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1. Introduction

Let (X,d) be a metric space and let K be the field of real or complex numbers. A function f : X → K is said to be
Lipschitz if

L( f ) = sup
x�=y

| f (x) − f (y)|
d(x, y)

< ∞.

The Lipschitz space Lip(X) is the Banach space of all K-valued bounded Lipschitz functions f on X with the norm

‖ f ‖ = max
{

L( f ),‖ f ‖∞
}
,

where

‖ f ‖∞ = sup
{∣∣ f (x)

∣∣: x ∈ X
}
.

The little Lipschitz space lip(X) is the closed subspace of Lip(X) consisting of those functions f such that

lim
δ→0

sup
0<d(x,y)<δ

| f (x) − f (y)|
d(x, y)

= 0.

The space Lip(X) separates the points of X but, in some cases, lip(X) may contain only constant functions. To avoid this
pathology, we only consider the little Lipschitz spaces lip(Xα) with α ∈ (0,1), where Xα = (X,dα) and dα is the metric on
X defined by dα(x, y) = d(x, y)α for all x, y ∈ X . It is easy to show that Lip(X) is contained in lip(Xα) whenever α ∈ (0,1).

Extensive study of surjective linear isometries between spaces of Lipschitz functions started with de Leeuw [5], Mayer-
Wolf [6], Roy [7] and Vasavada [8]. In [9], Weaver proves that if X is a complete 1-connected metric space with diameter at
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most 2, then a map T is a linear isometry from Lip(X) onto itself if and only if T is of the form T = τ · ( f ◦ φ), where φ is
an isometry from X onto itself and τ is a scalar of modulus 1. Moreover, this characterization also holds true for isometric
isomorphisms of lip(Xα) when X is, in addition, compact.

Unless otherwise stated, throughout this paper, X will denote a compact 1-connected metric space with diameter at
most 2, α a real parameter in the interval (0,1], and Aα(X) will be either Lip(X) with α = 1 or lip(Xα) with α ∈ (0,1).

In this paper ‘isometry’ on a Banach space refers to a linear surjective distance preserving map. We first gather the
essential results on the isometries of Aα(X).

Theorem 1.1. (See Theorem 2.6.7 and Proposition 3.3.7(a) in [9].) Let X be a compact 1-connected metric space with diameter at
most 2. Then a map T : Aα(X) → Aα(X) is an isometry if and only if there exist a τ ∈ K with |τ | = 1 and a surjective isometry
φ : X → X such that

T ( f )(x) = τ f
(
φ(x)

)
, ∀ f ∈ Aα(X), ∀x ∈ X .

The notion of generalized bi-circular projection was introduced by Fosner, Ilisevic and Li in [4]. We recall that a linear
projection P on a Banach space is said to be a generalized bi-circular projection if P + λ(Id − P ) is an isometry for some
λ ∈ K with |λ| = 1 and λ �= 1. In [2, Proposition 3.7], it was shown that every generalized bi-circular projection of lip(Xα)

with X compact is the average of the identity with an isometric reflection. The same fact was stated there for other Banach
spaces of Lipschitz functions, among them, Lip(Xα) with X compact. The next theorem establishes the form of generalized
bi-circular projections on Aα(X).

Theorem 1.2. Let X be a compact 1-connected metric space with diameter at most 2. Then a map P : Aα(X) → Aα(X) is a generalized
bi-circular projection if and only if there exist a number τ ∈ {−1,1} and a surjective isometry φ : X → X satisfying φ2(x) = x for all
x ∈ X such that

P ( f )(x) = f (x) + τ f (φ(x))

2
, ∀ f ∈ Aα(X), ∀x ∈ X .

Proof. If P is the average of the identity with an isometric reflection on Aα(X), then it is immediate that P is a generalized
bi-circular projection.

Conversely, let P be a generalized bi-circular projection on Aα(X). Suppose that P + λ(Id − P ) is an isometry on Aα(X)

for some λ ∈ K such that |λ| = 1 and λ �= 1. Then, by Theorem 1.1,[
P + λ(Id − P )

]
( f )(x) = τ f

(
φ(x)

) (
f ∈ Aα(X), x ∈ X

)
for some τ ∈ K with |τ | = 1 and φ a surjective isometry of X . Therefore

P ( f )(x) = 1

1 − λ

[−λ f (x) + τ f
(
φ(x)

)] (
f ∈ Aα(X), x ∈ X

)
.

Using that P is a projection, we derive the equation

λ f (x) − (λ + 1)τ f
(
φ(x)

) + τ 2 f
(
φ2(x)

) = 0, ∀ f ∈ Aα(X), ∀x ∈ X .

If x �= φ(x) and x �= φ2(x) for some x ∈ X , we can take a function f ∈ Aα(X) such that f (x) = 1 and f (φ(x)) = f (φ2(x)) = 0
(see Lemma 1.3). Thus, λ = 0, a contradiction. Hence φ(x) = x or φ2(x) = x. In either case, φ2 = Id.

We now distinguish two cases. If φ �= Id, let us take some x0 ∈ X such that x0 �= φ(x0) and consider f ∈ Aα(X) such that
f (x0) = 1 and f (φ(x0)) = 0. Then we have

λ + τ 2 = λ f (x0) − (λ + 1)τ f
(
φ(x0)

) + τ 2 f
(
φ2(x0)

) = 0,(
λ − (λ + 1)τ + τ 2)1X = λ1X − (λ + 1)τ1X + τ 21X = 0,

where 1X is the function constantly 1 on X . Thus, λ = −1 and τ 2 = 1. Then

P ( f ) = 1

2

[
f + τ · ( f ◦ φ)

]
, ∀ f ∈ Aα(X).

If φ = Id, using 1X as above we obtain λ − (λ + 1)τ + τ 2 = 0. Hence τ = λ or τ = 1. If τ = λ, we have

P ( f ) = 1

1 − λ
(−λ f + λ f ) = 0 = 1

2

[
f + (−1)( f ◦ φ)

]
, ∀ f ∈ Aα(X),

and if τ = 1,

P ( f ) = f = 1 [
f + ( f ◦ φ)

]
, ∀ f ∈ Aα(X). �
2
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Hence every generalized bi-circular projection on Aα(X) can be expressed as the average of two isometries. In Section 2,
we show that generalized bi-circular projections are the only linear projections on Aα(X) satisfying this property. In order
to achieve this goal, we first characterize when the average of two isometries is a projection on Aα(X). Similar studies were
obtained in [1,3] for such projections on the Banach spaces of continuous functions with values in the complex field or in a
strictly convex Banach space. The methods used in the second section are expanded in Section 3 to study when the average
of three isometries is a projection on Aα(X). The concept of n-circular projection permits us to state that the average P
of two (three) isometries on Aα(X) is a projection if and only if P is either a trivial projection or a 2-circular projection
(respectively, 3-circular projection). We close the paper with a question, some illustrative examples and some remarks.

