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LINEAR ISOMETRIES BETWEEN SPACES
OF VECTOR-VALUED LIPSCHITZ FUNCTIONS

A. JIMÉNEZ-VARGAS AND MOISÉS VILLEGAS-VALLECILLOS

(Communicated by Nigel J. Kalton)

Abstract. In this paper we state a Lipschitz version of a theorem due to
Cambern concerning into linear isometries between spaces of vector-valued
continuous functions and deduce a Lipschitz version of a celebrated theorem
due to Jerison concerning onto linear isometries between such spaces.

1. Introduction

Given a metric space (X, d) and a Banach space E, we denote by Lip(X, E)
the Banach space of all bounded Lipschitz functions f : X → E with the norm
‖f‖ = max {L(f), ‖f‖∞}, where

L(f) = sup {‖f(x) − f(y)‖ /d(x, y) : x, y ∈ X, x �= y} .

If E is the field of real or complex numbers, we shall write simply Lip(X).
The study of surjective linear isometries between spaces Lip(X) was initiated

by Roy [9] and Vasavada [10]. In [9, Theorem 1.7], Roy proved that if (X, d)
is a compact connected metric space with diameter at most 1, then a map T is
a surjective linear isometry from Lip(X) onto itself if and only if there exist a
surjective isometry ϕ : X → X and a scalar τ of modulus 1 such that

T (f)(y) = τf(ϕ(y)), ∀y ∈ Y, ∀f ∈ Lip(X).

In [8, Theorem 2], Novinger improved slightly Roy’s result by considering linear
isometries from Lip(X) onto Lip(Y ). Vasavada [10] proved it for linear isome-
tries from Lip(X) onto Lip(Y ) when the metric spaces X, Y are compact with
diameter at most 2 and β-connected for some β < 1. Weaver [11] developed a
technique to remove the compactness assumption on X and Y and showed that the
above-mentioned characterization holds if X, Y are complete and 1-connected with
diameter at most 2 [11, Theorem D]. The reduction to metric spaces of diameter
at most 2 is not restrictive since if (X, d) is a metric space and X ′ is the set X
remetrized with the metric d′(x, y) = min{d(x, y), 2}, then the diameter of X ′ is at
most 2 and Lip(X ′) is isometrically isomorphic to Lip(X) [12, Proposition 1.7.1].
We must also mention the complete research carried out on surjective linear isome-
tries between spaces of Hölder functions [2, 3, 6, 7]. We refer the reader to Weaver’s
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book Lipschitz Algebras [12] for unexplained terminology and more information on
the subject. This is essentially the history of the onto scalar-valued case. Recently,
into linear isometries (that is, not necessarily surjective) and codimension 1 linear
isometries between spaces Lip(X) have been studied in [5].

In this note we shall go a step further and give a complete description of linear
isometries between spaces of vector-valued Lipschitz functions. To our knowledge,
little or nothing is known on the matter in the vector-valued case. Our approach to
the problem is not based on extreme points as in all aforementioned papers. We have
used here a different method which is influenced by that utilized by Cambern [1] to
characterize into linear isometries between spaces C(X, E) of continuous functions
from a compact Hausdorff space X into a Banach space E with the supremum norm.
In [4], Jerison extended to the vector case the classical Banach–Stone theorem about
onto linear isometries between spaces C(X), and Jerison’s theorem was generalized
by Cambern [1] by considering into linear isometries.

The aim of this paper is to show that Cambern’s and Jerison’s theorems have a
natural formulation in the context of Lipschitz functions.

2. A Lipschitz version of Cambern’s theorem

We begin by introducing some notation. Given a Banach space E, SE will denote
its unit sphere and BE its closed unit ball. Let us recall that a Banach space E is
said to be strictly convex if every element of SE is an extreme point of BE . For
Banach spaces E and F , L(E, F ) will stand for the Banach space of all bounded
linear operators from E into F with the canonical norm of operators. In the case
E = F , we shall write L(E) instead of L(E, F ). Given a metric space (X, d), we
shall denote by 1X the function constantly 1 on X and by diam(X) the diameter
of X. If ϕ : X → Y is a Lipschitz map between metric spaces, L(ϕ) will be its
Lipschitz constant.

