PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 4, April 2009, Pages 1381–1388 S 0002-9939(08)09733-5 Article electronically published on October 20, 2008

LINEAR ISOMETRIES BETWEEN SPACES OF VECTOR-VALUED LIPSCHITZ FUNCTIONS

A. JIMÉNEZ-VARGAS AND MOISÉS VILLEGAS-VALLECILLOS

(Communicated by Nigel J. Kalton)

ABSTRACT. In this paper we state a Lipschitz version of a theorem due to Cambern concerning into linear isometries between spaces of vector-valued continuous functions and deduce a Lipschitz version of a celebrated theorem due to Jerison concerning onto linear isometries between such spaces.

1. Introduction

Given a metric space (X,d) and a Banach space E, we denote by Lip(X,E) the Banach space of all bounded Lipschitz functions $f:X\to E$ with the norm $\|f\|=\max\{L(f),\|f\|_{\infty}\}$, where

$$L(f) = \sup \{ ||f(x) - f(y)|| / d(x, y) : x, y \in X, \ x \neq y \}.$$

If E is the field of real or complex numbers, we shall write simply Lip(X).

The study of surjective linear isometries between spaces $\operatorname{Lip}(X)$ was initiated by Roy [9] and Vasavada [10]. In [9, Theorem 1.7], Roy proved that if (X,d) is a compact connected metric space with diameter at most 1, then a map T is a surjective linear isometry from $\operatorname{Lip}(X)$ onto itself if and only if there exist a surjective isometry $\varphi: X \to X$ and a scalar τ of modulus 1 such that

$$T(f)(y) = \tau f(\varphi(y)), \quad \forall y \in Y, \ \forall f \in \text{Lip}(X).$$

In [8, Theorem 2], Novinger improved slightly Roy's result by considering linear isometries from $\operatorname{Lip}(X)$ onto $\operatorname{Lip}(Y)$. Vasavada [10] proved it for linear isometries from $\operatorname{Lip}(X)$ onto $\operatorname{Lip}(Y)$ when the metric spaces X,Y are compact with diameter at most 2 and β -connected for some $\beta < 1$. Weaver [11] developed a technique to remove the compactness assumption on X and Y and showed that the above-mentioned characterization holds if X,Y are complete and 1-connected with diameter at most 2 [11, Theorem D]. The reduction to metric spaces of diameter at most 2 is not restrictive since if (X,d) is a metric space and X' is the set X remetrized with the metric $d'(x,y) = \min\{d(x,y),2\}$, then the diameter of X' is at most 2 and $\operatorname{Lip}(X')$ is isometrically isomorphic to $\operatorname{Lip}(X)$ [12, Proposition 1.7.1]. We must also mention the complete research carried out on surjective linear isometries between spaces of Hölder functions [2, 3, 6, 7]. We refer the reader to Weaver's

Received by the editors April 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B04, 46E40; Secondary 46E15.

Key words and phrases. Banach–Stone theorem, linear isometry, Lipschitz function.

The first author was partially supported by Junta de Andalucía grants FQM-1215 and FQM-1438, and by MEC grant MTM2006-4837.

book Lipschitz Algebras [12] for unexplained terminology and more information on the subject. This is essentially the history of the onto scalar-valued case. Recently, into linear isometries (that is, not necessarily surjective) and codimension 1 linear isometries between spaces $\operatorname{Lip}(X)$ have been studied in [5].

In this note we shall go a step further and give a complete description of linear isometries between spaces of vector-valued Lipschitz functions. To our knowledge, little or nothing is known on the matter in the vector-valued case. Our approach to the problem is not based on extreme points as in all aforementioned papers. We have used here a different method which is influenced by that utilized by Cambern [1] to characterize into linear isometries between spaces C(X, E) of continuous functions from a compact Hausdorff space X into a Banach space E with the supremum norm. In [4], Jerison extended to the vector case the classical Banach–Stone theorem about onto linear isometries between spaces C(X), and Jerison's theorem was generalized by Cambern [1] by considering into linear isometries.

The aim of this paper is to show that Cambern's and Jerison's theorems have a natural formulation in the context of Lipschitz functions.

