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LINEAR ISOMETRIES BETWEEN SPACES
OF VECTOR-VALUED LIPSCHITZ FUNCTIONS

A. JIMENEZ-VARGAS AND MOISES VILLEGAS-VALLECILLOS

(Communicated by Nigel J. Kalton)

ABSTRACT. In this paper we state a Lipschitz version of a theorem due to
Cambern concerning into linear isometries between spaces of vector-valued
continuous functions and deduce a Lipschitz version of a celebrated theorem
due to Jerison concerning onto linear isometries between such spaces.

1. INTRODUCTION

Given a metric space (X,d) and a Banach space E, we denote by Lip(X, F)
the Banach space of all bounded Lipschitz functions f : X — FE with the norm

[f1l = max {L(f), | fll}, where
L(f) = sup{|lf(z) = f()ll /d(x,y) : 2,y € X, = # y}.
If E is the field of real or complex numbers, we shall write simply Lip(X).

The study of surjective linear isometries between spaces Lip(X) was initiated
by Roy [9] and Vasavada [10]. In [9, Theorem 1.7], Roy proved that if (X,d)
is a compact connected metric space with diameter at most 1, then a map T is
a surjective linear isometry from Lip(X) onto itself if and only if there exist a
surjective isometry ¢ : X — X and a scalar 7 of modulus 1 such that

T()y) =7f(e(y)), VyeY, Vf e Lip(X).
In [8 Theorem 2|, Novinger improved slightly Roy’s result by considering linear
isometries from Lip(X) onto Lip(Y). Vasavada [I0] proved it for linear isome-
tries from Lip(X) onto Lip(Y) when the metric spaces X, Y are compact with
diameter at most 2 and [-connected for some 3 < 1. Weaver [1I] developed a
technique to remove the compactness assumption on X and Y and showed that the
above-mentioned characterization holds if X, Y are complete and 1-connected with
diameter at most 2 [I1, Theorem D]. The reduction to metric spaces of diameter
at most 2 is not restrictive since if (X,d) is a metric space and X’ is the set X
remetrized with the metric d'(x,y) = min{d(x,y), 2}, then the diameter of X’ is at
most 2 and Lip(X') is isometrically isomorphic to Lip(X) [I2, Proposition 1.7.1].
We must also mention the complete research carried out on surjective linear isome-
tries between spaces of Holder functions [2, 3} [0, [7]. We refer the reader to Weaver’s
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book Lipschitz Algebras [12] for unexplained terminology and more information on
the subject. This is essentially the history of the onto scalar-valued case. Recently,
into linear isometries (that is, not necessarily surjective) and codimension 1 linear
isometries between spaces Lip(X) have been studied in [5].

In this note we shall go a step further and give a complete description of linear
isometries between spaces of vector-valued Lipschitz functions. To our knowledge,
little or nothing is known on the matter in the vector-valued case. Our approach to
the problem is not based on extreme points as in all aforementioned papers. We have
used here a different method which is influenced by that utilized by Cambern [I] to
characterize into linear isometries between spaces C' (X, E) of continuous functions
from a compact Hausdorff space X into a Banach space EF with the supremum norm.
In [4], Jerison extended to the vector case the classical Banach—Stone theorem about
onto linear isometries between spaces C'(X), and Jerison’s theorem was generalized
by Cambern [I] by considering into linear isometries.

The aim of this paper is to show that Cambern’s and Jerison’s theorems have a
natural formulation in the context of Lipschitz functions.

2. A LIPSCHITZ VERSION OF CAMBERN’S THEOREM

We begin by introducing some notation. Given a Banach space E, Sg will denote
its unit sphere and Bpg its closed unit ball. Let us recall that a Banach space E is
said to be strictly conver if every element of Sg is an extreme point of Bg. For
Banach spaces F and F, L(E, F') will stand for the Banach space of all bounded
linear operators from F into F' with the canonical norm of operators. In the case
E = F, we shall write L(E) instead of L(E, F). Given a metric space (X,d), we
shall denote by 1x the function constantly 1 on X and by diam(X) the diameter
of X. If ¢ : X — Y is a Lipschitz map between metric spaces, L(y) will be its
Lipschitz constant.

