Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions ${ }^{\text {*/ }}$

A. Jiménez-Vargas*, A. Morales Campoy, Moisés Villegas-Vallecillos

Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain

ARTICLE INFO

Article history:

Received 17 March 2009
Available online 29 January 2010
Submitted by R. Timoney

Keywords:

Iso-reflexive space
Algebraic reflexivity
Isometry group
Lipschitz function
Isometric reflection
Generalized bi-circular projection

Abstract

We show that the isometry groups of $\operatorname{Lip}(X, d)$ and $\operatorname{lip}\left(X, d^{\alpha}\right)$ with $\alpha \in(0,1)$, for a compact metric space (X, d), are algebraically reflexive. We also prove that the sets of isometric reflections and generalized bi-circular projections on such spaces are algebraically reflexive. In order to achieve this, we characterize generalized bi-circular projections on these spaces. (C) 2010 Elsevier Inc. All rights reserved.

1. Introduction

This note is a contribution on a topic of current interest, namely Banach spaces whose groups of surjective linear isometries are completely determined by the local behavior of their elements. Given a Banach space X, we denote by $\mathcal{B}(X)$ the algebra of all bounded linear operators on X. For any nonempty subset \mathcal{S} of $\mathcal{B}(X)$, let

$$
\operatorname{ref}_{\mathrm{al}}(\mathcal{S})=\{T \in \mathcal{B}(X): T(x) \in \mathcal{S}(x), \forall x \in X\}
$$

where $\mathcal{S}(x)=\{L(x): L \in \mathcal{S}\}$. The set \mathcal{S} is said to be algebraically reflexive if $\operatorname{ref}_{\mathrm{al}}(\mathcal{S})=\mathcal{S}$. If $\mathcal{G}(X)$ denotes the group of all surjective linear isometries of X, we will say that X is iso-reflexive if $\mathcal{G}(X)$ is algebraically reflexive. Notice that $T \in$ $\operatorname{ref}_{\mathrm{al}}\left(\mathcal{G}(X)\right.$) if for every $x \in X$, there exists a $T_{x} \in \mathcal{G}(X)$ such that $T(x)=T_{X}(x)$. The elements of $\operatorname{ref}_{\mathrm{al}}(\mathcal{G}(X))$ are called local surjective isometries. Hence X is iso-reflexive if and only if every local surjective isometry is a surjective isometry. The iso-reflexivity of some function spaces has been studied by F. Cabello Sánchez [4], F. Cabello Sánchez and L. Molnár [5], K. Jarosz and T.S.S.R.K. Rao [11] and L. Molnár and B. Zalar [15]. For pertinent results in the case of operator spaces, we refer to L. Molnár [14] and T.S.S.R.K. Rao [16].

Let (X, d) be a compact metric space and let \mathbb{K} be the field of real or complex numbers. We denote by $\operatorname{Lip}(X, d)$ the Banach algebra of all functions $f: X \rightarrow \mathbb{K}$ such that

$$
p_{d}(f)=\sup \left\{\frac{|f(x)-f(y)|}{d(x, y)}: x, y \in X, x \neq y\right\}<\infty
$$

[^0]endowed with the norm
$$
\|f\|_{d}=p_{d}(f)+\|f\|_{\infty},
$$
where
$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in X\} .
$$

Moreover, $\operatorname{lip}(X, d)$ denotes the closed subalgebra of $\operatorname{Lip}(X, d)$ consisting of all those functions f such that $\lim _{d(x, y) \rightarrow 0} \mid f(x)-$ $f(y) \mid / d(x, y)=0$, that is,

$$
\forall \varepsilon>0, \exists \delta>0: x, y \in X, 0<d(x, y)<\delta \Rightarrow \frac{|f(x)-f(y)|}{d(x, y)}<\varepsilon
$$

Both $\operatorname{Lip}(X, d)$ and $\operatorname{lip}(X, d)$ are unital semisimple commutative Banach algebras containing the constant functions, but while $\operatorname{Lip}(X, d)$ separates the points of $X, \operatorname{lip}(X, d)$ may contain only constant functions, for example lip $([0,1],|\cdot|)$. To avoid this, we will consider the algebras $\operatorname{lip}\left(X, d^{\alpha}\right)$ with $\alpha \in(0,1)$, where d^{α} is the metric on X defined by $d^{\alpha}(x, y)=d(x, y)^{\alpha}$ for $x, y \in X$. These algebras were first studied by D. Sherbert [17,18]. Complete information about them can be found in Weaver's book on Lipschitz algebras [19].

From now on, given a compact metric space (X, d) and a real parameter $\alpha \in(0,1]$, we will denote by $A_{\alpha}(X)$ either $\operatorname{Lip}\left(X, d^{\alpha}\right)$ if $\alpha=1$ or $\operatorname{lip}\left(X, d^{\alpha}\right)$ if $\alpha \in(0,1)$.

Our goal in this paper is to show that $A_{\alpha}(X)$ is iso-reflexive. Our method is to use a known characterization of the isometry group of $A_{\alpha}(X)$ due to K. Jarosz and V. Pathak [10]. In the complex-valued case, it is possible to give a different proof by applying a characterization of the carrier space of $A_{\alpha}(X)$ given by D . Sherbert [17,18], together with the famous Gleason-Kahane-Żelazko theorem [8,12].

