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1. Introduction

This note is a contribution on a topic of current interest, namely Banach spaces whose groups of surjective linear isome-
tries are completely determined by the local behavior of their elements. Given a Banach space X , we denote by B(X) the
algebra of all bounded linear operators on X . For any nonempty subset S of B(X), let

refal(S) = {
T ∈ B(X): T (x) ∈ S(x), ∀x ∈ X

}
,

where S(x) = {L(x): L ∈ S}. The set S is said to be algebraically reflexive if refal(S) = S . If G(X) denotes the group of
all surjective linear isometries of X , we will say that X is iso-reflexive if G(X) is algebraically reflexive. Notice that T ∈
refal(G(X)) if for every x ∈ X , there exists a Tx ∈ G(X) such that T (x) = Tx(x). The elements of refal(G(X)) are called local
surjective isometries. Hence X is iso-reflexive if and only if every local surjective isometry is a surjective isometry. The
iso-reflexivity of some function spaces has been studied by F. Cabello Sánchez [4], F. Cabello Sánchez and L. Molnár [5],
K. Jarosz and T.S.S.R.K. Rao [11] and L. Molnár and B. Zalar [15]. For pertinent results in the case of operator spaces, we
refer to L. Molnár [14] and T.S.S.R.K. Rao [16].

Let (X,d) be a compact metric space and let K be the field of real or complex numbers. We denote by Lip(X,d) the
Banach algebra of all functions f : X → K such that

pd( f ) = sup

{ | f (x) − f (y)|
d(x, y)

: x, y ∈ X, x �= y

}
< ∞,
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endowed with the norm

‖ f ‖d = pd( f ) + ‖ f ‖∞,

where

‖ f ‖∞ = sup
{∣∣ f (x)

∣∣: x ∈ X
}
.

Moreover, lip(X,d) denotes the closed subalgebra of Lip(X,d) consisting of all those functions f such that limd(x,y)→0 | f (x)−
f (y)|/d(x, y) = 0, that is,

∀ε > 0, ∃δ > 0: x, y ∈ X, 0 < d(x, y) < δ ⇒ | f (x) − f (y)|
d(x, y)

< ε.

Both Lip(X,d) and lip(X,d) are unital semisimple commutative Banach algebras containing the constant functions, but
while Lip(X,d) separates the points of X , lip(X,d) may contain only constant functions, for example lip([0,1], | · |). To avoid
this, we will consider the algebras lip(X,dα) with α ∈ (0,1), where dα is the metric on X defined by dα(x, y) = d(x, y)α

for x, y ∈ X . These algebras were first studied by D. Sherbert [17,18]. Complete information about them can be found in
Weaver’s book on Lipschitz algebras [19].

From now on, given a compact metric space (X,d) and a real parameter α ∈ (0,1], we will denote by Aα(X) either
Lip(X,dα) if α = 1 or lip(X,dα) if α ∈ (0,1).

Our goal in this paper is to show that Aα(X) is iso-reflexive. Our method is to use a known characterization of the
isometry group of Aα(X) due to K. Jarosz and V. Pathak [10]. In the complex-valued case, it is possible to give a different
proof by applying a characterization of the carrier space of Aα(X) given by D. Sherbert [17,18], together with the famous
Gleason–Kahane–Żelazko theorem [8,12].

Furthermore, we will apply the iso-reflexivity of Aα(X) to study the algebraic reflexivity of some subsets of isometries
and projections of Aα(X). In order to introduce these sets, we recall that an isometry of a metric space X is a map
ϕ : X → X satisfying that d(ϕ(x),ϕ(y)) = d(x, y) for all x, y ∈ X . If, in addition, ϕ2 = Id where Id is the identity map of X ,
then ϕ is said to be an involutive isometry of X . Notice that every involutive isometry of X is surjective. In particular, if X is
a Banach space, an involutive linear isometry of X is often called an isometric reflection of X .

