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LINEAR BIJECTIONS PRESERVING THE HÖLDER SEMINORM

A. JIMÉNEZ-VARGAS

(Communicated by N. Tomczak-Jaegermann)

Abstract. Let (X, d) be a compact metric space and let α be a real number
with 0 < α < 1. The aim of this paper is to solve a linear preserver problem
on the Banach algebra Cα(X) of Hölder functions of order α from X into K.

We show that each linear bijection T : Cα(X) → Cα(X) having the property
that α(T (f)) = α(f) for every f ∈ Cα(X), where

α(f) = sup

{ |f(x) − f(y)|
dα(x, y)

: x, y ∈ X, x �= y

}
,

is of the form T (f) = τf ◦ϕ+µ(f)1X for every f ∈ Cα(X), where τ ∈ K with
|τ | = 1, ϕ : X → X is a surjective isometry and µ : Cα(X) → K is a linear
functional.

1. Introduction

Let (X, d) be a compact metric space and let α be a real number with 0 < α < 1.
A function f : X → K is said to be a Hölder function of order α if there is a constant
k such that

|f(x) − f(y)| ≤ kdα(x, y), ∀x, y ∈ X.

The smallest constant k for which the above inequality holds is called the Hölder
seminorm of order α of f and it is denoted by α(f), that is,

α(f) = sup
{
|f(x) − f(y)|

dα(x, y)
: x, y ∈ X, x �= y

}
.

Let Cα(X) be the vector space of all the functions f from X into K such that α(f)
is finite. This supremum does not define a norm on Cα(X), since α(f) = 0 if and
only if f is constant on X.

It is said that a linear bijection T : Cα(X) → Cα(X) preserves the Hölder
seminorm if

α(T (f)) = α(f), ∀f ∈ Cα(X).
By brevity, these maps will be called Hölder seminorm preserving.

The most common way to actually obtain a norm on Cα(X) is to define

‖f‖ = max {α(f), ‖f‖∞} ,
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where

‖f‖∞ = sup{|f(x)| : x ∈ X}.

An advantage of this approach is that the Banach space of Hölder functions obtained
is actually a Banach algebra. This space of functions and other closely related spaces
have been the subject of considerable study (see, for example, [4, 5, 6, 9, 10, 11]).

Linear preserver problems concern the question of determining all linear maps
on algebras of matrices or operators which leave invariant a given set, function or
relation (see, for example, the survey papers [7, 8]), but similar questions can be
raised on arbitrary algebras.

Let Y be a compact Hausdorff space and let C(Y ) be the space of real or com-
plex continuous functions on Y equipped with the supremum norm. With regard to
C(Y ), the main linear preserver problems concern the characterization of linear bi-
jections preserving some given seminorm or norm. The classical Banach-Stone the-
orem determines the linear bijections preserving the sup-norm on C(Y ). Recently,
when Y is a first countable space, Györy and Molnar [3] have given a complete
description of linear bijections of C(Y ) which preserve the seminorm

f �→ diam(f(Y )) = sup {|f(x) − f(y)| : x, y ∈ Y } .

Their result has been extended to the case of a general compact Hausdorff space
by González and Uspenskij [2] and independently by Cabello Sánchez [1].

Motivated by this, the purpose of this paper is to determine all Hölder seminorm
preserving linear bijections of Cα(X).

2. The linear bijections which preserve the Hölder seminorm

Our characterization of these maps is the following.

Theorem 2.1. A linear bijection T : Cα(X) → Cα(X) is Hölder seminorm pre-
serving if and only if there is a surjective isometry ϕ : X → X, a linear functional
µ : Cα(X) → K and a number τ with |τ | = 1 and µ(1X) + τ �= 0 such that
T (f) = τf ◦ ϕ + µ(f)1X for every f ∈ Cα(X).

To prove Theorem 2.1, we follow a similar process to the one of Félix Cabello
Sánchez in [1]. Our approach depends on the analysis of the isometry group of
certain Banach spaces of Hölder functions in which the Hölder seminorm becomes
a norm.

There is another way to obtain a norm on the vector space of Hölder functions,
and that is to identify a distinguished point of the metric space and consider only
the functions which are zero at this point.