2. A Lipschitz version of Cambern's Theorem

We begin by introducing some notation. Given a Banach space E, S_E will denote its unit sphere and B_E its closed unit ball. Let us recall that a Banach space E is said to be *strictly convex* if every element of S_E is an extreme point of B_E . For Banach spaces E and F, L(E,F) will stand for the Banach space of all bounded linear operators from E into F with the canonical norm of operators. In the case E=F, we shall write L(E) instead of L(E,F). Given a metric space (X,d), we shall denote by 1_X the function constantly 1 on X and by diam(X) the diameter of X. If $\varphi:X\to Y$ is a Lipschitz map between metric spaces, $L(\varphi)$ will be its Lipschitz constant.

For any $f \in \text{Lip}(X)$ and $e \in E$, define $f \otimes e : X \to E$ by $(f \otimes e)(x) = f(x)e$. It is easy to check that $f \otimes e \in \text{Lip}(X, E)$ with $||f \otimes e||_{\infty} = ||f||_{\infty} ||e||$ and $L(f \otimes e) = L(f) ||e||$, and thus $||f \otimes e|| = ||f|| ||e||$.

Theorem 2.1. Let X and Y be compact metric spaces and let E be a strictly convex Banach space. Let T be a linear isometry from $\operatorname{Lip}(X,E)$ into $\operatorname{Lip}(Y,E)$ such that $T(1_X \otimes e) = 1_Y \otimes e$ for some $e \in S_E$. Then there exists a Lipschitz map φ from a closed subset Y_0 of Y onto X with $L(\varphi) \leq \max\{1, \operatorname{diam}(X)/2\}$, and a Lipschitz map $y \mapsto T_y$ from Y into L(E) with $\|T_y\| = 1$ for all $y \in Y$, such that

$$T(f)(y) = T_y(f(\varphi(y))), \quad \forall y \in Y_0, \ \forall f \in \text{Lip}(X, E).$$

Proof. For each $x \in X$, define

$$F(x) = \{ f \in \text{Lip}(X, E) : f(x) = ||f||_{\infty} e \}.$$

Clearly, $1_X \otimes e \in F(x)$. For each $\delta > 0$, the map $h_{x,\delta} \otimes e : X \to E$, defined by

$$h_{x,\delta}(z) = \max\{0, 1 - d(z, x)/\delta\} \quad (z \in X),$$

belongs to F(x). Indeed, an easy verification shows that $h_{x,\delta} \in \text{Lip}(X)$ with $||h_{x,\delta}||_{\infty} = 1 = h_{x,\delta}(x)$. Hence $h_{x,\delta} \otimes e \in \text{Lip}(X,E)$ with $||h_{x,\delta} \otimes e||_{\infty} = 1$ and $(h_{x,\delta} \otimes e)(x) = e$. Then $(h_{x,\delta} \otimes e)(x) = ||h_{x,\delta} \otimes e||_{\infty} e$ and thus $h_{x,\delta} \otimes e \in F(x)$.

We shall prove the theorem in a series of steps.

Step 1. Let $x \in X$. For each $f \in F(x)$, the set

$$P(f) = \{ y \in Y : T(f)(y) = f(x) \}$$

is nonempty and closed.

Let $f \in F(x)$. If f = 0, then P(f) = Y and there is nothing to prove. Suppose $f \neq 0$ and consider $g = \|f\|_{\infty} f + \|f\|^2 (1_X \otimes e)$. Clearly, $g \in \text{Lip}(X, E)$ with $L(g) = \|f\|_{\infty} L(f)$ and $g(x) = \left(\|f\|_{\infty}^2 + \|f\|^2\right) e$. The latter equality implies $g \neq 0$. Since

$$L(g) \le ||f||_{\infty} ||f|| \le ||f||_{\infty}^{2} + ||f||^{2} = ||g(x)|| \le ||g||_{\infty},$$

it follows that $\|g\| = \|g\|_{\infty}$. Moreover, $\|g\|_{\infty} = \|g(x)\| = \|f\|_{\infty}^2 + \|f\|^2$ since

$$\|g\|_{\infty} = \|\|f\|_{\infty} f + \|f\|^2 (1_X \otimes e)\|_{\infty} \le \|f\|_{\infty}^2 + \|f\|^2 = \|g(x)\|.$$