For any f ∈ Lip(X) and e ∈ E, define f ⊗ e : X → E by (f ⊗ e)(x) = f(x)e. It
is easy to check that f ⊗ e ∈ Lip(X, E) with ‖f ⊗ e‖∞ = ‖f‖∞ ‖e‖ and L(f ⊗ e) =
L(f) ‖e‖, and thus ‖f ⊗ e‖ = ‖f‖ ‖e‖.

Theorem 2.1. Let X and Y be compact metric spaces and let E be a strictly convex
Banach space. Let T be a linear isometry from Lip(X, E) into Lip(Y, E) such that
T (1X ⊗ e) = 1Y ⊗ e for some e ∈ SE . Then there exists a Lipschitz map ϕ from
a closed subset Y0 of Y onto X with L(ϕ) ≤ max{1, diam(X)/2}, and a Lipschitz
map y �→ Ty from Y into L(E) with ‖Ty‖ = 1 for all y ∈ Y , such that

T (f)(y) = Ty(f(ϕ(y))), ∀y ∈ Y0, ∀f ∈ Lip(X, E).

Proof. For each x ∈ X, define

F (x) = {f ∈ Lip(X, E) : f(x) = ‖f‖∞ e} .

Clearly, 1X ⊗ e ∈ F (x). For each δ > 0, the map hx,δ ⊗ e : X → E, defined by

hx,δ(z) = max {0, 1 − d(z, x)/δ} (z ∈ X),

belongs to F (x). Indeed, an easy verification shows that hx,δ ∈ Lip(X) with
‖hx,δ‖∞ = 1 = hx,δ(x). Hence hx,δ ⊗ e ∈ Lip(X, E) with ‖hx,δ ⊗ e‖∞ = 1 and
(hx,δ ⊗ e)(x) = e. Then (hx,δ ⊗ e)(x) = ‖hx,δ ⊗ e‖∞ e and thus hx,δ ⊗ e ∈ F (x).

We shall prove the theorem in a series of steps.
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Step 1. Let x ∈ X. For each f ∈ F (x), the set

P (f) = {y ∈ Y : T (f)(y) = f(x)}
is nonempty and closed.

Let f ∈ F (x). If f = 0, then P (f) = Y and there is nothing to prove. Suppose
f �= 0 and consider g = ‖f‖∞ f + ‖f‖2 (1X ⊗ e). Clearly, g ∈ Lip(X, E) with

L(g) = ‖f‖∞ L(f) and g(x) =
(
‖f‖2

∞ + ‖f‖2
)

e. The latter equality implies g �= 0.

Since
L(g) ≤ ‖f‖∞ ‖f‖ ≤ ‖f‖2

∞ + ‖f‖2 = ‖g(x)‖ ≤ ‖g‖∞ ,

it follows that ‖g‖ = ‖g‖∞. Moreover, ‖g‖∞ = ‖g(x)‖ = ‖f‖2
∞ + ‖f‖2 since

‖g‖∞ =
∥∥∥‖f‖∞ f + ‖f‖2 (1X ⊗ e)

∥∥∥
∞

≤ ‖f‖2
∞ + ‖f‖2 = ‖g(x)‖ .

We now claim that there exists a point y ∈ Y such that T (g/ ‖g‖) (y) = e. Contrary
to our claim, assume e �= T (g/ ‖g‖) (y) for all y ∈ Y . Let ε > 0 and take h =
g/ ‖g‖ + ε(1X ⊗ e). Clearly, h ∈ Lip(X, E) and T (h) = T (g)/ ‖g‖ + ε(1Y ⊗ e). A
simple calculation yields

L(T (h)) = L(T (g))/ ‖g‖ ≤ ‖T (g)‖ / ‖g‖ = 1.

Next we show that ‖T (h)‖∞ < 1 + ε. For any y ∈ Y , we have

‖T (h)(y)‖ = ‖T (g/ ‖g‖) (y) + εe‖ ≤ 1 + ε

since ‖T (g/ ‖g‖) (y)‖ ≤ ‖T (g)‖ / ‖g‖ = 1. Indeed,

‖T (g/ ‖g‖) (y) + εe‖ < 1 + ε.