For any f € Lip(X) and e € E, define f®e: X — E by (f®e€)(z) = f(z)e. It
is easy to check that f ® e € Lip(X, F) with || f @ el = ||fllo, |le]l and L(f ® e) =
L(f) llell, and thus ||f @ e[| = [Lf]| el

Theorem 2.1. Let X and Y be compact metric spaces and let E be a strictly convex
Banach space. Let T be a linear isometry from Lip(X, E) into Lip(Y, E) such that
T(lx ®e) =1y ® e for some e € Sg . Then there exists a Lipschitz map ¢ from
a closed subset Yo of Y onto X with L(p) < max{1,diam(X)/2}, and a Lipschitz
map y — Ty fromY into L(E) with | Ty|| =1 for ally € Y, such that

T(f)(y) =Ty(f(e(y), VyeYo, Vf € Lip(X, E).
Proof. For each x € X, define
F(x) ={f € Lip(X, E) : f(z) = [|flloc €} -
Clearly, 1x ® e € F(x). For each § > 0, the map h, s ® e : X — E, defined by
hys(z) =max{0,1 —d(z,z)/0} (z€X),

belongs to F(z). Indeed, an easy verification shows that h,s € Lip(X) with

|hasll, =1 = has(x). Hence hy s ® e € Lip(X, E) with ||hys®el = 1 and

(hz,s ®e)(x) = e. Then (hys ®e)(x) = ||hes @ el e and thus h, s ® e € F(x).
We shall prove the theorem in a series of steps.
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Step 1. Let x € X. For each f € F(x), the set
P(f)={y €Y : T(f)(y) = f(z)}

is nonempty and closed.

Let f € F(x). If f =0, then P(f) =Y and there is nothing to prove. Suppose
f # 0 and consider g = ||f]|, f + ||f||2 (Ix ® e). Clearly, g € Lip(X, E) with
L(g) = || f|l. L(f) and g(z) = (||f||§o + ||f\|2) e. The latter equality implies g # 0.
Since

L(g) < 11 11 < FI2 + 112 = llg(a) ] < llgll.e
it follows that [lg]| = [lg]l... Moreover, gll,, = lg(@)]l = |.fI% + |.£]* since

9l = {161 £+ 151 (x @ )| < UAI + 1A1P = o)l

We now claim that there exists a point y € Y such that T (g/ ||g||) (v) = e. Contrary
to our claim, assume e # T (g/|lg||) (y) for all y € Y. Let € > 0 and take h =
g/ llgll +e(1x ®e). Clearly, h € Lip(X, E) and T'(h) = T(g9)/ |lgll +e(1ly ®¢€). A
simple calculation yields

L(T(h)) = L(T(9)/ llgll < IT(9)Il / llgll = 1.

Next we show that ||T'(h)]| .
IT(R) W)l = 1T (g/ llgll) (y) +eell <1 +e
since [T (g/ llgll) W) < IT(9)]l / llgl] = 1. Indeed,

1T (g/ llgll) (y) +eell <1+e.

Otherwise the vector u = (1/(1 + ¢€)) (T (g/ |lgll) (y) + €e) would be an extreme
point of Br by the strict convexity of F, and since u is a convex combination of
T (g/|lg]l) (v) and e, which are in Bg, we infer that T'(g/ ||g||) (y) = e, a contradic-
tion. Hence ||T'(h)(y)|| < 1+¢ for all y € Y. Since || T'(h)|, = |T(h)(y)| for some
y € Y, we conclude that ||T'(h)||, < 1+e. From what we have proved above it is
deduced that || T(h)|| < 1+ ¢, but, on the other hand,

L+e=llg(x)/ llgll +eell = [[R(2) | < |[Alloe < IRl = TR,
which is impossible. This proves our claim.
Now, let y € Y be such that T (g/ ||gl]) (y) = e. Since e = g(x)/ |lgll, T9(y) =
g(z), that is,
1 TF) + 1P TOx @ e)w) = (1% + 171 ) e

Since T(1x ® e) = 1y ® e, we have

1o T + 1717 e = (1% + 1717 e

and thus T'(f)(y) = |fll, e which is T(f)(y) = f(x) since f € F(x). Hence
P(f) # 0. Moreover, P(f) is closed in Y since P(f) = T(f)"1({f(x)}) and T(f)

is continuous.