Let SK denote the set of elements in K with modulus 1. Given a Banach space X , a linear map P : X → X is said to be a
generalized bi-circular projection if P 2 = P and P +λ(Id − P ) is an isometry for some λ ∈ SK , λ �= 1. Notice that P +λ(Id − P )

is surjective. The concept of generalized bi-circular projection was introduced by M. Fosner, D. Ilisevic and C. Li in [7]. They
characterized these projections in the finite-dimensional case. Since then, a considerable account of work has been done
concerning generalized bi-circular projections on various spaces. See, for example, [1–3,6,13].

Using the iso-reflexivity of Aα(X), we will prove that the sets of isometric reflections and generalized bi-circular pro-
jections of Aα(X) are also algebraically reflexive. In order to achieve that, we first give a complete description of such
operators. An easy application of the aforementioned characterization of the isometries of Aα(X) shows that every isomet-
ric reflection of Aα(X) is either a composition operator induced by an involutive isometry of the metric space X or the
negative of such a composition operator. On the other hand, we state that every generalized bi-circular projection of Aα(X)

is the average of the identity with an isometric reflection. In particular, every generalized bi-circular projection P of Aα(X)

is a bi-contractive projection, that is, ‖P‖ � 1 and ‖Id − P‖ � 1.
We emphasize that our results are motivated by recent studies of the analogous problems on the space C(X) of all

complex-valued continuous functions on a compact Hausdorff space X . In general, C(X) is not iso-reflexive (see [5, Theo-
rem 9] for an example), but in the case that X is a first countable compact Hausdorff space, L. Molnár and B. Zalar proved
in [15, Theorem 2.2] that C(X) is iso-reflexive. On the other hand, F. Botelho and J.E. Jamison [2] showed that if X is a con-
nected compact Hausdorff space, then the only projections of C(X) that can be represented as the average of the identity
with an isometric reflection are generalized bi-circular projections. Recently, S. Dutta and T.S.S.R.K. Rao [6] have investigated
the algebraic reflexivity of the sets of isometric reflections and generalized bi-circular projections of C(X).

2. Algebraic reflexivity of the groups of isometries and involutive isometries

Throughout the paper, given a compact metric space (X,d), let Aα(X) stand for either Lip(X,dα) if α = 1 or lip(X,dα) if
α ∈ (0,1), equipped with the norm ‖ f ‖dα = pdα ( f ) + ‖ f ‖∞ . If it is necessary to specify the field, we will write Aα(X,K).
In what follows, we will use frequently the easy fact that Lip(X,d) is contained in Aα(X) for all α ∈ (0,1]. The symbol 1
will stand for the function constantly 1 on X .

We also will make use of the following functions. For any x ∈ X and δ > 0, hx,δ : X → [0,1] defined by

hx,δ(z) = max

{
0,1 − d(z, x)

δ

}
(z ∈ X),

belongs to Lip(X,d) with hx,δ(x) = 1 and hx,δ(z) = 0 if d(z, x) � δ.
The isometry group of Aα(X) was described by K. Jarosz and V. Pathak in [10]. They showed that every surjective linear

isometry T : Aα(X) → Aα(X) is of the form
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T ( f )(x) = τ f
(
ϕ(x)

)
, ∀ f ∈ Aα(X), ∀x ∈ X,

where τ ∈ SK and ϕ : X → X is a surjective isometry [10, Example 8].
Our aim in this section is to show that Aα(X) is iso-reflexive. In order to prove this, we first state some preliminary

results. The next lemma is surely known but we give a proof for the sake of completeness.

Lemma 2.1. If X is a compact metric space and ψ is an isometry from X into X, then ψ is onto.

Proof. Suppose that x ∈ X \ ψ(X). Clearly, ψ(X) is compact. Then r = (1/2)d(x,ψ(X)) > 0. Notice that d(ψk(x),ψn(x)) � 2r
for all k,n ∈ N, k �= n.