Otherwise the vector u = (1/(1 + ε)) (T (g/ ‖g‖) (y) + εe) would be an extreme
point of BE by the strict convexity of E, and since u is a convex combination of
T (g/ ‖g‖) (y) and e, which are in BE , we infer that T (g/ ‖g‖) (y) = e, a contradic-
tion. Hence ‖T (h)(y)‖ < 1 + ε for all y ∈ Y . Since ‖T (h)‖∞ = ‖T (h)(y)‖ for some
y ∈ Y , we conclude that ‖T (h)‖∞ < 1 + ε. From what we have proved above it is
deduced that ‖T (h)‖ < 1 + ε, but, on the other hand,

1 + ε = ‖g(x)/ ‖g‖ + εe‖ = ‖h(x)‖ ≤ ‖h‖∞ ≤ ‖h‖ = ‖T (h)‖ ,

which is impossible. This proves our claim.
Now, let y ∈ Y be such that T (g/ ‖g‖) (y) = e. Since e = g(x)/ ‖g‖, Tg(y) =

g(x), that is,

‖f‖∞ Tf(y) + ‖f‖2 T (1X ⊗ e)(y) =
(
‖f‖2

∞ + ‖f‖2
)

e.

Since T (1X ⊗ e) = 1Y ⊗ e, we have

‖f‖∞ T (f)(y) + ‖f‖2
e =

(
‖f‖2

∞ + ‖f‖2
)

e,

and thus T (f)(y) = ‖f‖∞ e, which is T (f)(y) = f(x) since f ∈ F (x). Hence
P (f) �= ∅. Moreover, P (f) is closed in Y since P (f) = T (f)−1({f(x)}) and T (f)
is continuous.

Step 2. For each x ∈ X, the set

B(x) = {y ∈ Y : T (f)(y) = f(x), ∀f ∈ F (x)}
is nonempty and closed.
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Let x ∈ X. For each f ∈ F (x), P (f) is a nonempty closed subset of Y by Step
1. Since B(x) =

⋂
f∈F (x) P (f), B(x) is closed. To prove that B(x) �= ∅, since Y

is compact and B(x) =
⋂

f∈F (x) P (f), it suffices to check that if f1, ..., fn ∈ F (x),
then

⋂n
j=1 P (fj) �= ∅.

We can suppose, without loss of generality, that fj �= 0 for all j ∈ {1, ..., n} since
P (fj) = Y if fj = 0. For each j ∈ {1, ..., n} define gj = ‖fj‖∞ fj + ‖fj‖2 (1X ⊗ e).

As in the proof of Step 1, gj ∈ Lip(X, E) with gj(x) =
(
‖fj‖2

∞ + ‖fj‖2
)

e and

‖gj‖ = ‖fj‖2
∞ + ‖fj‖2. Hence gj �= 0 and we can define h = (1/n)

∑n
j=1(gj/ ‖gj‖).

Clearly, h ∈ Lip(X, E), h(x) = e and ‖h‖∞ = 1. Hence h(x) = ‖h‖∞ e and thus
h ∈ F (x). Then, by Step 1, there exists a point y ∈ Y such that T (h)(y) = h(x).
Since T (h)(y) = (1/n)

∑n
j=1 (T (gj)(y)/ ‖gj‖) and h(x) = e, it follows that e =

(1/n)
∑n

j=1 (T (gj)(y)/ ‖gj‖). Since E is strictly convex and ‖T (gj)(y)‖ / ‖gj‖ ≤
‖T (gj)‖ / ‖gj‖ = 1 for all j ∈ {1, . . . , n}, we infer that T (gj)(y) = ‖gj‖ e for all j ∈
{1, . . . , n}. Reasoning as in Step 1, we obtain T (fj)(y) = fj(x) for all j ∈ {1, ..., n}
and thus y ∈

⋂n
j=1 P (fj).

Step 3. Let f ∈ Lip(X, E), x ∈ X and y ∈ B(x). If f(x) = 0, then T (f)(y) = 0.

