ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

Projections and averages of isometries on Lipschitz spaces

Fernanda Botelho a,*, James Jamison a, Antonio Jiménez-Vargas b,1

ARTICLE INFO

Article history: Received 18 January 2011 Available online 25 August 201

Available online 25 August 2011 Submitted by K. Jarosz

Keywords: Isometry Convex combination of isometries Generalized bi-circular projection Spaces of Lipschitz functions

ABSTRACT

We characterize projections on spaces of Lipschitz functions expressed as the average of two and three linear surjective isometries. Generalized bi-circular projections are the only projections on these spaces given as the convex combination of two surjective isometries.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let (X,d) be a metric space and let \mathbb{K} be the field of real or complex numbers. A function $f:X\to\mathbb{K}$ is said to be Lipschitz if

$$L(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} < \infty.$$

The Lipschitz space Lip(X) is the Banach space of all \mathbb{K} -valued bounded Lipschitz functions f on X with the norm

$$||f|| = \max\{L(f), ||f||_{\infty}\},\$$

where

$$||f||_{\infty} = \sup\{|f(x)|: x \in X\}.$$

The little Lipschitz space lip(X) is the closed subspace of Lip(X) consisting of those functions f such that

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) < \delta} \frac{|f(x) - f(y)|}{d(x,y)} = 0.$$

The space Lip(X) separates the points of X but, in some cases, lip(X) may contain only constant functions. To avoid this pathology, we only consider the little Lipschitz spaces $\text{lip}(X^{\alpha})$ with $\alpha \in (0,1)$, where $X^{\alpha} = (X,d^{\alpha})$ and d^{α} is the metric on X defined by $d^{\alpha}(x,y) = d(x,y)^{\alpha}$ for all $x,y \in X$. It is easy to show that Lip(X) is contained in $\text{lip}(X^{\alpha})$ whenever $\alpha \in (0,1)$.

Extensive study of surjective linear isometries between spaces of Lipschitz functions started with de Leeuw [5], Mayer-Wolf [6], Roy [7] and Vasavada [8]. In [9], Weaver proves that if X is a complete 1-connected metric space with diameter at

^a Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA

^b Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain

^{*} Corresponding author.

E-mail addresses: mbotelho@memphis.edu (F. Botelho), jjamison@memphis.edu (J. Jamison), ajimenez@ual.es (A. Jiménez-Vargas).

¹ The author was partially supported by Junta de Andalucía under grant FQM-3737 and by MICINN under project MTM 2010-17687.

most 2, then a map T is a linear isometry from $\operatorname{Lip}(X)$ onto itself if and only if T is of the form $T = \tau \cdot (f \circ \phi)$, where ϕ is an isometry from X onto itself and τ is a scalar of modulus 1. Moreover, this characterization also holds true for isometric isomorphisms of $\operatorname{lip}(X^{\alpha})$ when X is, in addition, compact.

Unless otherwise stated, throughout this paper, X will denote a compact 1-connected metric space with diameter at most 2, α a real parameter in the interval (0,1], and $A_{\alpha}(X)$ will be either Lip(X) with $\alpha=1$ or lip (X^{α}) with $\alpha\in(0,1)$.

In this paper 'isometry' on a Banach space refers to a linear surjective distance preserving map. We first gather the essential results on the isometries of $A_{\alpha}(X)$.

Theorem 1.1. (See Theorem 2.6.7 and Proposition 3.3.7(a) in [9].) Let X be a compact 1-connected metric space with diameter at most 2. Then a map $T: A_{\alpha}(X) \to A_{\alpha}(X)$ is an isometry if and only if there exist a $\tau \in \mathbb{K}$ with $|\tau| = 1$ and a surjective isometry $\phi: X \to X$ such that

$$T(f)(x) = \tau f(\phi(x)), \quad \forall f \in A_{\alpha}(X), \ \forall x \in X.$$

The notion of generalized bi-circular projection was introduced by Fosner, Ilisevic and Li in [4]. We recall that a linear projection P on a Banach space is said to be a generalized bi-circular projection if $P + \lambda(Id - P)$ is an isometry for some $\lambda \in \mathbb{K}$ with $|\lambda| = 1$ and $\lambda \neq 1$. In [2, Proposition 3.7], it was shown that every generalized bi-circular projection of $\operatorname{lip}(X^{\alpha})$ with X compact is the average of the identity with an isometric reflection. The same fact was stated there for other Banach spaces of Lipschitz functions, among them, $\operatorname{Lip}(X^{\alpha})$ with X compact. The next theorem establishes the form of generalized bi-circular projections on $A_{\alpha}(X)$.

Theorem 1.2. Let X be a compact 1-connected metric space with diameter at most 2. Then a map $P: A_{\alpha}(X) \to A_{\alpha}(X)$ is a generalized bi-circular projection if and only if there exist a number $\tau \in \{-1, 1\}$ and a surjective isometry $\phi: X \to X$ satisfying $\phi^2(x) = x$ for all $x \in X$ such that

$$P(f)(x) = \frac{f(x) + \tau f(\phi(x))}{2}, \quad \forall f \in A_{\alpha}(X), \ \forall x \in X.$$

Proof. If P is the average of the identity with an isometric reflection on $A_{\alpha}(X)$, then it is immediate that P is a generalized bi-circular projection.

Conversely, let P be a generalized bi-circular projection on $A_{\alpha}(X)$. Suppose that $P + \lambda(\mathrm{Id} - P)$ is an isometry on $A_{\alpha}(X)$ for some $\lambda \in \mathbb{K}$ such that $|\lambda| = 1$ and $\lambda \neq 1$. Then, by Theorem 1.1,

$$[P + \lambda(\mathrm{Id} - P)](f)(x) = \tau f(\phi(x)) \quad (f \in A_{\alpha}(X), x \in X)$$

for some $\tau \in \mathbb{K}$ with $|\tau| = 1$ and ϕ a surjective isometry of X. Therefore

$$P(f)(x) = \frac{1}{1-\lambda} \left[-\lambda f(x) + \tau f(\phi(x)) \right] \quad (f \in A_{\alpha}(X), \ x \in X).$$

Using that P is a projection, we derive the equation

$$\lambda f(x) - (\lambda + 1)\tau f(\phi(x)) + \tau^2 f(\phi^2(x)) = 0, \quad \forall f \in A_\alpha(X), \ \forall x \in X.$$

If $x \neq \phi(x)$ and $x \neq \phi^2(x)$ for some $x \in X$, we can take a function $f \in A_\alpha(X)$ such that f(x) = 1 and $f(\phi(x)) = f(\phi^2(x)) = 0$ (see Lemma 1.3). Thus, $\lambda = 0$, a contradiction. Hence $\phi(x) = x$ or $\phi^2(x) = x$. In either case, $\phi^2 = Id$.

We now distinguish two cases. If $\phi \neq \mathrm{Id}$, let us take some $x_0 \in X$ such that $x_0 \neq \phi(x_0)$ and consider $f \in A_\alpha(X)$ such that $f(x_0) = 1$ and $f(\phi(x_0)) = 0$. Then we have

$$\lambda + \tau^2 = \lambda f(x_0) - (\lambda + 1)\tau f(\phi(x_0)) + \tau^2 f(\phi^2(x_0)) = 0,$$

$$(\lambda - (\lambda + 1)\tau + \tau^2)1_X = \lambda 1_X - (\lambda + 1)\tau 1_X + \tau^2 1_X = 0,$$

where 1_X is the function constantly 1 on X. Thus, $\lambda = -1$ and $\tau^2 = 1$. Then

$$P(f) = \frac{1}{2} [f + \tau \cdot (f \circ \phi)], \quad \forall f \in A_{\alpha}(X).$$

If $\phi = \text{Id}$, using 1_X as above we obtain $\lambda - (\lambda + 1)\tau + \tau^2 = 0$. Hence $\tau = \lambda$ or $\tau = 1$. If $\tau = \lambda$, we have

$$P(f) = \frac{1}{1-\lambda}(-\lambda f + \lambda f) = 0 = \frac{1}{2}[f + (-1)(f \circ \phi)], \quad \forall f \in A_{\alpha}(X),$$

and if $\tau = 1$.

$$P(f) = f = \frac{1}{2} [f + (f \circ \phi)], \quad \forall f \in A_{\alpha}(X).$$

Hence every generalized bi-circular projection on $A_{\alpha}(X)$ can be expressed as the average of two isometries. In Section 2, we show that generalized bi-circular projections are the only linear projections on $A_{\alpha}(X)$ satisfying this property. In order to achieve this goal, we first characterize when the average of two isometries is a projection on $A_{\alpha}(X)$. Similar studies were obtained in [1,3] for such projections on the Banach spaces of continuous functions with values in the complex field or in a strictly convex Banach space. The methods used in the second section are expanded in Section 3 to study when the average of three isometries is a projection on $A_{\alpha}(X)$. The concept of n-circular projection permits us to state that the average P of two (three) isometries on $A_{\alpha}(X)$ is a projection if and only if P is either a trivial projection or a 2-circular projection (respectively, 3-circular projection). We close the paper with a question, some illustrative examples and some remarks,

We start with a preliminary lemma that will be used repeatedly throughout the paper.