For z ∈ X and δ > 0, let B(z, δ) = {y ∈ X: d(y, z) < δ}. Obviously, the family {B(z, r): z ∈ ψ(X)} is an open cover of ψ(X).
Then there exist z1, . . . , zm ∈ ψ(X) such that ψ(X) ⊆ ⋃m

j=1 B(z j, r). In particular, ψ(x) ∈ B(zk, r) for some k ∈ {1, . . . ,m}.
Hence the set

J = {
j ∈ {1, . . . ,m}: B(z j, r) ∩ {

ψn(x): n ∈ N
} �= ∅}

is nonempty. Moreover, given j ∈ J , it is clear that B(z j, r) ∩ {ψn(x): n ∈ N} is a singleton. Then we can define γ : J →
{ψn(x): n ∈ N} by{

γ ( j)
} = B(z j, r) ∩ {

ψn(x): n ∈ N
}

( j ∈ J ).

Evidently, γ is onto. Since {ψn(x): n ∈ N} is infinite, then so is J , a contradiction. This proves the lemma. �
We now give a description of local surjective isometries of Aα(X).

Lemma 2.2. Let X be a compact metric space and let T ∈ refal(G(Aα(X))). Then there exist a scalar τ ∈ SK and a mapping ψ : X → X
such that T ( f )(ψ(x)) = τ f (x) for every f ∈ Aα(X) and all x ∈ X.

Proof. For each f ∈ Aα(X), there exists T f ∈ G(Aα(X)) such that T ( f ) = T f ( f ). According to [10, Example 8], there exist a
scalar τ f ∈ SK and a surjective isometry ϕ f : X → X such that

T f (g)(z) = τ f g
(
ϕ f (z)

)
, ∀g ∈ Aα(X), ∀z ∈ X .

In particular, we have

T ( f )(z) = τ f f
(
ϕ f (z)

)
, ∀z ∈ X .

Taking f = 1 in the equality above, we see that T (1) is the function constantly equal to τ1 on X . Take τ = τ1 .
In order to define the function ψ : X → X , for each x ∈ X we consider the sets:

Fx = {
f ∈ Aα(X): ‖ f ‖∞ = 1 = ∣∣ f (x)

∣∣},
Q x = {

y ∈ X:
∣∣T ( f )(y)

∣∣ = 1, ∀ f ∈ Fx
}
.

Notice that Fx �= ∅ and Q x = ⋂
f ∈Fx

|T ( f )|−1({1}).

We first prove that Q x is nonempty. It is enough to show that the family {|T ( f )|−1({1}): f ∈ Fx} has the finite intersec-
tion property, since each |T ( f )|−1({1}) is closed in the compact X . Pick f1, . . . , fn ∈ Fx and put f = (1/n)

∑n
j=1( f j/ f j(x)).

Clearly, f ∈ Fx and since T ∈ refal(G(Aα(X))), there are a number τ f ∈ SK and a surjective isometry ϕ f : X → X such that

T ( f )(z) = τ f f
(
ϕ f (z)

)
, ∀z ∈ X .

Let y ∈ X be such that ϕ f (y) = x. Then |T ( f )(y)| = | f (ϕ f (y))| = | f (x)| = 1. Similarly, we can find for each j ∈ {1, . . . ,n},
a scalar τ f j ∈ SK and a surjective isometry ϕ f j : X → X for which

T ( f j)(z) = τ f j f j
(
ϕ f j (z)

)
, ∀z ∈ X .

Hence |T ( f j)(y)| = | f j(ϕ f j (y))| � 1. Suppose that |T ( fk)(y)| < 1 for some k ∈ {1, . . . ,n}. Then

1 = ∣∣T ( f )(y)
∣∣ � 1

n

n∑
j=1

|T ( f j)(y)|
| f j(x)| = 1

n

n∑
j=1

∣∣T ( f j)(y)
∣∣ < 1,

a contradiction. Therefore, |T ( f j)(y)| = 1 for every j ∈ {1, . . . ,n}, and thus
⋂n

j=1 |T ( f j)|−1({1}) �= ∅ as desired.
Next we show that Q x is a singleton. Let us suppose that there exist y, z ∈ Q x . Consider the function hx,1. Clearly,

hx,1 ∈ Fx and therefore |T (hx,1)(y)| = |T (hx,1)(z)| = 1. Again, we can write
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T (hx,1)(w) = τhx,1 hx,1
(
ϕhx,1(w)

