the identity mapping.
This generalizes what was considered by Molnér in his seminal paper [13, Theorem 6].

Corollary 4.5.
Let (X, dx) and (Y, dy) be pointed compact metric spaces, and let T: Lipy(X) — Lipy(Y) be a surjective mapping that
satisfies

Ran,(T(f) T(g)) N Rans(fg) + @ for all f,g € Lipy(X).

Then there exists a unimodular mapping ¢: Y — K and a base-point preserving Lipschitz homeomorphism (: Y — X
such that

T()(y) = W) f(Ply))  forall felip(X), yeV.
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Next we describe the form of all jointly weakly peripherally multiplicative surjective maps between Lipschitz algebras
Lip(X). Recall that every Lip space can be identified with a convenient Lip, space. Given a metric space (X, d) and a
point ex & X, set Xo = X U {ex}, and define on X the metric dx,: Xox Xo — R by

min{2, dx(x,y)} if x,yeX
dx,(x,y) =41 if x =ex ory = ex (but not both),

0 if x=y=ex.
The mapping Tx: Lip(X, d) — Lipy(Xo, dx,) given by
Ix(Hx)=1x).,  xeX, Tx(f)(ex) =0
is an isometric isomorphism. See [8, Lemma 3.3] for a proof.

Corollary 4.6.
Let (X,dx) and (Y,dy) be compact metric spaces. Assume that Ty, T,: Lip(X) — Lip(Y) and Sy, S;: Lip(X) — Lip(X)
are surjective mappings satisfying

Ran,(T+(f) T2(g)) N Ran,(54(f) Sa(q)) # @ for all f,g € Lip(X).

Then there exist Lipschitz functions @1, @,: Y — K with ¢1(y)@2(y) =1 for all y € Y and a Lipschitz homeomorphism
Y: Y — X such that

TiN(y) = @i(y) Si(N(ly)) ~ forall felip(X), yeVY, j=12
In particular, if Sy and S, are identity functions on Lip(X), then
Ti(Oy) = ¢(y)f(Ply))  forall felip(X), yevY, j=1.2

T1(f) T,(1) = Th(1) Ta(f) for all f € Lip(X), and T: Lip(X) — Lip(Y) defined by T(f) = T1(f) T,(1) = foy is an algebra
isomorphism.

Proof. It is clear that T, = T, T;T", j = 1,2, from Lipy(Xo, dx,) to Lipy(Yo, dy,) and S; = TxS;T", j = 1,2, from
Lipy(Xo, dx,) to Lipy(Xo, dx,) are surjective mappings satisfying

Ran,(T1(f) T2(g) N Rang(S51()Sa(g)) # @ forall 1, g € Lipy(Xo, dxy)-

By Main Theorem, there exist mappings @1, @2: Yo — K with @1(y)@2(y) = 1 for all y € Yy and a base-point preserving
Lipschitz homeomorphism ¢: Yo — Xj such that

TiOY) = i) SiNW(y)  forall € Lipy(Xo, dx), y €Yo, j=12

Let ¢; = @Iy forj=1,2and ¢ = J/[Y, Then ¢1(y)@2(y) =1 forally € Y and ¢: Y — X is a Lipschitz homeomorphism
such that

() Si (W) = 3;(y) TS N@() = B;(y) STN@(Y)) = Ti(Tx (M) = Tv(Ti(Ny) = Ti(Ny)

for all f € Lip(X), all y € Y and j = 1,2. Finally, using that Sy and S, are surjective and that the function constantly
1 on X is in Lip(X), we conclude that ¢ and ¢, are in Lip(Y). O
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