We start with a preliminary lemma that will be used repeatedly throughout the paper.

Lemma 1.3. Let X be a compact metric space, Y a closed subset of X , and a an element in X \ Y . The mapping f : X → [0,1] defined
by

f (x) = max

{
0,1 − d(x,a)

d(Y ,a)

}
, ∀x ∈ X,

belongs to Aα(X), f (x) = 0 for all x ∈ Y and f (a) = 1.

2. Projections in the convex hull of two isometries

Let I1 and I2 be two isometries on Aα(X) defined by

Ik( f )(x) = τk f
(
φk(x)

)
, ∀ f ∈ Aα(X), ∀x ∈ X (k = 1,2),

where τk ∈ K with |τk| = 1 and φk : X → X is a surjective isometry.
Our initial focus is to find conditions on the constants τk , the functions φk and the parameter 0 < λ < 1 under which

λI1 + (1 − λ)I2 is a projection on Aα(X).

Proposition 2.1. Let P be a projection on Aα(X) and 0 < λ < 1. If P = λI1 + (1 − λ)I2 , we have:

i) τ1 = τ2 = 1, or τ1 = −τ2 and λ = 1/2.
ii) If φ1(x) �= φ2(x), then either φ1(x) = x or φ2(x) = x.

iii) If x = φ1(x) �= φ2(x), then φ1(φ2(x)) = φ2(x), φ2
2(x) = x, λ = 1/2, τ1 = 1 and τ 2

2 = 1.
iv) If x = φ2(x) �= φ1(x), then φ2(φ1(x)) = φ1(x), φ2

1(x) = x, λ = 1/2, τ2 = 1 and τ 2
1 = 1.

Proof. We have

P ( f )(x) = λτ1 f
(
φ1(x)

) + (1 − λ)τ2 f
(
φ2(x)

) (
f ∈ Aα(X), x ∈ X

)
.

Since P is a projection on Aα(X), that is P 2( f ) = P ( f ) for all f ∈ Aα(X), then

λ2τ 2
1 f

(
φ2

1(x)
) + λ(1 − λ)τ1τ2 f

(
φ2

(
φ1(x)

)) + λ(1 − λ)τ1τ2 f
(
φ1

(
φ2(x)

)) + (1 − λ)2τ 2
2 f

(
φ2

2(x)
)

= λτ1 f
(
φ1(x)

) + (1 − λ)τ2 f
(
φ2(x)

)
, (1)

holds for every f ∈ Aα(X) and all x ∈ X . In particular, taking f = 1X , we obtain[
λτ1 + (1 − λ)τ2

]2 = λτ1 + (1 − λ)τ2.

Hence λτ1 + (1 − λ)τ2 = 0 which gives λ = 1/2 and τ1 = −τ2, or λτ1 + (1 − λ)τ2 = 1 which implies τ1 = τ2 = 1. This
proves i).

In order to prove ii), let x ∈ X be such that φ1(x) �= φ2(x) and assume on the contrary that φ1(x) �= x and φ2(x) �= x. We
claim that φ2

1(x) = φ2(x). Otherwise, we set Y = {φ1(x),φ2
1(x),φ2(φ1(x)),φ2

2(x)} and a = φ2(x) in Lemma 1.3. It then asserts
the existence of a function f : X → [0,1] in Aα(X) that vanishes at all the points in Y and is equal to 1 at a. Hence Eq. (1)
reduces to λ f (φ1(φ2(x))) = 1 and so f (φ1(φ2(x))) > 1. This contradiction proves our claim. It follows that φ1(φ2(x)) �= φ2(x),
and another application of Lemma 1.3 with Y = {φ1(x),φ2(φ1(x)),φ1(φ2(x)),φ2

2(x)} and a = φ2(x) yields λ2 = 1 − λ. Then
λ = (−1 + √

5)/2.
Similarly, we can show that φ2

2(x) = φ1(x) and therefore φ2(φ1(x)) �= φ1(x). Considering now Y = {φ2(x),φ2(φ1(x)),

φ1(φ2(x)),φ2
1(x)}, a = φ1(x) and f ∈ Aα(X) as in Lemma 1.3, Eq. (1) becomes (1 − λ)2 = λ and so λ = (3 + √

5)/2 which is
impossible. This proves ii).

We now prove iii). If x = φ1(x) �= φ2(x), Eq. (1) can be rewritten as

λ2τ 2
1 f (x) + λ(1 − λ)τ1τ2 f

(
φ2(x)

) + λ(1 − λ)τ1τ2 f
(
φ1

(
φ2(x)

)) + (1 − λ)2τ 2
2 f

(
φ2

2(x)
)

= λτ1 f (x) + (1 − λ)τ2 f
(
φ2(x)

)
(2)
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for every f ∈ Aα(X). If φ1(φ2(x)) = x or φ2
2(x) = φ2(x), we have φ2(x) = x, a contradiction. Hence φ1(φ2(x)) �= x and φ2

2(x) �=
φ2(x).

We now show that φ1(φ2(x)) = φ2(x). Otherwise, we consider f ∈ Aα(X) as in Lemma 1.3 with Y = {x, φ2
2(x),φ1(φ2(x))}

and a = φ2(x). Then Eq. (2) reduces to λ = 1, which is impossible.
Similarly, we see that φ2

2(x) = x. If φ2
2(x) �= x, we consider f ∈ Aα(X) as in Lemma 1.3 with Y = {φ2(x),φ2

2(x),φ1(φ2(x))}
and a = x. Eq. (2) gives λ = 0 or λ = 1, which is not possible.

Therefore φ1(φ2(x)) = φ2(x) and φ2
2(x) = x. Then Eq. (2) is rewritten as

λ2τ 2
1 f (x) + λ(1 − λ)τ1τ2 f

(
φ2(x)

) + λ(1 − λ)τ1τ2 f
(
φ2(x)

) + (1 − λ)2τ 2
2 f (x)

= λτ1 f (x) + (1 − λ)τ2 f
(
φ2(x)

)
(3)

for all f ∈ Aα(X). In particular, taking Y = {x}, a = φ2(x) and f ∈ Aα(X) as in Lemma 1.3, Eq. (3) becomes 2λ(1 − λ)τ1τ2 =
(1 − λ)τ2 which yields λ = 1/2 and τ1 = 1. Taking f = 1X in Eq. (3), it follows that τ 2

2 = 1, and this completes the proof of
iii). Similar arguments apply to prove iv). �

We now give a characterization of the operators (I1 + I2)/2 that are projections on Aα(X).