)
, ∀w ∈ X,

where τhx,1 ∈ SK and ϕhx,1 is a surjective isometry of X . Then we have

1 = ∣∣T (hx,1)(y)
∣∣ = hx,1

(
ϕhx,1(y)

)
,

1 = ∣∣T (hx,1)(z)
∣∣ = hx,1

(
ϕhx,1(z)

)
,

which gives ϕhx,1 (y) = ϕhx,1(z) = x. Since ϕhx,1 is injective, we conclude that y = z.
By above-proved, we can consider the application ψ : X → X defined by

{
ψ(x)

} = Q x, ∀x ∈ X .

We now claim that if f ∈ Aα(X), x ∈ X and f (x) = 0, then T ( f )(ψ(x)) = 0. In order to prove this, assume T ( f )(ψ(x)) �= 0.
Then f �= 0, and we can consider the function

g(z) = 1 − | f (z)|
‖ f ‖∞

(z ∈ X),

and the number

η = T ( f )(ψ(x))

|T ( f )(ψ(x))|T (g)(ψ(x))
·

Since g ∈ Fx , it follows that |T (g)(ψ(x))| = 1, and thus η ∈ SK . An easy verification shows that the function (1/‖ f ‖∞) f +ηg
belongs to Fx . Using the definition of ψ , it follows that

1 =
∣∣∣∣ 1

‖ f ‖∞
T ( f )

(
ψ(x)

) + ηT (g)
(
ψ(x)

)∣∣∣∣
=

(
1

‖ f ‖∞
+ 1

|T ( f )(ψ(x))|
)∣∣T ( f )

(
ψ(x)

)∣∣

= |T ( f )(ψ(x))|
‖ f ‖∞

+ 1 > 1,

a contradiction. This proves our claim.
Finally, given f ∈ Aα(X) and x ∈ X , it is clear that h = f − f (x) ∈ Aα(X) with h(x) = 0. Then, by above-proved,

T (h)(ψ(x)) = 0, that is, T ( f )(ψ(x)) = T (1)(ψ(x)) f (x) = τ f (x). �
We are now ready to prove the main result of this section.

Theorem 2.3. Let X be a compact metric space. Then Aα(X) is iso-reflexive.

Proof. Let T ∈ refal(G(Aα(X))). Then, for each f ∈ Aα(X), there exists T f ∈ G(Aα(X)) such that T ( f ) = T f ( f ). Hence
‖T ( f )‖dα = ‖T f ( f )‖dα = ‖ f ‖dα , and thus T is an isometry. It remains to prove that T is surjective.

By Lemma 2.2, there exist a scalar τ ∈ SK and a mapping ψ : X → X such that

T ( f )
(
ψ(x)

) = τ f (x), ∀ f ∈ Aα(X), ∀x ∈ X . (1)

Now we claim that ψ is an isometry. To prove this, pick x, y ∈ X . If x = y, then d(ψ(x),ψ(y)) = d(x, y) = 0. Assume
x �= y and consider k : X → [0,1] defined by k(z) = d(z, x)/(d(z, x) + d(z, y)) for all z ∈ X . Obviously, k ∈ Lip(X,d) with
k−1({0}) = {x} and k−1({1}) = {y}. By assumption we can write

T (k)(z) = τkk
(
ϕk(z)

)
, ∀z ∈ X, (2)

for some τk ∈ SK and some surjective isometry ϕk of X . Applying now (1) and (2) gives

τkk
(
ϕk

(
ψ(x)

)) = T (k)
(
ψ(x)

) = τk(x) = 0,

τkk
(
ϕk

(
ψ(y)

)) = T (k)
(
ψ(y)

) = τk(y) = τ .