If f = 0, then there is nothing to prove. Suppose f �= 0 and let δ = ‖f‖∞ / ‖f‖.
Clearly, L(f)/ ‖f‖∞ ≤ 1/δ. Consider hx,δ ⊗ e ∈ F (x). We next prove that
f/ ‖f‖∞ + (hx,δ ⊗ e) belongs to F (x). Since f/ ‖f‖∞ + (hx,δ ⊗ e) ∈ Lip(X, E) and
f(x)/ ‖f‖∞ +(hx,δ ⊗e)(x) = e, it suffices to check that ‖f/ ‖f‖∞ + (hx,δ ⊗ e)‖∞ =
1. Let z ∈ X. If d(z, x) ≥ δ, we have (hx,δ ⊗ e)(z) = 0 and so

‖f(z)/ ‖f‖∞ + (hx,δ ⊗ e)(z)‖ = ‖f(z)‖ / ‖f‖∞ ≤ 1.

If d(z, x) < δ, then (hx,δ ⊗ e)(z) = (1 − d(z, x)/δ) e, and therefore

‖f(z)/ ‖f‖∞ + (hx,δ ⊗ e)(z)‖ ≤ ‖f(z)‖ / ‖f‖∞ + 1 − d(z, x)/δ ≤ 1,

since

‖f(z)‖ / ‖f‖∞ = ‖f(z) − f(x)‖ / ‖f‖∞ ≤ L(f)d(z, x)/ ‖f‖∞ ≤ d(z, x)/δ.

Hence ‖f/ ‖f‖∞ + (hx,δ ⊗ e)(z)‖∞ ≤ 1. Since

‖f(x)/ ‖f‖∞ + (hx,δ ⊗ e)(x)‖ = ‖e‖ = 1,

we obtain the desired condition.
By the definition of B(x) it follows that

T (f/ ‖f‖∞ + (hx,δ ⊗ e)) (y) = (f/ ‖f‖∞ + (hx,δ ⊗ e)) (x),

that is, T (f)(y)/ ‖f‖∞+T (hx,δ⊗e)(y) = e . Moreover, since y ∈ B(x) and hx,δ⊗e ∈
F (x), we have T (hx,δ ⊗ e)(y) = (hx,δ ⊗ e)(x) = e. Hence T (f)(y)/ ‖f‖∞ + e = e
and thus T (f)(y) = 0.

Step 4. Let x, x′ ∈ X with x �= x′. Then B(x) ∩ B(x′) = ∅.

Suppose y ∈ B(x) ∩ B(x′). Let δ = d(x, x′) > 0 and consider hx,δ ⊗ e. Since
y ∈ B(x) and hx,δ ⊗e ∈ F (x), we have T (hx,δ ⊗e)(y) = (hx,δ ⊗e)(x) = e by Step 2,
but Step 3 also yields T (hx,δ ⊗ e)(y) = 0 since y ∈ B(x′) and (hx,δ ⊗ e)(x′) = 0. So
we arrive at a contradiction. Hence B(x) ∩ B(x′) = ∅.

Steps 3 and 4 motivate the following:

Definition 1. Let Y0 =
⋃

x∈XB(x). Define ϕ : Y0 → X by ϕ(y) = x if y ∈ B(x).
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Clearly, ϕ is surjective. Moreover, given y ∈ Y0, there exists x ∈ X such that
y ∈ B(x), and hence ϕ(y) = x and T (f)(y) = f(x) for all f ∈ F (x).

We shall obtain the representation of T in terms of the following functions.

Definition 2. For each y ∈ Y , define Ty : E → E by Ty(u) = T (1X ⊗ u)(y).

It is easy to show that Ty ∈ L(E) with ‖Ty‖ = 1 = ‖Ty(e)‖ for all y ∈ Y .

Step 5. The map y �→ Ty from Y into L(E) is Lipschitz.

Let y, z ∈ Y . Given u ∈ E, we have

‖(Ty − Tz)(u)‖ ≤ L(T (1X ⊗ u))d(y, z)

≤ ‖T (1X ⊗ u)‖ d(y, z) = ‖u‖ d(y, z),

and thus ‖Ty − Tz‖ ≤ d(y, z).