Proposition 2.2. The operator (I1 + I2)/2 is a projection on Aα(X) if and only if one of the following statements holds:

(1) τ1 = τ2 = 1 and every x ∈ X satisfies:
(a) x = φ1(x) = φ2(x), or
(b) x = φ1(x) �= φ2(x), φ1(φ2(x)) = φ2(x) and φ2

2(x) = x, or
(c) x = φ2(x) �= φ1(x), φ2(φ1(x)) = φ1(x) and φ2

1(x) = x.
(2) τ1 = −τ2 and φ1(x) = φ2(x) for every x ∈ X, that is ((I1 + I2)/2)( f )(x) = 0, for all f ∈ Aα(X).
(3) τ1 = 1, τ2 = −1 and every x ∈ X satisfies:

(a) φ1(x) = φ2(x), or
(b) x = φ1(x) �= φ2(x), φ1(φ2(x)) = φ2(x) and φ2

2(x) = x.
(4) τ1 = −1, τ2 = 1 and every x ∈ X satisfies:

(a) φ1(x) = φ2(x), or
(b) x = φ2(x) �= φ1(x), φ2(φ1(x)) = φ1(x) and φ2

1(x) = x.

Proof. Recall that (I1 + I2)/2 is a projection on Aα(X) if and only if

τ 2
1 f

(
φ2

1(x)
) + τ1τ2 f

(
φ2

(
φ1(x)

)) + τ1τ2 f
(
φ1

(
φ2(x)

)) + τ 2
2 f

(
φ2

2(x)
) = 2

[
τ1 f

(
φ1(x)

) + τ2 f
(
φ2(x)

)]
, (4)

for every f ∈ Aα(X) and all x ∈ X .
It is straightforward to check that Eq. (4) holds for each of the cases (1) through (4) in the statement of the proposition.
Conversely, assume that (I1 + I2)/2 is a projection. Then τ1 = τ2 = 1 or τ1 = −τ2 by Proposition 2.1i).
Let us assume first τ1 = τ2 = 1. Hence Eq. (4) reduces to

f
(
φ2

1(x)
) + f

(
φ2

(
φ1(x)

)) + f
(
φ1

(
φ2(x)

)) + f
(
φ2

2(x)
) = 2

[
f
(
φ1(x)

) + f
(
φ2(x)

)]
(5)

for every f ∈ Aα(X) and x ∈ X . Let x ∈ X . If φ1(x) = φ2(x), Eq. (5) becomes

f
(
φ2

1(x)
) + f

(
φ2

2(x)
) = 2 f

(
φ1(x)

)
for every f ∈ Aα(X). In particular, taking

f (z) = d
(
z, φ1(x)

)
, ∀z ∈ X,

we get d(φ2
1(x),φ1(x))+d(φ2

2 (x),φ1(x)) = 0. This gives φ1(x) = x and so x = φ1(x) = φ2(x), as in the condition (1)(a). Assume
now φ1(x) �= φ2(x). According to the statements iii) and iv) in Proposition 2.1, x satisfies either the condition (1)(b) or the
condition (1)(c). Therefore, statement (1) holds.

Suppose now τ1 = −τ2. If φ1 = φ2, we have the statement (2). Otherwise, let x ∈ X be such that φ1(x) �= φ2(x). Then
φ1(x) = x or φ2(x) = x by Proposition 2.1ii). If the former holds, then Proposition 2.1iii) implies that τ1 = 1, τ2 = −1 and
x satisfies the condition (3)(b). Moreover, if such x exists then the condition (3)(b) also holds for every y ∈ X such that
φ1(y) �= φ2(y). We observe that given y ∈ X such that φ1(y) �= φ2(y) = y, then τ2 = 1 by Proposition 2.1 iv). This contradicts
our assumption τ1 = −τ2. If φ2(x) = x, then Proposition 2.1iv) implies that τ2 = 1 = −τ1, and x satisfies (4)(b). Similar
reasoning shows that every y ∈ X such that φ1(y) �= φ2(y) also satisfies the statement claimed in (4)(b). This completes the
proof of the proposition. �

We are ready to prove that the only projections on Aα(X) that can be represented as the average of two isometries are
generalized bi-circular projections.



914 F. Botelho et al. / J. Math. Anal. Appl. 386 (2012) 910–920
Theorem 2.3. A projection on Aα(X) is the average of two surjective isometries if and only if it is a generalized bi-circular projection.

Proof. A generalized bi-circular projection on Aα(X) is the average of the identity and an involutive isometry by Theo-
rem 1.2.

Conversely, assume that (I1 + I2)/2 is a projection on Aα(X) where I1 and I2 are isometries on Aα(X), of the form

Ik( f )(x) = τk f
(
φk(x)

) (
f ∈ Aα(X), x ∈ X

)
(k = 1,2),

where τk ∈ K with |τk| = 1 and φk : X → X is a surjective isometry.
In view of Proposition 2.2, we can consider four cases. Taking into account Theorem 1.2, our goal is to find in each one

of these cases a number τ ∈ {−1,1} and a surjective isometry φ : X → X satisfying φ2(x) = x and

τ1 f
(
φ1(x)

) + τ2 f
(
φ2(x)

) = f (x) + τ f
(
φ(x)

)
(6)

for every f ∈ Aα(X) and all x ∈ X .
According to Proposition 2.1, the sets X0, X1 and X2 given by

X0 = {
x ∈ X: φ1(x) = φ2(x)

}
,

X1 = {
x ∈ X: x = φ1(x) �= φ2(x), φ1

(
φ2(x)

) = φ2(x), φ2
2(x) = x

}
and

X2 = {
x ∈ X: x = φ2(x) �= φ1(x), φ2

(
φ1(x)

) = φ1(x), φ2
1(x) = x

}
constitute a partition of X . Define now the function

φ(x) =
{ x if x ∈ X0,

φ2(x) if x ∈ X1,

φ1(x) if x ∈ X2.

It is easy to show that x ∈ X1 (x ∈ X2) if and only if φ2(x) ∈ X1 (respectively, φ1(x) ∈ X2). Using this, we show that φ

is involutive. Indeed, if x ∈ X0, we have φ2(x) = φ(x) = x; if x ∈ X1, then φ2(x) = φ(φ2(x)) = φ2
2(x) = x; and if x ∈ X2 we

conclude that φ2(x) = φ(φ1(x)) = φ2
1(x) = x. Notice that φ is surjective since it is involutive.

We now check that φ is an isometry. Let x, y ∈ X . For x ∈ X0 and y ∈ X1, we have

d
(
φ(x),φ(y)

) = d
(
x, φ2(y)

) = d
(
φ1(x),φ1

(
φ2(y)

)) = d
(
φ2(x),φ2(y)

) = d(x, y);
for x ∈ X0 and y ∈ X2,

d
(
φ(x),φ(y)

) = d
(
x, φ1(y)

) = d
(
φ2(x),φ2

(
φ1(y)

)) = d
(
φ1(x),φ1(y)

) = d(x, y);
and, finally, for x ∈ X1 and y ∈ X2,

d
(
φ(x),φ(y)

) = d
(
φ2(x),φ1(y)

) = d
(
φ2

2(x),φ2
(
φ1(y)

)) = d
(
x, φ1(y)

) = d
(
φ1(x),φ2

1(y)
) = d(x, y).