Then ϕk(ψ(x)) = x and ϕk(ψ(y)) = y. Since ϕk is an isometry, we deduce that d(ψ(x),ψ(y)) = d(x, y) and this proves our
claim.

Finally, we show that T is surjective. By Lemma 2.1, the isometry ψ : X → X is onto. Then, given g ∈ Aα(X), take
f = τ · (g ◦ ψ). Clearly, f ∈ Aα(X) and T ( f ) = g . �
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In the complex-valued case, Theorem 2.3 can be proved in a different form. Besides the aforementioned description of
the isometry group of Aα(X) given by K. Jarosz and V. Pathak [10], this new approach is based on a known characterization
of the carrier space of Aα(X) due to D. Sherbert [17,18] together with the Gleason–Kahane–Żelazko theorem [8,12].

The algebraic structure of Aα(X) was studied by D. Sherbert [17,18]. He proved that every nonzero multiplicative linear
functional T : Aα(X) → C is an evaluation map at a point, that is,

T ( f ) = f (c), ∀ f ∈ Aα(X),

where c is a unique point in X [18, p. 246].
The known Gleason–Kahane–Żelazko theorem [8,12] (see also [9]) asserts that if A is a complex Banach algebra with a

unit e and F is a linear functional on A such that F ( f ) �= 0 for all f in the set of invertible elements of A, then F/F (e) is
multiplicative.

The preceding descriptions of the carrier space and the isometry group of Aα(X) are valid for real and complex-valued
functions. However, the Gleason–Kahane–Żelazko theorem is not available in the real case.

Other proof of complex-valued case. Let X be a compact metric space. We want to show that Aα(X,C) is iso-reflexive.
Let T ∈ refal(G(Aα(X,C))). As in the proof of Theorem 2.3, T is an isometry and we need only to see that T is surjective.
According to [10, Example 8], there exist a scalar τ f ∈ SC and a surjective isometry ϕ f : X → X such that

T ( f )(z) = τ f f
(
ϕ f (z)

)
, ∀z ∈ X . (3)

In particular, T (1) = τ1 .
Let x ∈ X be fixed and define the nonzero linear functional Tx : Aα(X,C) → C by

Tx( f ) = T ( f )(x), ∀ f ∈ Aα(X,C).

Take f ∈ Aα(X,C) and suppose that f is nowhere vanishing. In view of (3), it is clear that Tx( f ) �= 0. Then Tx/Tx(1) = τ1 Tx
is multiplicative by the Gleason–Kahane–Żelazko theorem. Since every nonzero multiplicative linear functional on Aα(X,C)

is an evaluation map at a point, there exists a unique point cx ∈ X such that τ1 Tx( f ) = f (cx) for all f ∈ Aα(X,C). Since
this is true for each x ∈ X , we have thus a map ϕ : X → X defined by ϕ(x) = cx such that

T ( f )(x) = τ1 f
(
ϕ(x)

)
, ∀ f ∈ Aα(X,C), ∀x ∈ X . (4)

We next show that ϕ is injective. Let x, y ∈ X and suppose that ϕ(x) = ϕ(y). Define h : X → R
+
0 by h(z) = d(z,ϕ(x)) for

all z ∈ X . Clearly, h ∈ Lip(X,d) and h−1({0}) = {ϕ(x)}. Since T ∈ refal(G(Aα(X,C))), we have

T (h)(z) = τhh
(
ϕh(z)

)
, ∀z ∈ X, (5)

where τh ∈ SC and ϕh is a surjective isometry of X . By using the equalities (4) and (5), we obtain:

τhh
(
ϕh(x)

) = T (h)(x) = τ1h
(
ϕ(x)

) = 0,

τhh
(
ϕh(y)

) = T (h)(y) = τ1h
(
ϕ(y)

) = 0.