Let x0 be an arbitrarily chosen point of X. The set Cα(X, x0) of all the functions
f ∈ Cα(X) such that f(x0) = 0 becomes a Banach space endowed with the norm
f �→ α(f). The map ρ : Cα(X) → Cα(X, x0) defined by

ρ(f) = f − f(x0)1X , ∀f ∈ Cα(X),

is surjective linear with ker ρ equal to the space of the constant functions on X and

α(ρ(f)) = α(f), ∀f ∈ Cα(X).
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Suppose that T is a Hölder seminorm preserving linear bijection of Cα(X). Then
there is a (unique) surjective linear isometry Tα of Cα(X, x0) such that the diagram

Cα(X) T−→ Cα(X)
ρ ↓ ↓ ρ

Cα(X, x0)
Tα−→ Cα(X, x0)

commutes.
We derive Theorem 2.1 from the following characterization of the isometries of

Cα(X, x0). We shall denote by SK the set of all the unimodular scalars of K.

Theorem 2.2. A linear map Tα : Cα(X, x0) → Cα(X, x0) is a surjective isometry
if and only if there is a surjective isometry ϕ of X and a number τ in SK such that
Tα(ρ(f)) = ρ(τf ◦ ϕ) for all f ∈ Cα(X).

Proof of Theorem 2.1. It is straightforward to check that every linear map T of the
form T (f) = τf ◦ϕ+µ(f)1X for every f ∈ Cα(X) with τ, ϕ, µ being as in Theorem
2.1, is a Hölder seminorm preserving linear bijection of Cα(X).

Now, suppose that T : Cα(X) → Cα(X) is a linear bijection which preserves the
Hölder seminorm and let Tα be the corresponding isometry of Cα(X, x0) such that
Tα ◦ ρ = ρ ◦T. By Theorem 2.2 there is a surjective isometry ϕ of X and a number
τ ∈ SK such that Tα(ρ(f)) = ρ(τf ◦ϕ) for all f ∈ Cα(X). Then T (f)−τf ◦ϕ ∈ ker ρ
for all f ∈ Cα(X), and therefore there exists a linear functional µ : Cα(X) → K

such that T (f) = τf ◦ϕ+µ(f)1X for every f ∈ Cα(X). Since the relation µ(1X) �=
−τ is obvious, the proof of Theorem 2.1 is complete. �

For the proof of Theorem 2.2 we shall need a description of the following points.

3. The extreme points of the unit ball of Cα(X, x0)∗

These extreme points play a key role in our characterization of the isome-
tries of Cα(X, x0). To identify them, we construct a linear isometric imbedding
of Cα(X, x0) into a suitable space of continuous functions supplied with the supre-
mum norm.

Let W be the complement of the diagonal in the cartesian product space X×X,
that is, W = {(x, y) ∈ X × X : x �= y} and let βW be the Stone-Čech compactifi-
cation of W.

If C(βW ) denotes the Banach space of continuous functions from βW into K

endowed with the supremum norm, we define the map r : Cα(X, x0) → C(βW ) by

r(f)(w) = βf∗(w), ∀f ∈ Cα(X, x0), ∀w ∈ βW,

where

f∗(x, y) =
f(x) − f(y)

dα(x, y)
, ∀(x, y) ∈ W,

and βf∗ is its norm-preserving extension to βW. Clearly r is linear and

‖r(f)‖∞ = ‖βf∗‖∞ = ‖f∗‖∞ = α(f)

for every f ∈ Cα(X, x0).
For every w ∈ βW, we shall denote by δw the evaluation functional on C(βW )

given by δw(f) = f(w). Moreover, δ̃w will stand for the functional δw ◦ r, that is,

δ̃w(f) = δw(r(f)), ∀f ∈ Cα(X, x0).
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Clearly δ̃w is linear and∣∣∣δ̃w(f)
∣∣∣ = |βf∗(w)| ≤ ‖βf∗‖∞ = α(f), ∀f ∈ Cα(X, x0).

Hence δ̃w ∈ Cα(X, x0)∗ and
∥∥∥δ̃w

∥∥∥ ≤ 1.

Lemma 3.1. Each extreme point of the unit ball of Cα(X, x0)∗ is of the form τ δ̃w

for some τ ∈ SK and some w ∈ βW.