Notice that taking f = 1X in Eq. (6), we obtain τ = τ1 + τ2 − 1. Defining τ = 1 in the case given in the statement (1)
of Proposition 2.2 and τ = −1 in the other three cases, it is easy to check that Eq. (6) is satisfied for every f ∈ Aα(X) and
x ∈ X . This completes the proof of the theorem. �
3. Projections in the convex hull of three isometries

In this section we investigate whether the convex hull of three isometries contains any projections. We consider the
isometries on Aα(X),

Ik( f )(x) = τk f
(
φk(x)

) (
f ∈ Aα(X), x ∈ X

)
(k = 1,2,3),

with τk unimodular scalars and φk surjective isometries on X . Throughout this section we set Q = (I1 + I2 + I3)/3, this
defines an operator on Aα(X). The operator Q is a projection on Aα(X) if and only if

3∑
i, j=1

τiτ j f
(
φ j

(
φi(x)

)) = 3
3∑

k=1

τk f
(
φk(x)

)
, (7)

for every x ∈ X and f ∈ Aα(X). Taking f = 1X in Eq. (7), we obtain
∑3

i, j=1 τiτ j = 3
∑3

k=1 τk , that is

(τ1 + τ2 + τ3)
2 = 3(τ1 + τ2 + τ3).

Hence τ1 + τ2 + τ3 = 3 or τ1 + τ2 + τ3 = 0. From these equalities we easily derive the following lemma.
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Lemma 3.1. If Q is a projection, then τ1 = τ2 = τ3 = 1 or there exists a permutation of (1,2,3), (l, j,k), such that τ j = e2π i/3τl and
τk = e4π i/3τl .

We observe that each triplet {τ1, τ2, τ3} as given in the second case of the previous lemma can be referred to as an orbit
of the action of the group of the 3rd roots of unity on S1.

Given an arbitrary point x ∈ X , we define the set

Sx = {
φ1(x),φ2(x),φ3(x)

}
.

We denote by card(Sx), the cardinality of Sx . Clearly, one of the following holds:

1. card(Sx) = 1, that is φ1(x) = φ2(x) = φ3(x).
2. card(Sx) = 2, that is Sx consists of two elements, as for example φ1(x) = φ2(x) �= φ3(x).
3. card(Sx) = 3, that is φ1(x) �= φ2(x) �= φ3(x) �= φ1(x).

Lemma 3.2. If Q is a projection on Aα(X), then for every x ∈ X, card(Sx) is either equal to 1 or equal to 3.

Proof. We assume that there exists x ∈ X such that Sx consists of two elements, say φ1(x) = φ2(x) �= φ3(x). We present the
proof for the lemma in this case but the remaining two possibilities follow similarly. Eq. (7) now takes the form

(τ1 + τ2)
[
τ1 f

(
φ2

1(x)
) + τ2 f

(
φ2

2(x)
) + τ3 f

(
φ3

(
φ1(x)

))] + τ3
[
τ1 f

(
φ1

(
φ3(x)

)) + τ2 f
(
φ2

(
φ3(x)

)) + τ3 f
(
φ2

3(x)
)]

= 3(τ1 + τ2) f
(
φ1(x)

) + 3τ3 f
(
φ3(x)

) (
f ∈ Aα(X), x ∈ X

)
. (8)

We claim that τ1 + τ2 �= 0, otherwise Eq. (8) reduces to

τ1 f
(
φ1

(
φ3(x)

)) + τ2 f
(
φ2

(
φ3(x)

)) + τ3 f
(
φ2

3(x)
) = 3 f

(
φ3(x)

) (
f ∈ Aα(X), x ∈ X

)
.

In particular, for f = 1X , we have τ1 + τ2 + τ3 = 3 and so τ1 = τ2 = τ3 = 1. This contradicts our assumption that τ1 + τ2 = 0
and shows that τ1 + τ2 �= 0.

We now consider the following three possibilities:

i. x �= φ1(x) = φ2(x) �= φ3(x) �= x.
ii. x �= φ1(x) = φ2(x) �= φ3(x) = x.

iii. x = φ1(x) = φ2(x) �= φ3(x) �= x.

i. x �= φ1(x) �= φ3(x) �= x. Considering now Y = {φ3(x),φ1(φ3(x)),φ2(φ3(x)),φ2
1(x),φ2

2(x)}, a = φ1(x) and f ∈ Aα(X) as in
Lemma 1.3, Eq. (8) becomes

(τ1 + τ2)τ3 f
(
φ3

(
φ1(x)

)) + τ 2
3 f

(
φ2

3(x)
) = 3(τ1 + τ2).

We observe that φ3(φ1(x)) and φ2
3(x) can’t both be equal to φ1(x) since φ1(x) �= φ3(x). If they are both different from φ1(x),

then we select f satisfying the same conditions as the last function with the additional constraint that it also vanishes at
φ3(φ1(x)) and φ2

3(x). This leads to a contradiction, since τ1 + τ2 �= 0. If φ2
3(x) �= φ1(x) and φ3(φ1(x)) = φ1(x), an appropriate

choice of f implies that τ3 = 3, which is impossible. The only possibility left is φ2
3(x) = φ1(x) and φ3(φ1(x)) �= φ1(x). In such

case f can be chosen equal to zero on φ3(φ1(x)) and equal to 1 on φ2
3(x). This implies that τ 2

3 = 3(τ1 + τ2) and Eq. (8)
reduces to

(τ1 + τ2)
[
τ1 f

(
φ2

1(x)
) + τ2 f

(
φ2

2(x)
) + τ3 f

(
φ3

(
φ1(x)

))] + τ3
[
τ1 f

(
φ1

(
φ3(x)

)) + τ2 f
(
φ2

(
φ3(x)

))]
= 3τ3 f

(
φ3(x)

) (
f ∈ Aα(X), x ∈ X

)
or equivalently

τ 2
3

[
τ1 f

(
φ2

1(x)
) + τ2 f

(
φ2

2(x)
) + τ3 f

(
φ3

(
φ1(x)

))] + 3τ3
[
τ1 f

(
φ1

(
φ3(x)

)) + τ2 f
(
φ2

(
φ3(x)

))]
= 9τ3 f

(
φ3(x)

) (
f ∈ Aα(X), x ∈ X

)
.