This implies that ϕh(x) = ϕh(y) = ϕ(x) and, since ϕh is injective, we conclude that x = y.
Now we claim that ϕ is an isometry. To prove this, pick x, y ∈ X . If ϕ(x) = ϕ(y), then x = y by the injectivity of ϕ and

thus d(ϕ(x),ϕ(y)) = d(x, y) = 0. If ϕ(x) �= ϕ(y), we deduce that d(ϕ(x),ϕ(y)) = d(x, y) as in the proof of Theorem 2.3.
To see that ϕ is surjective, suppose that there is an x ∈ X \ϕ(X). Notice that ϕ(X) is closed since ϕ is continuous and X

is compact. Therefore δ = d(x,ϕ(X)) > 0. Take hx,δ ∈ Lip(X,d) and clearly hx,δ(ϕ(z)) = 0 for all z ∈ X . From (4) it follows that
T (hx,δ)(z) = 0 for all z ∈ X , but hx,δ(x) = 1, which contradicts that the linear map T is injective. This proves the surjectivity
of ϕ .

Finally, the surjectivity of T follows as in the proof of Theorem 2.3. �
Definition 2.1. Let X be a Banach space. An isometric reflection of X is a linear isometry T : X → X satisfying that T 2 = Id.

From the Banach–Stone type theorem that describes the isometry group of Aα(X), we deduce easily the form of isometric
reflections of Aα(X) in the following result.

Corollary 2.4. Let X be a compact metric space. A map T : Aα(X) → Aα(X) is an isometric reflection if and only if there exist a
constant τ ∈ {−1,1} and an involutive isometry ϕ of X such that

T ( f )(x) = τ f
(
ϕ(x)

)
, ∀ f ∈ Aα(X), ∀x ∈ X .

Theorem 2.5. Let X be a compact metric space. Then the set of all isometric reflections of Aα(X) is algebraically reflexive.
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Proof. Denote by G 2(Aα(X)) the set of all isometric reflections of Aα(X). Let T ∈ refal(G 2(Aα(X))). According to Corol-
lary 2.4, for every f ∈ Aα(X), there are a scalar τ f ∈ {−1,1} and an involutive isometry ϕ f of X such that

T ( f )(x) = τ f f
(
ϕ f (x)

)
, ∀x ∈ X . (6)

By Theorem 2.3, it follows that T is a surjective isometry. Hence there exist a constant τ ∈ SK and a surjective isometry
ϕ : X → X such that

T (g)(x) = τ g
(
ϕ(x)

)
, ∀g ∈ Aα(X), ∀x ∈ X . (7)

From (6) and (7), it is deduced that τ = T (1) = τ1 and thus τ ∈ {−1,1}. To see that T is involutive, it remains to prove that
ϕ2(x) = x for all x ∈ X . Let x ∈ X . If ϕ(x) = x, then ϕ2(x) = x. Otherwise, assume that ϕ(x) �= x and take k : X → [0,1] defined
by k(z) = d(z,ϕ(x))/(d(z,ϕ(x)) + d(z, x)) for all z ∈ X . Clearly, k ∈ Lip(X,d) with k−1({0}) = {ϕ(x)} and k−1({1}) = {x}. By
hypothesis we can write

T (k)(z) = τkk
(
ϕk(z)

)
, ∀z ∈ X, (8)

where τk ∈ {−1,1} and ϕk is an involutive isometry of X . From (7) and (8) we infer that

τkk
(
ϕk(x)

) = T (k)(x) = τk
(
ϕ(x)

) = 0,

τk
(
ϕ

(
ϕk(x)

)) = T (k)
(
ϕk(x)

) = τkk
(
ϕ2

k (x)
) = τkk(x) = τk.

The first equality implies that ϕk(x) = ϕ(x) and the second one that ϕ(ϕk(x)) = x. It follows that ϕ2(x) = x as required. �
3. Algebraic reflexivity of the set of generalized bi-circular projections

Before proving the results we recall the concept of generalized bi-circular projection.

Definition 3.1. Let X be a Banach space. A linear map P : X → X is a generalized bi-circular projection if P 2 = P and there
exists a λ ∈ SK , λ �= 1 such that P + λ(Id − P ) is an isometry.