Furthermore, we will apply the iso-reflexivity of $A_{\alpha}(X)$ to study the algebraic reflexivity of some subsets of isometries and projections of $A_{\alpha}(X)$. In order to introduce these sets, we recall that an isometry of a metric space X is a map $\varphi: X \rightarrow X$ satisfying that $d(\varphi(x), \varphi(y))=d(x, y)$ for all $x, y \in X$. If, in addition, $\varphi^{2}=I d$ where Id is the identity map of X, then φ is said to be an involutive isometry of X. Notice that every involutive isometry of X is surjective. In particular, if X is a Banach space, an involutive linear isometry of X is often called an isometric reflection of X.

Let $S_{\mathbb{K}}$ denote the set of elements in \mathbb{K} with modulus 1 . Given a Banach space X, a linear map $P: X \rightarrow X$ is said to be a generalized bi-circular projection if $P^{2}=P$ and $P+\lambda(I d-P)$ is an isometry for some $\lambda \in S_{\mathbb{K}}, \lambda \neq 1$. Notice that $P+\lambda(I d-P)$ is surjective. The concept of generalized bi-circular projection was introduced by M. Fosner, D. Ilisevic and C. Li in [7]. They characterized these projections in the finite-dimensional case. Since then, a considerable account of work has been done concerning generalized bi-circular projections on various spaces. See, for example, [1-3,6,13].

Using the iso-reflexivity of $A_{\alpha}(X)$, we will prove that the sets of isometric reflections and generalized bi-circular projections of $A_{\alpha}(X)$ are also algebraically reflexive. In order to achieve that, we first give a complete description of such operators. An easy application of the aforementioned characterization of the isometries of $A_{\alpha}(X)$ shows that every isometric reflection of $A_{\alpha}(X)$ is either a composition operator induced by an involutive isometry of the metric space X or the negative of such a composition operator. On the other hand, we state that every generalized bi-circular projection of $A_{\alpha}(X)$ is the average of the identity with an isometric reflection. In particular, every generalized bi-circular projection P of $A_{\alpha}(X)$ is a bi-contractive projection, that is, $\|P\| \leqslant 1$ and $\|I d-P\| \leqslant 1$.

We emphasize that our results are motivated by recent studies of the analogous problems on the space $\mathcal{C}(X)$ of all complex-valued continuous functions on a compact Hausdorff space X. In general, $\mathcal{C}(X)$ is not iso-reflexive (see [5, Theorem 9] for an example), but in the case that X is a first countable compact Hausdorff space, L. Molnár and B. Zalar proved in [15, Theorem 2.2] that $\mathcal{C}(X)$ is iso-reflexive. On the other hand, F. Botelho and J.E. Jamison [2] showed that if X is a connected compact Hausdorff space, then the only projections of $\mathcal{C}(X)$ that can be represented as the average of the identity with an isometric reflection are generalized bi-circular projections. Recently, S. Dutta and T.S.S.R.K. Rao [6] have investigated the algebraic reflexivity of the sets of isometric reflections and generalized bi-circular projections of $\mathcal{C}(X)$.

2. Algebraic reflexivity of the groups of isometries and involutive isometries

Throughout the paper, given a compact metric space (X, d), let $A_{\alpha}(X)$ stand for either Lip $\left(X, d^{\alpha}\right)$ if $\alpha=1$ or $\operatorname{lip}\left(X, d^{\alpha}\right)$ if $\alpha \in(0,1)$, equipped with the norm $\|f\|_{d^{\alpha}}=p_{d^{\alpha}}(f)+\|f\|_{\infty}$. If it is necessary to specify the field, we will write $A_{\alpha}(X, \mathbb{K})$. In what follows, we will use frequently the easy fact that $\operatorname{Lip}(X, d)$ is contained in $A_{\alpha}(X)$ for all $\alpha \in(0,1]$. The symbol 1 will stand for the function constantly 1 on X.

We also will make use of the following functions. For any $x \in X$ and $\delta>0, h_{\chi, \delta}: X \rightarrow[0,1]$ defined by

$$
h_{x, \delta}(z)=\max \left\{0,1-\frac{d(z, x)}{\delta}\right\} \quad(z \in X),
$$

belongs to $\operatorname{Lip}(X, d)$ with $h_{x, \delta}(x)=1$ and $h_{\chi, \delta}(z)=0$ if $d(z, x) \geqslant \delta$.
The isometry group of $A_{\alpha}(X)$ was described by K. Jarosz and V. Pathak in [10]. They showed that every surjective linear isometry $T: A_{\alpha}(X) \rightarrow A_{\alpha}(X)$ is of the form

$$
T(f)(x)=\tau f(\varphi(x)), \quad \forall f \in A_{\alpha}(X), \forall x \in X
$$

where $\tau \in S_{\mathbb{K}}$ and $\varphi: X \rightarrow X$ is a surjective isometry [10, Example 8].
Our aim in this section is to show that $A_{\alpha}(X)$ is iso-reflexive. In order to prove this, we first state some preliminary results. The next lemma is surely known but we give a proof for the sake of completeness.

