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Abstract In this paper we provide a complete description of linear biseparating maps between

spaces lip0(X
α, E) of Banach-valued little Lipschitz functions vanishing at infinity on locally com-

pact Hölder metric spaces Xα = (X, dα
X) with 0 < α < 1. Namely, it is proved that any linear

bijection T : lip0(X
α, E) → lip0(Y

α, F ) satisfying that ‖Tf(y)‖F ‖Tg(y)‖F = 0 for all y ∈ Y if

and only if ‖f(x)‖E ‖g(x)‖E = 0 for all x ∈ X, is a weighted composition operator of the form

Tf(y) = h(y)(f(ϕ(y))), where ϕ is a homeomorphism from Y onto X and h is a map from Y into the

set of all linear bijections from E onto F . Moreover, T is continuous if and only if h(y) is continuous

for all y ∈ Y . In this case, ϕ becomes a locally Lipschitz homeomorphism and h a locally Lipschitz map

from Y α into the space of all continuous linear bijections from E onto F with the metric induced by

the operator canonical norm. This enables us to study the automatic continuity of T and the existence

of discontinuous linear biseparating maps.

Keywords linear biseparating map, little Lipschitz function, Banach–Stone theorem, automatic con-

tinuity
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1 Introduction

Let (X, dX) be a metric space, α a real number in (0, 1] and (E, ‖·‖E) a real or complex
Banach space. Let Xα denote the same set X endowed with the new metric dα

X . We denote by
Lip(Xα, E) the Banach space of all functions f : X → E such that

pα(f) = sup {‖f(x) − f(y)‖E /dX(x, y)α : x, y ∈ X, x �= y}

and

‖f‖∞ = sup {‖f(x)‖E : x ∈ X}

are finite, endowed with the sum norm ‖f‖α = pα(f) + ‖f‖∞ .
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The little Lipschitz space lip(Xα, E) denotes the closed subspace of functions f in Lip(Xα,

E) such that

lim
dX(x,y)→0

‖f(x) − f(y)‖E

dX(x, y)α
= 0,

that is, satisfying the following property:

∀ ε > 0 ∃ δ > 0 : 0 < dX(x, y) < δ ⇒ ‖f(x) − f(y)‖E/dX(x, y)α < ε.

If (X, dX) is locally compact, let lip0(Xα, E) and lip00(Xα, E) stand for the spaces of
functions in lip(Xα, E) that vanish at infinity and that have compact support, respectively. We
drop the letter E when E is the scalar field, and the superscript α when α = 1. In order to
avoid trivial cases, we make a blanket assumption that all metric spaces are nonempty and that
all Banach spaces are nonzero.

The study of these spaces started with de Leeuw [1] and Sherbert [2, 3] for scalar-valued
functions in the 60’s, and with Johnson [4] for vector-valued functions in the 70’s. From then on,
a rich literature exists on this subject. A nice survey is Weaver’s book on Lipschitz Algebras [5].

A linear map T : lip0(Xα, E) → lip0(Y α, F ) is separating if ‖Tf(y)‖F ‖Tg(y)‖F = 0 for all
y ∈ Y whenever f, g ∈ lip0(Xα, E) satisfy ‖f(x)‖E ‖g(x)‖E = 0 for all x ∈ X. T is biseparating
if it is bijective and both T and T−1 are separating.

Separating maps between spaces of scalar-valued continuous functions on locally compact
and compact spaces were first studied by Beckenstein, et al. [6], Font and Hernández [7],
Jarosz [8] and Jeang and Wong [9], but the investigation into such maps has a long history
in Functional Analysis in the context of rings, algebras, or vector lattices under the names of
Lamperti operators [10] or disjointness preserving operators [11]. In recent years, quite a lot
of attention has been given to linear biseparating maps on spaces of vector-valued continuous
functions by Araujo [12–15], Araujo and Dubarbie [16], Araujo and Jarosz [17], Gau, et al. [18]
and Hernández, et al. [19].

The study of linear separating maps between spaces of scalar-valued Lipschitz functions
was initiated by Wu in [20]. Later, the first author of the current paper obtained in [21]
the general form of all linear separating maps between little Lipschitz algebras lip(Xα) for X

compact and 0 < α < 1. Moreover, it was shown that any linear separating bijection between
such algebras is biseparating and automatically continuous, and the problem of the existence
of discontinuous linear separating functionals on lip(Xα) was solved. Related to this problem,
the paper [22] of Brown and Wong gives full account of the structure of unbounded separating
linear functionals on spaces of continuous functions. As a natural generalization, we dealt
in [23] with the question of describing the structure of all linear biseparating maps between
spaces lip(Xα, E) for X and α as above. Recently, a complete description of linear biseparating
maps between spaces Lip(X, E) for complete metric spaces X has been given by Araujo and
Dubarbie in [16] and the automatic continuity of such maps has been derived in some cases.

The aim of this paper is to extend the results stated in [21, 23] to spaces lip0(Xα, E) when
X is locally compact and α ∈ (0, 1). We will prove in Theorem 3.1 that all linear biseparating
maps between spaces lip0(Xα, E) are, in a natural sense, weighted composition operators. More
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precisely, if T : lip0(Xα, E) → lip0(Y α, F ) is such a map, then there exist a homeomorphism ϕ

from Y onto X and a map h from Y into the set L−1(E, F ) of all linear bijections from E onto
F such that the representation Tf(y) = h(y)(f(ϕ(y))) holds for every f ∈ lip0(Xα, E) and all
y ∈ Y .

However, such maps T need not be continuous. Indeed, it is shown in Theorem 4.1 that T

is continuous if and only if h(y) is continuous for all y ∈ Y , in whose case the aforementioned
representation of T can be considerably improved since ϕ becomes a locally Lipschitz homeo-
morphism from Y onto X and h a locally Lipschitz map from Y α into the space B−1(E, F ) of all
continuous linear bijections from E onto F with the metric induced by the operator canonical
norm.