Step 6. T (f)(y) = Ty(f(ϕ(y))) for all f ∈ Lip(X, E) and y ∈ Y0 .

Let f ∈ Lip(X, E) and y ∈ Y0. Let x = ϕ(y) ∈ X and define h = f−(1X⊗f(x)).
Obviously, h ∈ Lip(X, E) with h(x) = 0. From Step 3, we have T (h)(y) = 0 and
therefore T (f)(y) = T (1X ⊗ f(x))(y) = Ty(f(x)) = Ty(f(ϕ(y))).

Step 7. Y0 is closed in Y .

Let y ∈ Y and let {yn} be a sequence in Y0 which converges to y. Let xn = ϕ(yn)
for all n ∈ N. Since X is compact, there exists a subsequence

{
xσ(n)

}
converging

to a point x ∈ X. Let f ∈ F (x). Clearly,
{
T (f)(yσ(n))

}
converges to T (f)(y), but

also to f(x) as we see at once. Indeed, for each n ∈ N, we have

T (f)(yσ(n)) = Tyσ(n)(f(xσ(n))) = T (1X ⊗ f(xσ(n)))(yσ(n)),

by Step 6, and

f(x) = ‖f‖∞ e = ‖f‖∞ (1Y ⊗ e)(yσ(n))

= ‖f‖∞ T (1X ⊗ e)(yσ(n)) = T (1X ⊗ f(x))(yσ(n)),

since f ∈ F (x). We deduce that∥∥T (f)(yσ(n)) − f(x)
∥∥ =

∥∥T (1X ⊗ (f(xσ(n)) − f(x)))(yσ(n))
∥∥

≤
∥∥T (1X ⊗ (f(xσ(n)) − f(x)))

∥∥ =
∥∥1X ⊗ (f(xσ(n)) − f(x))

∥∥
=

∥∥f(xσ(n)) − f(x)
∥∥

for all n ∈ N. Since
{
f(xσ(n))

}
→ f(x), we conclude that

{
T (f)(yσ(n))

}
→ f(x).

Hence T (f)(y) = f(x) and thus y ∈ B(x) ⊂ Y0.

Step 8. The map ϕ : Y0 → X is Lipschitz and L(ϕ) ≤ max{1, diam(X)/2}.
Let y, z ∈ Y0 be such that ϕ(y) �= ϕ(z) and put δ = d(ϕ(y), ϕ(z))/2. De-

fine fy,z = δ(hϕ(y),δ − hϕ(z),δ) on X. It is easy to see that fy,z ∈ Lip(X) and
‖fy,z‖ ≤ k := max{1, diam(X)/2}. Since T is an isometry, ‖T (fy,z ⊗ e)‖ ≤ k. This
inequality implies L(T (fy,z ⊗ e)) ≤ k. It follows that

‖T (fy,z ⊗ e)(y) − T (fy,z ⊗ e)(z)‖ ≤ kd(y, z).

Using Step 6 we get

T (fy,z ⊗ e)(y) = Ty((fy,z ⊗ e)(ϕ(y))) = Ty(δe) = δe,

T (fy,z ⊗ e)(z) = Tz((fy,z ⊗ e)(ϕ(z))) = Tz(−δe) = −δe.

We conclude that d(ϕ(y), ϕ(z)) ≤ kd(y, z). �
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The condition in Theorem 2.1, T (1X ⊗ e) = 1Y ⊗ e for some e ∈ SE , is not
too restrictive if we analyse the known results in the scalar case. In this case our
condition means T (1X) = 1Y ; notice that the connectedness assumptions on the
metric spaces in [9, Lemma 1.5] and [11, Lemma 6] yield a similar condition, namely,
that T (1X) is a constant function.

3. A Lipschitz version of Jerison’s theorem

Recall that a map between metric spaces ϕ : X → Y is said to be a Lipschitz
homeomorphism if ϕ is bijective and ϕ and ϕ−1 are both Lipschitz.