Lemma 2.1. If X is a compact metric space and ψ is an isometry from X into X, then ψ is onto.

Proof. Suppose that $x \in X \backslash \psi(X)$. Clearly, $\psi(X)$ is compact. Then $r=(1 / 2) d(x, \psi(X))>0$. Notice that $d\left(\psi^{k}(x), \psi^{n}(x)\right) \geqslant 2 r$ for all $k, n \in \mathbb{N}, k \neq n$.

For $z \in X$ and $\delta>0$, let $B(z, \delta)=\{y \in X: d(y, z)<\delta\}$. Obviously, the family $\{B(z, r): z \in \psi(X)\}$ is an open cover of $\psi(X)$. Then there exist $z_{1}, \ldots, z_{m} \in \psi(X)$ such that $\psi(X) \subseteq \bigcup_{j=1}^{m} B\left(z_{j}, r\right)$. In particular, $\psi(x) \in B\left(z_{k}, r\right)$ for some $k \in\{1, \ldots, m\}$. Hence the set

$$
J=\left\{j \in\{1, \ldots, m\}: B\left(z_{j}, r\right) \cap\left\{\psi^{n}(x): n \in \mathbb{N}\right\} \neq \emptyset\right\}
$$

is nonempty. Moreover, given $j \in J$, it is clear that $B\left(z_{j}, r\right) \cap\left\{\psi^{n}(x): n \in \mathbb{N}\right\}$ is a singleton. Then we can define $\gamma: J \rightarrow$ $\left\{\psi^{n}(x): n \in \mathbb{N}\right\}$ by

$$
\{\gamma(j)\}=B\left(z_{j}, r\right) \cap\left\{\psi^{n}(x): n \in \mathbb{N}\right\} \quad(j \in J)
$$

Evidently, γ is onto. Since $\left\{\psi^{n}(x): n \in \mathbb{N}\right\}$ is infinite, then so is J, a contradiction. This proves the lemma.
We now give a description of local surjective isometries of $A_{\alpha}(X)$.

Lemma 2.2. Let X be a compact metric space and let $T \in \operatorname{ref}_{\mathfrak{a l}}\left(\mathcal{G}\left(A_{\alpha}(X)\right)\right)$. Then there exist a scalar $\tau \in S_{\mathbb{K}}$ and a mapping $\psi: X \rightarrow X$ such that $T(f)(\psi(x))=\tau f(x)$ for every $f \in A_{\alpha}(X)$ and all $x \in X$.

Proof. For each $f \in A_{\alpha}(X)$, there exists $T_{f} \in \mathcal{G}\left(A_{\alpha}(X)\right)$ such that $T(f)=T_{f}(f)$. According to [10, Example 8], there exist a scalar $\tau_{f} \in S_{\mathbb{K}}$ and a surjective isometry $\varphi_{f}: X \rightarrow X$ such that

$$
T_{f}(g)(z)=\tau_{f} g\left(\varphi_{f}(z)\right), \quad \forall g \in A_{\alpha}(X), \forall z \in X
$$

In particular, we have

$$
T(f)(z)=\tau_{f} f\left(\varphi_{f}(z)\right), \quad \forall z \in X
$$

Taking $f=\mathbf{1}$ in the equality above, we see that $T(\mathbf{1})$ is the function constantly equal to $\tau_{\mathbf{1}}$ on X. Take $\tau=\tau_{\mathbf{1}}$.
In order to define the function $\psi: X \rightarrow X$, for each $x \in X$ we consider the sets:

$$
\begin{aligned}
& F_{x}=\left\{f \in A_{\alpha}(X):\|f\|_{\infty}=1=|f(x)|\right\}, \\
& Q_{x}=\left\{y \in X:|T(f)(y)|=1, \forall f \in F_{x}\right\} .
\end{aligned}
$$

Notice that $F_{x} \neq \emptyset$ and $Q_{x}=\bigcap_{f \in F_{x}}|T(f)|^{-1}(\{1\})$.
We first prove that Q_{x} is nonempty. It is enough to show that the family $\left\{|T(f)|^{-1}(\{1\}): f \in F_{x}\right\}$ has the finite intersection property, since each $|T(f)|^{-1}(\{1\})$ is closed in the compact X. Pick $f_{1}, \ldots, f_{n} \in F_{x}$ and put $f=(1 / n) \sum_{j=1}^{n}\left(f_{j} / f_{j}(x)\right)$. Clearly, $f \in F_{X}$ and since $T \in \operatorname{ref}_{\mathrm{al}}\left(\mathcal{G}\left(A_{\alpha}(X)\right)\right.$), there are a number $\tau_{f} \in S_{\mathbb{K}}$ and a surjective isometry $\varphi_{f}: X \rightarrow X$ such that

$$
T(f)(z)=\tau_{f} f\left(\varphi_{f}(z)\right), \quad \forall z \in X
$$

Let $y \in X$ be such that $\varphi_{f}(y)=x$. Then $|T(f)(y)|=\left|f\left(\varphi_{f}(y)\right)\right|=|f(x)|=1$. Similarly, we can find for each $j \in\{1, \ldots, n\}$, a scalar $\tau_{f_{j}} \in S_{\mathbb{K}}$ and a surjective isometry $\varphi_{f_{j}}: X \rightarrow X$ for which

$$
T\left(f_{j}\right)(z)=\tau_{f_{j}} f_{j}\left(\varphi_{f_{j}}(z)\right), \quad \forall z \in X
$$