We now claim that there exists a point $y \in Y$ such that $T\left(g/\|g\|\right)(y) = e$. Contrary to our claim, assume $e \neq T\left(g/\|g\|\right)(y)$ for all $y \in Y$. Let $\varepsilon > 0$ and take $h = g/\|g\| + \varepsilon(1_X \otimes e)$. Clearly, $h \in \operatorname{Lip}(X, E)$ and $T(h) = T(g)/\|g\| + \varepsilon(1_Y \otimes e)$. A simple calculation yields

$$L(T(h)) = L(T(g)) / ||g|| \le ||T(g)|| / ||g|| = 1.$$

Next we show that $||T(h)||_{\infty} < 1 + \varepsilon$. For any $y \in Y$, we have

$$||T(h)(y)|| = ||T(g/||g||)(y) + \varepsilon e|| \le 1 + \varepsilon$$

since $||T(g/||g||)(y)|| \le ||T(g)||/||g|| = 1$. Indeed,

$$||T(g/||g||)(y) + \varepsilon e|| < 1 + \varepsilon.$$

Otherwise the vector $u=(1/(1+\varepsilon))\left(T\left(g/\|g\|\right)(y)+\varepsilon e\right)$ would be an extreme point of B_E by the strict convexity of E, and since u is a convex combination of $T\left(g/\|g\|\right)(y)$ and e, which are in B_E , we infer that $T\left(g/\|g\|\right)(y)=e$, a contradiction. Hence $\|T(h)(y)\|<1+\varepsilon$ for all $y\in Y$. Since $\|T(h)\|_{\infty}=\|T(h)(y)\|$ for some $y\in Y$, we conclude that $\|T(h)\|_{\infty}<1+\varepsilon$. From what we have proved above it is deduced that $\|T(h)\|<1+\varepsilon$, but, on the other hand,

$$1 + \varepsilon = \|g(x)/\|g\| + \varepsilon e\| = \|h(x)\| \le \|h\|_{\infty} \le \|h\| = \|T(h)\|,$$

which is impossible. This proves our claim.

Now, let $y \in Y$ be such that $T(g/\|g\|)(y) = e$. Since $e = g(x)/\|g\|$, Tg(y) = g(x), that is,

$$||f||_{\infty} Tf(y) + ||f||^2 T(1_X \otimes e)(y) = (||f||_{\infty}^2 + ||f||^2) e.$$

Since $T(1_X \otimes e) = 1_Y \otimes e$, we have

$$||f||_{\infty} T(f)(y) + ||f||^2 e = (||f||_{\infty}^2 + ||f||^2) e,$$

and thus $T(f)(y) = ||f||_{\infty} e$, which is T(f)(y) = f(x) since $f \in F(x)$. Hence $P(f) \neq \emptyset$. Moreover, P(f) is closed in Y since $P(f) = T(f)^{-1}(\{f(x)\})$ and T(f) is continuous.

Step 2. For each $x \in X$, the set

$$B(x) = \{ y \in Y : T(f)(y) = f(x), \ \forall f \in F(x) \}$$

is nonempty and closed.

Let $x \in X$. For each $f \in F(x)$, P(f) is a nonempty closed subset of Y by Step 1. Since $B(x) = \bigcap_{f \in F(x)} P(f)$, B(x) is closed. To prove that $B(x) \neq \emptyset$, since Y is compact and $B(x) = \bigcap_{f \in F(x)} P(f)$, it suffices to check that if $f_1, ..., f_n \in F(x)$, then $\bigcap_{i=1}^n P(f_i) \neq \emptyset$.