Lemma 1.3. Let X be a compact metric space, Y a closed subset of X, and a an element in $X \setminus Y$. The mapping $f: X \to [0, 1]$ defined by

$$f(x) = \max \left\{ 0, 1 - \frac{d(x, a)}{d(Y, a)} \right\}, \quad \forall x \in X,$$

belongs to $A_{\alpha}(X)$, f(x) = 0 for all $x \in Y$ and f(a) = 1.

2. Projections in the convex hull of two isometries

Let I_1 and I_2 be two isometries on $A_{\alpha}(X)$ defined by

$$I_k(f)(x) = \tau_k f(\phi_k(x)), \quad \forall f \in A_\alpha(X), \ \forall x \in X \ (k = 1, 2),$$

where $\tau_k \in \mathbb{K}$ with $|\tau_k| = 1$ and $\phi_k : X \to X$ is a surjective isometry.

Our initial focus is to find conditions on the constants τ_k , the functions ϕ_k and the parameter $0 < \lambda < 1$ under which $\lambda I_1 + (1 - \lambda)I_2$ is a projection on $A_{\alpha}(X)$.

Proposition 2.1. Let *P* be a projection on $A_{\alpha}(X)$ and $0 < \lambda < 1$. If $P = \lambda I_1 + (1 - \lambda)I_2$, we have:

- i) $\tau_1 = \tau_2 = 1$, or $\tau_1 = -\tau_2$ and $\lambda = 1/2$.

- ii) If $\phi_1(x) \neq \phi_2(x)$, then either $\phi_1(x) = x$ or $\phi_2(x) = x$. iii) If $x = \phi_1(x) \neq \phi_2(x)$, then $\phi_1(\phi_2(x)) = \phi_2(x)$, $\phi_2^2(x) = x$, $\lambda = 1/2$, $\tau_1 = 1$ and $\tau_2^2 = 1$. iv) If $x = \phi_2(x) \neq \phi_1(x)$, then $\phi_2(\phi_1(x)) = \phi_1(x)$, $\phi_1^2(x) = x$, $\lambda = 1/2$, $\tau_2 = 1$ and $\tau_1^2 = 1$.

Proof. We have

$$P(f)(x) = \lambda \tau_1 f(\phi_1(x)) + (1 - \lambda)\tau_2 f(\phi_2(x)) \quad (f \in A_\alpha(X), x \in X).$$

Since P is a projection on $A_{\alpha}(X)$, that is $P^{2}(f) = P(f)$ for all $f \in A_{\alpha}(X)$, then

$$\lambda^{2} \tau_{1}^{2} f(\phi_{1}^{2}(x)) + \lambda (1 - \lambda) \tau_{1} \tau_{2} f(\phi_{2}(\phi_{1}(x))) + \lambda (1 - \lambda) \tau_{1} \tau_{2} f(\phi_{1}(\phi_{2}(x))) + (1 - \lambda)^{2} \tau_{2}^{2} f(\phi_{2}^{2}(x))$$

$$= \lambda \tau_{1} f(\phi_{1}(x)) + (1 - \lambda) \tau_{2} f(\phi_{2}(x)), \tag{1}$$

holds for every $f \in A_{\alpha}(X)$ and all $x \in X$. In particular, taking $f = 1_X$, we obtain

$$\left[\lambda \tau_1 + (1 - \lambda)\tau_2\right]^2 = \lambda \tau_1 + (1 - \lambda)\tau_2.$$

Hence $\lambda \tau_1 + (1 - \lambda)\tau_2 = 0$ which gives $\lambda = 1/2$ and $\tau_1 = -\tau_2$, or $\lambda \tau_1 + (1 - \lambda)\tau_2 = 1$ which implies $\tau_1 = \tau_2 = 1$. This

In order to prove ii), let $x \in X$ be such that $\phi_1(x) \neq \phi_2(x)$ and assume on the contrary that $\phi_1(x) \neq x$ and $\phi_2(x) \neq x$. We claim that $\phi_1^2(x) = \phi_2(x)$. Otherwise, we set $Y = \{\phi_1(x), \phi_1^2(x), \phi_2(\phi_1(x)), \phi_2^2(x)\}$ and $\alpha = \phi_2(x)$ in Lemma 1.3. It then asserts the existence of a function $f: X \to [0, 1]$ in $A_{\alpha}(X)$ that vanishes at all the points in Y and is equal to 1 at a. Hence Eq. (1) reduces to $\lambda f(\phi_1(\phi_2(x))) = 1$ and so $f(\phi_1(\phi_2(x))) > 1$. This contradiction proves our claim. It follows that $\phi_1(\phi_2(x)) \neq \phi_2(x)$, and another application of Lemma 1.3 with $Y = \{\phi_1(x), \phi_2(\phi_1(x)), \phi_1(\phi_2(x)), \phi_2^2(x)\}$ and $a = \phi_2(x)$ yields $\lambda^2 = 1 - \lambda$. Then

Similarly, we can show that $\phi_2^2(x) = \phi_1(x)$ and therefore $\phi_2(\phi_1(x)) \neq \phi_1(x)$. Considering now $Y = {\phi_2(x), \phi_2(\phi_1(x))}$, $\phi_1(\phi_2(x)), \phi_1^2(x)$, $a = \phi_1(x)$ and $f \in A_\alpha(X)$ as in Lemma 1.3, Eq. (1) becomes $(1 - \lambda)^2 = \lambda$ and so $\lambda = (3 + \sqrt{5})/2$ which is impossible. This proves ii).

We now prove iii). If $x = \phi_1(x) \neq \phi_2(x)$, Eq. (1) can be rewritten as

$$\lambda^{2} \tau_{1}^{2} f(x) + \lambda (1 - \lambda) \tau_{1} \tau_{2} f(\phi_{2}(x)) + \lambda (1 - \lambda) \tau_{1} \tau_{2} f(\phi_{1}(\phi_{2}(x))) + (1 - \lambda)^{2} \tau_{2}^{2} f(\phi_{2}^{2}(x))$$

$$= \lambda \tau_{1} f(x) + (1 - \lambda) \tau_{2} f(\phi_{2}(x))$$
(2)

for every $f \in A_{\alpha}(X)$. If $\phi_1(\phi_2(x)) = x$ or $\phi_2^2(x) = \phi_2(x)$, we have $\phi_2(x) = x$, a contradiction. Hence $\phi_1(\phi_2(x)) \neq x$ and $\phi_2^2(x) \neq \phi_2(x)$.

We now show that $\phi_1(\phi_2(x)) = \phi_2(x)$. Otherwise, we consider $f \in A_\alpha(X)$ as in Lemma 1.3 with $Y = \{x, \phi_2^2(x), \phi_1(\phi_2(x))\}$ and $a = \phi_2(x)$. Then Eq. (2) reduces to $\lambda = 1$, which is impossible.

Similarly, we see that $\phi_2^2(x) = x$. If $\phi_2^2(x) \neq x$, we consider $f \in A_\alpha(X)$ as in Lemma 1.3 with $Y = \{\phi_2(x), \phi_2^2(x), \phi_1(\phi_2(x))\}$ and a = x. Eq. (2) gives $\lambda = 0$ or $\lambda = 1$, which is not possible.

Therefore $\phi_1(\phi_2(x)) = \phi_2(x)$ and $\phi_2^2(x) = x$. Then Eq. (2) is rewritten as

$$\lambda^{2} \tau_{1}^{2} f(x) + \lambda (1 - \lambda) \tau_{1} \tau_{2} f(\phi_{2}(x)) + \lambda (1 - \lambda) \tau_{1} \tau_{2} f(\phi_{2}(x)) + (1 - \lambda)^{2} \tau_{2}^{2} f(x)$$

$$= \lambda \tau_{1} f(x) + (1 - \lambda) \tau_{2} f(\phi_{2}(x))$$
(3)

for all $f \in A_{\alpha}(X)$. In particular, taking $Y = \{x\}$, $a = \phi_2(x)$ and $f \in A_{\alpha}(X)$ as in Lemma 1.3, Eq. (3) becomes $2\lambda(1-\lambda)\tau_1\tau_2 = (1-\lambda)\tau_2$ which yields $\lambda = 1/2$ and $\tau_1 = 1$. Taking $f = 1_X$ in Eq. (3), it follows that $\tau_2^2 = 1$, and this completes the proof of iii). Similar arguments apply to prove iv). \Box

We now give a characterization of the operators $(I_1 + I_2)/2$ that are projections on $A_{\alpha}(X)$.