In particular for f = 1X , we have τ3(τ1 + τ2 + τ3) + τ 2
3 = 9 and this is impossible.

ii. x �= φ1(x) �= φ3(x) = x. Eq. (8) can be written as:

(τ1 + τ2)
[
τ1 f

(
φ2

1(x)
) + τ2 f

(
φ2

2(x)
) + τ3 f

(
φ3

(
φ1(x)

))] = (3 − τ3)
[
(τ1 + τ2) f

(
φ1(x)

) + τ3 f
(
φ3(x)

)]
for every x ∈ X and f ∈ Aα(X). Lemma 1.3 asserts the existence of a function f ∈ Aα(X) with range the interval [0,1] and
such that f (φ1(x)) = 1, f (φ3(x)) = f (φ2

2(x)) = f (φ2
1(x)) = 0. Therefore τ3 f (φ3(φ1(x))) = 3 − τ3 and this is impossible since

|3 − τ3| � 2.
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iii. x = φ1(x) �= φ3(x) �= x. Under these assumptions Eq. (8) can be rewritten as:

(τ1 + τ2)
2 f

(
φ1(x)

) + (τ1 + τ2)τ3 f
(
φ3(x)

) + τ3
[
τ1 f

(
φ1

(
φ3(x)

)) + τ2 f
(
φ2

(
φ3(x)

)) + τ3 f
(
φ2

3(x)
)]

= 3(τ1 + τ2) f
(
φ1(x)

) + 3τ3 f
(
φ3(x)

) (
f ∈ Aα(X), x ∈ X

)
. (9)

If φ3(x) �= φ1(φ3(x)) and φ3(x) �= φ2(φ3(x)), then there exists a Lipschitz function f with range in the interval [0,1]
and satisfying the conditions f (φ1(x)) = f (φ1(φ3(x))) = f (φ2(φ3(x))) = 0 and f (φ3(x)) = 1. Eq. (9) becomes (τ1 + τ2) +
τ3 f (φ2

3(x)) = 3. This implies that φ2
3(x) = φ3(x) which contradicts our assumptions. Therefore φ3(x) = φ1(φ3(x)) or φ3(x) =

φ2(φ3(x)). If we assume that φ3(x) = φ1(φ3(x)) = φ2(φ3(x)), then we set f satisfying f (x) = f (φ2
3(x)) = 0 and f (φ3(x)) = 1.

This implies that τ1 + τ2 = 3/2. On the other hand, by considering 1X − f we get τ 2
3 = 9/4 which is impossible. We have

two cases left to analyze. We first assume that φ3(x) = φ1(φ3(x)) �= φ2(φ3(x)). Eq. (9) reduces to

(τ1 + τ2)
2 f (x) + (2τ1 + τ2)τ3 f

(
φ3(x)

) + τ2τ3 f
(
φ2

(
φ3(x)

)) + τ 2
3 f

(
φ2

3(x)
)

= 3(τ1 + τ2) f (x) + 3τ3 f
(
φ3(x)

) (
f ∈ Aα(X), x ∈ X

)
. (10)

We select a Lipschitz function f : X → [0,1] such that f (x) = f (φ2(φ3(x)) = f (φ2
3(x)) = 0 and f (φ3(x)) = 1. Then we have

2τ1 + τ2 = 3 and τ1 = τ2 = 1. Therefore Eq. (10) becomes

τ3 f
(
φ2

(
φ3(x)

)) + τ 2
3 f

(
φ2

3(x)
) = 2 f (x)

(
f ∈ Aα(X), x ∈ X

)
.

In particular, for a Lipschitz function with range the interval [0,1] with f (x) = 1 and f (φ2(φ3(x))) = 0 we have
τ 2

3 f (φ2
3(x)) = 2. This is clearly impossible. A similar approach also shows that φ3(x) = φ2(φ3(x)) �= φ1(φ3(x)) leads to a

contradiction. �
Lemma 3.3. Let x ∈ X be such that φ1(x) = φ2(x) = φ3(x) and τ1 = τ2 = τ3 = 1. If Q is a projection, then x = φ1(x) = φ2(x) = φ3(x).

Proof. Eq. (7) can be rewritten as follows:

f
(
φ2

1(x)
) + f

(
φ2

2(x)
) + f

(
φ2

3(x)
) = 3 f

(
φ1(x)

) (
f ∈ Aα(X), x ∈ X

)
.

In particular, taking

f (z) = d
(
z, φ1(x)

)
, ∀z ∈ X,

gives

d
(
φ2

1(x),φ1(x)
) + d

(
φ2

2(x),φ1(x)
) + d

(
φ2

3(x),φ1(x)
) = 0

which implies d(φ2
1(x),φ1(x)) = 0 and so φ1(x) = x. �

Lemma 3.4. Let x ∈ X be such that φ1(x) �= φ2(x) �= φ3(x) �= φ1(x). If Q is a projection, then there exists k ∈ {1,2,3} such that
φk(x) = x.

Proof. Suppose that φk(x) �= x for all k ∈ {1,2,3}. Therefore φ j(φk(x)) �= φ j(x) for all j,k ∈ {1,2,3}. Using Lemma 1.3, we
have a function f ∈ Aα(X) such that f (φ1(x)) = 1 and f (φ1(φk(x)) = f (φ j(x)) = 0 for all k ∈ {1,2,3} and j ∈ {2,3}. Eq. (7)
becomes

3∑
k=1, j=2

τkτ j f
(
φ j

(
φk(x)

)) = 3τ1.

This implies that at least three points in the set{
φ2

(
φ1(x)

)
, φ3

(
φ1(x)

)
, φ2

2(x),φ3
(
φ2(x)

)
, φ2

(
φ3(x)

)
, φ2

3(x)
}

must be equal to φ1(x). This contradiction proves the statement. �
Lemma 3.5. Let x ∈ X be such that φ1(x) �= φ2(x) �= φ3(x) �= φ1(x). If Q is a projection, then there exists (l, j,k), a permutation of
(1,2,3), such that one of the following holds:

1. x = φl(x) = φ j(φk(x)) = φk(φ j(x)), φ j(x) = φ2
k (x) = φl(φ j(x)), φk(x) = φ2

j (x) = φl(φk(x)) and τ1 = τ2 = τ3 = 1, or τl = 1,

τ j = e2π i/3 and τk = e4π i/3.
2. x = φl(x) = φ2

k (x) = φ2
j (x), φl(φ j(x)) = φ j(φk(x)) = φk(x), φl(φk(x)) = φk(φ j(x)) = φ j(x) and τ1 = τ2 = τ3 = 1.
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Proof. From Lemma 3.4 and without loss of generality, we may assume that φ1(x) = x. Another choice for f ∈ Aα(X) with
f (x) = 1 and f (φ2(x)) = f (φ3(x)) = 0, also implies that there must exist at least two points in the set{

φ1
(
φ2(x)

)
, φ2

2(x),φ3
(
φ2(x)

)
, φ1

(
φ3(x)

)
, φ2

(
φ3(x)

)
, φ2

3(x)
}

that are equal to x. This implies the following list of possibilities.

(i) x = φ2
2(x) = φ3(φ2(x)),

(ii) x = φ2
2(x) = φ2

3(x),
(iii) x = φ3(φ2(x)) = φ2(φ3(x)),
(iv) x = φ2

3(x) = φ2(φ3(x)).