We can suppose, without loss of generality, that $f_j \neq 0$ for all $j \in \{1, ..., n\}$ since $P(f_j) = Y$ if $f_j = 0$. For each $j \in \{1, ..., n\}$ define $g_j = \|f_j\|_{\infty} f_j + \|f_j\|^2 (1_X \otimes e)$. As in the proof of Step 1, $g_j \in \text{Lip}(X, E)$ with $g_j(x) = \left(\|f_j\|_{\infty}^2 + \|f_j\|^2\right)e$ and $\|g_j\| = \|f_j\|_{\infty}^2 + \|f_j\|^2$. Hence $g_j \neq 0$ and we can define $h = (1/n)\sum_{j=1}^n (g_j/\|g_j\|)$. Clearly, $h \in \text{Lip}(X, E)$, h(x) = e and $\|h\|_{\infty} = 1$. Hence $h(x) = \|h\|_{\infty} e$ and thus $h \in F(x)$. Then, by Step 1, there exists a point $y \in Y$ such that T(h)(y) = h(x). Since $T(h)(y) = (1/n)\sum_{j=1}^n (T(g_j)(y)/\|g_j\|)$ and h(x) = e, it follows that $e = (1/n)\sum_{j=1}^n (T(g_j)(y)/\|g_j\|)$. Since E is strictly convex and $\|T(g_j)(y)\|/\|g_j\| \leq \|T(g_j)\|/\|g_j\| = 1$ for all $f \in \{1, ..., n\}$, we infer that $f(g_j)(y) = \|g_j\| e$ for all $f \in \{1, ..., n\}$. Reasoning as in Step 1, we obtain $f(f_j)(y) = f_j(x)$ for all $f \in \{1, ..., n\}$ and thus $f(f_j)(y) = f_j(x)$ for all $f \in \{1, ..., n\}$ and thus $f(f_j)(y) = f_j(x)$ for all $f \in \{1, ..., n\}$

Step 3. Let $f \in \text{Lip}(X, E)$, $x \in X$ and $y \in B(x)$. If f(x) = 0, then T(f)(y) = 0.

If f = 0, then there is nothing to prove. Suppose $f \neq 0$ and let $\delta = \|f\|_{\infty} / \|f\|$. Clearly, $L(f)/\|f\|_{\infty} \leq 1/\delta$. Consider $h_{x,\delta} \otimes e \in F(x)$. We next prove that $f/\|f\|_{\infty} + (h_{x,\delta} \otimes e)$ belongs to F(x). Since $f/\|f\|_{\infty} + (h_{x,\delta} \otimes e) \in \text{Lip}(X, E)$ and $f(x)/\|f\|_{\infty} + (h_{x,\delta} \otimes e)(x) = e$, it suffices to check that $\|f/\|f\|_{\infty} + (h_{x,\delta} \otimes e)\|_{\infty} = 1$. Let $z \in X$. If $d(z,x) \geq \delta$, we have $(h_{x,\delta} \otimes e)(z) = 0$ and so

$$||f(z)/||f||_{\infty} + (h_{x,\delta} \otimes e)(z)|| = ||f(z)||/||f||_{\infty} \le 1.$$

If $d(z,x) < \delta$, then $(h_{x,\delta} \otimes e)(z) = (1 - d(z,x)/\delta) e$, and therefore

$$||f(z)/||f||_{\infty} + (h_{x,\delta} \otimes e)(z)|| \le ||f(z)||/||f||_{\infty} + 1 - d(z,x)/\delta \le 1,$$

since

$$||f(z)|| / ||f||_{\infty} = ||f(z) - f(x)|| / ||f||_{\infty} \le L(f)d(z, x) / ||f||_{\infty} \le d(z, x) / \delta.$$

Hence $||f/||f||_{\infty} + (h_{x,\delta} \otimes e)(z)||_{\infty} \leq 1$. Since

$$||f(x)/||f||_{\infty} + (h_{x,\delta} \otimes e)(x)|| = ||e|| = 1,$$

we obtain the desired condition.

By the definition of B(x) it follows that

$$T\left(f/\left\|f\right\|_{\infty} + \left(h_{x,\delta} \otimes e\right)\right)\left(y\right) = \left(f/\left\|f\right\|_{\infty} + \left(h_{x,\delta} \otimes e\right)\right)\left(x\right),$$

that is, $T(f)(y)/\|f\|_{\infty}+T(h_{x,\delta}\otimes e)(y)=e$. Moreover, since $y\in B(x)$ and $h_{x,\delta}\otimes e\in F(x)$, we have $T(h_{x,\delta}\otimes e)(y)=(h_{x,\delta}\otimes e)(x)=e$. Hence $T(f)(y)/\|f\|_{\infty}+e=e$ and thus T(f)(y)=0.

Step 4. Let $x, x' \in X$ with $x \neq x'$. Then $B(x) \cap B(x') = \emptyset$.