From Theorem 4.1, we will deduce immediately in Corollary 4.2 that if the Banach spaces
E, F are finite-dimensional, then any linear biseparating map T must be automatically contin-
uous. The same conclusion will be obtained in Theorem 4.3 if X or Y has no isolated points
with independence of the dimensions of E and F . In fact, we will prove in Corollary 4.4 that
if X and Y are Lipschitz homeomorphic and E is infinite-dimensional, then there exists a dis-
continuous linear biseparating map from lip0(Xα, E) to lip0(Y α, E) if and only if X or Y has
isolated points. Research into automatic continuity properties and existence of discontinuous
maps in Lipschitz algebras can be found in [24, 25] by Pavlović.

The arguments given in [21, 23] depend essentially on the concept of support map of a
separating map. We will follow here a completely different approach which proves to be very
fruitful in the work [18] of Gau, et al. to whom the introduction of this new view-point is due.

2 Preliminaries

Our notation is mainly standard. Let (X, dX) be a metric space. For a subset A of X, A and
int(A) stand for the closure and the interior of A in X, respectively. For x ∈ X and r > 0,
B(x, r) denotes the open ball of radius r centred at x, and B(x, r) the corresponding closed
ball. Given a function f defined on X, we write Z(f), coz(f) and supp(f) for the zero set of f ,
the cozero set of f and the closure in X of the cozero set of f , respectively. For each x ∈ X,
we denote by δx the evaluation map at the point x.

The following lemma whose proof is straightforward summarizes some properties of the
spaces of Lipschitz functions which we will use later on.

Lemma 2.1 Let X be a metric space, α ∈ (0, 1) and E a Banach space. Then

a) Lip(X, E) ⊆ lip(Xα, E).

If, in addition, X is locally compact, we have

b) If k ∈ lip00(Xα) and f ∈ lip(Xα, E), then kf ∈ lip00(Xα, E).

c) If k ∈ lip(Xα) and f ∈ lip0(Xα, E), then kf ∈ lip0(Xα, E).

d) lip0(Xα, E) is a Banach space containing lip00(Xα, E).

In our arguments, we will use also the following Lipschitz version of the classical Urysohn’s
lemma.

Lemma 2.2 Let X be a locally compact metric space, α ∈ (0, 1) and E a Banach space.
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i) Let K be a nonempty compact subset of X and let U be an open subset of X with K ⊆ U .
Then there exist a relatively compact open set V with K ⊆ V ⊆ V ⊆ U and a function
f ∈ lip00(Xα) with ‖f‖α ≤ max {1/dX(K, X \ V ), 1} + 1 such that 0 ≤ f ≤ 1, f |K = 1,
coz(f) = V and f |X\U = 0.

ii) Given x ∈ X and a neighborhood U of x, there exist relatively compact neighborhoods
V, W of x with V ⊆ W ⊆ W ⊆ U and a function k ∈ lip00(Xα) with

‖k‖α ≤ max
{
1/dX(V , X \ W ), 1

}
+ 1

such that 0 ≤ k ≤ 1, k|V = 1, coz(k) = W and k|X\U = 0.
iii) Given x ∈ X, a neighborhood U of x and e ∈ E\{0}, there exists a g ∈ lip00(Xα, E)

such that g(x) = e and g|X\U = 0.

Proof Let K ⊆ X be nonempty compact and let U ⊆ X be open with K ⊆ U . By [26,
Theorem 6.79], there exists a relatively compact open set V such that K ⊆ V ⊆ V ⊆ U . Define

fKV (z) = dX(z, X \ V )/[dX(z, K) + dX(z, X \ V )], z ∈ X.

Take f = fKV . f is well defined since K and X \ V are disjoint closed sets. It is obvious that
0 ≤ f ≤ 1 and f |K = 1. Clearly, coz(f) = V and thus supp(f) is compact and f |X\U = 0.
Notice that dX(K, X \V ) > 0 since K is compact, X \V closed and K ∩ (X \V ) = ∅. A trivial
verification yields

|f(z) − f(y)| ≤ dX(z, y)/dX(K, X \ V )

for any z, y ∈ X. Hence f ∈ Lip(X) ⊆ lip(Xα) by Lemma 2.1 a). Furthermore, if dX(z, y) ≤ 1,
we have

|f(z) − f(y)| ≤ dX(z, y)α/dX(K, X \ V ),

and if dX(z, y) > 1, since 0 ≤ f ≤ 1, we get

|f(z) − f(y)| ≤ 1 < dX(z, y)α.

Hence pα(f) ≤ max {1/dX(K, X \ V ), 1}. Since ‖f‖∞ = 1, it follows that

‖f‖α ≤ max {1/dX(K, X \ V ), 1} + 1,

and so i) is proved.
Let x ∈ X and let U be a neighborhood of x. We can first choose a relatively compact

neighborhood V of x with V ⊆ U and afterwards a relatively compact open set W with
V ⊆ W ⊆ W ⊆ U (see [26, Theorems 6.78 and 6.79]). Taking k = fV W , we obtain ii). Take
now e ∈ E\{0}. Then iii) follows defining g(z) = k(z)e for all z ∈ X since g ∈ lip00(Xα, E) by
Lemma 2.1 b). �

For each x ∈ X, define

Ix = {f ∈ lip0(Xα, E) : x /∈ supp(f)} ,

Mx = {f ∈ lip0(Xα, E) : f(x) = 0}.
Clearly, ∅ �= Ix ⊆ Mx. These sets are concerned in the ideal structure of lip(Xα) for X compact
and 0 < α < 1 (see [3]).
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The key idea to prove the sought-after result on the representation of a linear biseparating
map T from lip0(Xα, E) onto lip0(Y α, F ) will be the fact that T preserves the linear subspaces
Ix’s and Mx’s. It will not be hard to show that T preserves the former, but to prove that
T preserves the latter, the next result will be required. Its proof is similar to that of [23,
Lemma 2.8].

Lemma 2.3 Let X be a locally compact metric space, α ∈ (0, 1) and E a Banach space. Let
x ∈ X and let {xn} be a sequence of distinct points in X \ {x} converging to x. Then, for each
f ∈ Mx, there exist a subsequence {xnk

}, a sequence {sk} in (0, 1), a sequence {B(xnk
, 2sk)} of

pairwise disjoint relatively compact open balls in X and a sequence {gk} in lip00(Xα, E) such
that gk(x) = f(x) for all x ∈ B(xnk

, sk), coz(gk) ⊆ B(xnk
, 2sk) and ‖gk‖α ≤ 10/k2 for all

k ∈ N.

We also will need the following fact.

