LINEAR BIJECTIONS PRESERVING THE HÖLDER SEMINORM

A. JIMÉNEZ-VARGAS

(Communicated by N. Tomczak-Jaegermann)

ABSTRACT. Let (X,d) be a compact metric space and let α be a real number with $0 < \alpha < 1$. The aim of this paper is to solve a linear preserver problem on the Banach algebra $C^{\alpha}(X)$ of Hölder functions of order α from X into \mathbb{K} . We show that each linear bijection $T: C^{\alpha}(X) \to C^{\alpha}(X)$ having the property that $\alpha(T(f)) = \alpha(f)$ for every $f \in C^{\alpha}(X)$, where

$$\alpha(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d^{\alpha}(x, y)} : x, y \in X, \ x \neq y \right\},\,$$

is of the form $T(f) = \tau f \circ \varphi + \mu(f) 1_X$ for every $f \in C^{\alpha}(X)$, where $\tau \in \mathbb{K}$ with $|\tau| = 1$, $\varphi : X \to X$ is a surjective isometry and $\mu : C^{\alpha}(X) \to \mathbb{K}$ is a linear functional.

1. Introduction

Let (X,d) be a compact metric space and let α be a real number with $0 < \alpha < 1$. A function $f: X \to \mathbb{K}$ is said to be a Hölder function of order α if there is a constant k such that

$$|f(x) - f(y)| < kd^{\alpha}(x, y), \quad \forall x, y \in X.$$

The smallest constant k for which the above inequality holds is called the Hölder seminorm of order α of f and it is denoted by $\alpha(f)$, that is,

$$\alpha(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d^{\alpha}(x, y)} : x, y \in X, \ x \neq y \right\}.$$

Let $C^{\alpha}(X)$ be the vector space of all the functions f from X into \mathbb{K} such that $\alpha(f)$ is finite. This supremum does not define a norm on $C^{\alpha}(X)$, since $\alpha(f) = 0$ if and only if f is constant on X.

It is said that a linear bijection $T:C^{\alpha}(X)\to C^{\alpha}(X)$ preserves the Hölder seminorm if

$$\alpha(T(f)) = \alpha(f), \quad \forall f \in C^{\alpha}(X).$$

By brevity, these maps will be called Hölder seminorm preserving.

The most common way to actually obtain a norm on $C^{\alpha}(X)$ is to define

$$\|f\| = \max\left\{\alpha(f), \|f\|_{\infty}\right\},\,$$

Received by the editors January 10, 2006 and, in revised form, February 13, 2006 and April 11, 2006.

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \textit{Primary 46E15}; Secondary \ 46J10.$

Key words and phrases. Linear preserver problem, extreme point, isometry.

This research was supported by Junta de Andalucia project P06-FQM-01438.

where

$$||f||_{\infty} = \sup\{|f(x)| : x \in X\}.$$

An advantage of this approach is that the Banach space of Hölder functions obtained is actually a Banach algebra. This space of functions and other closely related spaces have been the subject of considerable study (see, for example, [4, 5, 6, 9, 10, 11]).

Linear preserver problems concern the question of determining all linear maps on algebras of matrices or operators which leave invariant a given set, function or relation (see, for example, the survey papers [7, 8]), but similar questions can be raised on arbitrary algebras.

Let Y be a compact Hausdorff space and let C(Y) be the space of real or complex continuous functions on Y equipped with the supremum norm. With regard to C(Y), the main linear preserver problems concern the characterization of linear bijections preserving some given seminorm or norm. The classical Banach-Stone theorem determines the linear bijections preserving the sup-norm on C(Y). Recently, when Y is a first countable space, Györy and Molnar [3] have given a complete description of linear bijections of C(Y) which preserve the seminorm

$$f \mapsto \operatorname{diam}(f(Y)) = \sup \{|f(x) - f(y)| : x, y \in Y\}.$$

Their result has been extended to the case of a general compact Hausdorff space by González and Uspenskij [2] and independently by Cabello Sánchez [1].

Motivated by this, the purpose of this paper is to determine all Hölder seminorm preserving linear bijections of $C^{\alpha}(X)$.

2. The linear bijections which preserve the Hölder seminorm

Our characterization of these maps is the following.