Suppose $y \in B(x) \cap B(x')$. Let $\delta = d(x, x') > 0$ and consider $h_{x,\delta} \otimes e$. Since $y \in B(x)$ and $h_{x,\delta} \otimes e \in F(x)$, we have $T(h_{x,\delta} \otimes e)(y) = (h_{x,\delta} \otimes e)(x) = e$ by Step 2, but Step 3 also yields $T(h_{x,\delta} \otimes e)(y) = 0$ since $y \in B(x')$ and $(h_{x,\delta} \otimes e)(x') = 0$. So we arrive at a contradiction. Hence $B(x) \cap B(x') = \emptyset$.

Steps 3 and 4 motivate the following:

Definition 1. Let $Y_0 = \bigcup_{x \in X} B(x)$. Define $\varphi : Y_0 \to X$ by $\varphi(y) = x$ if $y \in B(x)$.

Clearly, φ is surjective. Moreover, given $y \in Y_0$, there exists $x \in X$ such that $y \in B(x)$, and hence $\varphi(y) = x$ and T(f)(y) = f(x) for all $f \in F(x)$.

We shall obtain the representation of T in terms of the following functions.

Definition 2. For each $y \in Y$, define $T_y : E \to E$ by $T_y(u) = T(1_X \otimes u)(y)$.

It is easy to show that $T_y \in L(E)$ with $||T_y|| = 1 = ||T_y(e)||$ for all $y \in Y$.

Step 5. The map $y \mapsto T_y$ from Y into L(E) is Lipschitz.

Let $y, z \in Y$. Given $u \in E$, we have

$$||(T_y - T_z)(u)|| \le L(T(1_X \otimes u))d(y, z)$$

$$\le ||T(1_X \otimes u)|| d(y, z) = ||u|| d(y, z),$$

and thus $||T_y - T_z|| \le d(y, z)$.

Step 6. $T(f)(y) = T_y(f(\varphi(y)))$ for all $f \in \text{Lip}(X, E)$ and $y \in Y_0$.

Let $f \in \text{Lip}(X, E)$ and $y \in Y_0$. Let $x = \varphi(y) \in X$ and define $h = f - (1_X \otimes f(x))$. Obviously, $h \in \text{Lip}(X, E)$ with h(x) = 0. From Step 3, we have T(h)(y) = 0 and therefore $T(f)(y) = T(1_X \otimes f(x))(y) = T_y(f(x)) = T_y(f(\varphi(y)))$.

Step 7. Y_0 is closed in Y.

Let $y \in Y$ and let $\{y_n\}$ be a sequence in Y_0 which converges to y. Let $x_n = \varphi(y_n)$ for all $n \in \mathbb{N}$. Since X is compact, there exists a subsequence $\{x_{\sigma(n)}\}$ converging to a point $x \in X$. Let $f \in F(x)$. Clearly, $\{T(f)(y_{\sigma(n)})\}$ converges to T(f)(y), but also to f(x) as we see at once. Indeed, for each $n \in \mathbb{N}$, we have

$$T(f)(y_{\sigma(n)}) = T_{y_{\sigma(n)}}(f(x_{\sigma(n)})) = T(1_X \otimes f(x_{\sigma(n)}))(y_{\sigma(n)}),$$

by Step 6, and

$$f(x) = ||f||_{\infty} e = ||f||_{\infty} (1_Y \otimes e)(y_{\sigma(n)})$$

= $||f||_{\infty} T(1_X \otimes e)(y_{\sigma(n)}) = T(1_X \otimes f(x))(y_{\sigma(n)}),$

since $f \in F(x)$. We deduce that

$$||T(f)(y_{\sigma(n)}) - f(x)|| = ||T(1_X \otimes (f(x_{\sigma(n)}) - f(x)))(y_{\sigma(n)})||$$

$$\leq ||T(1_X \otimes (f(x_{\sigma(n)}) - f(x)))|| = ||1_X \otimes (f(x_{\sigma(n)}) - f(x))||$$

$$= ||f(x_{\sigma(n)}) - f(x)||$$

for all $n \in \mathbb{N}$. Since $\{f(x_{\sigma(n)})\} \to f(x)$, we conclude that $\{T(f)(y_{\sigma(n)})\} \to f(x)$. Hence T(f)(y) = f(x) and thus $y \in B(x) \subset Y_0$.

Step 8. The map $\varphi: Y_0 \to X$ is Lipschitz and $L(\varphi) \leq \max\{1, \operatorname{diam}(X)/2\}$.