Lemma 2.4 Let x, y ∈ X. If Ix ⊆ Iy, then x = y.

Proof Assume x �= y. Let U be a neighborhood of y such that x ∈ X \ U . Given e ∈ E\{0},
Lemma 2.2 iii) provides a g ∈ lip00(Xα, E) such that g(y) = e and g|X\U = 0. Hence g ∈ Ix \Iy

and Ix is not contained in Iy. �

3 Banach–Stone Type Representation

After this preparation, we are in a position to prove the main result of this paper.

Theorem 3.1 Let X, Y be locally compact metric spaces, let α be in (0, 1) and let E, F

be Banach spaces. Every biseparating linear bijection T : lip0(Xα, E) → lip0(Y α, F ) is a
weighted composition operator of the form Tf(y) = h(y)(f(ϕ(y))) for every f ∈ lip0(Xα, E)
and all y ∈ Y , where h(y) is a linear bijection from E onto F for each y in Y , and ϕ is a
homeomorphism from Y onto X.

Proof We have divided the proof into a series of claims.

Claim 1 For each y ∈ Y ,
⋂

g∈Iy
Z(T−1g) = ∅ if and only if T (lip00(Xα, E)) ⊆ Iy.

Fix y ∈ Y and suppose
⋂

g∈Iy
Z(T−1g) = ∅. Then, for any x ∈ X, there exist gx ∈ Iy

and a neighborhood Ux of x such that T−1gx never vanishes on Ux. Let f ∈ lip00(Xα, E) and
g = Tf ∈ lip0(Y α, F ). Since {Ux : x ∈ X} is an open covering of the compact set supp(f), we
have supp(f) ⊆ ⋃n

i=1 Uxi
for some n ∈ N. Clearly, U = int (

⋂n
i=1 Z(gxi

)) is a neighborhood of y.
According to Lemma 2.2 ii), there exist a neighborhood W of y and k ∈ lip00(Y α) with coz(k) =
W . Notice that kg ∈ lip00(Y α, F ) by Lemma 2.1 b). We see that ‖(kg)(z)‖F ‖gxi

(z)‖F = 0
for all i ∈ {1, . . . , n} and z ∈ Y . This implies that

∥
∥T−1(kg)(x)

∥
∥

E

∥
∥T−1gxi

(x)
∥
∥

E
= 0 for all

i ∈ {1, . . . , n} and x ∈ X since T−1 is separating. It follows that
∥
∥T−1(kg)(x)

∥
∥

E
‖f(x)‖E = 0

for all x ∈ X since f(x) = 0 if x /∈ ⋃n
i=1 Uxi

, and T−1(kg)(x) = 0 if x ∈ Uxi
for some

i ∈ {1, . . . , n} because T−1gxi
(x) �= 0. Thus

∥∥T−1(kg)(x)
∥∥

E

∥∥T−1g(x)
∥∥

E
= 0 for all x ∈ X.

Then |k(z)| ‖g(z)‖2
F = 0 for all z ∈ Y since T is separating. Hence g|W = 0 and thus g ∈ Iy.

This proves that T (lip00(Xα, E)) ⊆ Iy.

Conversely, assume that T (lip00(Xα, E)) ⊆ Iy and let x ∈ ⋂
g∈Iy

Z(T−1g) be given. Then
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f(x) = T−1(Tf)(x) = 0 for all f ∈ lip00(Xα, E), but this contradicts Lemma 2.2 iii).

Now we define X1 =
⋃

g∈lip00(Y
α,F ) coz(T−1g) and Y1 =

⋃
f∈lip00(X

α,E) coz(Tf).

Claim 2 The sets X1 and Y1 are dense in X and Y , respectively.

Assume that X1 is nondense in X. Then there exist an x ∈ X and a neighborhood U of
x such that U ∩ X1 = ∅. Consequently, for any g ∈ lip00(Y α, F ), we have T−1g(z) = 0 for
all z ∈ U . According to Lemma 2.2 iii), we can take an f ∈ lip00(Xα, E) such that f(x) �= 0
and f |X\U = 0. Let k = Tf ∈ lip0(Y α, F ). Clearly, ‖f(z)‖E

∥∥T−1g(z)
∥∥

E
= 0 for all z ∈ X.

This gives ‖k(y)‖F ‖g(y)‖F = 0 for all y ∈ Y , since T is separating. Now, fix y ∈ Y and,
using Lemma 2.2 iii), choose a g ∈ lip00(Y α, F ) for which g(y) �= 0. We thus get k(y) = 0 and,
consequently, k = 0. Since T is linear and injective, it follows that f = 0, which is impossible.
Therefore X1 is dense in X. Similarly, it is proved that so is Y1 in Y .

Claim 3 If x ∈ ⋂
g∈Iy

Z(T−1g), then T−1Iy ⊆ Ix and x ∈ X1.

To prove that T−1Iy ⊆ Ix, let g ∈ Iy and assume that T−1g /∈ Ix. First we observe that if f

is any function in lip0(Y α, F ) such that ‖f(z)‖F ‖g(z)‖F = 0 for all z ∈ Y , then T−1f(x) = 0.
This is true, because if T−1f(x) �= 0, then T−1f is nonvanishing in a neighborhood of x and,
since T−1 is separating, it follows that T−1g vanishes in the said neighborhood, a contradiction.
Note now that U = int(Z(g)) is a neighborhood of y and, according to Lemma 2.2 ii), there
exists a neighborhood V of y and a k ∈ lip00(Y α) such that k|V = 1 and k|Y \U = 0. Fix
f ∈ lip0(Y α, F ). It is immediate that f = kf +(1−k)f with kf and (1−k)f in lip0(Y α, F ) by
Lemma 2.1 c). Since (1−k)|V = 0, we have (1−k)f ∈ Iy, and thus T−1((1−k)f)(x) = 0 since
x ∈ ⋂

g∈Iy
Z(T−1g). On the other hand, we have (kf)|coz(g) = 0 since coz(g) ⊆ Y \ U . Hence

‖(kf)(z)‖F ‖g(z)‖F = 0 for all z ∈ Y . Then the observation above implies T−1(kf)(x) = 0. It
follows that T−1f(x) = T−1(kf)(x)+T−1((1−k)f)(x) = 0. Since f is arbitrary, the surjectivity
of T−1 yields h(x) = 0 for all h ∈ lip0(Xα, E), a contradiction. This proves that T−1Iy ⊆ Ix.