Hence $\left|T\left(f_{j}\right)(y)\right|=\left|f_{j}\left(\varphi_{f_{j}}(y)\right)\right| \leqslant 1$. Suppose that $\left|T\left(f_{k}\right)(y)\right|<1$ for some $k \in\{1, \ldots, n\}$. Then

$$
1=|T(f)(y)| \leqslant \frac{1}{n} \sum_{j=1}^{n} \frac{\left|T\left(f_{j}\right)(y)\right|}{\left|f_{j}(x)\right|}=\frac{1}{n} \sum_{j=1}^{n}\left|T\left(f_{j}\right)(y)\right|<1,
$$

a contradiction. Therefore, $\left|T\left(f_{j}\right)(y)\right|=1$ for every $j \in\{1, \ldots, n\}$, and thus $\bigcap_{j=1}^{n}\left|T\left(f_{j}\right)\right|^{-1}(\{1\}) \neq \emptyset$ as desired.
Next we show that Q_{x} is a singleton. Let us suppose that there exist $y, z \in Q_{x}$. Consider the function $h_{x, 1}$. Clearly, $h_{x, 1} \in F_{x}$ and therefore $\left|T\left(h_{x, 1}\right)(y)\right|=\left|T\left(h_{x, 1}\right)(z)\right|=1$. Again, we can write

$$
T\left(h_{x, 1}\right)(w)=\tau_{h_{x, 1}} h_{x, 1}\left(\varphi_{h_{x, 1}}(w)\right), \quad \forall w \in X
$$

where $\tau_{h_{x, 1}} \in S_{\mathbb{K}}$ and $\varphi_{h_{x, 1}}$ is a surjective isometry of X. Then we have

$$
\begin{aligned}
& 1=\left|T\left(h_{x, 1}\right)(y)\right|=h_{x, 1}\left(\varphi_{h_{x, 1}}(y)\right) \\
& 1=\left|T\left(h_{x, 1}\right)(z)\right|=h_{x, 1}\left(\varphi_{h_{x, 1}}(z)\right)
\end{aligned}
$$

which gives $\varphi_{h_{x, 1}}(y)=\varphi_{h_{x, 1}}(z)=x$. Since $\varphi_{h_{x, 1}}$ is injective, we conclude that $y=z$.
By above-proved, we can consider the application $\psi: X \rightarrow X$ defined by

$$
\{\psi(x)\}=Q_{x}, \quad \forall x \in X
$$

We now claim that if $f \in A_{\alpha}(X), x \in X$ and $f(x)=0$, then $T(f)(\psi(x))=0$. In order to prove this, assume $T(f)(\psi(x)) \neq 0$. Then $f \neq 0$, and we can consider the function

$$
g(z)=1-\frac{|f(z)|}{\|f\|_{\infty}} \quad(z \in X)
$$

and the number

$$
\eta=\frac{T(f)(\psi(x))}{|T(f)(\psi(x))| T(g)(\psi(x))}
$$

Since $g \in F_{x}$, it follows that $|T(g)(\psi(x))|=1$, and thus $\eta \in S_{\mathbb{K}}$. An easy verification shows that the function $\left(1 /\|f\|_{\infty}\right) f+\eta g$ belongs to F_{x}. Using the definition of ψ, it follows that

$$
\begin{aligned}
1 & =\left|\frac{1}{\|f\|_{\infty}} T(f)(\psi(x))+\eta T(g)(\psi(x))\right| \\
& =\left(\frac{1}{\|f\|_{\infty}}+\frac{1}{|T(f)(\psi(x))|}\right)|T(f)(\psi(x))| \\
& =\frac{|T(f)(\psi(x))|}{\|f\|_{\infty}}+1>1
\end{aligned}
$$

a contradiction. This proves our claim.
Finally, given $f \in A_{\alpha}(X)$ and $x \in X$, it is clear that $h=f-f(x) \in A_{\alpha}(X)$ with $h(x)=0$. Then, by above-proved, $T(h)(\psi(x))=0$, that is, $T(f)(\psi(x))=T(\mathbf{1})(\psi(x)) f(x)=\tau f(x)$.

We are now ready to prove the main result of this section.

Theorem 2.3. Let X be a compact metric space. Then $A_{\alpha}(X)$ is iso-reflexive.
Proof. Let $T \in \operatorname{ref}_{\mathrm{al}}\left(\mathcal{G}\left(A_{\alpha}(X)\right)\right)$. Then, for each $f \in A_{\alpha}(X)$, there exists $T_{f} \in \mathcal{G}\left(A_{\alpha}(X)\right)$ such that $T(f)=T_{f}(f)$. Hence $\|T(f)\|_{d^{\alpha}}=\left\|T_{f}(f)\right\|_{d^{\alpha}}=\|f\|_{d^{\alpha}}$, and thus T is an isometry. It remains to prove that T is surjective.