< 1+e¢. For any y € Y, we have

Step 2. For each x € X, the set
B(x)={y €Y :T(f)(y) = f(z), Vf € F(x)}

is nonempty and closed.
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Let z € X. For each f € F(z), P(f) is a nonempty closed subset of ¥ by Step
M Since B(z) = Nep P(f), B(z) is closed. To prove that B(x) # 0, since Y’
is compact and B(z) = ﬂfeF(x) P(f), it suffices to check that if fi,..., f, € F(x),
then (Y, P(f;) # 0.

We can suppose, without loss of generality, that f; # 0 for all j € {1,...,n} since
P(f;) =Y if f; = 0. For each j € {1,...,n} define g; = || f;[|_ f; + ||fJ||2 (1x ®e).
As in the proof of Step [l g; € Lip(X, E) with g;(z) = (||fj||i<> + Hf]||2) e and

g5l = 1751, + 1517, Hence g; # 0 and we can define & = (1/n) S, (g5 lgs -
Clearly, h € Lip(X, E), h(z) = e and ||h||,, = 1. Hence h(z) = ||h|| e and thus
h € F(x). Then, by Step[Il there exists a point y € Y such that T'(h)(y) = h(x).
Since T'(h)(y) = (1/n) Z?zl (T'(9;)(y)/ llg;ll) and h(z) = e, it follows that e =
(1/n) 3251 (T(g;)(w)/ lg; ). Since E is strictly convex and [|T(g;)(y)ll / llg;ll <
IT(gi)ll / llgjll = 1 for all j € {1,...,n}, we infer that T(g;)(y) = ||g;]| e for all j €
{1,...,n}. Reasoning as in Step [l we obtain T'(f;)(y) = f;(x) for all j € {1,...,n}
and thus y € (;_; P(f;).
Step 3. Let f € Lip(X, E), z € X and y € B(x). If f(x) =0, then T'(f)(y) = 0.

If f =0, then there is nothing to prove. Suppose f # 0 and let 6 = || f||. / || f]l-
Clearly, L(f)/||fll. < 1/6. Consider hys ® e € F(x). We next prove that
F/ Nl + (has ® e) belongs to F(x). Since f/ | f]l., + (he,s ® €) € Lip(X, E) and

F(@)/ 1 flloo + (has ®e)(z) = e, it suffices to check that || f/ || f|l ., + (has @ €)
1. Let z € X. If d(z,x) > §, we have (h, s ®e)(z) =0 and so

1f )/ 1l + (has @ )2 = I (D / 1 Fll oo < 1.
If d(z,2) < 6, then (hy s ®e€)(z) = (1 —d(z,2)/9) e, and therefore
1f )/ Nl + (has @ )2 < NFN/ 1 flloe +1 —dl(z,2)/0 <1,

||oo -

since

IFN/ 1l = 1£(2) = F@I/ 1 flloo < L(Hd(z,2)/ I flloo < dlz,2)/0.
Hence [|f/[|fllo + (has @ €)(2)], < 1. Since
1F @)/ 1 fllo + (has @ e)(@)[| = [le] = 1,

we obtain the desired condition.
By the definition of B(z) it follows that

T (f/1flloe + (has @€)) (y) = (f/ [ fll oo + (has @ €)) (2),
that is, T(f)(y)/ || fll oo +T (ha,s®e€)(y) = e . Moreover, since y € B(z) and h, s®e €
F(z), we have T(hys ® €)(y) = (s ® €)(z) = e. Hence T(f)(y)/ Il +¢ = e
and thus T'(f)(y) = 0.