We now show that x ∈ X1. For any g ∈ lip0(Y α, F ), kg, (1 − k)g ∈ lip0(Y α, F ) by
Lemma 2.1 c). It is clear that T−1g(x) = T−1(kg)(x)+T−1((1−k)g)(x). Since (1−k)g ∈ Iy, we
have T−1((1−k)g)(x) = 0. Hence there must exist a g ∈ lip0(Y α, F ) such that T−1(kg)(x) �= 0;
otherwise we would have T−1g(x) = 0 for all g ∈ lip0(Y α, F ), which gives a contradiction. Hence
x ∈ X1.

Since T is separating as T−1, we can apply the argument above to T and obtain the following

Claim 4 If y ∈ ⋂
f∈Ix

Z(Tf), then TIx ⊆ Iy and y ∈ Y1.

Claim 5 For each y ∈ Y1, there exists an x ∈ X1 such that T−1Iy ⊆ Ix.

Fix y ∈ Y1. We first show that
⋂

g∈Iy
Z(T−1g) is nonempty. If it were not true, we would

have T (lip00(Xα, E)) ⊆ Iy by Claim 1. Hence Tf(y) = 0 for any f ∈ lip00(Xα, E), but this
contradicts that y ∈ Y1. Pick an x ∈ ⋂

g∈Iy
Z(T−1g). Applying Claim 3, we see that x ∈ X1

and T−1Iy ⊆ Ix.

Claim 6 For each y ∈ Y1, there corresponds a unique x ∈ X1 such that TIx = Iy.

Fix y ∈ Y1. By Claim 5, there exists an x ∈ X1 such that T−1Iy ⊆ Ix. Since T−1 has
a similar property to that of T , we can apply Claim 5 to T−1 and find a y′ ∈ Y1 such that
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TIx ⊆ Iy′ . It follows that Iy = T (T−1Iy) ⊆ TIx ⊆ Iy′ . This relation implies that y = y′ by
Lemma 2.4. Then it follows that TIx = Iy.

To show the uniqueness of x, suppose that TIx′ = Iy for an x′ ∈ X1. We see that Ix =
T−1Iy = Ix′ and conclude that x = x′ by Lemma 2.4.

By Claim 6, we can define a map ϕ : Y1 → X1 satisfying that TIϕ(y) = Iy (y ∈ Y1). Since
T−1 is separating as T , we can apply the argument above to T−1 and obtain a map φ : X1 → Y1

such that T−1Iφ(x) = Ix (x ∈ X1).

Claim 7 The map ϕ : Y1 → X1 is a homeomorphism.

First we see that for each y ∈ Y1, Iφ(ϕ(y)) = T (T−1Iφ(ϕ(y))) = TIϕ(y) = Iy. Applying
Lemma 2.4, we have φ(ϕ(y)) = y for every y ∈ Y1. Thus φ ◦ ϕ is the identity map on Y1. In
a similar way, we obtain that ϕ ◦ φ is the identity map on X1. These facts imply that ϕ is a
one-to-one map of Y1 onto X1 and ϕ−1 = φ.

Now we prove that ϕ is continuous. Pick y ∈ Y1 and let {yn} be a sequence in Y1 converging
to y. Suppose that {ϕ(yn)} does not converge to ϕ(y). Then there exist a neighborhood U of
ϕ(y) and a subsequence {ynk

} of {yn} satisfying that ϕ(ynk
) ∈ X \ U for all k ∈ N.

Next we observe that Tf(y) = 0 for any f ∈ lip0(Xα, E) such that f |X\U = 0. Indeed, since
f |X\U = 0 and X \ U is a neighborhood of ϕ(ynk

), we infer that f ∈ Iϕ(ynk
); hence Tf ∈ Iynk

by the definition of ϕ; in particular, Tf(ynk
) = 0 for all k ∈ N and we conclude that Tf(y) = 0

by the continuity of Tf .

According to Lemma 2.2 ii), there are a neighborhood V of ϕ(y) and a k ∈ lip00(Xα) such
that k|V = 1 and k|X\U = 0. It is evident that f = kf + (1 − k)f for any f ∈ lip0(Xα, E).
Since (kf)|X\U = 0, we have T (kf)(y) = 0 by the observation above. On the other hand, we
have (1 − k)f ∈ Iϕ(y) since (1 − k)|V = 0. By the definition of ϕ, T ((1 − k)f) ∈ Iy and thus
T ((1 − k)f)(y) = 0. It follows that Tf(y) = T (kf)(y) + T ((1 − k)f)(y) = 0. Since T is onto,
we have g(y) = 0 for all g ∈ lip0(Y α, F ), a contradiction. Hence ϕ is continuous.

We can apply similar argument to φ = ϕ−1 and see that ϕ−1 is also continuous. Hence ϕ

is a homeomorphism of Y1 onto X1.

Claim 8 For any y ∈ Y1, TMϕ(y) = My.

Fix y ∈ Y1 and put x = ϕ(y) ∈ X1. First we show that TMx ⊆ My. Let f ∈ Mx and assume
Tf(y) �= 0. If x is an isolated point of X1, then f ∈ Ix and, by the definition of ϕ, Tf ∈ Iy, a
contradiction. Assume now that x is not isolated in X1. Then we may find a sequence {xn} of
distinct points in X1 \ {x} converging to x. Let yn ∈ Y1 with ϕ(yn) = xn for all n ∈ N. By the
continuity of ϕ−1, {yn} converges to y. Since {Tf(yn)} converges to Tf(y) �= 0, passing to a
subsequence if necessary, we may assume that ‖Tf(yn)‖F > (1/2) ‖Tf(y)‖F for all n ∈ N.