Theorem 3.1. Let X, Y be compact metric spaces and let E be a strictly convex
Banach space. Let T be a linear isometry from Lip(X, E) onto Lip(Y, E) such that
T (1X ⊗e) = 1Y ⊗e for some e ∈ SE. Then there exists a Lipschitz homeomorphism
ϕ : Y → X with L(ϕ) ≤ max{1, diam(X)/2} and L(ϕ−1) ≤ max{1, diam(Y )/2},
and a Lipschitz map y �→ Ty from Y into L(E) where Ty is an isometry from E
onto itself for all y ∈ Y such that

T (f)(y) = Ty(f(ϕ(y))), ∀y ∈ Y, ∀f ∈ Lip(X, E).

Proof. Let Y0 and ϕ be as in Theorem 2.1. Since T−1 : Lip(Y, E) → Lip(X, E) is
a linear isometry and T−1(1Y ⊗ e) = 1X ⊗ e, applying Theorem 2.1 we have

T−1(g)(x) = (T−1)x(g(ψ(x))), ∀x ∈ X0, ∀g ∈ Lip(Y, E),

where ψ is a Lipschitz map from a closed subset X0 of X onto Y with L(ψ) ≤
max{1, diam(Y )/2}, and x �→ (T−1)x is a Lipschitz map from X into L(E). Namely,
X0 =

⋃
y∈Y B(y) where, for each y ∈ Y ,

B(y) =
{
x ∈ X : T−1(g)(x) = g(y), ∀g ∈ F (y)

}

with
F (y) = {g ∈ Lip(Y, E) : g(y) = ‖g‖∞ e} ,

and ψ : X0 → Y is the Lipschitz map defined by ψ(x) = y if x ∈ B(y). Moreover,
using the same arguments as in Step 3, the following can be proved:

Claim 1. Let g ∈ Lip(Y, E), y ∈ Y and x ∈ B(y). If g(y) = 0, then T−1(g)(x) = 0.

After this preparation we proceed to prove the theorem. Fix x ∈ X and let
y ∈ B(x). We first prove that x ∈ B(y). Suppose that x /∈ B(y). Since B(y) �= ∅,
there exists x′ ∈ B(y) with x′ �= x. Take f ∈ Lip(X, E) for which f(x) = 0 and
f(x′) �= 0. Since y ∈ B(x) and f(x) = 0, we have T (f)(y) = 0 by Step 3. Then
T−1(T (f))(x′) = 0 since x′ ∈ B(y) by Claim 1, and thus f(x′) = 0, a contradiction.
Therefore x ∈ B(y) ⊂ X0 and thus X0 = X. Next we see that Y0 = Y . Let y ∈ Y .
We can take a point x ∈ B(y). As above it is proved that y ∈ B(x) and thus y ∈ Y0.

To see that ϕ is a Lipschitz homeomorphism, let y ∈ Y . Then y ∈ B(x) for some
x ∈ X, that is, ϕ(y) = x. Moreover, by what we have proved above, x ∈ B(y) and
so ψ(x) = y. As a consequence, ψ(ϕ(y)) = y. Since ϕ was surjective, ϕ is bijective
with ϕ−1 = ψ and thus ϕ is a Lipschitz homeomorphism.

To check that Ty is an isometry from E into itself for every y ∈ Y , we first show
that T sends nonvanishing functions of Lip(X, E) into nonvanishing functions of
Lip(Y, E). Assume there exists f ∈ Lip(X, E) such that f(x) �= 0 for all x ∈ X,
but T (f)(y) = 0 for some y ∈ Y . By the surjectivity of ψ, there is a point
x ∈ X0 such that ψ(x) = y, that is, x ∈ B(y). Since T (f)(y) = 0, by Claim 1
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we have f(x) = T−1(T (f))(x) = 0, a contradiction. Hence T maps nonvanishing
functions into nonvanishing functions. If, for some y ∈ Y , Ty is not an isometry,
then there exists a u ∈ SE such that ‖Ty(u)‖ = ‖T (1X ⊗ u)(y)‖ < 1. Since T is
surjective, there is an f ∈ Lip(X, E) such that T (f) = 1Y ⊗ T (1X ⊗ u)(y). Thus
‖f‖∞ ≤ ‖f‖ = ‖T (f)‖ = ‖T (1X ⊗ u)(y)‖ < 1 and (1X ⊗ u) − f never vanishes on
X. As T (1X ⊗ u)(y) = T (f)(y), we arrive at a contradiction.

