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THE UNIFORM SEPARATION PROPERTY

AND BANACH–STONE THEOREMS

FOR LATTICE-VALUED LIPSCHITZ FUNCTIONS

A. JIMÉNEZ-VARGAS, A. MORALES CAMPOY, AND MOISÉS VILLEGAS-VALLECILLOS

(Communicated by Nigel J. Kalton)

Abstract. Using the uniform separation property of N. Weaver and the uni-
form joint property, we present in this paper a Lipschitz version of a Banach–
Stone-type theorem for lattice-valued continuous functions obtained recently
by J. X. Chen, Z. L. Chen and N.-C. Wong.

1. Introduction

J. Cao, I. Reilly and H. Xiong stated in [4] a lattice-valued version of the classical
Banach–Stone theorem on isometries of C(X)-spaces. Since then, several papers
have appeared extending this result. We can cite, among others, the generalizations
obtained by J. X. Chen, Z. L. Chen and N.-C. Wong [5], Z. Ercan and S. Önal [6, 7]
and X. Miao, J. Cao and H. Xiong [12].

According to [5, Theorem 3] or [7, Theorem 5], for compact Hausdorff spaces X
and Y and Banach lattices E and F , if C(X,E) and C(Y, F ) denote the Banach
lattices of continuous E-valued and F -valued functions defined on X and Y , re-
spectively, endowed with the pointwise order and the supremum norm, then every
vector lattice isomorphism T : C(X,E) → C(Y, F ) preserving the nowhere vanishing
functions in both directions can be written as a weighted composition operator in
the form:

(1.1) T (f)(y) = T̂ (y)(f(ϕ(y)) (f ∈ C(X,E), y ∈ Y ),

where ϕ is a homomorphism from Y onto X and T̂ is a continuous map from Y
into the space L(E,F ) of all continuous linear operators from E into F equipped

with the strong operator topology such that T̂ (y) is a vector lattice isomorphism
from E onto F for each y ∈ Y .

Our goal in this paper is to prove this result in the setting of lattice-valued
Lipschitz functions. Let us recall that the first results of Banach–Stone type for
lattice-valued Lipschitz functions are due to M. I. Garrido and J. A. Jaramillo
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and MCYT projects MTM2006-4837 and MTM2007-65959.
The third author was supported in part by Beca Plan Propio Universidad de Almeŕıa.
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[8, Theorem 3.10] and N. Weaver [13, Main theorem, Part (d)], and they con-
cern real-valued Lipschitz functions. The first two authors also tackled the matter
for vector lattices of real-valued locally Lipschitz functions [8, Theorem 3.16] and
real-valued Lipschitz functions in the small [9, Theorem 2], and N. Weaver tack-
led normal lattices of complex-valued Lipschitz functions vanishing at some fixed
point [14, Corollary]. Recently, we have given in [11] the general form of order
isomorphisms between spaces of real or complex-valued little Lipschitz functions
on compact Hölder metric spaces. It is worthwhile noting also that versions not
necessarily linear of Banach–Stone-type theorems for different lattices of real-valued
Lipschitz functions have been stated very recently by F. and J. Cabello Sánchez in
[3]. See [2] for related results.

Let (X, d) be a metric space and let E be a nonzero Banach lattice. We will
denote by Lip(X,E) the complete normed vector lattice of all bounded Lipschitz
functions from X into E, equipped with the pointwise order and the norm ‖f‖d =
max {Ld(f), ‖f‖∞} where Ld(f) is the Lipschitz number of f .