Since f ∈ Mx, by Lemma 2.3 there exist a subsequence {xnk
}, a sequence {sk} in (0, 1), a

sequence {B(xnk
, 2sk)} of pairwise disjoint relatively compact open balls in X and a sequence

{gk} in lip00(Xα, E) such that gk = f on B(xnk
, sk), coz(gk) ⊆ B(xnk

, 2sk) and ‖gk‖α ≤ 10/k2

for all k ∈ N. As lip0(Xα, E) is a Banach space by Lemma 2.1 d) and
∥∥k1/2gk

∥∥
α
≤ 10/k3/2 for

all k ∈ N, let g ∈ lip0(Xα, E) be the function defined by g =
∑+∞

k=1 k1/2gk. For each k ∈ N, it
is clear that g = k1/2f on B(xnk

, sk) since the sets coz(gk) are pairwise disjoint, and therefore
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g − k1/2f ∈ Ixnk
. It follows that Tg(ynk

) = k1/2Tf(ynk
), and thus

‖Tg(ynk
)‖F = k1/2 ‖Tf(ynk

)‖F > (1/2)k1/2 ‖Tf(y)‖F , ∀ k ∈ N.

This implies that Tg is unbounded, a contradiction. In this way it is proved that TMϕ(y) ⊆ My.

Applying the same argument to T−1, we have T−1Mφ(ϕ(y)) ⊆ Mϕ(y). Hence T−1My ⊆
Mϕ(y) since φ(ϕ(y)) = y, and thus My ⊆ TMϕ(y).

Claim 9 For each y ∈ Y1, there exists a linear bijection h(y) : E → F such that Tf(y) =
h(y)(f(ϕ(y)) for all f ∈ lip0(Xα, E).

Given y ∈ Y1, we know that ker δϕ(y) = ker(δy◦T ) by Claim 8. Consequently, there is a linear
bijection h(y) : E → F such that δy ◦ T = h(y) ◦ δϕ(y). In other words, Tf(y) = h(y)(f(ϕ(y)))
for all f ∈ lip0(Xα, E).

Claim 10 Let y ∈ Y \ Y1 and let {yn} be a sequence in Y1 convergent to y. Let xn = ϕ(yn)
for all n ∈ N. Then {xn} → ∞.

First observe that such a sequence {yn} exists by Claim 2. Assume that {xn} does not
converge to ∞. Then {xn} has a subsequence {xnk

} that converges to a point x ∈ X. Let
f ∈ Ix. Since {xnk

} → x, we have f ∈ Ixnk
for k large enough. Thus, Tf ∈ Iynk

by the
definition of ϕ, and Tf(y) = 0 by the continuity of Tf . Hence y ∈ ⋂

f∈Ix
Z(Tf). Then y ∈ Y1

by Claim 4, which is impossible.

Claim 11 Let {yn} be a sequence of distinct points in Y1. Then lim sup ‖h(yn)‖ < +∞.

Let xn = ϕ(yn) for all n ∈ N. Since ϕ is injective, {xn} is a sequence of distinct points in
X1. As X is a regular Hausdorff space, taking a subsequence if necessary we can find a sequence
{Un} of disjoint pairwise neighborhoods of points xn. According to Lemma 2.2 ii), there exist
sequences {Vn} , {Wn} of relatively compact neighborhoods of points xn with V n ⊆ Wn ⊆ Wn ⊆
Un and a sequence {kn} in lip00(Xα) with ‖kn‖α ≤ rn := max

{
1/dX(V n, X \ Wn), 1

}
+1 such

that kn(xn) = 1 and coz(kn) = Wn.

Assume to the contrary that lim sup ‖h(yn)‖ = +∞. Taking a subsequence if necessary,
we can assume that ‖h(yn)‖ ≥ rnn4 for all n ∈ N. Then there exists a sequence {en} in
E with ‖en‖E = 1 such that ‖h(yn)(en)‖F ≥ rnn3 for all n ∈ N. For each n ∈ N, define
fn(z) = (1/rnn2)kn(z)en for all z ∈ X. Clearly, fn ∈ lip00(Xα, E) and fn(xn) = (1/rnn2)en.
We have Tfn(yn) = h(yn)(fn(xn)) = (1/rnn2)h(yn)(en) by using Claim 9. It follows that
‖Tfn(yn)‖F = (1/rnn2) ‖h(yn)(en)‖F ≥ n. Moreover, since ‖fn‖α = (1/rnn2) ‖kn‖α ‖en‖E ≤
1/n2 for all n ∈ N, we can define the map f :=

∑+∞
n=1 fn ∈ lip0(Xα, E).

On the other hand, for each m ∈ N, as the sets coz(fn) = Wn are pairwise disjoint,
we see that fn|Wm

= 0 for all n �= m, which implies (
∑+∞

n=1,n�=m fn)|Wm
= 0, and hence

∑+∞
n=1,n�=m fn ∈ Ixm

. Then, by the definition of ϕ, T (
∑+∞

n=1,n�=m fn) ∈ Iym
and, in particular,

T (
∑+∞

n=1,n�=m fn)(ym) = 0. It follows that

‖Tf(ym)‖F =
∥
∥∥
∥Tfm(ym) + T

( +∞∑

n=1,n�=m

fn

)
(ym)

∥
∥∥
∥

F

= ‖Tfm(ym)‖F ≥ m.

Hence Tf is unbounded, which is a contradiction.
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Claim 12 Y1 = Y and X1 = X.

We first show that Y1 = Y . Notice that Y = Y1 ∪ Y ′
1 by Claim 2, where Y ′

1 is the derived
set of Y1 in Y . Take y ∈ Y . If y ∈ Y1, we have finished. If y ∈ Y ′

1 , there exists a sequence
{yn} of distinct points in Y1 \ {y} convergent to y. Assume, to the contrary, that y /∈ Y1. Then
Claim 10 gives {ϕ(yn)} → ∞. Fix f ∈ lip0(Xα, E). Clearly, lim ‖f(ϕ(yn)‖E = 0. Moreover,
lim sup ‖h(yn)‖ < +∞ by Claim 11, and this says, in particular, that only finitely many h(yn)
can have infinite norms. In consequence, we have ‖h(yn)(f(ϕ(yn))‖F ≤ ‖h(yn)‖ ‖f(ϕ(yn)‖E

for all but finitely many n ∈ N, and hence

lim sup ‖h(yn)(f(ϕ(yn))‖F ≤ (lim sup ‖h(yn)‖) (lim sup ‖f(ϕ(yn)‖E) .