Proposition 2.2. The operator $(I_1 + I_2)/2$ is a projection on $A_{\alpha}(X)$ if and only if one of the following statements holds:

- (1) $\tau_1 = \tau_2 = 1$ and every $x \in X$ satisfies:
 - (a) $x = \phi_1(x) = \phi_2(x)$, or
 - (b) $x = \phi_1(x) \neq \phi_2(x)$, $\phi_1(\phi_2(x)) = \phi_2(x)$ and $\phi_2^2(x) = x$, or
 - (c) $x = \phi_2(x) \neq \phi_1(x)$, $\phi_2(\phi_1(x)) = \phi_1(x)$ and $\phi_1^2(x) = x$.
- (2) $\tau_1 = -\tau_2$ and $\phi_1(x) = \phi_2(x)$ for every $x \in X$, that is $((I_1 + I_2)/2)(f)(x) = 0$, for all $f \in A_\alpha(X)$.
- (3) $\tau_1 = 1$, $\tau_2 = -1$ and every $x \in X$ satisfies:
 - (a) $\phi_1(x) = \phi_2(x)$, or
 - (b) $x = \phi_1(x) \neq \phi_2(x)$, $\phi_1(\phi_2(x)) = \phi_2(x)$ and $\phi_2(x) = x$.
- (4) $\tau_1 = -1$, $\tau_2 = 1$ and every $x \in X$ satisfies:
 - (a) $\phi_1(x) = \phi_2(x)$, or
 - (b) $x = \phi_2(x) \neq \phi_1(x)$, $\phi_2(\phi_1(x)) = \phi_1(x)$ and $\phi_1^2(x) = x$.

Proof. Recall that $(I_1 + I_2)/2$ is a projection on $A_{\alpha}(X)$ if and only if

$$\tau_1^2 f(\phi_1^2(x)) + \tau_1 \tau_2 f(\phi_2(\phi_1(x))) + \tau_1 \tau_2 f(\phi_1(\phi_2(x))) + \tau_2^2 f(\phi_2^2(x)) = 2[\tau_1 f(\phi_1(x)) + \tau_2 f(\phi_2(x))], \tag{4}$$

for every $f \in A_{\alpha}(X)$ and all $x \in X$.

It is straightforward to check that Eq. (4) holds for each of the cases (1) through (4) in the statement of the proposition. Conversely, assume that $(I_1 + I_2)/2$ is a projection. Then $\tau_1 = \tau_2 = 1$ or $\tau_1 = -\tau_2$ by Proposition 2.1i). Let us assume first $\tau_1 = \tau_2 = 1$. Hence Eq. (4) reduces to

$$f(\phi_1^2(x)) + f(\phi_2(\phi_1(x))) + f(\phi_1(\phi_2(x))) + f(\phi_2^2(x)) = 2[f(\phi_1(x)) + f(\phi_2(x))]$$
(5)

for every $f \in A_{\alpha}(X)$ and $x \in X$. Let $x \in X$. If $\phi_1(x) = \phi_2(x)$, Eq. (5) becomes

$$f(\phi_1^2(x)) + f(\phi_2^2(x)) = 2f(\phi_1(x))$$

for every $f \in A_{\alpha}(X)$. In particular, taking

$$f(z) = d(z, \phi_1(x)), \forall z \in X,$$

we get $d(\phi_1^2(x), \phi_1(x)) + d(\phi_2^2(x), \phi_1(x)) = 0$. This gives $\phi_1(x) = x$ and so $x = \phi_1(x) = \phi_2(x)$, as in the condition (1)(a). Assume now $\phi_1(x) \neq \phi_2(x)$. According to the statements iii) and iv) in Proposition 2.1, x satisfies either the condition (1)(b) or the condition (1)(c). Therefore, statement (1) holds.

Suppose now $\tau_1 = -\tau_2$. If $\phi_1 = \phi_2$, we have the statement (2). Otherwise, let $x \in X$ be such that $\phi_1(x) \neq \phi_2(x)$. Then $\phi_1(x) = x$ or $\phi_2(x) = x$ by Proposition 2.1ii). If the former holds, then Proposition 2.1iii) implies that $\tau_1 = 1$, $\tau_2 = -1$ and x satisfies the condition (3)(b). Moreover, if such x exists then the condition (3)(b) also holds for every $y \in X$ such that $\phi_1(y) \neq \phi_2(y)$. We observe that given $y \in X$ such that $\phi_1(y) \neq \phi_2(y) = y$, then $\tau_2 = 1$ by Proposition 2.1 iv). This contradicts our assumption $\tau_1 = -\tau_2$. If $\phi_2(x) = x$, then Proposition 2.1iv) implies that $\tau_2 = 1 = -\tau_1$, and x satisfies (4)(b). Similar reasoning shows that every $y \in X$ such that $\phi_1(y) \neq \phi_2(y)$ also satisfies the statement claimed in (4)(b). This completes the proof of the proposition. \square

We are ready to prove that the only projections on $A_{\alpha}(X)$ that can be represented as the average of two isometries are generalized bi-circular projections.

Theorem 2.3. A projection on $A_{\alpha}(X)$ is the average of two surjective isometries if and only if it is a generalized bi-circular projection.

Proof. A generalized bi-circular projection on $A_{\alpha}(X)$ is the average of the identity and an involutive isometry by Theorem 1.2.

Conversely, assume that $(I_1 + I_2)/2$ is a projection on $A_{\alpha}(X)$ where I_1 and I_2 are isometries on $A_{\alpha}(X)$, of the form

$$I_k(f)(x) = \tau_k f(\phi_k(x)) \quad (f \in A_\alpha(X), x \in X) \quad (k = 1, 2),$$

where $\tau_k \in \mathbb{K}$ with $|\tau_k| = 1$ and $\phi_k : X \to X$ is a surjective isometry.

In view of Proposition 2.2, we can consider four cases. Taking into account Theorem 1.2, our goal is to find in each one of these cases a number $\tau \in \{-1, 1\}$ and a surjective isometry $\phi: X \to X$ satisfying $\phi^2(x) = x$ and

$$\tau_1 f(\phi_1(x)) + \tau_2 f(\phi_2(x)) = f(x) + \tau f(\phi(x)) \tag{6}$$

for every $f \in A_{\alpha}(X)$ and all $x \in X$.

According to Proposition 2.1, the sets X_0 , X_1 and X_2 given by

$$X_0 = \{x \in X : \phi_1(x) = \phi_2(x)\},\$$

$$X_1 = \{ x \in X : x = \phi_1(x) \neq \phi_2(x), \ \phi_1(\phi_2(x)) = \phi_2(x), \ \phi_2^2(x) = x \}$$

and

$$X_2 = \{x \in X : x = \phi_2(x) \neq \phi_1(x), \ \phi_2(\phi_1(x)) = \phi_1(x), \ \phi_1^2(x) = x\}$$

constitute a partition of X. Define now the function

$$\phi(x) = \begin{cases} x & \text{if } x \in X_0, \\ \phi_2(x) & \text{if } x \in X_1, \\ \phi_1(x) & \text{if } x \in X_2. \end{cases}$$

It is easy to show that $x \in X_1$ ($x \in X_2$) if and only if $\phi_2(x) \in X_1$ (respectively, $\phi_1(x) \in X_2$). Using this, we show that ϕ is involutive. Indeed, if $x \in X_0$, we have $\phi^2(x) = \phi(x) = x$; if $x \in X_1$, then $\phi^2(x) = \phi(\phi_2(x)) = \phi_2^2(x) = x$; and if $x \in X_2$ we conclude that $\phi^2(x) = \phi(\phi_1(x)) = \phi_1^2(x) = x$. Notice that ϕ is surjective since it is involutive.