Proof. The linear map r imbeds Cα(X, x0) isometrically as a subspace of C(βW ).
As a consequence, the adjoint map r∗ : C(βW )∗ → Cα(X, x0)∗ sends the unit
ball of C(βW )∗ onto the unit ball of Cα(X, x0)∗. Thus the Krein-Milman Theorem
implies that each extreme point of the unit ball of Cα(X, x0)∗ is the image under r∗

of some extreme point of the unit ball of C(βW )∗. By the Arens-Kelley Theorem,
the extreme points of the unit ball of C(βW )∗ are of the form τδw where τ ∈ SK

and w ∈ βW.
Therefore, if Φ is an extreme point of the unit ball of Cα(X, x0)∗, we have

Φ = r∗(τδw) = τr∗(δw) = τ (δw ◦ r) = τ δ̃w

for some τ ∈ SK and some w ∈ βW. �

Observe that for each (x, y) in W, the functional δ̃(x,y) comes given by

δ̃(x,y)(f) = δ(x,y)(r(f)) = βf∗(x, y) = f∗(x, y) =
f(x) − f(y)

dα(x, y)
for every f ∈ Cα(X, x0).

Next we shall study the relations between the extreme points of the unit ball
of Cα(X, x0)∗ and the functionals of the form δ̃(x,y) with (x, y) ∈ W. Mayer-Wolf
states these relations in [9] without proof (see remark after Theorem 2.3). We
include the proofs for the sake of completeness, but we shall detail essentially those
steps which do not appear in [9].

We first prove that every functional δ̃(x,y) is an extreme point of the unit ball of
Cα(X, x0)∗. We shall need the following technical lemma ([12], Lemma 2.4.4).

Lemma 3.2. Let 0 < α < β < 1 and let A, ε > 0. Then there exists δ > 0 such
that for any a, b, c, d ≥ 0 and B > 0 which satisfy the three conditions:

|a − b| , |c − d| ≤ A ≤ a + b, c + d,

|b − c| , |a − d| ≤ B ≤ b + c, a + d,

ε ≤ a + c, b + d,

we have ∣∣aβ − bβ + cβ − dβ
∣∣

2Aβ−αBα
≤ 1 − δ.

Lemma 3.3. Let τ be in SK and (x, y) in W . Then τ δ̃(x,y) is an extreme point of
the unit ball of Cα(X, x0)∗.

Proof. The proof that τ δ̃(x,y) (or δ̃(x,y) equivalently) is an extreme point of the unit
ball of Cα(X, x0)∗ will be based on the following fact which is a special case of a
more general result proved by de Leeuw ([6], see Lemma 3.2):

Let X be a compact Hausdorff space and A a closed subspace of C(X). If x ∈ X
and δx is the evaluation functional f ∈ C(X) → f(x) ∈ K, a sufficient condition
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for δx|A to be an extreme point of the unit ball of A∗ is that there exists a function
f in the unit ball of A such that f(x) = 1, and |f(y)| = 1 iff there exists a θ = ±1
such that g(y) = θg(x) for all g ∈ A. In this case we say that f peaks at x relative
to A.

Taking into account this result, we only have to find a function f(x,y) ∈ Cα(X, x0)
such that r(f(x,y)) peaks at (x, y) relative to r(Cα(X, x0)). To see this we follow
([12], Proposition 2.4.5). Choose a real number β with α < β < 1 and consider the
function f(x,y) = ρ(g(x,y)), where

g(x,y)(z) =
dβ(z, y) − dβ(z, x)

2dβ−α(x, y)
, ∀z ∈ X.

Clearly

r(f(x,y))(x, y) =
f(x,y)(x) − f(x,y)(y)

dα(x, y)
= 1.

Let U be any open subset of W (in the topology induced by the sup metric) con-
taining (x, y) and (y, x). Then there exists ε > 0 such that

(z, w) /∈ U ⇒ d(x, z) + d(y, w) ≥ ε, d(x, w) + d(y, z) ≥ ε.