Theorem 2.1. A linear bijection $T: C^{\alpha}(X) \to C^{\alpha}(X)$ is Hölder seminorm preserving if and only if there is a surjective isometry $\varphi: X \to X$, a linear functional $\mu: C^{\alpha}(X) \to \mathbb{K}$ and a number τ with $|\tau| = 1$ and $\mu(1_X) + \tau \neq 0$ such that $T(f) = \tau f \circ \varphi + \mu(f) 1_X$ for every $f \in C^{\alpha}(X)$.

To prove Theorem 2.1, we follow a similar process to the one of Félix Cabello Sánchez in [1]. Our approach depends on the analysis of the isometry group of certain Banach spaces of Hölder functions in which the Hölder seminorm becomes a norm.

There is another way to obtain a norm on the vector space of Hölder functions, and that is to identify a distinguished point of the metric space and consider only the functions which are zero at this point.

Let x_0 be an arbitrarily chosen point of X. The set $C^{\alpha}(X, x_0)$ of all the functions $f \in C^{\alpha}(X)$ such that $f(x_0) = 0$ becomes a Banach space endowed with the norm $f \mapsto \alpha(f)$. The map $\rho: C^{\alpha}(X) \to C^{\alpha}(X, x_0)$ defined by

$$\rho(f) = f - f(x_0)1_X, \quad \forall f \in C^{\alpha}(X),$$

is surjective linear with ker ρ equal to the space of the constant functions on X and

$$\alpha(\rho(f)) = \alpha(f), \quad \forall f \in C^{\alpha}(X).$$

2540

Suppose that T is a Hölder seminorm preserving linear bijection of $C^{\alpha}(X)$. Then there is a (unique) surjective linear isometry T_{α} of $C^{\alpha}(X, x_0)$ such that the diagram

$$\begin{array}{ccc} C^{\alpha}(X) & \stackrel{T}{\longrightarrow} & C^{\alpha}(X) \\ \rho \downarrow & & \downarrow \rho \\ C^{\alpha}(X, x_0) & \stackrel{T_{\alpha}}{\longrightarrow} & C^{\alpha}(X, x_0) \end{array}$$

commutes.

We derive Theorem 2.1 from the following characterization of the isometries of $C^{\alpha}(X, x_0)$. We shall denote by $S_{\mathbb{K}}$ the set of all the unimodular scalars of \mathbb{K} .

Theorem 2.2. A linear map $T_{\alpha}: C^{\alpha}(X, x_0) \to C^{\alpha}(X, x_0)$ is a surjective isometry if and only if there is a surjective isometry φ of X and a number τ in $S_{\mathbb{K}}$ such that $T_{\alpha}(\rho(f)) = \rho(\tau f \circ \varphi)$ for all $f \in C^{\alpha}(X)$.

Proof of Theorem 2.1. It is straightforward to check that every linear map T of the form $T(f) = \tau f \circ \varphi + \mu(f) 1_X$ for every $f \in C^{\alpha}(X)$ with τ, φ, μ being as in Theorem 2.1, is a Hölder seminorm preserving linear bijection of $C^{\alpha}(X)$.

Now, suppose that $T: C^{\alpha}(X) \to C^{\alpha}(X)$ is a linear bijection which preserves the Hölder seminorm and let T_{α} be the corresponding isometry of $C^{\alpha}(X, x_0)$ such that $T_{\alpha} \circ \rho = \rho \circ T$. By Theorem 2.2 there is a surjective isometry φ of X and a number $\tau \in S_{\mathbb{K}}$ such that $T_{\alpha}(\rho(f)) = \rho(\tau f \circ \varphi)$ for all $f \in C^{\alpha}(X)$. Then $T(f) - \tau f \circ \varphi \in \ker \rho$ for all $f \in C^{\alpha}(X)$, and therefore there exists a linear functional $\mu: C^{\alpha}(X) \to \mathbb{K}$ such that $T(f) = \tau f \circ \varphi + \mu(f) 1_X$ for every $f \in C^{\alpha}(X)$. Since the relation $\mu(1_X) \neq -\tau$ is obvious, the proof of Theorem 2.1 is complete.

For the proof of Theorem 2.2 we shall need a description of the following points.

3. The extreme points of the unit ball of $C^{\alpha}(X,x_0)^*$

These extreme points play a key role in our characterization of the isometries of $C^{\alpha}(X, x_0)$. To identify them, we construct a linear isometric imbedding of $C^{\alpha}(X, x_0)$ into a suitable space of continuous functions supplied with the supremum norm.