We now check that ϕ is an isometry. Let $x, y \in X$. For $x \in X_0$ and $y \in X_1$, we have

$$d(\phi(x), \phi(y)) = d(x, \phi_2(y)) = d(\phi_1(x), \phi_1(\phi_2(y))) = d(\phi_2(x), \phi_2(y)) = d(x, y);$$

for $x \in X_0$ and $y \in X_2$,

$$d(\phi(x), \phi(y)) = d(x, \phi_1(y)) = d(\phi_2(x), \phi_2(\phi_1(y))) = d(\phi_1(x), \phi_1(y)) = d(x, y);$$

and, finally, for $x \in X_1$ and $y \in X_2$,

$$d(\phi(x), \phi(y)) = d(\phi_2(x), \phi_1(y)) = d(\phi_2^2(x), \phi_2(\phi_1(y))) = d(x, \phi_1(y)) = d(\phi_1(x), \phi_1^2(y)) = d(x, y).$$

Notice that taking $f=1_X$ in Eq. (6), we obtain $\tau=\tau_1+\tau_2-1$. Defining $\tau=1$ in the case given in the statement (1) of Proposition 2.2 and $\tau=-1$ in the other three cases, it is easy to check that Eq. (6) is satisfied for every $f\in A_\alpha(X)$ and $x\in X$. This completes the proof of the theorem. \square

3. Projections in the convex hull of three isometries

In this section we investigate whether the convex hull of three isometries contains any projections. We consider the isometries on $A_{\alpha}(X)$,

$$I_k(f)(x) = \tau_k f(\phi_k(x)) \quad (f \in A_\alpha(X), x \in X) \quad (k = 1, 2, 3),$$

with τ_k unimodular scalars and ϕ_k surjective isometries on X. Throughout this section we set $Q = (I_1 + I_2 + I_3)/3$, this defines an operator on $A_{\alpha}(X)$. The operator Q is a projection on $A_{\alpha}(X)$ if and only if

$$\sum_{i,j=1}^{3} \tau_{i} \tau_{j} f(\phi_{j}(\phi_{i}(x))) = 3 \sum_{k=1}^{3} \tau_{k} f(\phi_{k}(x)), \tag{7}$$

for every $x \in X$ and $f \in A_{\alpha}(X)$. Taking $f = 1_X$ in Eq. (7), we obtain $\sum_{i,j=1}^{3} \tau_i \tau_j = 3 \sum_{k=1}^{3} \tau_k$, that is

$$(\tau_1 + \tau_2 + \tau_3)^2 = 3(\tau_1 + \tau_2 + \tau_3).$$

Hence $\tau_1 + \tau_2 + \tau_3 = 3$ or $\tau_1 + \tau_2 + \tau_3 = 0$. From these equalities we easily derive the following lemma.

Lemma 3.1. If Q is a projection, then $\tau_1 = \tau_2 = \tau_3 = 1$ or there exists a permutation of (1, 2, 3), (l, j, k), such that $\tau_j = e^{2\pi i/3}\tau_l$ and $\tau_k = e^{4\pi i/3}\tau_l$.

We observe that each triplet $\{\tau_1, \tau_2, \tau_3\}$ as given in the second case of the previous lemma can be referred to as an orbit of the action of the group of the 3rd roots of unity on S^1 .

Given an arbitrary point $x \in X$, we define the set

$$S_x = \{\phi_1(x), \phi_2(x), \phi_3(x)\}.$$

We denote by $card(S_x)$, the cardinality of S_x . Clearly, one of the following holds:

- 1. $card(S_x) = 1$, that is $\phi_1(x) = \phi_2(x) = \phi_3(x)$.
- 2. card(S_X) = 2, that is S_X consists of two elements, as for example $\phi_1(x) = \phi_2(x) \neq \phi_3(x)$.
- 3. card(S_x) = 3, that is $\phi_1(x) \neq \phi_2(x) \neq \phi_3(x) \neq \phi_1(x)$.

Lemma 3.2. If Q is a projection on $A_{\alpha}(X)$, then for every $x \in X$, card (S_x) is either equal to 1 or equal to 3.

Proof. We assume that there exists $x \in X$ such that S_x consists of two elements, say $\phi_1(x) = \phi_2(x) \neq \phi_3(x)$. We present the proof for the lemma in this case but the remaining two possibilities follow similarly. Eq. (7) now takes the form

$$(\tau_{1} + \tau_{2}) \left[\tau_{1} f\left(\phi_{1}^{2}(x)\right) + \tau_{2} f\left(\phi_{2}^{2}(x)\right) + \tau_{3} f\left(\phi_{3}\left(\phi_{1}(x)\right)\right) \right] + \tau_{3} \left[\tau_{1} f\left(\phi_{1}\left(\phi_{3}(x)\right)\right) + \tau_{2} f\left(\phi_{2}\left(\phi_{3}(x)\right)\right) + \tau_{3} f\left(\phi_{3}^{2}(x)\right) \right]$$

$$= 3(\tau_{1} + \tau_{2}) f\left(\phi_{1}(x)\right) + 3\tau_{3} f\left(\phi_{3}(x)\right) \quad (f \in A_{\alpha}(X), x \in X).$$
(8)

We claim that $\tau_1 + \tau_2 \neq 0$, otherwise Eq. (8) reduces to

$$\tau_1 f(\phi_1(\phi_3(x))) + \tau_2 f(\phi_2(\phi_3(x))) + \tau_3 f(\phi_3^2(x)) = 3f(\phi_3(x)) \quad (f \in A_\alpha(X), x \in X).$$

In particular, for $f=1_X$, we have $\tau_1+\tau_2+\tau_3=3$ and so $\tau_1=\tau_2=\tau_3=1$. This contradicts our assumption that $\tau_1+\tau_2=0$ and shows that $\tau_1+\tau_2\neq 0$.

We now consider the following three possibilities:

```
i. x \neq \phi_1(x) = \phi_2(x) \neq \phi_3(x) \neq x.

ii. x \neq \phi_1(x) = \phi_2(x) \neq \phi_3(x) = x.

iii. x = \phi_1(x) = \phi_2(x) \neq \phi_3(x) \neq x.
```

i. $x \neq \phi_1(x) \neq \phi_3(x) \neq x$. Considering now $Y = \{\phi_3(x), \phi_1(\phi_3(x)), \phi_2(\phi_3(x)), \phi_1^2(x), \phi_2^2(x)\}$, $a = \phi_1(x)$ and $f \in A_{\alpha}(X)$ as in Lemma 1.3, Eq. (8) becomes

$$(\tau_1 + \tau_2)\tau_3 f(\phi_3(\phi_1(x))) + \tau_3^2 f(\phi_3^2(x)) = 3(\tau_1 + \tau_2).$$

We observe that $\phi_3(\phi_1(x))$ and $\phi_3^2(x)$ can't both be equal to $\phi_1(x)$ since $\phi_1(x) \neq \phi_3(x)$. If they are both different from $\phi_1(x)$, then we select f satisfying the same conditions as the last function with the additional constraint that it also vanishes at $\phi_3(\phi_1(x))$ and $\phi_3^2(x)$. This leads to a contradiction, since $\tau_1 + \tau_2 \neq 0$. If $\phi_3^2(x) \neq \phi_1(x)$ and $\phi_3(\phi_1(x)) = \phi_1(x)$, an appropriate choice of f implies that $\tau_3 = 3$, which is impossible. The only possibility left is $\phi_3^2(x) = \phi_1(x)$ and $\phi_3(\phi_1(x)) \neq \phi_1(x)$. In such case f can be chosen equal to zero on $\phi_3(\phi_1(x))$ and equal to 1 on $\phi_3^2(x)$. This implies that $\tau_3^2 = 3(\tau_1 + \tau_2)$ and Eq. (8) reduces to

$$(\tau_1 + \tau_2) \left[\tau_1 f(\phi_1^2(x)) + \tau_2 f(\phi_2^2(x)) + \tau_3 f(\phi_3(\phi_1(x))) \right] + \tau_3 \left[\tau_1 f(\phi_1(\phi_3(x))) + \tau_2 f(\phi_2(\phi_3(x))) \right]$$

$$= 3\tau_3 f(\phi_3(x)) \quad (f \in A_\alpha(X), x \in X)$$

or equivalently

$$\tau_{3}^{2} \left[\tau_{1} f\left(\phi_{1}^{2}(x)\right) + \tau_{2} f\left(\phi_{2}^{2}(x)\right) + \tau_{3} f\left(\phi_{3}(\phi_{1}(x))\right) \right] + 3\tau_{3} \left[\tau_{1} f\left(\phi_{1}(\phi_{3}(x))\right) + \tau_{2} f\left(\phi_{2}(\phi_{3}(x))\right) \right] \\ = 9\tau_{3} f\left(\phi_{3}(x)\right) \quad \left(f \in A_{\alpha}(X), \ x \in X \right).$$

In particular for $f=1_X$, we have $\tau_3(\tau_1+\tau_2+\tau_3)+\tau_3^2=9$ and this is impossible. ii. $x\neq\phi_1(x)\neq\phi_3(x)=x$. Eq. (8) can be written as:

$$(\tau_1 + \tau_2) \left[\tau_1 f(\phi_1^2(x)) + \tau_2 f(\phi_2^2(x)) + \tau_3 f(\phi_3(\phi_1(x))) \right] = (3 - \tau_3) \left[(\tau_1 + \tau_2) f(\phi_1(x)) + \tau_3 f(\phi_3(x)) \right]$$

for every $x \in X$ and $f \in A_{\alpha}(X)$. Lemma 1.3 asserts the existence of a function $f \in A_{\alpha}(X)$ with range the interval [0,1] and such that $f(\phi_1(x)) = 1$, $f(\phi_3(x)) = f(\phi_2^2(x)) = f(\phi_1^2(x)) = 0$. Therefore $\tau_3 f(\phi_3(\phi_1(x))) = 3 - \tau_3$ and this is impossible since $|3 - \tau_3| \geqslant 2$.