Step 4. Let z,2’ € X with « # 2/. Then B(z) N B(z') = 0.

Suppose y € B(z) N B(z'). Let § = d(x,z’) > 0 and consider h, s ® e. Since
y € B(z) and h, s®e € F(zx), we have T'(hy s ®e)(y) = (hy s ®e€)(x) = e by Step 2
but Step Blalso yields T'(h, s ® e)(y) = 0 since y € B(z’) and (hy s ®e)(z’) = 0. So
we arrive at a contradiction. Hence B(z) N B(z') = ().

Steps [ and [ motivate the following:

Definition 1. Let Yy = |JzexB(z). Define ¢ : Yo — X by p(y) =z if y € B(x).



VECTOR-VALUED LIPSCHITZ FUNCTIONS 1385

Clearly, ¢ is surjective. Moreover, given y € Yy, there exists x € X such that
y € B(x), and hence ¢(y) = z and T(f)(y) = f(z) for all f € F(x).
We shall obtain the representation of T" in terms of the following functions.

Definition 2. For each y € Y, define T, : E — E by Ty(u) = T(1x ® u)(y).

It is easy to show that T, € L(E) with ||T,|| =1 = ||T,(e)| for all y € Y.
Step 5. The map y — T, from Y into L(F) is Lipschitz.

Let y,z € Y. Given u € E, we have

1T, = T ()] < L(T(1x ©w)d(y, 2)
< [T(x @ u)| d(y, 2) = ||ull d(y, 2),

and thus |T, — T || < d(y, 2).
Step 6. T(f)(y) = Ty(f(e(y))) for all f € Lip(X,E) andy €Y .

Let f € Lip(X,FE) and y € Y. Let z = ¢(y) € X and define h = f—(1x ® f(x)).
Obviously, h € Lip(X, E) with h(x) = 0. From Step Bl we have T'(h)(y) = 0 and
therefore T'(f)(y) = T(1x ® f(2))(y) = Ty(f(x)) = T, (f(¢(y)))-

Step 7. Yy is closed in Y.

Let y € Y and let {y,} be a sequence in Yy which converges to y. Let z,, = ¢(yn)
for all n € N. Since X is compact, there exists a subsequence {,(,)} converging
to a point # € X. Let f € F(z). Clearly, {T(f)(Yo(n))} converges to T(f)(y), but
also to f(x) as we see at once. Indeed, for each n € N, we have

T(f)(ya(n)) = Ty(,(n) (f(xa(n))) = T(]-X & f(xo(n)))(ya(n))a
by Step[6 and
f@)=lflloe=fllc Uy @ €)(Yo(n))
= flloe T(lx ® €)(Won)) = T(1x @ f(2))(Yo(n)),

since f € F(x). We deduce that
|T(F)Wom) = F@)| = |T(1x @ (f(@om) = F(@)) Wowm)]|

<TAx @ (f(@om) = F@)] = [I1x @ (f(zom) — f(2))]]

= Hf(xo(n)) - f(x)H

for all n € N. Since {f(2o(n))} — f(z), we conclude that {T(f)(yo(n))} — f().
Hence T(f)(y) = f(z) and thus y € B(z) C Yp.

Step 8. The map ¢ : Yy — X is Lipschitz and L(p) < max{1,diam(X)/2}.

Let y,z € Yy be such that ¢(y) # ¢(z) and put § = d(¢(y),¢(2))/2. De-
fine f, . = 0(hy(y),s — hp(z),s) on X. It is easy to see that f,. € Lip(X) and
Il fy.2]l <k :=max{1,diam(X)/2}. Since T is an isometry, | T(f, . ® e)|| < k. This
inequality implies L(T'(fy,. ® e)) < k. It follows that

IT(fy @e)(y) = T(fy- @e)(2)|| < kdly, 2).