Let W be the complement of the diagonal in the cartesian product space $X \times X$, that is, $W = \{(x,y) \in X \times X : x \neq y\}$ and let βW be the Stone-Čech compactification of W

If $C(\beta W)$ denotes the Banach space of continuous functions from βW into \mathbb{K} endowed with the supremum norm, we define the map $r: C^{\alpha}(X, x_0) \to C(\beta W)$ by

$$r(f)(w) = \beta f^*(w), \quad \forall f \in C^{\alpha}(X, x_0), \ \forall w \in \beta W,$$

where

$$f^*(x,y) = \frac{f(x) - f(y)}{d^{\alpha}(x,y)}, \quad \forall (x,y) \in W,$$

and βf^* is its norm-preserving extension to βW . Clearly r is linear and

$$||r(f)||_{\infty} = ||\beta f^*||_{\infty} = ||f^*||_{\infty} = \alpha(f)$$

for every $f \in C^{\alpha}(X, x_0)$.

For every $w \in \beta W$, we shall denote by δ_w the evaluation functional on $C(\beta W)$ given by $\delta_w(f) = f(w)$. Moreover, $\widetilde{\delta}_w$ will stand for the functional $\delta_w \circ r$, that is,

$$\widetilde{\delta}_w(f) = \delta_w(r(f)), \quad \forall f \in C^{\alpha}(X, x_0).$$

Clearly $\widetilde{\delta}_w$ is linear and

$$\left| \widetilde{\delta}_w(f) \right| = \left| \beta f^*(w) \right| \le \left\| \beta f^* \right\|_{\infty} = \alpha(f), \quad \forall f \in C^{\alpha}(X, x_0).$$

Hence $\widetilde{\delta}_w \in C^{\alpha}(X, x_0)^*$ and $\left\|\widetilde{\delta}_w\right\| \leq 1$.

Lemma 3.1. Each extreme point of the unit ball of $C^{\alpha}(X, x_0)^*$ is of the form $\tau \widetilde{\delta}_w$ for some $\tau \in S_{\mathbb{K}}$ and some $w \in \beta W$.

Proof. The linear map r imbeds $C^{\alpha}(X, x_0)$ isometrically as a subspace of $C(\beta W)$. As a consequence, the adjoint map $r^*: C(\beta W)^* \to C^{\alpha}(X, x_0)^*$ sends the unit ball of $C(\beta W)^*$ onto the unit ball of $C^{\alpha}(X, x_0)^*$. Thus the Krein-Milman Theorem implies that each extreme point of the unit ball of $C^{\alpha}(X, x_0)^*$ is the image under r^* of some extreme point of the unit ball of $C(\beta W)^*$. By the Arens-Kelley Theorem, the extreme points of the unit ball of $C(\beta W)^*$ are of the form $\tau \delta_w$ where $\tau \in S_{\mathbb{K}}$ and $w \in \beta W$.

Therefore, if Φ is an extreme point of the unit ball of $C^{\alpha}(X,x_0)^*$, we have

$$\Phi = r^*(\tau \delta_w) = \tau r^*(\delta_w) = \tau(\delta_w \circ r) = \tau \widetilde{\delta}_w$$

for some $\tau \in S_{\mathbb{K}}$ and some $w \in \beta W$.

Observe that for each (x,y) in W, the functional $\widetilde{\delta}_{(x,y)}$ comes given by

$$\widetilde{\delta}_{(x,y)}(f) = \delta_{(x,y)}(r(f)) = \beta f^*(x,y) = f^*(x,y) = \frac{f(x) - f(y)}{d^{\alpha}(x,y)}$$

for every $f \in C^{\alpha}(X, x_0)$.

Next we shall study the relations between the extreme points of the unit ball of $C^{\alpha}(X,x_0)^*$ and the functionals of the form $\widetilde{\delta}_{(x,y)}$ with $(x,y) \in W$. Mayer-Wolf states these relations in [9] without proof (see remark after Theorem 2.3). We include the proofs for the sake of completeness, but we shall detail essentially those steps which do not appear in [9].

We first prove that every functional $\widetilde{\delta}_{(x,y)}$ is an extreme point of the unit ball of $C^{\alpha}(X,x_0)^*$. We shall need the following technical lemma ([12], Lemma 2.4.4).