By Lemma 2.2, there exist a scalar $\tau \in S_{\mathbb{K}}$ and a mapping $\psi: X \rightarrow X$ such that

$$
\begin{equation*}
T(f)(\psi(x))=\tau f(x), \quad \forall f \in A_{\alpha}(X), \quad \forall x \in X \tag{1}
\end{equation*}
$$

Now we claim that ψ is an isometry. To prove this, pick $x, y \in X$. If $x=y$, then $d(\psi(x), \psi(y))=d(x, y)=0$. Assume $x \neq y$ and consider $k: X \rightarrow[0,1]$ defined by $k(z)=d(z, x) /(d(z, x)+d(z, y))$ for all $z \in X$. Obviously, $k \in \operatorname{Lip}(X, d)$ with $k^{-1}(\{0\})=\{x\}$ and $k^{-1}(\{1\})=\{y\}$. By assumption we can write

$$
\begin{equation*}
T(k)(z)=\tau_{k} k\left(\varphi_{k}(z)\right), \quad \forall z \in X \tag{2}
\end{equation*}
$$

for some $\tau_{k} \in S_{\mathbb{K}}$ and some surjective isometry φ_{k} of X. Applying now (1) and (2) gives

$$
\begin{aligned}
& \tau_{k} k\left(\varphi_{k}(\psi(x))\right)=T(k)(\psi(x))=\tau k(x)=0 \\
& \tau_{k} k\left(\varphi_{k}(\psi(y))\right)=T(k)(\psi(y))=\tau k(y)=\tau
\end{aligned}
$$

Then $\varphi_{k}(\psi(x))=x$ and $\varphi_{k}(\psi(y))=y$. Since φ_{k} is an isometry, we deduce that $d(\psi(x), \psi(y))=d(x, y)$ and this proves our claim.

Finally, we show that T is surjective. By Lemma 2.1, the isometry $\psi: X \rightarrow X$ is onto. Then, given $g \in A_{\alpha}(X)$, take $f=\bar{\tau} \cdot(g \circ \psi)$. Clearly, $f \in A_{\alpha}(X)$ and $T(f)=g$.

In the complex-valued case, Theorem 2.3 can be proved in a different form. Besides the aforementioned description of the isometry group of $A_{\alpha}(X)$ given by K. Jarosz and V. Pathak [10], this new approach is based on a known characterization of the carrier space of $A_{\alpha}(X)$ due to D . Sherbert [17,18] together with the Gleason-Kahane-Żelazko theorem [8,12].

The algebraic structure of $A_{\alpha}(X)$ was studied by D. Sherbert [17,18]. He proved that every nonzero multiplicative linear functional $T: A_{\alpha}(X) \rightarrow \mathbb{C}$ is an evaluation map at a point, that is,

$$
T(f)=f(c), \quad \forall f \in A_{\alpha}(X)
$$

where c is a unique point in X [18, p. 246].
The known Gleason-Kahane-Żelazko theorem [8,12] (see also [9]) asserts that if \mathcal{A} is a complex Banach algebra with a unit e and F is a linear functional on \mathcal{A} such that $F(f) \neq 0$ for all f in the set of invertible elements of \mathcal{A}, then $F / F(e)$ is multiplicative.

The preceding descriptions of the carrier space and the isometry group of $A_{\alpha}(X)$ are valid for real and complex-valued functions. However, the Gleason-Kahane-Żelazko theorem is not available in the real case.

Other proof of complex-valued case. Let X be a compact metric space. We want to show that $A_{\alpha}(X, \mathbb{C})$ is iso-reflexive. Let $T \in \operatorname{ref}_{\mathrm{al}}\left(\mathcal{G}\left(A_{\alpha}(X, \mathbb{C})\right)\right)$. As in the proof of Theorem $2.3, T$ is an isometry and we need only to see that T is surjective. According to [10, Example 8], there exist a scalar $\tau_{f} \in S_{\mathbb{C}}$ and a surjective isometry $\varphi_{f}: X \rightarrow X$ such that

$$
\begin{equation*}
T(f)(z)=\tau_{f} f\left(\varphi_{f}(z)\right), \quad \forall z \in X \tag{3}
\end{equation*}
$$