iii. $x = \phi_1(x) \neq \phi_3(x) \neq x$. Under these assumptions Eq. (8) can be rewritten as:

$$(\tau_{1} + \tau_{2})^{2} f(\phi_{1}(x)) + (\tau_{1} + \tau_{2})\tau_{3} f(\phi_{3}(x)) + \tau_{3} [\tau_{1} f(\phi_{1}(\phi_{3}(x))) + \tau_{2} f(\phi_{2}(\phi_{3}(x))) + \tau_{3} f(\phi_{3}^{2}(x))]$$

$$= 3(\tau_{1} + \tau_{2}) f(\phi_{1}(x)) + 3\tau_{3} f(\phi_{3}(x)) \quad (f \in A_{\alpha}(X), x \in X).$$
(9)

If $\phi_3(x) \neq \phi_1(\phi_3(x))$ and $\phi_3(x) \neq \phi_2(\phi_3(x))$, then there exists a Lipschitz function f with range in the interval [0,1] and satisfying the conditions $f(\phi_1(x)) = f(\phi_1(\phi_3(x))) = f(\phi_2(\phi_3(x))) = 0$ and $f(\phi_3(x)) = 1$. Eq. (9) becomes $(\tau_1 + \tau_2) + \tau_3 f(\phi_3^2(x)) = 3$. This implies that $\phi_3^2(x) = \phi_3(x)$ which contradicts our assumptions. Therefore $\phi_3(x) = \phi_1(\phi_3(x))$ or $\phi_3(x) = \phi_2(\phi_3(x))$. If we assume that $\phi_3(x) = \phi_1(\phi_3(x)) = \phi_2(\phi_3(x))$, then we set f satisfying $f(x) = f(\phi_3^2(x)) = 0$ and $f(\phi_3(x)) = 1$. This implies that $\tau_1 + \tau_2 = 3/2$. On the other hand, by considering $1_X - f$ we get $\tau_3^2 = 9/4$ which is impossible. We have two cases left to analyze. We first assume that $\phi_3(x) = \phi_1(\phi_3(x)) \neq \phi_2(\phi_3(x))$. Eq. (9) reduces to

$$(\tau_1 + \tau_2)^2 f(x) + (2\tau_1 + \tau_2)\tau_3 f(\phi_3(x)) + \tau_2 \tau_3 f(\phi_2(\phi_3(x))) + \tau_3^2 f(\phi_3^2(x))$$

$$= 3(\tau_1 + \tau_2) f(x) + 3\tau_3 f(\phi_3(x)) \quad (f \in A_\alpha(X), x \in X).$$
(10)

We select a Lipschitz function $f: X \to [0,1]$ such that $f(x) = f(\phi_2(\phi_3(x))) = f(\phi_3^2(x)) = 0$ and $f(\phi_3(x)) = 1$. Then we have $2\tau_1 + \tau_2 = 3$ and $\tau_1 = \tau_2 = 1$. Therefore Eq. (10) becomes

$$\tau_3 f\left(\phi_2\left(\phi_3(x)\right)\right) + \tau_3^2 f\left(\phi_3^2(x)\right) = 2f(x) \quad \left(f \in A_\alpha(X), \ x \in X\right).$$

In particular, for a Lipschitz function with range the interval [0,1] with f(x)=1 and $f(\phi_2(\phi_3(x)))=0$ we have $\tau_3^2 f(\phi_3^2(x))=2$. This is clearly impossible. A similar approach also shows that $\phi_3(x)=\phi_2(\phi_3(x))\neq\phi_1(\phi_3(x))$ leads to a contradiction. \square

Lemma 3.3. Let $x \in X$ be such that $\phi_1(x) = \phi_2(x) = \phi_3(x)$ and $\tau_1 = \tau_2 = \tau_3 = 1$. If Q is a projection, then $x = \phi_1(x) = \phi_2(x) = \phi_3(x)$.

Proof. Eq. (7) can be rewritten as follows:

$$f(\phi_1^2(x)) + f(\phi_2^2(x)) + f(\phi_3^2(x)) = 3f(\phi_1(x)) \quad (f \in A_\alpha(X), x \in X).$$

In particular, taking

$$f(z) = d(z, \phi_1(x)), \forall z \in X,$$

gives

$$d(\phi_1^2(x), \phi_1(x)) + d(\phi_2^2(x), \phi_1(x)) + d(\phi_3^2(x), \phi_1(x)) = 0$$

which implies $d(\phi_1^2(x), \phi_1(x)) = 0$ and so $\phi_1(x) = x$.

Lemma 3.4. Let $x \in X$ be such that $\phi_1(x) \neq \phi_2(x) \neq \phi_3(x) \neq \phi_1(x)$. If Q is a projection, then there exists $k \in \{1, 2, 3\}$ such that $\phi_k(x) = x$.

Proof. Suppose that $\phi_k(x) \neq x$ for all $k \in \{1, 2, 3\}$. Therefore $\phi_j(\phi_k(x)) \neq \phi_j(x)$ for all $j, k \in \{1, 2, 3\}$. Using Lemma 1.3, we have a function $f \in A_\alpha(X)$ such that $f(\phi_1(x)) = 1$ and $f(\phi_1(\phi_k(x))) = f(\phi_j(x)) = 0$ for all $k \in \{1, 2, 3\}$ and $j \in \{2, 3\}$. Eq. (7) becomes

$$\sum_{k=1,j=2}^{3} \tau_k \tau_j f\left(\phi_j\left(\phi_k(x)\right)\right) = 3\tau_1.$$

This implies that at least three points in the set

$$\{\phi_2(\phi_1(x)), \phi_3(\phi_1(x)), \phi_2^2(x), \phi_3(\phi_2(x)), \phi_2(\phi_3(x)), \phi_3^2(x)\}$$

must be equal to $\phi_1(x)$. This contradiction proves the statement. \Box

Lemma 3.5. Let $x \in X$ be such that $\phi_1(x) \neq \phi_2(x) \neq \phi_3(x) \neq \phi_1(x)$. If Q is a projection, then there exists (l, j, k), a permutation of (1, 2, 3), such that one of the following holds:

- 1. $x = \phi_l(x) = \phi_j(\phi_k(x)) = \phi_k(\phi_j(x)), \ \phi_j(x) = \phi_k^2(x) = \phi_l(\phi_j(x)), \ \phi_k(x) = \phi_j^2(x) = \phi_l(\phi_k(x)) \ \text{and} \ \tau_1 = \tau_2 = \tau_3 = 1, \ \text{or} \ \tau_l = 1, \ \tau_j = e^{2\pi i/3} \ \text{and} \ \tau_k = e^{4\pi i/3}.$
- 2. $x = \phi_l(x) = \phi_k^2(x) = \phi_j^2(x)$, $\phi_l(\phi_j(x)) = \phi_j(\phi_k(x)) = \phi_k(x)$, $\phi_l(\phi_k(x)) = \phi_k(\phi_j(x)) = \phi_j(x)$ and $\tau_1 = \tau_2 = \tau_3 = 1$.

Proof. From Lemma 3.4 and without loss of generality, we may assume that $\phi_1(x) = x$. Another choice for $f \in A_{\alpha}(X)$ with f(x) = 1 and $f(\phi_2(x)) = f(\phi_3(x)) = 0$, also implies that there must exist at least two points in the set

$$\{\phi_1(\phi_2(x)), \phi_2^2(x), \phi_3(\phi_2(x)), \phi_1(\phi_3(x)), \phi_2(\phi_3(x)), \phi_3^2(x)\}$$

that are equal to x. This implies the following list of possibilities.

- (i) $x = \phi_2^2(x) = \phi_3(\phi_2(x)),$ (ii) $x = \phi_2^2(x) = \phi_3^2(x),$ (iii) $x = \phi_3(\phi_2(x)) = \phi_2(\phi_3(x)),$

- (iv) $x = \phi_3^2(x) = \phi_2(\phi_3(x))$.

The symmetry of the equations involved imply that case (iv) follows from a similar argument to the one presented for case (i), by just permuting the indices 2 and 3.