We want to formulate in this paper Banach–Stone-type theorems for vector lat-
tice isomorphisms defined between different vector sublattices of Lip(X,E). To this
end, we will extend here the uniform separation property by N. Weaver [15, 16] and
introduce the uniform joint property (see Definitions 3.1 and 3.2). Moreover, we
will show that the class of vector sublattices of Lip(X,E) satisfying these properties
is sufficiently large. In this way, under the condition of compactness on X and Y ,
we will prove that if A(X,E) and A(Y, F ) are vector sublattices of Lip(X,E) and
Lip(Y, F ), respectively, that separate and join points uniformly, then every vector
lattice isomorphism T from Lip(X,E) onto Lip(Y, F ) that preserves the nowhere
vanishing functions in both directions can be expressed in the form (1.1). Of course,

the functions ϕ and T̂ that will appear in this representation of T will be Lipschitz.
The content of the paper is as follows. Section 2 is devoted to generalities on

vector lattices and Lipschitz functions, Section 3 focuses on the uniform separa-
tion and joint properties and, finally, Section 4 contains our main result and an
application to the real-valued case.

2. Lattice-valued Lipschitz functions

We first recall some concepts on vector lattices. A vector lattice E is an ordered
vector space in which x∨y exists for every x, y ∈ E. For each x ∈ E, |x| = x∨ (−x)
is the absolute value of x. A Banach lattice E is a vector lattice equipped with a
complete norm ‖·‖ that satisfies the so-called Riesz law : for any x, y ∈ E, |x| ≤ |y|
implies ‖x‖ ≤ ‖y‖. A linear map between vector lattices T : E → F is said to
be a vector lattice homomorphism if T (x ∨ y) = T (x) ∨ T (y) for every x, y ∈ E.
A bijective vector lattice homomorphism is called a vector lattice isomorphism.
Clearly, the inverse of a vector lattice isomorphism is a vector lattice isomorphism.
A linear map between vector lattices T : E → F is positive if T (x) ≥ 0 whenever
x ∈ E and x ≥ 0. Notice that if T : E → F is a vector lattice homomorphism, then
T (|x|) = |T (x)| for all x ∈ E, and therefore T is positive.

We next present some vector lattices of Lipschitz functions. Let (X, d) be a
metric space and let E be a nonzero Banach space. A map f : X → E is said to
be Lipschitz if

Ld(f) = sup {‖f(x)− f(y)‖ /d(x, y) : x, y ∈ X, x �= y} < ∞.
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The Lipschitz space Lip(X,E) is the Banach space of all bounded Lipschitz func-
tions f : X → E with the Lipschitz norm

‖f‖d = max {Ld(f), ‖f‖∞} ,
where

‖f‖∞ = sup {‖f(x)‖ : x ∈ X} .
The little Lipschitz space lip(X,E) is the norm-closed subspace of Lip(X,E) formed
by all those functions f such that limd(x,y)→0 ‖f(x)− f(y)‖ /d(x, y) = 0; that is,

∀ ε > 0, ∃ δ > 0 : x, y ∈ X, 0 < d(x, y) < δ ⇒ ‖f(x)− f(y)‖ /d(x, y) < ε.

Hölder functions are of special interest in relation to little Lipschitz functions. Given
a metric space (X, d) and a real number 0 < α < 1, the map dα : X × X → R

+
0

defined by dα(x, y) = d(x, y)α is a metric on X. Following [17, Definition 1.1.2], we
will denote by Xα the metric space (X, dα). We say that Xα is a Hölder metric
space, and the elements of Lip(Xα) are called Hölder functions.

If, in addition, E is a Banach lattice, then Lip(X,E) is a vector lattice with the
pointwise order:

f ≤ g ⇔ f(x) ≤ g(x), ∀x ∈ X.

However, Lip(X,E) is not, in general, a Banach lattice since the norm ‖·‖d does
not satisfy the Riesz law. Moreover, lip(X,E) is a vector sublattice of Lip(X,E).
In the case E = R, we will delete the letter E and write simply Lip(X) and lip(X).

A pointed metric space is a metric space X with a distinguished element eX ∈ X
called the base point. Given a pointed metric space X and a nonzero Banach lattice
E, Lip0(X,E) denotes the norm-closed vector sublattice of Lip(X,E) formed by
all functions that vanish at eX .