In particular, $T(\mathbf{1})=\tau_{1}$.
Let $x \in X$ be fixed and define the nonzero linear functional $T_{x}: A_{\alpha}(X, \mathbb{C}) \rightarrow \mathbb{C}$ by

$$
T_{x}(f)=T(f)(x), \quad \forall f \in A_{\alpha}(X, \mathbb{C})
$$

Take $f \in A_{\alpha}(X, \mathbb{C})$ and suppose that f is nowhere vanishing. In view of (3), it is clear that $T_{x}(f) \neq 0$. Then $T_{x} / T_{x}(\mathbf{1})=\overline{\tau_{1}} T_{x}$ is multiplicative by the Gleason-Kahane-Żelazko theorem. Since every nonzero multiplicative linear functional on $A_{\alpha}(X, \mathbb{C})$ is an evaluation map at a point, there exists a unique point $c_{x} \in X$ such that $\overline{\tau_{1}} T_{x}(f)=f\left(c_{x}\right)$ for all $f \in A_{\alpha}(X, \mathbb{C})$. Since this is true for each $x \in X$, we have thus a map $\varphi: X \rightarrow X$ defined by $\varphi(x)=c_{X}$ such that

$$
\begin{equation*}
T(f)(x)=\tau_{\mathbf{1}} f(\varphi(x)), \quad \forall f \in A_{\alpha}(X, \mathbb{C}), \forall x \in X \tag{4}
\end{equation*}
$$

We next show that φ is injective. Let $x, y \in X$ and suppose that $\varphi(x)=\varphi(y)$. Define $h: X \rightarrow \mathbb{R}_{0}^{+}$by $h(z)=d(z, \varphi(x))$ for all $z \in X$. Clearly, $h \in \operatorname{Lip}(X, d)$ and $h^{-1}(\{0\})=\{\varphi(x)\}$. Since $T \in \operatorname{ref}_{\mathrm{al}}\left(\mathcal{G}\left(A_{\alpha}(X, \mathbb{C})\right)\right.$), we have

$$
\begin{equation*}
T(h)(z)=\tau_{h} h\left(\varphi_{h}(z)\right), \quad \forall z \in X \tag{5}
\end{equation*}
$$

where $\tau_{h} \in S_{\mathbb{C}}$ and φ_{h} is a surjective isometry of X. By using the equalities (4) and (5), we obtain:

$$
\begin{aligned}
& \tau_{h} h\left(\varphi_{h}(x)\right)=T(h)(x)=\tau_{\mathbf{1}} h(\varphi(x))=0 \\
& \tau_{h} h\left(\varphi_{h}(y)\right)=T(h)(y)=\tau_{\mathbf{1}} h(\varphi(y))=0
\end{aligned}
$$

This implies that $\varphi_{h}(x)=\varphi_{h}(y)=\varphi(x)$ and, since φ_{h} is injective, we conclude that $x=y$.
Now we claim that φ is an isometry. To prove this, pick $x, y \in X$. If $\varphi(x)=\varphi(y)$, then $x=y$ by the injectivity of φ and thus $d(\varphi(x), \varphi(y))=d(x, y)=0$. If $\varphi(x) \neq \varphi(y)$, we deduce that $d(\varphi(x), \varphi(y))=d(x, y)$ as in the proof of Theorem 2.3.

To see that φ is surjective, suppose that there is an $x \in X \backslash \varphi(X)$. Notice that $\varphi(X)$ is closed since φ is continuous and X is compact. Therefore $\delta=d(x, \varphi(X))>0$. Take $h_{x, \delta} \in \operatorname{Lip}(X, d)$ and clearly $h_{x, \delta}(\varphi(z))=0$ for all $z \in X$. From (4) it follows that $T\left(h_{x, \delta}\right)(z)=0$ for all $z \in X$, but $h_{x, \delta}(x)=1$, which contradicts that the linear map T is injective. This proves the surjectivity of φ.

Finally, the surjectivity of T follows as in the proof of Theorem 2.3.
Definition 2.1. Let X be a Banach space. An isometric reflection of X is a linear isometry $T: X \rightarrow X$ satisfying that $T^{2}=I d$.
From the Banach-Stone type theorem that describes the isometry group of $A_{\alpha}(X)$, we deduce easily the form of isometric reflections of $A_{\alpha}(X)$ in the following result.

Corollary 2.4. Let X be a compact metric space. A map $T: A_{\alpha}(X) \rightarrow A_{\alpha}(X)$ is an isometric reflection if and only if there exist a constant $\tau \in\{-1,1\}$ and an involutive isometry φ of X such that

$$
T(f)(x)=\tau f(\varphi(x)), \quad \forall f \in A_{\alpha}(X), \forall x \in X
$$

Theorem 2.5. Let X be a compact metric space. Then the set of all isometric reflections of $A_{\alpha}(X)$ is algebraically reflexive.

Proof. Denote by $\mathcal{G}^{2}\left(A_{\alpha}(X)\right)$ the set of all isometric reflections of $A_{\alpha}(X)$. Let $T \in \operatorname{ref}_{\mathrm{al}}\left(\mathcal{G}^{2}\left(A_{\alpha}(X)\right)\right)$. According to Corollary 2.4, for every $f \in A_{\alpha}(X)$, there are a scalar $\tau_{f} \in\{-1,1\}$ and an involutive isometry φ_{f} of X such that

$$
\begin{equation*}
T(f)(x)=\tau_{f} f\left(\varphi_{f}(x)\right), \quad \forall x \in X \tag{6}
\end{equation*}
$$