The symmetry of the equations involved imply that case (iv) follows from a similar argument to the one presented for
case (i), by just permuting the indices 2 and 3.

We proceed to show that case (i) leads to an absurd. We select a function f ∈ Aα(X) so that f (x) = f (φ2(x)) =
f (φ2

3(x)) = 0 and f (φ3(x)) = 1. Therefore we have

τ2τ1 f
(
φ1

(
φ2(x)

)) + τ3
[
τ1 f

(
φ1

(
φ3(x)

)) + τ2 f
(
φ2

(
φ3(x)

))] = (3 − τ1)τ3.

This implies that at least two points in the set {φ1(φ2(x)),φ1(φ3(x)),φ2(φ3(x))} must be equal to φ3(x). Since φ1(φ2(x)) �=
φ1(φ3(x)), we have the following two possibilities: φ3(x) = φ1(φ2(x)) = φ2(φ3(x)) (or φ3(x) = φ1(φ3(x)) = φ2(φ3(x))). Both
cases lead to a contradiction following a similar approach. In fact, if φ3(x) = φ1(φ2(x)) = φ2(φ3(x)), we clearly have

φ1
(
φ2(x)

) = φ3(x) �= φ2
(
φ2(x)

) = φ3
(
φ2(x)

) = x.

Therefore the set Sφ2(x) has cardinality two which contradicts Lemma 3.2.
We consider case (ii), that is x = φ2

2(x) = φ2
3(x). We recall that Q is a projection if and only if Eq. (7) holds. In this case,

(7) reduces to

τ 2
1 f (x) + τ1τ2 f

(
φ1

(
φ2(x)

)) + τ1τ3 f
(
φ1

(
φ3(x)

)) + τ 2
2 f (x)

+ τ2τ3 f
(
φ2

(
φ3(x)

)) + τ1τ3 f
(
φ3(x)

) + τ3τ2 f
(
φ3

(
φ2(x)

)) + τ 2
3 f (x)

= 3
[
τ1 f (x) + τ2 f

(
φ2(x)

) + τ3 f
(
φ3(x)

)]
,

(
f ∈ Aα(X), x ∈ X

)
. (11)

We select a function f0 such that f0(x) = f0(φ2(x)) = f0(φ3(φ2(x))) = 0 and f0(φ3(x)) = 1. Therefore

τ1τ2 f0
(
φ1

(
φ2(x)

)) + τ1τ3 f0
(
φ1

(
φ3(x)

)) + τ2τ3 f0
(
φ2

(
φ3(x)

)) + τ1τ3 = 3τ3. (12)

We conclude that at least two elements in {φ1(φ2(x)),φ1(φ3(x)),φ2(φ3(x))} must be equal to φ3(x). Therefore we have two
cases to analyze: 1. φ1(φ3(x)) = φ2(φ3(x)) = φ3(x) and 2. φ1(φ2(x)) = φ2(φ3(x)) = φ3(x).

We now examine case 1. φ1(φ3(x)) = φ2(φ3(x)) = φ3(x)(�= φ1(φ2(x))). The function f0 selected above may be chosen
satisfying the additional condition: f0(φ1(φ2(x))) = 0. Then the equality (12) becomes τ1τ3 +τ2τ3 +τ1τ3 = 3τ3. This implies
τ1 = τ2 = τ3 = 1 (see Lemma 3.1). Hence (11) yields f (φ1(φ2(x))) + f (φ3(φ2(x))) = 2 f (φ2(x)). This implies that φ1(φ2(x)) =
φ3(φ2(x)) = φ2(x), then the cardinality of Sφ2(x) is equal to 2, contradicting Lemma 3.2.

Now we consider case 2. φ1(φ2(x)) = φ2(φ3(x)) = φ3(x)(�= φ1(φ3(x))). As done in case 1, we select f0 with the additional
constraint that also vanishes at φ1(φ3(x)). It then follows that τ1τ2 + τ2τ3 + τ3τ1 = 3τ3, implying that τ1 = τ2 = τ3 = 1.
Eq. (11) now yields f (φ1(φ3(x))) + f (φ3(φ2(x))) = 2 f (φ2(x)) implying that φ1(φ3(x)) = φ3(φ2(x)) = φ2(x), as stated in the
statement (2).

We now consider case (iii), that is x = φ3(φ2(x)) = φ2(φ3(x)). As previously done, a choice of a Lipschitz function f such
that f (x) = f (φ3(x)) = f (φ2

2(x)) = 0 and f (φ2(x)) = 1 implies that at least two points in the set {φ1(φ2(x)),φ1(φ3(x)),φ2
3(x)}

must be equal to φ2(x). This determines the following possibilities: φ2(x) = φ1(φ2(x)) = φ2
3(x) or φ2(x) = φ1(φ3(x)) = φ2

3(x).
An application of Lemma 1.3 yields a Lipschitz function f so that f (x) = f (φ2(x)) = 0 and f (φ3(x)) = 1. This leads to the
equations:

τ 2
2 f

(
φ2

2(x)
) + τ3τ1 f

(
φ1

(
φ3(x)

)) = (3 − τ1)τ3

or

τ2τ1 f
(
φ1

(
φ2(x)

)) + τ 2
2 f

(
φ2

2(x)
) = (3 − τ1)τ3,

respectively. Therefore φ3(x) = φ2
2(x) = φ1(φ3(x)) or φ3(x) = φ2

2(x) = φ1(φ2(x)). We show that the equalities:

φ1(x) = φ2
(
φ3(x)

) = φ3
(
φ2(x)

)
, φ3(x) = φ2

2(x) = φ1
(
φ2(x)

)
, φ2(x) = φ1

(
φ3(x)

) = φ2
3(x)

cannot occur. Since φ1(φ2(x)) = φ2
2(x), then the cardinality of Sφ2(x) must be equal to 1 as shown in Lemma 3.2, hence we

would have

φ1(x) = φ3
(
φ2(x)

) = φ1
(
φ2(x)

) = φ3(x)
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contradicting our initial assumption. Therefore we must have φ2(x) = φ1(φ2(x)) = φ2
3(x) and φ3(x) = φ2

2(x) = φ1(φ3(x)),
which implies that φ3

2(x) = φ3
3(x) = x.

Thus we get

x = φ1(x) = φ2
(
φ3(x)

) = φ3
(
φ2(x)

)
, φ2(x) = φ2

3(x) = φ1
(
φ2(x)

)
, φ3(x) = φ2

2(x) = φ1
(
φ3(x)

)
.