Let us recall that a map between metric spaces ϕ : Y → X is said to be bi-
Lipschitz if it is bijective and both ϕ and ϕ−1 are Lipschitz. Given a metric space
X, we will denote its diameter by ∆(X) and the function constantly 1 on X by 1X .
For a nonzero Banach space E, SE will stand for the unit sphere of E.

Let X and Y be metric spaces, E and F nonzero Banach spaces and A(X,E) and
A(Y, F ) nonempty subsets of Lip(X,E) and Lip(Y, F ), respectively. We say that
a map f : X → E is nowhere vanishing if f(x) �= 0 for all x ∈ X, and a map T :
A(X,E) → A(Y, F ) preserves the nowhere vanishing functions if T (f) is nowhere
vanishing whenever f is. If T is bijective, it is said that T preserves the nowhere
vanishing functions in both directions if T and T−1 preserve the nowhere vanishing
functions. If E is a nonzero Banach lattice, a map f : X → E is everywhere positive
if f(x) > 0 for all x ∈ X.

For a comprehensive study of positive operators between Banach lattices, we
refer the reader to the monograph [1] by C. D. Aliprantis and O. Burkinshaw. In
particular, the lattice structure of spaces of Lipschitz functions has been studied by
N. Weaver in [17, Chapter 5]. Moreover, this book contains complete information
on Lipschitz functions.

3. The uniform separation and joint properties

Let X be a compact metric space. N. Weaver introduced in [15] (see also [16,
Theorem 1]) a kind of uniform separation condition of the points of X by means of
functions in lip(X). We extend here this property for any vector subspace A(X,E)
of Lip(X,E) as follows. If E = R, we will write simply A(X).
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Definition 3.1. Let (X, d) be a compact metric space and let E be a nonzero
Banach space. We say that a vector subspace A(X,E) of Lip(X,E) separates
points uniformly if there exists a constant a > 1 such that for every x, y ∈ X and
e ∈ SE , there is a function h ∈ A(X,E), depending on x, y and e, with ‖h‖d ≤ a
such that h(x) = d(x, y)e and h(y) = 0.

For any f ∈ Lip(X) and e ∈ E, denote by f · e the function of X to E defined
by setting (f · e)(x) = f(x)e for all x ∈ X. Notice that f · e ∈ Lip(X,E) and
‖f · e‖d = ‖f‖d ‖e‖.

Let A be a vector subspace of Lip(X). It is obvious that Lip(X,E), lip(X,E) and
Lip0(X,E) contain the set {f · e : f ∈ A, e ∈ SE} with A equal to Lip(X), lip(X)
and Lip0(X), respectively. If A(X,E) is a vector subspace of Lip(X,E) which
contains the set {f · e : f ∈ A, e ∈ SE}, it is clear that A(X,E) has the uniform
separation property if A does so. Next we present some vector subspaces of Lip(X)
satisfying this property.

Let us recall that Lip(X) separates points uniformly with a = max {1,∆(X)}.
Notice that for every x, y ∈ X, the function h ∈ Lip(X) defined by h(z) = d(z, y)
and its negative −h satisfies the required conditions. As well, Lip0(X) separates
points uniformly. Indeed, given x, y ∈ X with x �= y, assume d(y, eX) ≤ d(x, eX)
and then d(x, y) ≤ 2d(x, eX). Take δ = min {d(x, eX), d(x, y)} and define h(z) =
d(x, y)max {1− d(z, x)/δ, 0} on X. An easy verification shows that h ∈ Lip0(X)
with ‖h‖d ≤ a = max {2,∆(X)}, h(x) = d(x, y) and h(y) = 0.

On the other hand, lip(X) in general does not have the uniform separation
property. For instance, if X = [0, 1] with the usual metric, lip(X) consists only
of constant functions. More generally, the same conclusion can be drawn for a
connected and complete Riemannian manifold X [17, Example 3.1.5]. Nevertheless,
if X is uniformly discrete, that is, if there is a number δ > 0 such that d(x, y) ≥ δ
for all x, y ∈ X with x �= y, then lip(X) = Lip(X) and thus lip(X) has the uniform
separation property.