On the other hand, we get ‖Tf(y)‖F = lim ‖Tf(yn)‖F = lim ‖h(yn)(f(ϕ(yn))‖F . It follows
that Tf(y) = 0. Since f is arbitrary in lip0(Xα, E) and T is bijective, it follows that g(y) = 0
for all g ∈ lip0(Y α, F ) which yields a contradiction and so Y1 = Y . Finally, by using Claims 2
and 7 we have

X1 = ϕ(Y1) = ϕ(Y ) = ϕ(Y 1) = ϕ(Y1) = X1 = X.

This concludes the proof of Theorem 3.1. �

4 Continuity

In this section, we will study the continuity of linear biseparating maps defined between spaces
lip0(Xα, E).

Let us recall that a map between metric spaces f : X → Y is locally Lipschitz if each point
of X has a neighborhood on which f is Lipschitz. If f is bijective and both f and f−1 are
locally Lipschitz (Lipschitz), f is said to be a locally Lipschitz homeomorphism (respectively,
Lipschitz homeomorphism). In [27, Theorem 2.1], Scanlon showed that f : X → Y is locally
Lipschitz if and only if f is Lipschitz on each compact subset of X.

Given two Banach spaces E, F, let B(E, F ) denote the space of all continuous linear oper-
ators S : E → F . We can consider different topologies in B(E, F ). It is well known that the
uniform operator topology (UOT) in B(E, F ) is the metric topology induced by the operator
canonical norm:

‖S‖ = sup {‖S(e)‖F : e ∈ E, ‖e‖E ≤ 1} .

Let us recall that the strong operator topology (SOT) in B(E, F ) is the topology defined by the
basic set of neighborhoods:

N(S; A, ε) = {R ∈ B(E, F ) : ‖(R − S)(e)‖F < ε, ∀ e ∈ A},

where A ⊆ E finite and ε > 0 are arbitrary. Given a topological space Y , it is easy to see
that a map h from Y into (B(E, F ), SOT) is continuous if and only if for each e ∈ E, the map
y �→ h(y)(e) from Y to F is continuous. It is evident that the uniform operator topology is
stronger than the strong operator topology. In consequence, every continuous map from Y into
(B(E, F ), UOT) is also continuous as map of Y to (B(E, F ), SOT). For a comprehensive study
of these topologies, we refer to the book [28] by Dunford and Schwartz. In what follows, we
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will denote by L−1(E, F ) and B−1(E, F ) the sets of all linear bijections and continuous linear
bijections from E onto F , respectively.

Theorem 4.1 Let T : lip0(Xα, E) → lip0(Y α, F ) be a linear biseparating map, and let h :
Y → L−1(E, F ) and ϕ : Y → X be as in Theorem 3.1. Then T is continuous if and only if
h(y) is continuous for all y ∈ Y . In this case, h is a locally Lipschitz map from (Y, dα

Y ) into
B−1(E, F ) with the metric induced by the operator canonical norm and ϕ is a locally Lipschitz
homeomorphism.

Proof Assume T is continuous. Let y ∈ Y and let U be a neighborhood of ϕ(y). By
Lemma 2.2 ii), we can take relatively compact neighborhoods V, W of ϕ(y) with V ⊆ W ⊆
W ⊆ U and a k ∈ lip00(Xα) with ‖k‖α ≤ a := max

{
1/dX(V , X \ W ), 1

}
+ 1 such that

k(ϕ(y)) = 1. Suppose that h(y) is not continuous. Then there exists a sequence {en} in E with
‖en‖E = 1 such that ‖h(y)(en)‖F ≥ an for all n ∈ N. For each n ∈ N, define fn : X → E by
fn(z) = k(z)en. Notice that fn ∈ lip00(Xα, E), fn(ϕ(y)) = en and ‖fn‖α ≤ a. Then, for every
n ∈ N, we have

an ≤ ‖h(y)(en)‖F = ‖h(y)(fn(ϕ(y)))‖F = ‖Tfn(y)‖F ≤ ‖Tfn‖α ≤ a ‖T‖ .

Hence n ≤ ‖T‖ for all n ∈ N, a contradiction. Therefore h(y) is continuous.
Conversely, assume that h(y) is continuous for all y ∈ Y . To prove the continuity of T , we

will use the closed graph theorem. Let {fn} be a sequence in lip0(Xα, E) such that {‖fn‖α} → 0
and {‖Tfn − g‖α} → 0 for some g ∈ lip0(Y α, F ). We must show that g = 0. Pick y ∈ Y . Since
{‖Tfn − g‖α} → 0, it is clear that {‖Tfn(y)‖F } → ‖g(y)‖F . Moreover, we have

‖Tfn(y)‖F = ‖h(y)(fn(ϕ(y)))‖F ≤ ‖h(y)‖ ‖fn‖α

for all n ∈ N. Letting n → ∞, we get g(y) = 0. This finishes the proof of the first part of the
theorem.

Suppose now that T : lip0(Xα, E) → lip0(Y α, F ) is continuous. We have seen above that
h : Y → L−1(E, F ) takes values in B−1(E, F ). We claim that h is locally Lipschitz from (Y, dα

Y )
into B−1(E, F ) with the metric:

d(R, S) = sup {‖(R − S)(e)‖F : e ∈ E, ‖e‖E ≤ 1} .

To prove this, it suffices to show that h|K is Lipschitz for each compact K ⊆ Y . Let U ⊆ X

be open with ϕ(K) ⊆ U . By Lemma 2.2 i), there exist a relatively compact open set V with
ϕ(K) ⊆ V ⊆ V ⊆ U and a f ∈ lip00(Xα) with ‖f‖α ≤ b := max {1/dX(ϕ(K), X \ V ), 1} + 1
such that f |ϕ(K) = 1.

For each e ∈ E with ‖e‖E ≤ 1, define fe : X → E by fe(z) = f(z)e. Clearly, fe ∈
lip00(Xα, E), fe|ϕ(K) = e and ‖fe‖α ≤ b. Given y, z ∈ K, we have

‖h(y)(e) − h(z)(e)‖F = ‖h(y)(fe(ϕ(y))) − h(z)(fe(ϕ(z)))‖F

= ‖Tfe(y) − Tfe(z)‖F ≤ ‖Tfe‖α dY (y, z)α ≤ b ‖T‖ dY (y, z)α.