Let $y,z\in Y_0$ be such that $\varphi(y)\neq \varphi(z)$ and put $\delta=d(\varphi(y),\varphi(z))/2$. Define $f_{y,z}=\delta(h_{\varphi(y),\delta}-h_{\varphi(z),\delta})$ on X. It is easy to see that $f_{y,z}\in \operatorname{Lip}(X)$ and $\|f_{y,z}\|\leq k:=\max\{1,\operatorname{diam}(X)/2\}$. Since T is an isometry, $\|T(f_{y,z}\otimes e)\|\leq k$. This inequality implies $L(T(f_{y,z}\otimes e))\leq k$. It follows that

$$||T(f_{y,z}\otimes e)(y)-T(f_{y,z}\otimes e)(z)||\leq kd(y,z).$$

Using Step 6 we get

$$T(f_{y,z} \otimes e)(y) = T_y((f_{y,z} \otimes e)(\varphi(y))) = T_y(\delta e) = \delta e,$$

$$T(f_{y,z} \otimes e)(z) = T_z((f_{y,z} \otimes e)(\varphi(z))) = T_z(-\delta e) = -\delta e.$$

We conclude that $d(\varphi(y), \varphi(z)) \leq kd(y, z)$.

The condition in Theorem 2.1, $T(1_X \otimes e) = 1_Y \otimes e$ for some $e \in S_E$, is not too restrictive if we analyse the known results in the scalar case. In this case our condition means $T(1_X) = 1_Y$; notice that the connectedness assumptions on the metric spaces in [9, Lemma 1.5] and [11, Lemma 6] yield a similar condition, namely, that $T(1_X)$ is a constant function.

3. A Lipschitz version of Jerison's Theorem

Recall that a map between metric spaces $\varphi: X \to Y$ is said to be a *Lipschitz homeomorphism* if φ is bijective and φ and φ^{-1} are both Lipschitz.

Theorem 3.1. Let X, Y be compact metric spaces and let E be a strictly convex Banach space. Let T be a linear isometry from Lip(X, E) onto Lip(Y, E) such that $T(1_X \otimes e) = 1_Y \otimes e$ for some $e \in S_E$. Then there exists a Lipschitz homeomorphism $\varphi : Y \to X$ with $L(\varphi) \leq \max\{1, \dim(X)/2\}$ and $L(\varphi^{-1}) \leq \max\{1, \dim(Y)/2\}$, and a Lipschitz map $y \mapsto T_y$ from Y into L(E) where T_y is an isometry from E onto itself for all $y \in Y$ such that

$$T(f)(y) = T_y(f(\varphi(y))), \quad \forall y \in Y, \ \forall f \in \text{Lip}(X, E).$$

Proof. Let Y_0 and φ be as in Theorem 2.1. Since $T^{-1}: \operatorname{Lip}(Y, E) \to \operatorname{Lip}(X, E)$ is a linear isometry and $T^{-1}(1_Y \otimes e) = 1_X \otimes e$, applying Theorem 2.1 we have

$$T^{-1}(g)(x) = (T^{-1})_x(g(\psi(x))), \quad \forall x \in X_0, \ \forall g \in \text{Lip}(Y, E),$$

where ψ is a Lipschitz map from a closed subset X_0 of X onto Y with $L(\psi) \leq \max\{1, \operatorname{diam}(Y)/2\}$, and $x \mapsto (T^{-1})_x$ is a Lipschitz map from X into L(E). Namely, $X_0 = \bigcup_{y \in Y} B(y)$ where, for each $y \in Y$,

$$B(y) = \{x \in X : T^{-1}(g)(x) = g(y), \ \forall g \in F(y)\}$$

with

$$F(y) = \{ g \in \text{Lip}(Y, E) : g(y) = ||g||_{\infty} e \},$$

and $\psi: X_0 \to Y$ is the Lipschitz map defined by $\psi(x) = y$ if $x \in B(y)$. Moreover, using the same arguments as in Step 3, the following can be proved:

Claim 1. Let
$$g \in \text{Lip}(Y, E)$$
, $y \in Y$ and $x \in B(y)$. If $g(y) = 0$, then $T^{-1}(g)(x) = 0$.