Other, deeper examples of spaces of little Lipschitz functions that separate points
uniformly are: (a) lip(K), where K is the middle-thirds Cantor set with the metric
inherited from [0, 1], with constant a = 3; and (b) lip(Xα), where 0 < α < 1 and X
is a compact metric space, with a = 2(1−α)/α max {1,∆(X)}. See [17, Proposition
3.2.2].

We now introduce the uniform joint property.

Definition 3.2. Let (X, d) be a compact metric space and let E be a nonzero
Banach space. We say that a vector subspace A(X,E) of Lip(X,E) joins points
uniformly if there exists a constant b > 1 such that for every x, y ∈ X and e ∈ SE ,
there is a function k ∈ A(X,E), depending on x, y and e, with ‖k‖d ≤ b such that
k(x) = k(y) = e.

Let A be a vector subspace of Lip(X). If A(X,E) is a vector subspace of
Lip(X,E) containing the set {f · e : f ∈ A, e ∈ SE}, it is evident that A(X,E)
joins points uniformly if A does so. Notice that A joins points uniformly if it con-
tains the constant functions. Hence Lip(X,E) and lip(X,E) have the uniform joint
property. On the other hand, it is clear that Lip0(X,E) does not join points.

The space C1([0, 1]) of all continuously differentiable functions from [0, 1] to R is a
normed-closed subspace of Lip([0, 1]) that separates points uniformly and contains
the constant functions, but it is not lattice-ordered. In fact, we are interested
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only in vector sublattices of Lipschitz functions on compact metric spaces, and all
the examples of such sublattices that join points uniformly seen so far contain the
constant functions. Therefore we finish this section with an example of a vector
sublattice of Lipschitz functions on a compact metric space that separates and joins
points uniformly, but it does not contain the constant functions.

Example 3.3. Let X = [0, 1] be equipped with the usual metric and define f, g :
X → R by f(t) = −(t− 2) and g(t) = t2 − 4. Clearly, f, g ∈ Lip(X) with ‖f‖d = 2
and ‖g‖d = 4. Take the real vector space B = lin({f, g}) and let A be the vector
sublattice of Lip(X) generated by B. Let us recall that A is equal to ∨(∧B) by [10,
2.2.11], where ∧B is the set of all finite infima from B and ∨(∧B) is the set of all
finite suprema from ∧B.

We first show that A separates and joins points uniformly. Let x, y ∈ X, x �= y
and c, d ∈ R be given. Consider the function αf + βg defined on X, where α and
β are the solutions of the system

αf(x) + βg(x) = c,

αf(y) + βg(y) = d.

These solutions exist because the determinant of coefficients is (x−2)(y−2)(x−y) �=
0. In particular, if c = |x− y| and d = 0, we have α = (y+2) |x− y| /(x−2)(x−y)
and β = |x− y| /(x − 2)(x − y), and the function h = αf + βg ∈ B satisfies
h(x) = |x− y|, h(y) = 0 and ‖h‖d ≤ 10. On the other hand, for c = d = 1, we
get α = −(x + y)/(x − 2)(y − 2) and β = −1/(x − 2)(y − 2), and the function
k = αf + βg ∈ B fulfills that k(x) = k(y) = 1 and ‖k‖d ≤ 8. If c = d = −1, take
−k.

It remains to prove that A does not contain the constant functions. First notice
that if f1 ∈ B is constant on an open set G ⊆ X, then f1 = 0. Indeed, if f1 =
αf + βg is constant on G, then αf ′ + βg′ = 0 on G; that is, −α + 2βt = 0 for all
t ∈ G, which implies α = β = 0 and thus f1 = 0. On the other hand, it is easy
to show that if f1, f2 ∈ Lip(X), α ∈ R and f1 ∨ f2 = α on an open G ⊆ X, then
either f1 = α on an open G1 ⊆ X with G1 ⊆ G or f2 = α on an open G2 ⊆ X with
G2 ⊆ G. The same assertion holds for f1 ∧ f2 instead of f1 ∨ f2.