For this ε and A = d(x, y), let δ be given by the above lemma. For any (z, w) /∈ U,
let a = d(y, z), b = d(x, z), c = d(x, w), d = d(y, w) and B = d(z, w). A simple
calculation shows that the hypotheses of the lemma are satisfied and thus we have∣∣r(f(x,y))(z, w)

∣∣ =

∣∣f(x,y)(z) − f(x,y)(w)
∣∣

dα(z, w)
=

∣∣aβ − bβ + cβ − dβ
∣∣

2Aβ−αBα
≤ 1 − δ.

This shows that f(x,y) ∈ Cα(X, x0) with∥∥r(f(x,y))
∥∥
∞ = α(f(x,y)) = 1,

and
∣∣r(f(x,y))(w)

∣∣ < 1 for all w ∈ βW except at w = (x, y) and w = (y, x).
According to the definition, r(f(x,y)) peaks at (x, y) relative to r(Cα(X, x0)). �

Let ∆ : W → Cα(X, x0)∗ be the map defined by

∆(x, y) = δ̃(x,y).

Lemma 3.4. The map ∆ : W → (∆(W ), w∗) is a local homeomorphism.

Proof. The proof will be carried out through a series of steps.

Step 1. Let (x1, y1), (x2, y2) be in W and suppose that δ̃(x1,y1) = δ̃(x2,y2). Then
{x1, y1} = {x2, y2}.

Proof. Let us assume, to obtain a contradiction, that {x1, y1} �= {x2, y2}. Then
there exists at least a point in {x2, y2} which is not in {x1, y1}. We can suppose,
without loss of generality, that such a point is x2. Let g : X → R be the function
defined by

g(z) =
dα(z, {x1, y1, y2})

dα(z, x2) + dα(z, {x1, y1, y2})
, ∀z ∈ X.

It is easy to check that g ∈ Cα(X). Therefore the function f = ρ(g) ∈ Cα(X, x0)
and for every (x, y) ∈ W, it is clear that

δ̃(x,y)(f) =
g(x) − g(y)

dα(x, y)
.
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In particular we obtain that δ̃(x1,y1)(f) = 0 and δ̃(x2,y2)(f) = 1
dα(x2,y2)

. Since

δ̃(x1,y1) = δ̃(x2,y2), a contradiction follows. So {x1, y1} = {x2, y2}.

Step 2. Given (x, y) in W, there exists a neighbourhood Bε(x, y) of (x, y) in W
for a suitable ε > 0 such that (w, z) /∈ Bε(x, y) if (z, w) ∈ Bε(x, y).

Proof. For each ε > 0 the set

Bε(x, y) = {(z, w) ∈ W : dα(z, x) < ε, dα(w, y) < ε}
is a neighbourhood of (x, y) in W with the topology induced by the sup metric. Let
ε be a real number such that 0 < ε < dα(x, y)/2. Then the neighbourhoods Bε(x, y)
and Bε(y, x) are disjoint. If (z, w) ∈ Bε(x, y), then clearly (w, z) ∈ Bε(y, x) and
therefore (w, z) /∈ Bε(x, y).

Step 3. Given (x, y) in W, the map ∆ is injective on Bε(x, y).

Proof. This follows immediately from Steps 1 and 2.

Step 4. The map ∆ : W → (∆(W ), w∗) is continuous.

Proof. Let (x, y) ∈ W. If {(xi, yi)} is a net in W converging to (x, y), then {f(xi, yi)}
converges to f(x, y) for every f in C(βW ). This says that {δ(xi,yi)} converges
to δ(x,y) in (C(βW )∗, w∗). Since r∗ (as an adjoint mapping) is continuous from
(C(βW )∗, w∗) into (Cα(X, x0)∗, w∗), then {r∗(δ(xi,yi))} = {δ̃(xi,yi)} converges to
r∗(δ(x,y)) = δ̃(x,y) in (Cα(X, x0)∗, w∗).

Step 5. The map ∆ : W → (∆(W ), w∗) is open.

Proof. Let U be an open subset of W and let (x, y) ∈ U. We take a suitable
neighbourhood Bε(x, y) ⊂ U and we can find a function f ∈ Cα(X, x0) such
that r(f)(x, y) = 1 and r(f)(z, w) = 0 for all (z, w) in W − Bε(x, y). Let V1 =
{Φ ∈ Cα(X, x0)∗ : Φ(f) �= 0} . Then V1 is w∗-open in Cα(X, x0)∗. Hence V1∩∆(W )
is w∗-open in ∆(W ) and we have that δ̃(x,y) ∈ V1 ∩ ∆(W ) ⊂ ∆(Bε(x, y)) ⊂ ∆(U).