Next we prove that Ty : E → E is surjective for every y ∈ Y . Fix y ∈ Y and let
v ∈ E. Since T is surjective, there exists f ∈ Lip(X, E) such that T (f) = 1Y ⊗ v.
Let u = (f ◦ϕ)(y) ∈ E. Using Step 6, we have Ty(u) = Ty(f(ϕ(y))) = T (f)(y) = v.
Hence Ty is surjective. �

Finally, as a direct consequence of Theorem 3.1, we obtain the following:

Corollary 3.2. Let X, Y be compact metric spaces with diameter at most 2 and
let E be a strictly convex Banach space. Then every surjective linear isometry T
from Lip(X, E) into Lip(Y, E) satisfying that T (1X ⊗ e) = 1Y ⊗ e for some e ∈ SE,
can be expressed as T (f)(y) = Ty(f(ϕ(y))) for all y ∈ Y and f ∈ Lip(X, E), where
ϕ : Y → X is a surjective isometry and y �→ Ty is a Lipschitz map from Y into
L(E) such that Ty is an isometry from E onto E for all y ∈ Y .

In the special case that E is a Hilbert space, Theorems 2.1 and 3.1 can be
improved as follows. For a Hilbert space E, let us recall that a unitary operator is
a linear map Φ : E → E that is a surjective isometry.

Corollary 3.3. Let X and Y be compact metric spaces and let E be a Hilbert space.
Let T be a linear isometry from Lip(X, E) into Lip(Y, E) such that T (1X ⊗ e) is
a constant function for some e ∈ SE. Then there exists a Lipschitz map ϕ from
a closed subset Y0 of Y onto X with L(ϕ) ≤ max{1, diam(X)/2} and a Lipschitz
map y �→ Ty from Y into L(E) with ‖Ty‖ = 1 for all y ∈ Y such that

T (f)(y) = Ty(f(ϕ(y))), ∀y ∈ Y0, ∀f ∈ Lip(X, E).

If, in addition, T is surjective, then Y0 = Y , ϕ is a Lipschitz homeomorphism with
L(ϕ−1) ≤ max{1, diam(Y )/2} and, for each y ∈ Y , Ty is a unitary operator.

Proof. Assume that T (1X ⊗e) = 1Y ⊗u for some u ∈ E. Obviously, ‖u‖ = 1. Since
E is a Hilbert space, we can construct a unitary operator Φ : E → E such that
Φ(u) = e. Define S : Lip(Y, E) → Lip(Y, E) by

S(g)(y) = Φ(g(y)), ∀y ∈ Y, ∀g ∈ Lip(Y, E).

It is easy to prove that S is a surjective linear isometry satisfying that S(1Y ⊗u) =
1Y ⊗ e. Hence R = S ◦ T is a linear isometry from Lip(X, E) into Lip(Y, E) with
R(1X ⊗ e) = 1Y ⊗ e. Then Theorem 2.1 guarantees the existence of a Lipschitz
map ϕ from a closed subset Y0 of Y onto X with L(ϕ) ≤ max{1, diam(X)/2} and
a Lipschitz map y �→ Ry from Y into L(E) with ‖Ry‖ = 1 for all y ∈ Y such that

R(f)(y) = Ry(f(ϕ(y))), ∀y ∈ Y0, ∀f ∈ Lip(X, E).

For each y ∈ Y , consider Ty = Φ−1 ◦ Ry ∈ L(E). It is easily seen that the map
y �→ Ty from Y into L(E) is Lipschitz with ‖Ty‖ = 1 for all y ∈ Y . Moreover, for
any y ∈ Y0 and f ∈ Lip(X, E), we have

T (f)(y) = Φ−1(Ry(f(ϕ(y)))) = Ty(f(ϕ(y))).

If, in addition, T is surjective, the rest of the corollary follows by applying Theo-
rem 3.1 to R. �
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