Hence d(h(y), h(z)) ≤ b ‖T‖ dY (y, z)α, and this proves our claim. As a consequence, h is con-
tinuous from Y into (B−1(E, F ), UOT). Then, according to comments preceding the theorem,
the map y �→ h(y)(e) from Y to F is continuous for each e ∈ E.
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Finally, let us verify that ϕ : Y → X is a locally Lipschitz homeomorphism. We first show
that ϕ is locally Lipschitz. Fix y ∈ Y and e ∈ E with ‖e‖E = 1. As z �→ h(z)(e) from Y into
F is continuous and h(y)(e) �= 0, using the local compactness of Y we can find two relatively
compact neighborhoods W, G of y with W ⊆ G ⊆ Y such that

‖h(z)(e) − h(y)(e)‖F ≤ (1/2)‖h(y)(e)‖F , ∀ z ∈ W. (4.1)

Notice that ϕ(W ) ⊆ ϕ(G) ⊆ X with ϕ(W ) compact and ϕ(G) open. Then we can construct
as in Lemma 2.2 a k ∈ lip00(Xα) with ‖k‖α ≤ 1 + max

{
1/dX(ϕ(W ), X \ ϕ(G)), 1

}
such that

k|ϕ(W ) = 1.
Fix w, z ∈ W with w �= z. Choose a real number γ ∈ (α, 1) and define hw,z : X → R by

hw,z(u) = [dX(ϕ(z), u)γ − dX(ϕ(w), u)γ]/2dX(ϕ(z), ϕ(w))γ−α.

It is not hard to check that hw,z ∈ lip(Xα) and ‖hw,z‖α = 1 + (1/2)dX(ϕ(z), ϕ(w))α. Hence
‖hw,z‖α ≤ 1 + (1/2)[diam(ϕ(W ))]α, where diam(ϕ(W )) denotes the diameter of ϕ(W ).

Now define fw,z : X → E by

fw,z(u) = hw,z(u)k(u)e.

Clearly, fw,z ∈ lip00(Xα, E) and, since ‖·‖α is an algebra norm, it follows that

‖fw,z‖α ≤ ‖hw,z‖α ‖k‖α

≤ (
1 + (1/2)[diam(ϕ(W ))]α

) (
1 + max

{
1/dX(ϕ(W ), X \ ϕ(G)), 1

})
.

Hence
{
fw,z : w, z ∈ W, w �= z

}
is bounded in lip0(Xα, E). Since T is assumed to be continu-

ous, it follows that
{
Tfw,z : w, z ∈ W, w �= z

}
is bounded in lip0(Y α, F ). Hence there exists a

constant q > 0 such that

‖Tfw,z‖α ≤ q, ∀w, z ∈ W, w �= z. (4.2)

Given w, z ∈ W with w �= z, from (4.2) it is deduced that

‖Tfw,z(w) − Tfw,z(z)‖F ≤ q dY (w, z)α. (4.3)

An easy calculation yields

Tfw,z(w) = h(w)(fw,z(ϕ(w))) = (1/2)dX(ϕ(z), ϕ(w))αh(w)(e), (4.4)

Tfw,z(z) = h(z)(fw,z(ϕ(z))) = −(1/2)dX(ϕ(z), ϕ(w))αh(z)(e). (4.5)

Substituting (4.4) and (4.5) in (4.3), we infer that

(1/2)dX(ϕ(w), ϕ(z))α‖h(w)(e) + h(z)(e)‖F ≤ q dY (w, z)α. (4.6)

Now, notice that infz∈W ‖h(z)(e)‖F = ‖h(z0)(e)‖F > 0 for some z0 ∈ W since W is compact
and z �→ h(z)(e) from W to F is continuous. Taking into account (4.1), we get

‖h(w)(e) + h(z)(e)‖F

≥ 2‖h(y)(e)‖F − ‖h(w)(e) − h(y)(e)‖F − ‖h(z)(e) − h(y)(e)‖F

≥ ‖h(y)(e)‖F ≥ ‖h(z0)(e)‖F . (4.7)
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Combining (4.6) with (4.7) and writing 2/‖h(z0)(e)‖F = p, we deduce that

dX(ϕ(w), ϕ(z)) ≤ (pq)1/α dY (w, z).

Hence ϕ is Lipschitz on the neighborhood W of y and so ϕ is locally Lipschitz. We can apply
similar reasoning to φ = ϕ−1 and see that ϕ−1 is also locally Lipschitz. �

Next we formulate two automatic continuity results. The first one is deduced immediately
from Theorems 3.1 and 4.1, and the proof of the second one requires more arguments.

Corollary 4.2 Let T : lip0(Xα, E) → lip0(Y α, F ) be a biseparating linear map and suppose
that E or F is finite-dimensional. Then T is continuous.

Theorem 4.3 Let T : lip0(Xα, E) → lip0(Y α, F ) be a linear biseparating map and suppose
that X or Y has no isolated points. Then T is continuous.

Proof By Theorem 3.1, X and Y are homeomorphic. Hence Y has no isolated points. Let
h : Y → L−1(E, F ) be as in Theorem 3.1. We will prove that h(y) is continuous for every
y ∈ Y , and then T will be continuous by Theorem 4.1. Let y ∈ Y be given and assume that
h(y) is not continuous. Since y is not isolated, there exists a sequence {yn} of distinct points in
Y \{y} converging to y. Put xn = ϕ(yn) (n ∈ N) and let {Un} be a sequence of pairwise disjoint
neighborhoods of xn for each n ∈ N. In view of Lemma 2.2 ii), we can find two sequences {Vn}
and {Wn} of relatively compact neighborhoods of xn with V n ⊆ Wn ⊆ Wn ⊆ Un for each
n ∈ N, and a sequence {kn} in lip00(Xα) with ‖kn‖α ≤ rn := max

{
1/dX(V n, X \ Wn), 1

}
+ 1

such that kn(xn) = 1 and coz(kn) = Wn for every n ∈ N.
Since h(y) is not continuous, we can take a sequence {en} in E such that 0 < ‖en‖E ≤ 1/n2

and ‖h(y)(en)‖F > rn for all n ∈ N. By Lemma 2.2 ii), there are a neighborhood V of ϕ(y) and
a function k ∈ lip00(Xα) such that k(x) = 1 for all x ∈ V. Since {xn} → ϕ(y), we can suppose,
passing to a subsequence if necessary, that xn ∈ V for all n ∈ N.