We next prove by induction on n ∈ N that if f1, . . . , fn ∈ B and f1 ∧ . . . ∧ fn is
constant on an open G ⊆ X, then f1 ∧ . . . ∧ fn = 0 on G. For n = 1, the assertion
has been proved. Let us suppose that it is true for n, and we prove it for n + 1.
Assume that there are α ∈ R and an open G ⊆ X such that f1 ∧ . . .∧ fn+1 = α on
G. Then there exists an open G1 ⊆ X with G1 ⊆ G such that f1 ∧ . . . ∧ fn = α
on G1 or there exists an open G2 ⊆ X with G2 ⊆ G such that fn+1 = α on G2. It
follows that f1 ∧ . . . ∧ fn = 0 on G1 or fn+1 = 0 on G2. Since f1 ∧ . . . ∧ fn+1 = α
on G, we conclude in both cases that f1 ∧ . . .∧ fn+1 = 0 on G. In this way we have
proved that if r ∈ ∧B is constant on an open G ⊆ X, then r = 0 on G. Similarly,
it is proved that if s ∈ ∨(∧B) is constant on an open G ⊆ X, then s = 0 on G.
Therefore the unique constant function contained in A is 0.

4. Banach–Stone theorems

We are ready to state the main result of the paper. For Banach spaces E and
F , we will consider that the space L(E,F ) of all continuous linear operators from
E into F is equipped with the metric inherited from the operator canonical norm.
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Theorem 4.1. Let T : A(X,E) → A(Y, F ) be a vector lattice isomorphism that
preserves the nowhere vanishing functions in both directions, where X and Y are
compact metric spaces, E and F are nonzero Banach lattices and A(X,E) and
A(Y, F ) are vector sublattices of Lip(X,E) and Lip(Y, F ), respectively, that separate
and join points uniformly. Then there exist a bi-Lipschitz map ϕ : Y → X and a

Lipschitz map T̂ : Y → L(E,F ) where T̂ (y) : E → F is a vector lattice isomorphism

for each y ∈ Y such that T (f)(y) = T̂ (y)(f(ϕ(y)) for every f ∈ A(X,E) and all
y ∈ Y .

Proof. For any x ∈ X and y ∈ Y , define the sets

Mx = {f ∈ A(X,E) : f(x) = 0} ,
Ny = {g ∈ A(Y, F ) : g(y) = 0}.

We first see that if x1, x2 ∈ X and Mx1
⊆ Mx2

, then x1 = x2. Indeed, assume
that x1 �= x2. Since A(X,E) separates points, then, for some e ∈ SE, there exists
h ∈ A(X,E) for which h(x1) = 0 and h(x2) = d(x1, x2)e, and thus h ∈ Mx1

\Mx2
.

In the same manner we can prove that y1 = y2 provided y1, y2 ∈ Y and Ny1
⊆ Ny2

.
The key point of the proof is the fact that for every y ∈ Y , there exists a

unique x ∈ X such that T (Mx) = Ny. In order to prove this, fix y ∈ Y .
We first claim that T−1(Ny) ⊆ Mx for some x ∈ X. For each g ∈ Ny, de-
note by Z(T−1(g)) the set

{
x ∈ X : T−1(g)(x) = 0

}
. Notice that Z(T−1(g)) is

nonempty for every g ∈ Ny since T preserves the nowhere vanishing functions.
The claim will follow if we prove that

⋂
g∈Ny

Z(T−1(g)) is nonempty. To see this,

we only need to check that the family of closed subsets of the compact space X,{
Z(T−1(g)) : g ∈ Ny

}
, has the finite intersection property. Pick g1, . . . , gn ∈ Ny

and take g =
∨n

k=1 |gk| . It is clear that g ∈ Ny and T−1(g) =
∨n

k=1

∣∣T−1(gk)
∣∣.