Using Step [0 we get
T(fy= ® €)(y) = Ty((fy.- ® e)(2(y))) = Ty(de) = de,
T(fy.= ®e)(2) = T=((fy.= @ €)(p(2))) = T=(—de) = —de.
We conclude that d(e(y), (z)) < kd(y, z). O
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The condition in Theorem BTl T(1x ® €) = 1y ® e for some e € Sg, is not
too restrictive if we analyse the known results in the scalar case. In this case our
condition means T'(1x) = ly; notice that the connectedness assumptions on the
metric spaces in [9, Lemma 1.5] and [11l Lemma 6] yield a similar condition, namely,
that T'(1x) is a constant function.

3. A LIPSCHITZ VERSION OF JERISON’S THEOREM

Recall that a map between metric spaces ¢ : X — Y is said to be a Lipschitz
homeomorphism if ¢ is bijective and ¢ and ¢! are both Lipschitz.

Theorem 3.1. Let X,Y be compact metric spaces and let E& be a strictly convex
Banach space. Let T be a linear isometry from Lip(X, E) onto Lip(Y, E) such that
T(lx®e) = 1y ®e for some e € Sg. Then there exists a Lipschitz homeomorphism
0 :Y — X with L(¢) < max{1,diam(X)/2} and L(¢~') < max{1,diam(Y)/2},
and a Lipschitz map y — T, from Y into L(E) where T, is an isometry from E
onto itself for all y € Y such that

T(f)(y) =T,(f(e(y), VyeY, VfeLip(X,E).

Proof. Let Yy and ¢ be as in Theorem Bl Since 7! : Lip(Y, E) — Lip(X, E) is
a linear isometry and T-!(1y ® e) = 1x ® e, applying Theorem 2] we have

T (g)(x) = (T7"alg(¥(2))), Va € Xo, Vg € Lip(Y, E),

where 1 is a Lipschitz map from a closed subset X of X onto Y with L(¢) <
max{1,diam(Y)/2}, and 2 — (T1), is a Lipschitz map from X into L(E). Namely,
Xo =U,ey B(y) where, for each y € Y,

B(y)={z € X : T (g)(x) = g(y), Vg € Fy)}
with
F(y) ={g € Lip(Y,E) : g(y) = llgllc €} ,
and ¢ : Xg — Y is the Lipschitz map defined by ¥ (z) = y if € B(y). Moreover,
using the same arguments as in Step [3 the following can be proved:

Claim 1. Let g € Lip(Y, E), y € Y and z € B(y). If g(y) = 0, then T~*(g)(z) = 0.

After this preparation we proceed to prove the theorem. Fix z € X and let
y € B(xz). We first prove that € B(y). Suppose that = ¢ B(y). Since B(y) # 0,
there exists 2’ € B(y) with o’ # z. Take f € Lip(X, E) for which f(z) = 0 and
f(@") # 0. Since y € B(z) and f(x) = 0, we have T'(f)(y) = 0 by Step Bl Then
T=YT(f))(z") = 0 since 2’ € B(y) by Claim[I] and thus f(z’) = 0, a contradiction.
Therefore x € B(y) C Xo and thus Xy = X. Next we see that Yo =Y. Let y € Y.
We can take a point « € B(y). As above it is proved that y € B(x) and thus y € Yj.

To see that ¢ is a Lipschitz homeomorphism, let y € Y. Then y € B(x) for some
x € X, that is, p(y) = . Moreover, by what we have proved above, x € B(y) and
so ¥(x) =y. As a consequence, ¥(p(y)) = y. Since ¢ was surjective, ¢ is bijective
with =1 = ¢ and thus ¢ is a Lipschitz homeomorphism.