We proceed to show that case (i) leads to an absurd. We select a function $f \in A_{\alpha}(X)$ so that $f(x) = f(\phi_2(x)) = f(\phi_2(x))$ $f(\phi_2^2(x)) = 0$ and $f(\phi_3(x)) = 1$. Therefore we have

$$\tau_2 \tau_1 f(\phi_1(\phi_2(x))) + \tau_3 [\tau_1 f(\phi_1(\phi_3(x))) + \tau_2 f(\phi_2(\phi_3(x)))] = (3 - \tau_1) \tau_3.$$

This implies that at least two points in the set $\{\phi_1(\phi_2(x)), \phi_1(\phi_3(x)), \phi_2(\phi_3(x))\}$ must be equal to $\phi_3(x)$. Since $\phi_1(\phi_2(x)) \neq \phi_3(x)$ $\phi_1(\phi_3(x))$, we have the following two possibilities: $\phi_3(x) = \phi_1(\phi_2(x)) = \phi_2(\phi_3(x))$ (or $\phi_3(x) = \phi_1(\phi_3(x)) = \phi_2(\phi_3(x))$). Both cases lead to a contradiction following a similar approach. In fact, if $\phi_3(x) = \phi_1(\phi_2(x)) = \phi_2(\phi_3(x))$, we clearly have

$$\phi_1(\phi_2(x)) = \phi_3(x) \neq \phi_2(\phi_2(x)) = \phi_3(\phi_2(x)) = x.$$

Therefore the set $S_{\phi_2(x)}$ has cardinality two which contradicts Lemma 3.2.

We consider case (ii), that is $x = \phi_2^2(x) = \phi_3^2(x)$. We recall that Q is a projection if and only if Eq. (7) holds. In this case, (7) reduces to

$$\tau_{1}^{2} f(x) + \tau_{1} \tau_{2} f(\phi_{1}(\phi_{2}(x))) + \tau_{1} \tau_{3} f(\phi_{1}(\phi_{3}(x))) + \tau_{2}^{2} f(x)
+ \tau_{2} \tau_{3} f(\phi_{2}(\phi_{3}(x))) + \tau_{1} \tau_{3} f(\phi_{3}(x)) + \tau_{3} \tau_{2} f(\phi_{3}(\phi_{2}(x))) + \tau_{3}^{2} f(x)
= 3 [\tau_{1} f(x) + \tau_{2} f(\phi_{2}(x)) + \tau_{3} f(\phi_{3}(x))], \quad (f \in A_{\alpha}(X), x \in X).$$
(11)

We select a function f_0 such that $f_0(x) = f_0(\phi_2(x)) = f_0(\phi_3(\phi_2(x))) = 0$ and $f_0(\phi_3(x)) = 1$. Therefore

$$\tau_1 \tau_2 f_0(\phi_1(\phi_2(x))) + \tau_1 \tau_3 f_0(\phi_1(\phi_3(x))) + \tau_2 \tau_3 f_0(\phi_2(\phi_3(x))) + \tau_1 \tau_3 = 3\tau_3. \tag{12}$$

We conclude that at least two elements in $\{\phi_1(\phi_2(x)), \phi_1(\phi_3(x)), \phi_2(\phi_3(x))\}$ must be equal to $\phi_3(x)$. Therefore we have two cases to analyze: 1. $\phi_1(\phi_3(x)) = \phi_2(\phi_3(x)) = \phi_3(x)$ and 2. $\phi_1(\phi_2(x)) = \phi_2(\phi_3(x)) = \phi_3(x)$.

We now examine case 1. $\phi_1(\phi_3(x)) = \phi_2(\phi_3(x)) = \phi_3(x) \neq \phi_1(\phi_2(x))$. The function f_0 selected above may be chosen satisfying the additional condition: $f_0(\phi_1(\phi_2(x))) = 0$. Then the equality (12) becomes $\tau_1\tau_3 + \tau_2\tau_3 + \tau_1\tau_3 = 3\tau_3$. This implies $\tau_1 = \tau_2 = \tau_3 = 1$ (see Lemma 3.1). Hence (11) yields $f(\phi_1(\phi_2(x))) + f(\phi_3(\phi_2(x))) = 2f(\phi_2(x))$. This implies that $\phi_1(\phi_2(x)) = 2f(\phi_2(x))$. $\phi_3(\phi_2(x)) = \phi_2(x)$, then the cardinality of $S_{\phi_2(x)}$ is equal to 2, contradicting Lemma 3.2.

Now we consider case 2. $\phi_1(\phi_2(x)) = \phi_2(\phi_3(x)) = \phi_3(x) \neq \phi_1(\phi_3(x))$. As done in case 1, we select f_0 with the additional constraint that also vanishes at $\phi_1(\phi_3(x))$. It then follows that $\tau_1\tau_2+\tau_2\tau_3+\tau_3\tau_1=3\tau_3$, implying that $\tau_1=\tau_2=\tau_3=1$. Eq. (11) now yields $f(\phi_1(\phi_3(x))) + f(\phi_3(\phi_2(x))) = 2f(\phi_2(x))$ implying that $\phi_1(\phi_3(x)) = \phi_3(\phi_2(x)) = \phi_2(x)$, as stated in the statement (2).

We now consider case (iii), that is $x = \phi_3(\phi_2(x)) = \phi_2(\phi_3(x))$. As previously done, a choice of a Lipschitz function f such that $f(x) = f(\phi_3(x)) = f(\phi_2^2(x)) = 0$ and $f(\phi_2(x)) = 1$ implies that at least two points in the set $\{\phi_1(\phi_2(x)), \phi_1(\phi_3(x)), \phi_3^2(x)\}$ must be equal to $\phi_2(x)$. This determines the following possibilities: $\phi_2(x) = \phi_1(\phi_2(x)) = \phi_2^2(x)$ or $\phi_2(x) = \phi_1(\phi_3(x)) = \phi_2^2(x)$. An application of Lemma 1.3 yields a Lipschitz function f so that $f(x) = f(\phi_2(x)) = 0$ and $f(\phi_3(x)) = 1$. This leads to the

$$\tau_2^2 f(\phi_2^2(x)) + \tau_3 \tau_1 f(\phi_1(\phi_3(x))) = (3 - \tau_1) \tau_3$$

or

$$\tau_2 \tau_1 f(\phi_1(\phi_2(x))) + \tau_2^2 f(\phi_2^2(x)) = (3 - \tau_1) \tau_3,$$

respectively. Therefore $\phi_3(x) = \phi_2^2(x) = \phi_1(\phi_3(x))$ or $\phi_3(x) = \phi_2^2(x) = \phi_1(\phi_2(x))$. We show that the equalities:

$$\phi_1(x) = \phi_2\big(\phi_3(x)\big) = \phi_3\big(\phi_2(x)\big), \qquad \phi_3(x) = \phi_2^2(x) = \phi_1\big(\phi_2(x)\big), \qquad \phi_2(x) = \phi_1\big(\phi_3(x)\big) = \phi_3^2(x)$$

cannot occur. Since $\phi_1(\phi_2(x)) = \phi_2^2(x)$, then the cardinality of $S_{\phi_2(x)}$ must be equal to 1 as shown in Lemma 3.2, hence we would have

$$\phi_1(x) = \phi_3(\phi_2(x)) = \phi_1(\phi_2(x)) = \phi_3(x)$$

contradicting our initial assumption. Therefore we must have $\phi_2(x) = \phi_1(\phi_2(x)) = \phi_3^2(x)$ and $\phi_3(x) = \phi_2^2(x) = \phi_1(\phi_3(x))$, which implies that $\phi_2^3(x) = \phi_3^3(x) = x$.

Thus we get

$$x = \phi_1(x) = \phi_2(\phi_3(x)) = \phi_3(\phi_2(x)),$$
 $\phi_2(x) = \phi_3^2(x) = \phi_1(\phi_2(x)),$ $\phi_3(x) = \phi_2^2(x) = \phi_1(\phi_3(x)).$

Then Eq. (7) becomes

$$\tau_{1}^{2} f(\phi_{1}(x)) + \tau_{1} \tau_{2} f(\phi_{2}(x)) + \tau_{1} \tau_{3} f(\phi_{3}(x)) + \tau_{2} \tau_{1} f(\phi_{2}(x)) + \tau_{2}^{2} f(\phi_{3}(x)) + \tau_{2} \tau_{3} f(\phi_{1}(x)) + \tau_{3} \tau_{1} f(\phi_{3}(x)) + \tau_{3} \tau_{2} f(\phi_{1}(x)) + \tau_{3}^{2} f(\phi_{2}(x)) = 3\tau_{1} f(\phi_{1}(x)) + 3\tau_{2} f(\phi_{2}(x)) + 3\tau_{3} f(\phi_{3}(x)),$$

for all $f \in A_{\alpha}(X)$. In particular for f, a function in $A_{\alpha}(X)$, such that $f(\phi_1(x)) = 1$ and $f(\phi_2(x)) = f(\phi_3(x)) = 0$, we obtain $\tau_1^2 + 2\tau_2\tau_3 = 3\tau_1$. An easy computation gives $\tau_1 = 1$. Then, applying Lemma 3.1, we can assert that $\tau_2 = \tau_3 = 1$, $\tau_2 = e^{2\pi i/3}$ and $\tau_3 = e^{4\pi i/3}$, or $\tau_2 = e^{4\pi i/3}$ and $\tau_3 = e^{2\pi i/3}$, as stated in the statement (1). \square

Remark 3.6. It is straightforward to show that the conditions stated in Lemma 3.5 are sufficient for Q to be a projection.