An easy verification gives Z(T−1(g)) =
⋂n

k=1 Z(T
−1(gk)). Since Z(T−1(g)) is

nonempty, so is
⋂n

k=1 Z(T
−1(gk)) as we desired. This proves our claim, and there-

fore there is an x ∈ X such that T−1(Ny) ⊆ Mx. Since T−1 has the same prop-
erties as T , we can likewise find a point y′ ∈ Y such that T (Mx) ⊆ Ny′ . Then
Ny = T (T−1(Ny)) ⊆ T (Mx) ⊆ Ny′ . This yields y = y′ and thus T (Mx) = Ny.

To show that this x is unique, assume that T (Mx′) = Ny for some x′ ∈ X. Then
Mx = T−1(Ny) = Mx′ and so x = x′.

In view of what has been proven above, we can define, with a slight abuse of
notation, a map ϕ : Y → X by

(4.1) T (Mϕ(y)) = Ny (y ∈ Y ).

Since T−1 has a similar property as T , we can apply the argument above to T−1

and obtain a map φ : X → Y such that

(4.2) T−1(Nφ(x)) = Mx (x ∈ X).

It is clear that, for every y ∈ Y , Nφ(ϕ(y)) = T (T−1(Nφ(ϕ(y)))) = T (Mϕ(y)) = Ny,
and hence φ(ϕ(y)) = y. Thus φ ◦ ϕ is the identity map on Y . In a similar way, it
is proved that ϕ ◦φ is the identity map on X. These facts imply that ϕ is bijective
and ϕ−1 = φ.

We now use the map ϕ to obtain the functional representation of T that appears
in the statement of the theorem. First notice that for each y ∈ Y , we have E =
{f(ϕ(y)) : f ∈ A(X,E)} since A(X,E) joins points. For every y ∈ Y , define the
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map T̂ (y) : E → F by the formula

T̂ (y)(f(ϕ(y))) = T (f)(y) (f ∈ A(X,E)).

According to (4.1), T̂ (y) is a well-defined linear injective map on E. On the other
hand, given u ∈ F, we can take a function g ∈ A(Y, F ) for which g(y) = u since
A(Y, F ) joins points, and the surjectivity of T gives us T (f) = g for some f ∈
A(X,E). Then T̂ (y)(f(ϕ(y))) = T (f)(y) = g(y) = u, and this proves that T̂ (y) is
surjective. Finally, for any f1, f2 ∈ A(X,E), we have

T̂ (y)(f1(ϕ(y)) ∨ f2(ϕ(y))) = T̂ (y)((f1 ∨ f2)(ϕ(y)))

= T (f1 ∨ f2)(y)

= T (f1)(y) ∨ T (f2)(y)

= T̂ (y)(f1(ϕ(y))) ∨ T̂ (y)(f2(ϕ(y))),

since T is a vector lattice homomorphism. We have proved thus that T̂ (y) is a
vector lattice isomorphism.

Let us recall that every positive linear map and, in particular, every vector lattice
homomorphism between Banach lattices is norm-continuous (see, for example, [1,

Theorem 4.3]). As a consequence, T̂ (y) is norm-continuous for every y ∈ Y .
Moreover, an analysis of the proof of this theorem reveals that the assump-

tion that the Banach lattices satisfy the Riesz law is unimportant. Therefore
T : A(X,E) → A(Y, F ) is automatically continuous for the respective Lipschitz
norms.

In order to prove that T̂ is a Lipschitz map from Y into L(E,F ), fix y, z ∈ Y .
By assumption, there exists a constant b > 1 satisfying that for every e ∈ SE ,
there is a function k ∈ A(X,E), depending on y, z and e, with ‖k‖d ≤ b such that
k(ϕ(y)) = k(ϕ(z)) = e. Then we have∥∥∥(T̂ (y)− T̂ (z)

)
(e)

∥∥∥ =
∥∥∥T̂ (y)(k(ϕ(y)))− T̂ (z)(k(ϕ(z)))

∥∥∥(4.3)