To check that T}, is an isometry from E into itself for every y € Y, we first show
that T sends nonvanishing functions of Lip(X, F) into nonvanishing functions of
Lip(Y, E). Assume there exists f € Lip(X, E) such that f(z) # 0 for all z € X,
but T(f)(y) = 0 for some y € Y. By the surjectivity of v, there is a point
x € Xo such that ¢(x) = y, that is, z € B(y). Since T(f)(y) = 0, by Claim [
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we have f(z) = T-Y(T(f))(z) = 0, a contradiction. Hence T' maps nonvanishing
functions into nonvanishing functions. If, for some y € Y, T}, is not an isometry,
then there exists a u € Sg such that ||T,(u)|| = |T(1x ® u)(y)|| < 1. Since T is
surjective, there is an f € Lip(X, E) such that T(f) = 1y ® T(1x ® u)(y). Thus
[flloe < IFIM=NIT)I = IT(Ax @u)(y)ll <1 and (1x @ u) - f never vanishes on
X. AsT(1x ®u)(y) =T(f)(y), we arrive at a contradiction.

Next we prove that T, : F — FE is surjective for every y € Y. Fix y € Y and let
v € E. Since T is surjective, there exists f € Lip(X, E) such that T(f) = 1y ® v.

Let u = (foy)(y) € E. Using Step[6] we have T, (u) = Ty (f(¢(y))) =T(f)(y) = v.
Hence T, is surjective. (I

Finally, as a direct consequence of Theorem [B.I] we obtain the following:

Corollary 3.2. Let X,Y be compact metric spaces with diameter at most 2 and
let E be a strictly convex Banach space. Then every surjective linear isometry T
from Lip(X, E) into Lip(Y, E) satisfying that T(1x ® e) = 1y ®e for some e € Sg,
can be expressed as T(f)(y) = Ty(f(e(y))) for ally € Y and f € Lip(X, E), where
¢ Y — X is a surjective isometry and y — T, is a Lipschitz map from Y into
L(E) such that T, is an isometry from E onto E for ally € Y.

In the special case that F is a Hilbert space, Theorems 2.1l and Bl can be
improved as follows. For a Hilbert space F, let us recall that a unitary operator is
a linear map ® : £ — E that is a surjective isometry.

Corollary 3.3. Let X andY be compact metric spaces and let E be a Hilbert space.
Let T be a linear isometry from Lip(X, E) into Lip(Y, E) such that T(1x ® e) is
a constant function for some e € Sg. Then there exists a Lipschitz map ¢ from
a closed subset Yy of Y onto X with L(p) < max{1,diam(X)/2} and a Lipschitz
map y — Ty fromY into L(E) with |[Ty|| =1 for all y € Y such that

T(f)(y) = T,(f(ev))), VyeYo, Vf € Lip(X, E).

If, in addition, T is surjective, then Yo =Y, @ is a Lipschitz homeomorphism with
L(p™) < max{1,diam(Y)/2} and, for eachy € Y, T, is a unitary operator.
Proof. Assume that T(1x ®e) = 1y ®@u for some u € E. Obviously, ||u|| = 1. Since

F is a Hilbert space, we can construct a unitary operator ® : £ — FE such that
®(u) = e. Define S : Lip(Y, E) — Lip(Y, E) by

S(9)(y) = 2(g(y)), Vy€Y, Vg€ Lip(Y,E).
It is easy to prove that S is a surjective linear isometry satisfying that S(1ly ® u) =
ly ® e. Hence R = S oT is a linear isometry from Lip(X, F) into Lip(Y, E) with
R(lx ® e) = 1y ® e. Then Theorem [ZT] guarantees the existence of a Lipschitz

map ¢ from a closed subset Yy of Y onto X with L(¢) < max{1,diam(X)/2} and
a Lipschitz map y — R, from Y into L(E) with ||R,|| =1 for all y € Y such that

R(f)(y) = Ry(f(e(y))), Vy €Yo, Vf € Lip(X, E).

For each y € Y, consider T, = ® ! o R, € L(E). It is easily seen that the map
y — T, from Y into L(E) is Lipschitz with ||T,| = 1 for all y € Y. Moreover, for
any y € Yy and f € Lip(X, E), we have

T(f)(y) = 27 (Ry(fle(y) = T, (f(¢¥)))-

If, in addition, T is surjective, the rest of the corollary follows by applying Theo-
rem B3Il to R. O
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