For each n ∈ N, define gn : X → E by

gn(z) = k(z)en, ∀ z ∈ X.

Since gn ∈ lip00(Xα, E) and gn(ϕ(y)) = en, we have ‖Tgn(y)‖F = ‖h(y)(gn(ϕ(y)))‖F =
‖h(y)(en)‖F > rn for all n ∈ N.

For each n ∈ N, the sequence {Tgn(ym)}m∈N
converges to Tgn(y). Therefore, for each n ∈ N,

there exists a natural k(n) > n such that
∥∥Tgn(yk(n))

∥∥
F

> rn. Define σ : N → N by σ(1) = 1
and σ(n+1) = k(σ(n)) for all n ∈ N. Clearly, σ is strictly increasing and

∥
∥Tgσ(n)(yσ(n+1))

∥
∥

F
>

rσ(n) for all n ∈ N. Since Tgσ(n)(yσ(n+1)) = h(yσ(n+1))(gσ(n)(xσ(n+1))) = h(yσ(n+1))(eσ(n)), it
follows that

∥
∥h(yσ(n+1))(eσ(n))

∥
∥

F
> rσ(n) for all n ∈ N.

Now, for every n ∈ N, define fσ(n) : X → E by

fσ(1)(z) = 0, fσ(n+1)(z) = (1/rσ(n))kσ(n)(z)eσ(n), ∀ z ∈ X.

Clearly, fσ(n) ∈ lip00(Xα, E), fσ(n+1)(xσ(n+1)) = (1/rσ(n))eσ(n) and fσ(n)(ϕ(y)) = 0 for all
n ∈ N. We have

∥
∥Tfσ(n+1)(yσ(n+1))

∥
∥

F
=

∥
∥h(yσ(n+1))(fσ(n+1)(xσ(n+1)))

∥
∥

F

= (1/rσ(n))
∥
∥h(yσ(n+1))(eσ(n))

∥
∥

F
> 1
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for all n ∈ N. Moreover, since
∥∥fσ(n)

∥∥
α
≤ 1/n2 for all n ∈ N, the function f :=

∑∞
n=1 fσ(n)

belongs to lip0(Xα, E). Clearly, f(ϕ(y)) = 0 and therefore Tf(y) = 0.
On the other hand, as the sets coz(fn) = Wn are pairwise disjoint, given any m ∈ N, we

deduce that fσ(n)|Wσ(m) = 0 for all n �= m; hence fσ(n) ∈ Ixσ(m) for all n �= m. This implies that
∑+∞

m �=n=1 fσ(n) ∈ Ixσ(m) and therefore T (
∑+∞

m �=n=1 fσ(n))(yσ(m)) = 0. Hence ‖Tf(yσ(m))‖F =
‖Tfσ(m)(yσ(m))‖F > 1 for all m > 1. Letting m → ∞, we arrive at a contradiction. �

In a sense, the next result tells us when there exists a discontinuous linear biseparating map
between spaces lip0(Xα, E) and how we can construct it explicitly.

Corollary 4.4 If X, Y are Lipschitz homeomorphic locally compact metric spaces, α is in
(0, 1) and E is an infinite-dimensional Banach space, then there exists a discontinuous linear
biseparating map T from lip0(Xα, E) onto lip0(Y α, E) if and only if X or Y has isolated points.

Proof The proof of the “only if” part follows immediately from Theorem 4.3. To prove the
“if” part, since X and Y are homeomorphic, we can assume, without loss of generality, that
Y has an isolated point y0. Then dY (y, y0) > r for all y �= y0, for some r > 0. Take a
Lipschitz homeomorphism ϕ : Y → X and a discontinuous linear bijection S : E → E. Define
T : lip0(Xα, E) → lip0(Y α, E) by

Tf(y) = f(ϕ(y)) (y �= y0), T f(y0) = S(f(ϕ(y0))).

First we prove that T is well defined, that is, Tf ∈ lip0(Y α, E) if f ∈ lip0(Xα, E). Fix
f ∈ lip0(Xα, E). A simple verification shows that Tf ∈ Lip(Y α, E). Let ε > 0 be given. We
can find a δ > 0 such that ‖f(x)−f(w)‖E ≤ (ε/L(ϕ)α)·dX(x, w)α whenever dX(x, w) ≤ δ, where
L(ϕ) denotes the Lipschitz constant of ϕ. Then dY (y, z) ≤ min{r, δ/L(ϕ)} implies y �= y0 �= z

and dX(ϕ(y), ϕ(z)) ≤ δ and, in consequence, we have

‖Tf(y) − Tf(z)‖E = ‖f(ϕ(y)) − f(ϕ(z))‖E ≤ ε · dY (y, z)α.

This shows that Tf ∈ lip(Y α, E). To prove that Tf vanishes at infinity, note that as so is
f , then there exists a compact K ⊆ X such that ‖f(x)‖E < ε for all x ∈ X \ K. Taking
the compact K ∪ {ϕ(y0)} if necessary, we can suppose that ϕ(y0) ∈ K. Obviously, ϕ−1(K) is
compact, and if y ∈ Y \ ϕ−1(K), we have ‖Tf(y)‖E = ‖f(ϕ(y))‖E < ε.

Clearly, T is linear biseparating. If it were continuous, we would have

‖S(f(ϕ(y0)))‖E ≤ ‖T‖ ‖f‖α , ∀ f ∈ lip0(Xα, E).

Since ϕ(y0) is an isolated point of X, there is an s > 0 such that dX(x, ϕ(y0)) > s for all
x �= ϕ(y0). For each e ∈ E define fe on X by fe(x) = 0 if x �= ϕ(y0) and fe(ϕ(y0)) = e. Clearly,
fe ∈ lip0(Xα, E) and ‖fe‖α ≤ (1/sα + 1) ‖e‖E . We have then ‖S(e)‖E ≤ (1/sα + 1) ‖T‖ ‖e‖E

for all e ∈ E, which contradicts the discontinuity of S. Hence T is not continuous. �

Acknowledgements We would like to thank the referee for his/her valuable suggestions.

References
[1] de Leeuw, K.: Banach spaces of Lipschitz functions. Studia Math., 21, 55–66 (1961/1962)

[2] Sherbert, D.: Banach algebras of Lipschitz functions. Pacific J. Math., 13, 1387–1399 (1963)
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