Lemma 3.2. Let $0 < \alpha < \beta < 1$ and let $A, \varepsilon > 0$. Then there exists $\delta > 0$ such that for any $a, b, c, d \ge 0$ and B > 0 which satisfy the three conditions:

$$\begin{aligned} |a-b|\,, |c-d| &\leq A \leq a+b, c+d, \\ |b-c|\,, |a-d| &\leq B \leq b+c, a+d, \\ \varepsilon &\leq a+c, b+d, \end{aligned}$$

we have

$$\frac{\left|a^{\beta} - b^{\beta} + c^{\beta} - d^{\beta}\right|}{2A^{\beta - \alpha}B^{\alpha}} \le 1 - \delta.$$

Lemma 3.3. Let τ be in $S_{\mathbb{K}}$ and (x,y) in W. Then $\tau \widetilde{\delta}_{(x,y)}$ is an extreme point of the unit ball of $C^{\alpha}(X,x_0)^*$.

Proof. The proof that $\tau \widetilde{\delta}_{(x,y)}$ (or $\widetilde{\delta}_{(x,y)}$ equivalently) is an extreme point of the unit ball of $C^{\alpha}(X,x_0)^*$ will be based on the following fact which is a special case of a more general result proved by de Leeuw ([6], see Lemma 3.2):

Let X be a compact Hausdorff space and A a closed subspace of C(X). If $x \in X$ and δ_x is the evaluation functional $f \in C(X) \to f(x) \in \mathbb{K}$, a sufficient condition

for $\delta_x|_A$ to be an extreme point of the unit ball of A^* is that there exists a function f in the unit ball of A such that f(x) = 1, and |f(y)| = 1 iff there exists a $\theta = \pm 1$ such that $g(y) = \theta g(x)$ for all $g \in A$. In this case we say that f peaks at x relative to A.

Taking into account this result, we only have to find a function $f_{(x,y)} \in C^{\alpha}(X, x_0)$ such that $r(f_{(x,y)})$ peaks at (x,y) relative to $r(C^{\alpha}(X,x_0))$. To see this we follow ([12], Proposition 2.4.5). Choose a real number β with $\alpha < \beta < 1$ and consider the function $f_{(x,y)} = \rho(g_{(x,y)})$, where

$$g_{(x,y)}(z) = \frac{d^{\beta}(z,y) - d^{\beta}(z,x)}{2d^{\beta-\alpha}(x,y)}, \quad \forall z \in X.$$

Clearly

$$r(f_{(x,y)})(x,y) = \frac{f_{(x,y)}(x) - f_{(x,y)}(y)}{d^{\alpha}(x,y)} = 1.$$

Let U be any open subset of W (in the topology induced by the sup metric) containing (x, y) and (y, x). Then there exists $\varepsilon > 0$ such that

$$(z,w) \notin U \quad \Rightarrow \quad d(x,z) + d(y,w) \ge \varepsilon, \ d(x,w) + d(y,z) \ge \varepsilon.$$

For this ε and A = d(x, y), let δ be given by the above lemma. For any $(z, w) \notin U$, let a = d(y, z), b = d(x, z), c = d(x, w), d = d(y, w) and B = d(z, w). A simple calculation shows that the hypotheses of the lemma are satisfied and thus we have

$$|r(f_{(x,y)})(z,w)| = \frac{|f_{(x,y)}(z) - f_{(x,y)}(w)|}{d^{\alpha}(z,w)} = \frac{|a^{\beta} - b^{\beta} + c^{\beta} - d^{\beta}|}{2A^{\beta-\alpha}B^{\alpha}} \le 1 - \delta.$$

This shows that $f_{(x,y)} \in C^{\alpha}(X,x_0)$ with

$$||r(f_{(x,y)})||_{\infty} = \alpha(f_{(x,y)}) = 1,$$

and $|r(f_{(x,y)})(w)| < 1$ for all $w \in \beta W$ except at w = (x,y) and w = (y,x). According to the definition, $r(f_{(x,y)})$ peaks at (x,y) relative to $r(C^{\alpha}(X,x_0))$.

Let $\Delta: W \to C^{\alpha}(X, x_0)^*$ be the map defined by

$$\Delta(x,y) = \widetilde{\delta}_{(x,y)}.$$

Lemma 3.4. The map $\Delta: W \to (\Delta(W), w^*)$ is a local homeomorphism.

Proof. The proof will be carried out through a series of steps.