After this preparation we proceed to prove the theorem. Fix $x \in X$ and let $y \in B(x)$. We first prove that $x \in B(y)$. Suppose that $x \notin B(y)$. Since $B(y) \neq \emptyset$, there exists $x' \in B(y)$ with $x' \neq x$. Take $f \in \text{Lip}(X, E)$ for which f(x) = 0 and $f(x') \neq 0$. Since $y \in B(x)$ and f(x) = 0, we have T(f)(y) = 0 by Step 3. Then $T^{-1}(T(f))(x') = 0$ since $x' \in B(y)$ by Claim 1, and thus f(x') = 0, a contradiction. Therefore $x \in B(y) \subset X_0$ and thus $X_0 = X$. Next we see that $Y_0 = Y$. Let $y \in Y$. We can take a point $x \in B(y)$. As above it is proved that $y \in B(x)$ and thus $y \in Y_0$.

To see that φ is a Lipschitz homeomorphism, let $y \in Y$. Then $y \in B(x)$ for some $x \in X$, that is, $\varphi(y) = x$. Moreover, by what we have proved above, $x \in B(y)$ and so $\psi(x) = y$. As a consequence, $\psi(\varphi(y)) = y$. Since φ was surjective, φ is bijective with $\varphi^{-1} = \psi$ and thus φ is a Lipschitz homeomorphism.

To check that T_y is an isometry from E into itself for every $y \in Y$, we first show that T sends nonvanishing functions of $\operatorname{Lip}(X, E)$ into nonvanishing functions of $\operatorname{Lip}(Y, E)$. Assume there exists $f \in \operatorname{Lip}(X, E)$ such that $f(x) \neq 0$ for all $x \in X$, but T(f)(y) = 0 for some $y \in Y$. By the surjectivity of ψ , there is a point $x \in X_0$ such that $\psi(x) = y$, that is, $x \in B(y)$. Since T(f)(y) = 0, by Claim 1

we have $f(x) = T^{-1}(T(f))(x) = 0$, a contradiction. Hence T maps nonvanishing functions into nonvanishing functions. If, for some $y \in Y$, T_y is not an isometry, then there exists a $u \in S_E$ such that $||T_y(u)|| = ||T(1_X \otimes u)(y)|| < 1$. Since T is surjective, there is an $f \in \text{Lip}(X, E)$ such that $T(f) = 1_Y \otimes T(1_X \otimes u)(y)$. Thus $||f||_{\infty} \leq ||f|| = ||T(f)|| = ||T(1_X \otimes u)(y)|| < 1$ and $(1_X \otimes u) - f$ never vanishes on X. As $T(1_X \otimes u)(y) = T(f)(y)$, we arrive at a contradiction.

Next we prove that $T_y: E \to E$ is surjective for every $y \in Y$. Fix $y \in Y$ and let $v \in E$. Since T is surjective, there exists $f \in \text{Lip}(X, E)$ such that $T(f) = 1_Y \otimes v$. Let $u = (f \circ \varphi)(y) \in E$. Using Step 6, we have $T_y(u) = T_y(f(\varphi(y))) = T(f)(y) = v$. Hence T_y is surjective.

Finally, as a direct consequence of Theorem 3.1, we obtain the following:

Corollary 3.2. Let X, Y be compact metric spaces with diameter at most 2 and let E be a strictly convex Banach space. Then every surjective linear isometry T from Lip(X, E) into Lip(Y, E) satisfying that $T(1_X \otimes e) = 1_Y \otimes e$ for some $e \in S_E$, can be expressed as $T(f)(y) = T_y(f(\varphi(y)))$ for all $y \in Y$ and $f \in \text{Lip}(X, E)$, where $\varphi : Y \to X$ is a surjective isometry and $y \mapsto T_y$ is a Lipschitz map from Y into L(E) such that T_y is an isometry from E onto E for all $y \in Y$.

In the special case that E is a Hilbert space, Theorems 2.1 and 3.1 can be improved as follows. For a Hilbert space E, let us recall that a *unitary operator* is a linear map $\Phi: E \to E$ that is a surjective isometry.