Then Eq. (7) becomes

τ 2
1 f

(
φ1(x)

) + τ1τ2 f
(
φ2(x)

) + τ1τ3 f
(
φ3(x)

) + τ2τ1 f
(
φ2(x)

) + τ 2
2 f

(
φ3(x)

)
+ τ2τ3 f

(
φ1(x)

) + τ3τ1 f
(
φ3(x)

) + τ3τ2 f
(
φ1(x)

) + τ 2
3 f

(
φ2(x)

)
= 3τ1 f

(
φ1(x)

) + 3τ2 f
(
φ2(x)

) + 3τ3 f
(
φ3(x)

)
,

for all f ∈ Aα(X). In particular for f , a function in Aα(X), such that f (φ1(x)) = 1 and f (φ2(x)) = f (φ3(x)) = 0, we obtain
τ 2

1 + 2τ2τ3 = 3τ1. An easy computation gives τ1 = 1. Then, applying Lemma 3.1, we can assert that τ2 = τ3 = 1, τ2 = e2π i/3

and τ3 = e4π i/3, or τ2 = e4π i/3 and τ3 = e2π i/3, as stated in the statement (1). �
Remark 3.6. It is straightforward to show that the conditions stated in Lemma 3.5 are sufficient for Q to be a projection.

The next proposition summarizes the results obtained in the previous lemmas.

Proposition 3.7. Let Ik be surjective isometries on Aα(X), given by

Ik( f )(x) = τk f
(
φk(x)

) (
f ∈ Aα(X), x ∈ X

)
(k = 1,2,3),

with each τk a unimodular scalar and φk a surjective isometry on X, and let Q be the average of I1 , I2 and I3 . Then Q is a projection
on Aα(X) if and only if one of the following statements holds:

(1) τ1 = τ2 = τ3 = 1 and every x ∈ X satisfies:
(a) x = φ1(x) = φ2(x) = φ3(x), or
(b) φ1(x) �= φ2(x) �= φ3(x) �= φ1(x), x = φl(x) = φ j(φk(x)) = φk(φ j(x)), φ j(x) = φ2

k (x) = φl(φ j(x)) and φk(x) = φ2
j (x) =

φl(φk(x)), where (l, j,k) is a permutation of (1,2,3), or
(c) φ1(x) �= φ2(x) �= φ3(x) �= φ1(x), x = φl(x) = φ2

k (x) = φ2
j (x), φl(φ j(x)) = φ j(φk(x)) = φk(x), and φl(φk(x)) = φk(φ j(x)) =

φ j(x), where (l, j,k) is a permutation of (1,2,3).
(2) τ j = e2π i/3τl and τk = e4π i/3τl , where (l, j,k) is a permutation of (1,2,3), and φ1(x) = φ2(x) = φ3(x) for every x ∈ X. In this

case, Q = 0.
(3) τl = 1, τ j = e2π i/3 and τk = e4π i/3 , where (l, j,k) is a permutation of (1,2,3), and every x ∈ X satisfies:

(a) φ1(x) = φ2(x) = φ3(x), or
(b) φ1(x) �= φ2(x) �= φ3(x) �= φ1(x), x = φl(x) = φ j(φk(x)) = φk(φ j(x)), φ j(x) = φ2

k (x) = φl(φ j(x)) and φk(x) = φ2
j (x) =

φl(φk(x)).

Now, we are in a position to characterize those projections given by the average of three surjective isometries on Aα(X).

Theorem 3.8. Let Ik be surjective isometries on Aα(X), given by

Ik( f )(x) = τk f
(
φk(x)

) (
f ∈ Aα(X), x ∈ X

)
(k = 1,2,3),

with each τk a unimodular scalar and φk a surjective isometry on X, and let Q be the average of I1 , I2 and I3 . Then Q is a projection
on Aα(X) if and only if there exist a scalar τ ∈ K with τ 3 = 1 and a surjective isometry φ on X with φ3 = Id such that

Q ( f )(x) = f (x) + τ f (φ(x)) + τ 2 f (φ2(x))

3
,

for every f ∈ Aα(X) and x ∈ X.

Proof. Since the sufficiency is clear, we prove only the necessity. Assume that Q = (I1 + I2 + I3)/3 is a projection on Aα(X).
Proposition 3.7 implies that X is partitioned into the following sets:

X0 = {
x ∈ X: φ1(x) = φ2(x) = φ3(x)

}
,

Xl = {
x /∈ X0: x = φl(x) �= φ j(x) �= φk(x) �= x, φl(x) = φ j

(
φk(x)

) = φk
(
φ j(x)

)
,

φ j(x) = φ2
k (x) = φl

(
φ j(x)

)
, φk(x) = φ2

j (x) = φl
(
φk(x)

)}
Yl = {

x /∈ X0: x = φl(x) = φ2(x) = φ2(x) φ j(x) = φl
(
φk(x)

) = φk
(
φ j(x)

)
, φk(x) = φl

(
φ j(x)

) = φ j
(
φk(x)

)}

j k
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for l = 1,2,3 and (l, j,k) a permutation of (1,2,3). For simplicity of exposition we assume that these sets are nonempty.
We define φ as follows:

φ(x) =

⎧⎪⎨
⎪⎩

x if x ∈ X0,

φ3(x) if x ∈ X1 ∪ Y1,

φ1(x) if x ∈ X2 ∪ Y2,

φ2(x) if x ∈ X3 ∪ Y3.

We observe that φ3(Y1) ⊆ Y2, φ1(Y2) ⊆ Y3, and φ2(Y3) ⊆ Y1. Furthermore φ j(Xi) ⊆ Xi for all i and j.
We check that φ is an isometry. We consider a few sample cases. The remaining cases follow from similar strategies.

1. If x1 ∈ X1 and x2 ∈ X2, then

d
(
φ(x1),φ(x2)

) = d
(
φ3(x1),φ1(x2)

) = d
(
φ3(x1),φ

2
3(x2)

)
= d

(
x1, φ3(x2)

) = d
(
φ1(x1),φ3(x2)

)
= d

(
φ2

(
φ3(x1)

)
, φ2

(
φ3(x2)

)) = d(x1, x2).

2. If x1 ∈ X1 and y2 ∈ Y2, then

d
(
φ(x1),φ(y2)

) = d
(
φ3(x1),φ1(y2)

) = d
(
φ3

(
φ1(x1)

)
, φ3

(
φ1(y2)

)) = d(x1, y2).

3. If y1 ∈ Y1 and y3 ∈ Y3, then

d
(
φ(y1),φ(y3)

) = d
(
φ3(y1),φ2(y3)

) = d
(
φ3

(
φ1(y1)

)
, φ3

(
φ1(y3)

)) = d(y1, y3).

We now show that φ3 = Id which also implies that φ is surjective. If x ∈ X0, it is clear that φ3(x) = x; while that if
x ∈ Xl , a simple verification shows that φ j(x),φk(x) ∈ Xl and hence φ3(x) = φ3

j (x) = φ3
k (x) = x. If x ∈ Y1 then

φ3(x) = φ2(φ3(x)
) = φ(φ1

(
φ3(x)

) = φ2
(
φ1

(
φ3(x)

)) = φ2
2(x) = x.