By Theorem 2.3, it follows that T is a surjective isometry. Hence there exist a constant $\tau \in S_{\mathbb{K}}$ and a surjective isometry $\varphi: X \rightarrow X$ such that

$$
\begin{equation*}
T(g)(x)=\tau g(\varphi(x)), \quad \forall g \in A_{\alpha}(X), \forall x \in X \tag{7}
\end{equation*}
$$

From (6) and (7), it is deduced that $\tau=T(\mathbf{1})=\tau_{1}$ and thus $\tau \in\{-1,1\}$. To see that T is involutive, it remains to prove that $\varphi^{2}(x)=x$ for all $x \in X$. Let $x \in X$. If $\varphi(x)=x$, then $\varphi^{2}(x)=x$. Otherwise, assume that $\varphi(x) \neq x$ and take $k: X \rightarrow[0,1]$ defined by $k(z)=d(z, \varphi(x)) /(d(z, \varphi(x))+d(z, x))$ for all $z \in X$. Clearly, $k \in \operatorname{Lip}(X, d)$ with $k^{-1}(\{0\})=\{\varphi(x)\}$ and $k^{-1}(\{1\})=\{x\}$. By hypothesis we can write

$$
\begin{equation*}
T(k)(z)=\tau_{k} k\left(\varphi_{k}(z)\right), \quad \forall z \in X \tag{8}
\end{equation*}
$$

where $\tau_{k} \in\{-1,1\}$ and φ_{k} is an involutive isometry of X. From (7) and (8) we infer that

$$
\begin{aligned}
& \tau_{k} k\left(\varphi_{k}(x)\right)=T(k)(x)=\tau k(\varphi(x))=0, \\
& \tau k\left(\varphi\left(\varphi_{k}(x)\right)\right)=T(k)\left(\varphi_{k}(x)\right)=\tau_{k} k\left(\varphi_{k}^{2}(x)\right)=\tau_{k} k(x)=\tau_{k} .
\end{aligned}
$$

The first equality implies that $\varphi_{k}(x)=\varphi(x)$ and the second one that $\varphi\left(\varphi_{k}(x)\right)=x$. It follows that $\varphi^{2}(x)=x$ as required.

3. Algebraic reflexivity of the set of generalized bi-circular projections

Before proving the results we recall the concept of generalized bi-circular projection.
Definition 3.1. Let X be a Banach space. A linear map $P: X \rightarrow X$ is a generalized bi-circular projection if $P^{2}=P$ and there exists a $\lambda \in S_{\mathbb{K}}, \lambda \neq 1$ such that $P+\lambda(I d-P)$ is an isometry.

We next give a complete description of the form of generalized bi-circular projections of $A_{\alpha}(X)$.
Theorem 3.1. Let X be a compact metric space. A map $P: A_{\alpha}(X) \rightarrow A_{\alpha}(X)$ is a generalized bi-circular projection if and only if there exist a number $\tau \in\{-1,1\}$ and an involutive isometry $\varphi: X \rightarrow X$ such that P is of the form

$$
P(f)(x)=\frac{1}{2}[f(x)+\tau f(\varphi(x))] \quad\left(f \in A_{\alpha}(X), x \in X\right) .
$$

Proof. Only the "only if" part deserves to be proved. If P is a generalized bi-circular projection of $A_{\alpha}(X)$, then $P+\lambda(I d-P)$ is an isometry of $A_{\alpha}(X)$ for some $\lambda \in S_{\mathbb{K}}, \lambda \neq 1$. Then we can find a constant $\tau \in S_{\mathbb{K}}$ and a surjective isometry $\varphi: X \rightarrow X$ such that

$$
[P+\lambda(I d-P)](f)(x)=\tau f(\varphi(x)) \quad\left(f \in A_{\alpha}(X), x \in X\right)
$$

From above it is deduced that

$$
\begin{equation*}
P(f)(x)=(1-\lambda)^{-1}[-\lambda f(x)+\tau f(\varphi(x))] \quad\left(f \in A_{\alpha}(X), x \in X\right) \tag{9}
\end{equation*}
$$

Since P is a projection, we have

$$
\begin{equation*}
\lambda f(x)-(\lambda+1) \tau f(\varphi(x))+\tau^{2} f\left(\varphi^{2}(x)\right)=0, \quad \forall f \in A_{\alpha}(X), \forall x \in X \tag{10}
\end{equation*}
$$

Let us suppose that there exists a point $x \in X$ for which $x \neq \varphi(x)$ and $x \neq \varphi^{2}(x)$. Take $h_{x, \delta} \in \operatorname{Lip}(X, d)$ with $\delta=$ $\min \left\{d(x, \varphi(x)), d\left(x, \varphi^{2}(x)\right)\right\}$. Evaluating in the formula (10) this x and $h_{x, \delta}$, we obtain that $\lambda=0$, a contradiction. Thus $\varphi(x)=x$ or $\varphi^{2}(x)=x$. In either case, $\varphi^{2}(x)=x$ for all $x \in X$.