The next proposition summarizes the results obtained in the previous lemmas.

Proposition 3.7. Let I_k be surjective isometries on $A_{\alpha}(X)$, given by

$$I_k(f)(x) = \tau_k f(\phi_k(x)) \quad (f \in A_{\alpha}(X), x \in X) \quad (k = 1, 2, 3),$$

with each τ_k a unimodular scalar and ϕ_k a surjective isometry on X, and let Q be the average of I_1 , I_2 and I_3 . Then Q is a projection on $A_{\alpha}(X)$ if and only if one of the following statements holds:

- (1) $\tau_1 = \tau_2 = \tau_3 = 1$ and every $x \in X$ satisfies:
 - (a) $x = \phi_1(x) = \phi_2(x) = \phi_3(x)$, or
 - (b) $\phi_1(x) \neq \phi_2(x) \neq \phi_3(x) \neq \phi_1(x)$, $x = \phi_l(x) = \phi_j(\phi_k(x)) = \phi_k(\phi_j(x))$, $\phi_j(x) = \phi_k^2(x) = \phi_l(\phi_j(x))$ and $\phi_k(x) = \phi_j^2(x) = \phi_l(\phi_k(x))$, where (l, j, k) is a permutation of (1, 2, 3), or
 - (c) $\phi_1(x) \neq \phi_2(x) \neq \phi_3(x) \neq \phi_1(x)$, $x = \phi_l(x) = \phi_k^2(x) = \phi_j^2(x)$, $\phi_l(\phi_j(x)) = \phi_j(\phi_k(x)) = \phi_k(x)$, and $\phi_l(\phi_k(x)) = \phi_k(\phi_j(x)) = \phi_j(x)$, where (l, j, k) is a permutation of (1, 2, 3).
- (2) $\tau_j = e^{2\pi i/3} \tau_l$ and $\tau_k = e^{4\pi i/3} \tau_l$, where (l, j, k) is a permutation of (1, 2, 3), and $\phi_1(x) = \phi_2(x) = \phi_3(x)$ for every $x \in X$. In this case, Q = 0.
- (3) $\tau_l = 1$, $\tau_i = e^{2\pi i/3}$ and $\tau_k = e^{4\pi i/3}$, where (l, j, k) is a permutation of (1, 2, 3), and every $x \in X$ satisfies:
 - (a) $\phi_1(x) = \phi_2(x) = \phi_3(x)$, or
 - (b) $\phi_1(x) \neq \phi_2(x) \neq \phi_3(x) \neq \phi_1(x)$, $x = \phi_l(x) = \phi_j(\phi_k(x)) = \phi_k(\phi_j(x))$, $\phi_j(x) = \phi_k^2(x) = \phi_l(\phi_j(x))$ and $\phi_k(x) = \phi_j^2(x) = \phi_l(\phi_k(x))$.

Now, we are in a position to characterize those projections given by the average of three surjective isometries on $A_{\alpha}(X)$.

Theorem 3.8. Let I_k be surjective isometries on $A_{\alpha}(X)$, given by

$$I_k(f)(x) = \tau_k f(\phi_k(x)) \quad (f \in A_\alpha(X), x \in X) \quad (k = 1, 2, 3),$$

with each τ_k a unimodular scalar and ϕ_k a surjective isometry on X, and let Q be the average of I_1 , I_2 and I_3 . Then Q is a projection on $A_{\alpha}(X)$ if and only if there exist a scalar $\tau \in \mathbb{K}$ with $\tau^3 = 1$ and a surjective isometry ϕ on X with $\phi^3 = 1$ d such that

$$Q(f)(x) = \frac{f(x) + \tau f(\phi(x)) + \tau^2 f(\phi^2(x))}{3},$$

for every $f \in A_{\alpha}(X)$ and $x \in X$.

Proof. Since the sufficiency is clear, we prove only the necessity. Assume that $Q = (I_1 + I_2 + I_3)/3$ is a projection on $A_{\alpha}(X)$. Proposition 3.7 implies that X is partitioned into the following sets:

$$X_{0} = \left\{ x \in X : \phi_{1}(x) = \phi_{2}(x) = \phi_{3}(x) \right\},$$

$$X_{l} = \left\{ x \notin X_{0} : x = \phi_{l}(x) \neq \phi_{j}(x) \neq \phi_{k}(x) \neq x, \ \phi_{l}(x) = \phi_{j}(\phi_{k}(x)) = \phi_{k}(\phi_{j}(x)), \right.$$

$$\phi_{j}(x) = \phi_{k}^{2}(x) = \phi_{l}(\phi_{j}(x)), \ \phi_{k}(x) = \phi_{j}^{2}(x) = \phi_{l}(\phi_{k}(x)) \right\}$$

$$Y_{l} = \left\{ x \notin X_{0} : x = \phi_{l}(x) = \phi_{i}^{2}(x) = \phi_{l}^{2}(x) \phi_{j}(x) = \phi_{l}(\phi_{k}(x)) = \phi_{k}(\phi_{j}(x)), \phi_{k}(x) = \phi_{l}(\phi_{j}(x)) = \phi_{i}(\phi_{k}(x)) \right\}$$

for l = 1, 2, 3 and (l, j, k) a permutation of (1, 2, 3). For simplicity of exposition we assume that these sets are nonempty. We define ϕ as follows:

$$\phi(x) = \begin{cases} x & \text{if } x \in X_0, \\ \phi_3(x) & \text{if } x \in X_1 \cup Y_1, \\ \phi_1(x) & \text{if } x \in X_2 \cup Y_2, \\ \phi_2(x) & \text{if } x \in X_3 \cup Y_3. \end{cases}$$

We observe that $\phi_3(Y_1) \subseteq Y_2$, $\phi_1(Y_2) \subseteq Y_3$, and $\phi_2(Y_3) \subseteq Y_1$. Furthermore $\phi_i(X_i) \subseteq X_i$ for all i and j.

We check that ϕ is an isometry. We consider a few sample cases. The remaining cases follow from similar strategies.

1. If $x_1 \in X_1$ and $x_2 \in X_2$, then

$$d(\phi(x_1), \phi(x_2)) = d(\phi_3(x_1), \phi_1(x_2)) = d(\phi_3(x_1), \phi_3^2(x_2))$$

= $d(x_1, \phi_3(x_2)) = d(\phi_1(x_1), \phi_3(x_2))$
= $d(\phi_2(\phi_3(x_1)), \phi_2(\phi_3(x_2))) = d(x_1, x_2).$

2. If $x_1 \in X_1$ and $y_2 \in Y_2$, then

$$d(\phi(x_1), \phi(y_2)) = d(\phi_3(x_1), \phi_1(y_2)) = d(\phi_3(\phi_1(x_1)), \phi_3(\phi_1(y_2))) = d(x_1, y_2).$$

3. If $y_1 \in Y_1$ and $y_3 \in Y_3$, then

$$d(\phi(y_1), \phi(y_3)) = d(\phi_3(y_1), \phi_2(y_3)) = d(\phi_3(\phi_1(y_1)), \phi_3(\phi_1(y_3))) = d(y_1, y_3).$$

We now show that $\phi^3 = \text{Id}$ which also implies that ϕ is surjective. If $x \in X_0$, it is clear that $\phi^3(x) = x$; while that if $x \in X_l$, a simple verification shows that $\phi_j(x), \phi_k(x) \in X_l$ and hence $\phi^3(x) = \phi_j^3(x) = \phi_k^3(x) = x$. If $x \in Y_1$ then

$$\phi^3(x) = \phi^2(\phi_3(x)) = \phi(\phi_1(\phi_3(x))) = \phi_2(\phi_1(\phi_3(x))) = \phi_2^2(x) = x.$$

Similar reasoning applies for $x \in Y_2$ or $x \in Y_3$.

Taking $\tau=1$ when the statement (1) of Proposition 3.7 holds; $\tau=e^{2\pi i/3}$ when the statement (2) holds in which case Q=0; and $\tau=e^{2\pi i/3}$ or $\tau=e^{4\pi i/3}$, depending on the permutation (l,j,k), when the statement (3) is satisfied, straightforward computations show that the equation

$$\tau_1 f(\phi_1(x)) + \tau_2 f(\phi_2(x)) + \tau_3 f(\phi_3(x)) = f(x) + \tau f(\phi(x)) + \tau^2 f(\phi^2(x)),$$

holds true for all $f \in A_{\alpha}(X)$ and $x \in X$. This completes the proof. \square

4. Concluding remarks

The statement of Theorem 3.8 motivates the following definition.