Similar reasoning applies for x ∈ Y2 or x ∈ Y3.
Taking τ = 1 when the statement (1) of Proposition 3.7 holds; τ = e2π i/3 when the statement (2) holds in which case

Q = 0; and τ = e2π i/3 or τ = e4π i/3, depending on the permutation (l, j,k), when the statement (3) is satisfied, straightfor-
ward computations show that the equation

τ1 f
(
φ1(x)

) + τ2 f
(
φ2(x)

) + τ3 f
(
φ3(x)

) = f (x) + τ f
(
φ(x)

) + τ 2 f
(
φ2(x)

)
,

holds true for all f ∈ Aα(X) and x ∈ X . This completes the proof. �
4. Concluding remarks

The statement of Theorem 3.8 motivates the following definition.

Definition 4.1. Let n ∈ N be with n � 2. A bounded operator Q on Aα(X) is called a n-circular projection if and only if there
exists a scalar τ ∈ K such that τn = 1 and a surjective isometry φ on X such that φn = Id and φk �= Id for all k = 1, . . . ,n −1
satisfying

Q ( f )(x) =
∑n−1

k=0 τ k f (φk(x))

n
,

for every f ∈ Aα(X) and x ∈ X . We take φ0 = Id.

Theorems 2.3 and 3.8 can be restate as in the following theorem. We refer to a projection as being trivial if it is equal
to either the zero or the identity operators.

Theorem 4.2. Let X be a compact 1-connected metric space with diameter at most 2 and Aα(X) be Lip(X) or lip(Xα) with α ∈ (0,1).

1. The average of two surjective isometries on Aα(X) is a projection if and only if it is either a trivial projection or a 2-circular
projection.

2. The average of three surjective isometries on Aα(X) is a projection if and only if it is either a trivial projection or a 3-circular
projection.

The preceding results suggest that, under certain constraints, the average of n surjective isometries is a nontrivial pro-
jection if and only if it is an n-circular projection, so we ask.
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Question 4.3. Let X be a compact 1-connected metric space with diameter at most 2 and n � 2. Is the average of n pairwise distinct
surjective isometries on Aα(X) a projection if and only if it is either a trivial projection or a n-circular projection?

Next we describe some examples of n-circular projections on Aα(X), with X the circle (S1), the sphere (S2), or the torus
(T 2). It might be of interest to point out that there are no n-circular projections with n > 2 on Aα([0,1]). It is due to the
nonexistence of homeomorphisms of [0,1] with period n � 3.

Example 4.4. We set φ to be a period n rotation on S1, φ(eiθ ) = ei(θ+2π/n) , and define

P ( f )(x) =
n∑

k=1

f (φk(x))

n
,

for all f ∈ Aα(S1) and x ∈ S1. This construction easily extends to S2 by parameterizing S2 as the set of all points of the
form (

√
1 − z2eiθ , z) with z ∈ [−1,1] and θ ∈ [0,2π). Then define an isometry φ as follows:

φ
(√

1 − z2eiθ , z
) = (√

1 − z2ei(θ+ 2π
n ), z

)
.

If X = T 2, since T 2 = S1 × S1 we construct examples of period n isometries on T 2.

We close with two remarks motivated by the results of this paper.

Remark 4.5. Let X be a compact 1-connected metric space with diameter at most 2. We observe that 3-circular projections
on Aα(X) cannot be represented as the average of two surjective isometries on Aα(X). Let’s assume otherwise. Then we
can write

f (x) + τ f (φ(x)) + τ 2 f (φ2(x))

3
= α1 f (ψ1(x)) + α2 f (ψ2(x))

2

(
f ∈ Aα(X), x ∈ X

)
, (13)

where τ ∈ K with τ 3 = 1, φ is a surjective isometry on X such that φ �= Id �= φ2 and φ3 = Id, α1,α2 ∈ K with |α1| = |α2| = 1
and ψ1 and ψ2 are surjective isometries on X . In particular, for f = 1X , Eq. (13) becomes (1 + τ + τ 2)/3 = (α1 + α2)/2. If
τ = 1, then α1 = α2 = 1. If τ �= 1, then τ ∈ {e2π i/3, e4π i/3}, hence 1 + τ + τ 2 = 0 and so α1 + α2 = 0.

First we assume that τ = α1 = α2 = 1. Since there exists x ∈ X such that card{x, φ(x),φ2(x)} = 3 we select f ∈ Aα(X)

with range the interval [0,1] such that f (x) = 1 and f (φ(x)) = f (φ2(x)) = 0. Hence Eq. (13) implies that

2 = 3
(

f
(
ψ1(x)

) + f
(
ψ2(x)

))
.

Hence there must exist k ∈ {1,2} so that ψk(x) = x which leads to a contradiction.
Now we assume that τ �= 1 and consequently α1 + α2 = 0. As above we select x ∈ X so that card{x, φ(x),φ2(x)} = 3.

We show that {x, φ(x),φ2(x)} must intersect {ψ1(x),ψ2(x)}. If these two sets were disjoint, then there exists a function
f ∈ Aα(X) satisfying f (x) = 1 and f (z) = 0 for all z ∈ {ψ1(x),ψ2(x),φ(x),φ2(x)}. This leads to an absurd. Without loss
of generality, we can assume that ψ1(x) = φ j(x) for some j ∈ {0,1,2} and hence ψ1(x) /∈ {φk(x): k = 0,1,2, k �= j}. We
now set f ∈ Aα(X) such that f (ψ1(x)) = 1 and f (φk(x)) = 0 for all k ∈ {0,1,2} \ { j}. If ψ1(x) = ψ2(x), Eq. (13) becomes
τ j/3 = (α1 + α2)/2, hence τ j/3 = 0, a contradiction. If ψ1(x) �= ψ2(x), we can also assume that f (ψ2(x)) = 0, and now
Eq. (13) gives τ j/3 = α1/2, another contradiction. This absurd proves the claim.

Remark 4.6. We recall that a projection P is bi-contractive if ‖P‖ � 1 and ‖I − P‖ � 1. It is known that generalized bi-
circular projections are bi-contractive (see [4]). We note that 3-circular projections are not necessarily bi-contractive. In fact,
let X = {a,b, c} be equipped with the metric d(a,b) = d(b, c) = d(a, c) = 2. Consider P = (Id + R + R2)/3 with R( f ) = f ◦ φ

and φ a period 3 isometry on X (φ(a) = b, φ(b) = c and φ(c) = a). Then Id − P = (2Id − R − R2)/3. We consider f on
Aα(X) such that f (φ(a)) = f (φ2(a)) = −1 and f (a) = 1. We observe that ‖ f ‖ = 6/5 and ‖(Id − P )( f )‖ = 23/15, hence
‖Id − P‖ > 1.
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