Step 6. Given (x, y) in W, the map ∆ is a homeomorphism from Bε(x, y) into
(∆(Bε(x, y)), w∗).

Proof. The proof is deduced from the above steps. �

From now on F (W ) stands for the set

{τ δ̃(x,y) : τ ∈ SK, (x, y) ∈ W}.
Every element of F (W ) is an extreme point of the unit ball of Cα(X, x0)∗, but

the reciprocal is not true. However we have the following fact:

Lemma 3.5. Every extreme point of the unit ball of Cα(X, x0)∗ belongs to the
w∗-closure of F (W ).

Proof. Let Φ be an extreme point of the unit ball of Cα(X, x0)∗. Then Φ = τ δ̃w

for some τ ∈ SK and some w ∈ βW by Lemma 3.1. If w ∈ W, there is nothing
to prove. If w ∈ βW\W, since W is dense in βW, we can select a net {wi} from
W converging to w in βW. Reasoning as in the proof of Step 4 in Lemma 3.4, we
show that {δ̃wi

} converges to δ̃w in (C (X, x0)∗, w∗) and so Φ is in the w∗-closure
of F (W ). �
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A complete description of the extreme points of the unit ball of Cα(X, x0)∗ of
the form δ̃w with w ∈ βW\W appears difficult ([5], see page 185). For example,
Johnson ([4], Theorem 2.8) states that if the compact metric space X is an infinite
set, then the unit ball of the space Cα(X)∗ has extreme points of this type, and
Sherbert ([10], Chapter III) shows that these functionals must be point derivations.

However the w∗-topology supplies a property which permits us to distinguish
the extreme points of the form δ̃(x,y) with (x, y) ∈ W from those which are of the
form δ̃w with w ∈ βW\W.

Lemma 3.6. Let Φ be an extreme point of the unit ball of Cα(X, x0)∗. Then Φ
belongs to F (W ) if and only if Φ has a w∗-metrizable neighbourhood in the w∗-
closure of F (W ).

Proof. The proof of the necessity is immediate since (∆(W ), w∗) and W are locally
homeomorphic by Lemma 3.4.

To prove the sufficiency suppose that Φ /∈ F (W ) and that Φ has a w∗-metrizable
neighbourhood in the w∗-closure of F (W ). The existence of this neighbourhood
implies that there is a sequence {Φn} in F (W ) such that {Φn} converges to Φ in
the w∗-topology.

Since Φ /∈ F (W ), then Φ = τ δ̃w for some τ ∈ SK and w ∈ βW\W by Lemma
3.1. Since W is dense in βW, there is a net {wi} = {(xi, yi)} in W converging to
w in βW. By ([10], Lemma 9.6) the nets {xi} and {yi} converge in X to the same
point xw ∈ X and this point xw is independent of the choice of net {wi} from W.

In view of these comments we can suppose without loss of generality that Φn =
τ δ̃(xn,yn) with {xn} and {yn} converging to xw. Following the proof of ([9], Theorem
2.3), we construct a function f ∈ Cα(X, x0) such that limn→∞ δ̃(xn,yn)(f) does not
exist and so we obtain a contradiction. �

4. The isometry group of Cα(X, x0)

Now we are ready to characterize the isometries of Cα(X, x0). The isometries
between pairs of spaces of this type have been studied in [9].

Proof of Theorem 2.2. It is easy to verify that the map T of the form T (ρ(f)) =
ρ(τf ◦ ϕ) for all f ∈ Cα(X) with τ, ϕ under the assumptions of Theorem 2.2, is a
surjective linear isometry of Cα(X, x0).

Now suppose that T is a surjective isometry of Cα(X, x0). Then the adjoint
map T ∗ is a surjective isometry of Cα(X, x0)∗ as well, and therefore T ∗ is a bi-
jection of the set of the extreme points of the unit ball of Cα(X, x0)∗. Moreover,
as T ∗ is a homeomorphism of (Cα(X, x0)∗, w∗), T ∗ carries points which possess a
w∗-metrizable neighbourhood in the w∗-closure of F (W ) into points with the same
property.