= ‖T (k)(y)− T (k)(z)‖
≤ Ld(T (k))d(y, z)

≤ b ‖T‖ d(y, z),

and we conclude that
∥∥∥T̂ (y)− T̂ (z)

∥∥∥ ≤ b ‖T‖ d(y, z).
We now show that ϕ is Lipschitz. Let a > 1 be the constant involved in the

definition of the uniform separation property of A(X,E). Fix e ∈ SE . For every
y, z ∈ Y , there exists h ∈ A(X,E), depending on y, z and e, with ‖h‖d ≤ a such
that h(ϕ(y)) = d(ϕ(y), ϕ(z))e and h(ϕ(z)) = 0. Since T is linear and continuous,
we have ‖T (h)‖d ≤ a ‖T‖. It follows that

‖T (h)(y)− T (h)(z)‖ ≤ a ‖T‖ d(y, z).
Applying the functional representation of T gives

T (h)(y) = T̂ (y)(h(ϕ(y))) = d(ϕ(y), ϕ(z))T̂ (y)(e),

T (h)(z) = T̂ (z)(h(ϕ(z))) = 0.

Substituting this in the inequality above, we obtain

d(ϕ(y), ϕ(z))
∥∥∥T̂ (y)(e)∥∥∥ ≤ a ‖T‖ d(y, z).
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Notice that infy∈Y

∥∥∥T̂ (y)(e)∥∥∥ =
∥∥∥T̂ (y0)(e)

∥∥∥ := c > 0 for some y0 ∈ Y , since the

real function y �→
∥∥∥T̂ (y)(e)∥∥∥ defined on the compact Y is continuous by (4.3), and

T̂ (y0) is linear and injective. Then d(ϕ(y), ϕ(z)) ≤ (a/c) ‖T‖ d(y, z), and so ϕ is
Lipschitz.

Since T−1 has the same properties as T , from what has already been proved we
deduce that the map φ : X → Y defined in (4.2) is Lipschitz, but φ = ϕ−1 as was
shown. Hence ϕ−1 is Lipschitz, and this completes the proof of the theorem. �

We finish the paper with an application for real-valued Lipschitz functions. This
generalizes [11, Theorem 2.4].

Corollary 4.2. Let T : A(X) → A(Y ) be a vector lattice isomorphism, where
X and Y are compact metric spaces and A(X) and A(Y ) are vector sublattices of
Lip(X) and Lip(Y ), respectively, that separate points uniformly and contain the
constant functions. Then T (f) = τ · (f ◦ ϕ) for every f ∈ A(X), where ϕ : Y → X
is a bi-Lipschitz map and τ = T (1X) ∈ A(Y ) is an everywhere positive function.

Proof. Notice first that T preserves the nowhere vanishing functions in both di-
rections. Indeed, take v ∈ A(X) such that T (v) = 1Y . By the compactness of
X, v ≤ α1X for some α ∈ R

+. Hence 1Y = T (v) ≤ αT (1X), and thus T (1X) is
nowhere vanishing. Now, let f ∈ A(X) be nowhere vanishing. Likewise, |f | ≥ β1X
for some β ∈ R

+; then |T (f)| = T (|f |) ≥ βT (1X) and so T (f) is nowhere vanishing.
Hence T preserves the nowhere vanishing functions. The same reasoning applies to
T−1.

According to Theorem 4.1, there are a bi-Lipschitz map ϕ : Y → X and a vector

lattice isomorphism T̂ (y) from R onto itself for each y ∈ Y such that T (f)(y) =

T̂ (y)(f(ϕ(y)) for every f ∈ A(X) and all y ∈ Y . Hence T (f)(y) = f(ϕ(y))T̂ (y)(1),
and thus T (f)(y) = T (1X)(y)f(ϕ(y)). �
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6. Z. Ercan and S. Önal, Banach–Stone theorem for Banach lattice valued continuous functions,
Proc. Amer. Math. Soc. 135 (2007), 2827–2829. MR2317958 (2008a:46038)
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