Corollary 3.3. Let X and Y be compact metric spaces and let E be a Hilbert space. Let T be a linear isometry from $\operatorname{Lip}(X,E)$ into $\operatorname{Lip}(Y,E)$ such that $T(1_X \otimes e)$ is a constant function for some $e \in S_E$. Then there exists a Lipschitz map φ from a closed subset Y_0 of Y onto X with $L(\varphi) \leq \max\{1, \operatorname{diam}(X)/2\}$ and a Lipschitz map $y \mapsto T_y$ from Y into L(E) with $\|T_y\| = 1$ for all $y \in Y$ such that

$$T(f)(y) = T_y(f(\varphi(y))), \quad \forall y \in Y_0, \ \forall f \in \text{Lip}(X, E).$$

If, in addition, T is surjective, then $Y_0 = Y$, φ is a Lipschitz homeomorphism with $L(\varphi^{-1}) \leq \max\{1, \operatorname{diam}(Y)/2\}$ and, for each $y \in Y$, T_y is a unitary operator.

Proof. Assume that $T(1_X \otimes e) = 1_Y \otimes u$ for some $u \in E$. Obviously, ||u|| = 1. Since E is a Hilbert space, we can construct a unitary operator $\Phi : E \to E$ such that $\Phi(u) = e$. Define $S : \text{Lip}(Y, E) \to \text{Lip}(Y, E)$ by

$$S(g)(y) = \Phi(g(y)), \quad \forall y \in Y, \ \forall g \in \text{Lip}(Y, E).$$

It is easy to prove that S is a surjective linear isometry satisfying that $S(1_Y \otimes u) = 1_Y \otimes e$. Hence $R = S \circ T$ is a linear isometry from $\operatorname{Lip}(X, E)$ into $\operatorname{Lip}(Y, E)$ with $R(1_X \otimes e) = 1_Y \otimes e$. Then Theorem 2.1 guarantees the existence of a Lipschitz map φ from a closed subset Y_0 of Y onto X with $L(\varphi) \leq \max\{1, \operatorname{diam}(X)/2\}$ and a Lipschitz map $y \mapsto R_y$ from Y into L(E) with $||R_y|| = 1$ for all $y \in Y$ such that

$$R(f)(y) = R_y(f(\varphi(y))), \quad \forall y \in Y_0, \ \forall f \in \text{Lip}(X, E).$$

For each $y \in Y$, consider $T_y = \Phi^{-1} \circ R_y \in L(E)$. It is easily seen that the map $y \mapsto T_y$ from Y into L(E) is Lipschitz with $||T_y|| = 1$ for all $y \in Y$. Moreover, for any $y \in Y_0$ and $f \in \text{Lip}(X, E)$, we have

$$T(f)(y) = \Phi^{-1}(R_y(f(\varphi(y)))) = T_y(f(\varphi(y))).$$

If, in addition, T is surjective, the rest of the corollary follows by applying Theorem 3.1 to R.

Acknowledgement

We thank the referee for several helpful suggestions which have improved this paper, especially Corollary 3.3.

References

- M. Cambern, A Holsztyński theorem for spaces of continuous vector-valued functions, Studia Math. 63 (1978), 213–217. MR515491 (80d:46049)
- K. Jarosz and V. D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 305 (1988), 193–206. MR920154 (89e:46026)
- T. M. Jenkins, Banach Spaces of Lipschitz Functions on an Abstract Metric Space, Ph.D. Thesis, Yale University, 1968.
- 4. M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. (2) **52** (1950), 309–327. MR0036942 (12:188c)
- A. Jiménez-Vargas and Moisés Villegas-Vallecillos, Into linear isometries between spaces of Lipschitz functions, Houston J. Math. 34 (2008), 1165–1184.
- K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961/62), 55–66.
 MR0140927 (25:4341)
- E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), 58–74. MR599476 (82e:46036)
- W. Novinger, Linear isometries of subspaces of continuous functions, Studia Math. 53 (1975), 273–276. MR0417770 (54:5818)
- A. K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions, Canad. J. Math. 20 (1968), 1150–1164. MR0236685 (38:4980)
- M. H. Vasavada, Closed Ideals and Linear Isometries of Certain Function Spaces, Ph.D. Thesis, Wisconsin University, 1969.
- N. Weaver, Isometries of noncompact Lipschitz spaces, Canad. Math. Bull. 38 (1995), 242–249. MR1335105 (96b:46032)
- N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., River Edge, NJ, 1999. MR1832645 (2002g:46002)

Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04071, Almería, Spain

E-mail address: ajimenez@ual.es

DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE ALMERÍA, 04071, ALMERÍA, SPAIN

E-mail address: mvv042@alboran.ual.es