Definition 4.1. Let $n \in \mathbb{N}$ be with $n \ge 2$. A bounded operator Q on $A_{\alpha}(X)$ is called a n-circular projection if and only if there exists a scalar $\tau \in \mathbb{K}$ such that $\tau^n = 1$ and a surjective isometry ϕ on X such that $\phi^n = \operatorname{Id}$ and $\phi^k \ne \operatorname{Id}$ for all $k = 1, \ldots, n-1$ satisfying

$$Q(f)(x) = \frac{\sum_{k=0}^{n-1} \tau^k f(\phi^k(x))}{n},$$

for every $f \in A_{\alpha}(X)$ and $x \in X$. We take $\phi^0 = \mathrm{Id}$.

Theorems 2.3 and 3.8 can be restate as in the following theorem. We refer to a projection as being trivial if it is equal to either the zero or the identity operators.

Theorem 4.2. Let X be a compact 1-connected metric space with diameter at most 2 and $A_{\alpha}(X)$ be Lip(X) or $\text{lip}(X^{\alpha})$ with $\alpha \in (0, 1)$.

- 1. The average of two surjective isometries on $A_{\alpha}(X)$ is a projection if and only if it is either a trivial projection or a 2-circular projection.
- 2. The average of three surjective isometries on $A_{\alpha}(X)$ is a projection if and only if it is either a trivial projection or a 3-circular projection.

The preceding results suggest that, under certain constraints, the average of n surjective isometries is a nontrivial projection if and only if it is an n-circular projection, so we ask.

Question 4.3. Let X be a compact 1-connected metric space with diameter at most 2 and $n \ge 2$. Is the average of n pairwise distinct surjective isometries on $A_{\alpha}(X)$ a projection if and only if it is either a trivial projection or a n-circular projection?

Next we describe some examples of n-circular projections on $A_{\alpha}(X)$, with X the circle (S^1), the sphere (S^2), or the torus (T^2). It might be of interest to point out that there are no n-circular projections with n > 2 on $A_{\alpha}([0, 1])$. It is due to the nonexistence of homeomorphisms of [0, 1] with period $n \ge 3$.

Example 4.4. We set ϕ to be a period n rotation on S^1 , $\phi(e^{i\theta}) = e^{i(\theta + 2\pi/n)}$, and define

$$P(f)(x) = \sum_{k=1}^{n} \frac{f(\phi^{k}(x))}{n},$$

for all $f \in A_{\alpha}(S^1)$ and $x \in S^1$. This construction easily extends to S^2 by parameterizing S^2 as the set of all points of the form $(\sqrt{1-z^2}e^{i\theta},z)$ with $z \in [-1,1]$ and $\theta \in [0,2\pi)$. Then define an isometry ϕ as follows:

$$\phi(\sqrt{1-z^2}e^{i\theta},z)=(\sqrt{1-z^2}e^{i(\theta+\frac{2\pi}{n})},z).$$

If $X = T^2$, since $T^2 = S^1 \times S^1$ we construct examples of period n isometries on T^2 .

We close with two remarks motivated by the results of this paper.

Remark 4.5. Let X be a compact 1-connected metric space with diameter at most 2. We observe that 3-circular projections on $A_{\alpha}(X)$ cannot be represented as the average of two surjective isometries on $A_{\alpha}(X)$. Let's assume otherwise. Then we can write

$$\frac{f(x) + \tau f(\phi(x)) + \tau^2 f(\phi^2(x))}{3} = \frac{\alpha_1 f(\psi_1(x)) + \alpha_2 f(\psi_2(x))}{2} \quad (f \in A_\alpha(X), \ x \in X), \tag{13}$$

where $\tau \in \mathbb{K}$ with $\tau^3 = 1$, ϕ is a surjective isometry on X such that $\phi \neq \mathrm{Id} \neq \phi^2$ and $\phi^3 = \mathrm{Id}$, $\alpha_1, \alpha_2 \in \mathbb{K}$ with $|\alpha_1| = |\alpha_2| = 1$ and ψ_1 and ψ_2 are surjective isometries on X. In particular, for $f = 1_X$, Eq. (13) becomes $(1 + \tau + \tau^2)/3 = (\alpha_1 + \alpha_2)/2$. If $\tau = 1$, then $\alpha_1 = \alpha_2 = 1$. If $\tau \neq 1$, then $\tau \in \{e^{2\pi i/3}, e^{4\pi i/3}\}$, hence $1 + \tau + \tau^2 = 0$ and so $\alpha_1 + \alpha_2 = 0$.

First we assume that $\tau = \alpha_1 = \alpha_2 = 1$. Since there exists $x \in X$ such that $\operatorname{card}\{x, \phi(x), \phi^2(x)\} = 3$ we select $f \in A_\alpha(X)$ with range the interval [0, 1] such that f(x) = 1 and $f(\phi(x)) = f(\phi^2(x)) = 0$. Hence Eq. (13) implies that

$$2 = 3(f(\psi_1(x)) + f(\psi_2(x))).$$

Hence there must exist $k \in \{1, 2\}$ so that $\psi_k(x) = x$ which leads to a contradiction.

Now we assume that $\tau \neq 1$ and consequently $\alpha_1 + \alpha_2 = 0$. As above we select $x \in X$ so that $\operatorname{card}\{x, \phi(x), \phi^2(x)\} = 3$. We show that $\{x, \phi(x), \phi^2(x)\}$ must intersect $\{\psi_1(x), \psi_2(x)\}$. If these two sets were disjoint, then there exists a function $f \in A_\alpha(X)$ satisfying f(x) = 1 and f(z) = 0 for all $z \in \{\psi_1(x), \psi_2(x), \phi(x), \phi^2(x)\}$. This leads to an absurd. Without loss of generality, we can assume that $\psi_1(x) = \phi^j(x)$ for some $j \in \{0, 1, 2\}$ and hence $\psi_1(x) \notin \{\phi^k(x): k = 0, 1, 2, k \neq j\}$. We now set $f \in A_\alpha(X)$ such that $f(\psi_1(x)) = 1$ and $f(\phi^k(x)) = 0$ for all $k \in \{0, 1, 2\} \setminus \{j\}$. If $\psi_1(x) = \psi_2(x)$, Eq. (13) becomes $\tau^j/3 = (\alpha_1 + \alpha_2)/2$, hence $\tau^j/3 = 0$, a contradiction. If $\psi_1(x) \neq \psi_2(x)$, we can also assume that $f(\psi_2(x)) = 0$, and now Eq. (13) gives $\tau^j/3 = \alpha_1/2$, another contradiction. This absurd proves the claim.

Remark 4.6. We recall that a projection P is bi-contractive if $\|P\| \le 1$ and $\|I - P\| \le 1$. It is known that generalized bi-circular projections are bi-contractive (see [4]). We note that 3-circular projections are not necessarily bi-contractive. In fact, let $X = \{a, b, c\}$ be equipped with the metric d(a, b) = d(b, c) = d(a, c) = 2. Consider $P = (\text{Id} + R + R^2)/3$ with $R(f) = f \circ \phi$ and ϕ a period 3 isometry on X ($\phi(a) = b$, $\phi(b) = c$ and $\phi(c) = a$). Then $\text{Id} - P = (2\text{Id} - R - R^2)/3$. We consider f on $A_{\alpha}(X)$ such that $f(\phi(a)) = f(\phi^2(a)) = -1$ and f(a) = 1. We observe that $\|f\| = 6/5$ and $\|(\text{Id} - P)(f)\| = 23/15$, hence $\|\text{Id} - P\| > 1$.

References

- [1] F. Botelho, Projections as convex combinations of surjective isometries on $C(\Omega)$, J. Math. Anal. Appl. 341 (2008) 1163–1169.
- [2] F. Botelho, J. Jamison, Generalized bi-circular projections on Lipschitz spaces, Acta Sci. Math. (Szeged) 75 (2009) 103-112.
- [3] F. Botelho, J. Jamison, Projections in the convex hull of surjective isometries, Canad. Math. Bull. 53 (2010) 398-403.
- [4] M. Fosner, D. Ilisevic, C. Li, G-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007) 596-608.
- [5] K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961/62) 55-66.
- [6] E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981) 58-74.
- [7] A.K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions, Canad. J. Math. 20 (1968) 1150-1164.
- [8] M.H. Vasavada, Closed ideals and linear isometries of certain function spaces, Ph.D. thesis, Wisconsin University, 1969.
- [9] N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., River Edge, NJ, 1999.