If $\varphi \neq I d$, take some $x_{0} \in X$ such that $x_{0} \neq \varphi\left(x_{0}\right)$. Consider $h_{x_{0}, \delta_{0}} \in \operatorname{Lip}(X)$ with $\delta_{0}=d\left(x_{0}, \varphi\left(x_{0}\right)\right)$. Substituting in (10), first x_{0} and $h_{x_{0}, \delta_{0}}$, and after 1 , we get that $\lambda+\tau^{2}=0$ and $\lambda-(\lambda+1) \tau+\tau^{2}=0$, respectively. Hence $\lambda=-1$ and $\tau^{2}=1$. Then $P(f)(x)=(1 / 2)[f(x)+\tau f(\varphi(x))]$ for all $x \in X$ by (9).

If $\varphi=$ Id, taking $f=\mathbf{1}$ in (10) we obtain $\lambda-(\lambda+1) \tau+\tau^{2}=0$. Hence $\tau=\lambda$ or $\tau=1$. From (9) it follows that $P(f)(x)=0$ for all $f \in A_{\alpha}(X)$ and $x \in X$, or $P(f)(x)=f(x)$ for all $f \in A_{\alpha}(X)$ and $x \in X$.

The following result is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let X be a compact metric space. Every generalized bi-circular projection of $A_{\alpha}(X)$ is a bi-contractive projection, that is, $\|P\| \leqslant 1$ and $\|I d-P\| \leqslant 1$.

We finish the paper with the following application of the preceding results.
Corollary 3.3. Let X be a compact metric space. Then the set of all generalized bi-circular projections of $A_{\alpha}(X)$ is algebraically reflexive.
Proof. Let $\operatorname{GBP}\left(A_{\alpha}(X)\right)$ denote the set of all generalized bi-circular projections of $A_{\alpha}(X)$. Let $P \in \operatorname{ref}_{\mathrm{al}}\left(\operatorname{GBP}\left(A_{\alpha}(X)\right)\right)$. Then, by Theorem 3.1, for each $f \in A_{\alpha}(X)$ there exist a scalar $\tau_{f} \in\{-1,1\}$ and an involutive isometry φ_{f} of X such that $P(f)=$ $(1 / 2)\left[f+\tau_{f} \cdot\left(f \circ \varphi_{f}\right)\right]$. Hence, for every $f \in A_{\alpha}(X)$, we have $(2 P-I d)(f)=\tau_{f} \cdot\left(f \circ \varphi_{f}\right)$ and then $2 P-I d \in \operatorname{ref}_{\text {al }}\left(\mathcal{G}^{2}\left(A_{\alpha}(X)\right)\right)$ by Corollary 2.4. From Theorem 2.5 we infer that $2 P-I d \in \mathcal{G}^{2}\left(A_{\alpha}(X)\right)$, and thus $P \in \operatorname{GBP}\left(A_{\alpha}(X)\right)$ as desired.

References

[1] F. Botelho, Projections as convex combinations of surjective isometries on $\mathcal{C}(\Omega)$, J. Math. Anal. Appl. 341 (2008) 1163-1169.
[2] F. Botelho, J.E. Jamison, Generalized bi-circular projections on $\mathcal{C}(\Omega, X)$, Rocky Mountain J. Math., in press.
[3] F. Botelho, J.E. Jamison, Generalized bi-circular projections on minimal ideals of operators, Proc. Amer. Math. Soc. 136 (2008) $1397-1402$.
[4] F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005) 735-749.
[5] F. Cabello Sánchez, L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoamericana 18 (2002) 409-430.
[6] S. Dutta, T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008) 1522-1527.
[7] M. Fosner, D. Ilisevic, C. Li, G-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007) 596-608.
[8] A.M. Gleason, A characterization of maximal ideals, J. Anal. Math. 19 (1967) 171-172.
[9] K. Jarosz, When is a linear functional multiplicative?, in: Proc. of the 3rd Conference on Function Spaces, in: Contemp. Math., vol. 232, Amer. Math. Soc., 1999, pp. 201-210.
[10] K. Jarosz, V. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 305 (1988) 193-206.
[11] K. Jarosz, T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003) 449-469.
[12] J.P. Kahane, W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968) 339-343.
[13] Pei-Kee Lin, Generalized bi-circular projections, J. Math. Anal. Appl. 340 (2008) 1-4.
[14] L. Molnár, The set of automorphisms of $B(H)$ is topologically reflexive in $B(B(H))$, Studia Math. 122 (1997) 183-193.
[15] L. Molnár, B. Zalar, Reflexivity of the group of surjective isometries of some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999) 17-36.
[16] T.S.S.R.K. Rao, Local isometries of $\mathcal{L}(X, C(K))$, Proc. Amer. Math. Soc. 133 (2005) 2729-2732.
[17] D. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963) 1387-1399.
[18] D. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964) $240-272$.
[19] N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., River Edge, NJ, 1999.

[^0]: 放 Research partially supported by Junta de Andalucía grants FQM-1438 and FQM-3737, and MCYT project MTM-2007-65959. The third author was supported in part by Beca Plan Propio Universidad de Almería.

 * Corresponding author.

 E-mail addresses: ajimenez@ual.es (A. Jiménez-Vargas), amorales@ual.es (A. Morales Campoy), mvv042@alboran.ual.es (M. Villegas-Vallecillos).