Let (x, y) be in W . By Lemmas 3.3 and 3.6, δ̃(x,y) is an extreme point of the
unit ball of Cα(X, x0)∗ which has a w∗-metrizable neighbourhood in the w∗-closure
of F (W ). In view of the above comments, T ∗(δ̃(x,y)) satisfies the same properties.
Applying again Lemma 3.6, T ∗(δ̃(x,y)) belongs to F (W ). Therefore there are σ ∈ SK

and (u, v) ∈ W such that

T ∗(δ̃(x,y)) = σδ̃(u,v).



2546 A. JIMÉNEZ-VARGAS

Let X2 be the collection of all subsets of X having exactly two elements. Clearly
T ∗ defines a bijection Φ : X2 → X2 by

Φ({x, y}) = supp
(
T ∗(δ̃(x,y))

)
.

This definition of Φ makes sense because if τ, σ ∈ SK, (x, y), (u, v) ∈ W and τ δ̃(x,y) =
σδ̃(u,v), then {x, y} = {u, v}. This follows as in Step 1 of Lemma 3.4.

There is a bijection ϕ : X → X such that Φ({x, y}) = {ϕ(x), ϕ(y)} for every
x, y ∈ X (see [1], Lemma 3). Plainly

T ∗(δ̃(x,y)) = σ(x, y)δ̃(ϕ(x),ϕ(y)),

where σ(x, y) ∈ SK. If for each x in X, δx denotes the evaluation functional

δx(f) = f(x), ∀f ∈ Cα(X, x0),

we can write the preceding equality as

T ∗
(

δx − δy

dα(x, y)

)
= σ(x, y)

δϕ(x) − δϕ(y)

dα(ϕ(x), ϕ(y))
.

Let us see that σ(x, y) dα(x,y)
dα(ϕ(x),ϕ(y)) does not depend on x, y. Let z /∈ {x, y}. Then

σ(x, y)
dα(x, y)

dα(ϕ(x), ϕ(y))
(δϕ(x) − δϕ(y)) = T ∗(δx − δy)

= T ∗(δx − δz + δz − δy) = T ∗(δx − δz) + T ∗(δz − δy)

= σ(x, z)
dα(x, z)

dα(ϕ(x), ϕ(z))
(δϕ(x) − δϕ(z)) + σ(z, y)

dα(z, y)
dα(ϕ(z), ϕ(y))

(δϕ(z) − δϕ(y)),

so that

σ(x, y)
dα(x, y)

dα(ϕ(x), ϕ(y))
= σ(x, z)

dα(x, z)
dα(ϕ(x), ϕ(z))

= σ(z, y)
dα(z, y)

dα(ϕ(z), ϕ(y))
.

Hence there exists a constant k > 0 such that

d(ϕ(x), ϕ(y)) = kd(x, y)

and clearly diam(ϕ(X)) = k diam(X). Since ϕ is surjective, then k = 1 and so

d(ϕ(x), ϕ(y)) = d(x, y).

Hence ϕ is an isometry of X. It follows that

σ(x, y) = σ(x, z) = σ(z, y)

and therefore there exists a τ ∈ SK such that σ(x, y) = τ.
Finally, given f ∈ Cα(X) we have

δ̃(x,y)(T (ρ(f)) = T ∗(δ̃(x,y))(ρ(f)) = τ δ̃(ϕ(x),ϕ(y))(ρ(f)) = τ
f(ϕ(x)) − f(ϕ(y))

dα(ϕ(x), ϕ(y))

=
(τf ◦ ϕ)(x) − (τf ◦ ϕ)(y)

dα(x, y)
= δ̃(x,y)(ρ(τf ◦ ϕ))

for every (x, y) ∈ W. By Lemma 3.5 it follows that Φ(T (ρ(f))) = Φ(ρ(τf ◦ ϕ)) for
every extreme point Φ of the unit ball of Cα(X, x0)∗. The Krein-Milman Theorem
implies that Φ(T (ρ(f))) = Φ(ρ(τf ◦ ϕ)) for every Φ ∈ Cα(X, x0)∗ and so

T (ρ(f)) = ρ(τf ◦ ϕ).

�
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