We next give a complete description of the form of generalized bi-circular projections of Aα(X).

Theorem 3.1. Let X be a compact metric space. A map P : Aα(X) → Aα(X) is a generalized bi-circular projection if and only if there
exist a number τ ∈ {−1,1} and an involutive isometry ϕ : X → X such that P is of the form

P ( f )(x) = 1

2

[
f (x) + τ f

(
ϕ(x)

)] (
f ∈ Aα(X), x ∈ X

)
.

Proof. Only the “only if” part deserves to be proved. If P is a generalized bi-circular projection of Aα(X), then P +λ(Id − P )

is an isometry of Aα(X) for some λ ∈ SK , λ �= 1. Then we can find a constant τ ∈ SK and a surjective isometry ϕ : X → X
such that

[
P + λ(Id − P )

]
( f )(x) = τ f

(
ϕ(x)

) (
f ∈ Aα(X), x ∈ X

)
.

From above it is deduced that

P ( f )(x) = (1 − λ)−1[−λ f (x) + τ f
(
ϕ(x)

)] (
f ∈ Aα(X), x ∈ X

)
. (9)

Since P is a projection, we have

λ f (x) − (λ + 1)τ f
(
ϕ(x)

) + τ 2 f
(
ϕ2(x)

) = 0, ∀ f ∈ Aα(X), ∀x ∈ X . (10)

Let us suppose that there exists a point x ∈ X for which x �= ϕ(x) and x �= ϕ2(x). Take hx,δ ∈ Lip(X,d) with δ =
min{d(x,ϕ(x)), d(x,ϕ2(x))}. Evaluating in the formula (10) this x and hx,δ , we obtain that λ = 0, a contradiction. Thus
ϕ(x) = x or ϕ2(x) = x. In either case, ϕ2(x) = x for all x ∈ X .

If ϕ �= Id, take some x0 ∈ X such that x0 �= ϕ(x0). Consider hx0,δ0 ∈ Lip(X) with δ0 = d(x0,ϕ(x0)). Substituting in (10),
first x0 and hx0,δ0 , and after 1, we get that λ + τ 2 = 0 and λ − (λ + 1)τ + τ 2 = 0, respectively. Hence λ = −1 and τ 2 = 1.
Then P ( f )(x) = (1/2)[ f (x) + τ f (ϕ(x))] for all x ∈ X by (9).

If ϕ = Id, taking f = 1 in (10) we obtain λ− (λ+1)τ +τ 2 = 0. Hence τ = λ or τ = 1. From (9) it follows that P ( f )(x) = 0
for all f ∈ Aα(X) and x ∈ X , or P ( f )(x) = f (x) for all f ∈ Aα(X) and x ∈ X . �

The following result is an immediate consequence of Theorem 3.1.
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Corollary 3.2. Let X be a compact metric space. Every generalized bi-circular projection of Aα(X) is a bi-contractive projection, that
is, ‖P‖ � 1 and ‖Id − P‖ � 1.

We finish the paper with the following application of the preceding results.

Corollary 3.3. Let X be a compact metric space. Then the set of all generalized bi-circular projections of Aα(X) is algebraically reflexive.

Proof. Let GBP(Aα(X)) denote the set of all generalized bi-circular projections of Aα(X). Let P ∈ refal(GBP(Aα(X))). Then,
by Theorem 3.1, for each f ∈ Aα(X) there exist a scalar τ f ∈ {−1,1} and an involutive isometry ϕ f of X such that P ( f ) =
(1/2)[ f +τ f · ( f ◦ϕ f )]. Hence, for every f ∈ Aα(X), we have (2P − Id)( f ) = τ f · ( f ◦ϕ f ) and then 2P − Id ∈ refal(G 2(Aα(X)))

by Corollary 2.4. From Theorem 2.5 we infer that 2P − Id ∈ G 2(Aα(X)), and thus P ∈ GBP(Aα(X)) as desired. �
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