Step 1. Let $(x_1,y_1),(x_2,y_2)$ be in W and suppose that $\widetilde{\delta}_{(x_1,y_1)}=\widetilde{\delta}_{(x_2,y_2)}$. Then $\{x_1,y_1\}=\{x_2,y_2\}$.

Proof. Let us assume, to obtain a contradiction, that $\{x_1, y_1\} \neq \{x_2, y_2\}$. Then there exists at least a point in $\{x_2, y_2\}$ which is not in $\{x_1, y_1\}$. We can suppose, without loss of generality, that such a point is x_2 . Let $g: X \to \mathbb{R}$ be the function defined by

$$g(z) = \frac{d^{\alpha}(z, \{x_1, y_1, y_2\})}{d^{\alpha}(z, x_2) + d^{\alpha}(z, \{x_1, y_1, y_2\})}, \quad \forall z \in X.$$

It is easy to check that $g \in C^{\alpha}(X)$. Therefore the function $f = \rho(g) \in C^{\alpha}(X, x_0)$ and for every $(x, y) \in W$, it is clear that

$$\widetilde{\delta}_{(x,y)}(f) = \frac{g(x) - g(y)}{d^{\alpha}(x,y)}.$$

In particular we obtain that $\widetilde{\delta}_{(x_1,y_1)}(f)=0$ and $\widetilde{\delta}_{(x_2,y_2)}(f)=\frac{1}{d^{\alpha}(x_2,y_2)}$. Since $\widetilde{\delta}_{(x_1,y_1)}=\widetilde{\delta}_{(x_2,y_2)}$, a contradiction follows. So $\{x_1,y_1\}=\{x_2,y_2\}$.

Step 2. Given (x, y) in W, there exists a neighbourhood $B_{\varepsilon}(x, y)$ of (x, y) in W for a suitable $\varepsilon > 0$ such that $(w, z) \notin B_{\varepsilon}(x, y)$ if $(z, w) \in B_{\varepsilon}(x, y)$.

Proof. For each $\varepsilon > 0$ the set

$$B_{\varepsilon}(x,y) = \{(z,w) \in W : d^{\alpha}(z,x) < \varepsilon, \ d^{\alpha}(w,y) < \varepsilon\}$$

is a neighbourhood of (x,y) in W with the topology induced by the sup metric. Let ε be a real number such that $0 < \varepsilon < d^{\alpha}(x,y)/2$. Then the neighbourhoods $B_{\varepsilon}(x,y)$ and $B_{\varepsilon}(y,x)$ are disjoint. If $(z,w) \in B_{\varepsilon}(x,y)$, then clearly $(w,z) \in B_{\varepsilon}(y,x)$ and therefore $(w,z) \notin B_{\varepsilon}(x,y)$.

Step 3. Given (x, y) in W, the map Δ is injective on $B_{\varepsilon}(x, y)$.

Proof. This follows immediately from Steps 1 and 2.

Step 4. The map $\Delta: W \to (\Delta(W), w^*)$ is continuous.

Proof. Let $(x,y) \in W$. If $\{(x_i,y_i)\}$ is a net in W converging to (x,y), then $\{f(x_i,y_i)\}$ converges to f(x,y) for every f in $C(\beta W)$. This says that $\{\delta_{(x_i,y_i)}\}$ converges to $\delta_{(x,y)}$ in $(C(\beta W)^*,w^*)$. Since r^* (as an adjoint mapping) is continuous from $(C(\beta W)^*,w^*)$ into $(C^{\alpha}(X,x_0)^*,w^*)$, then $\{r^*(\delta_{(x_i,y_i)})\}=\{\widetilde{\delta}_{(x_i,y_i)}\}$ converges to $r^*(\delta_{(x,y)})=\widetilde{\delta}_{(x,y)}$ in $(C^{\alpha}(X,x_0)^*,w^*)$.

Step 5. The map $\Delta: W \to (\Delta(W), w^*)$ is open.

Proof. Let U be an open subset of W and let $(x,y) \in U$. We take a suitable neighbourhood $B_{\varepsilon}(x,y) \subset U$ and we can find a function $f \in C^{\alpha}(X,x_0)$ such that r(f)(x,y)=1 and r(f)(z,w)=0 for all (z,w) in $W-B_{\varepsilon}(x,y)$. Let $V_1=\{\Phi\in C^{\alpha}(X,x_0)^*:\Phi(f)\neq 0\}$. Then V_1 is w^* -open in $C^{\alpha}(X,x_0)^*$. Hence $V_1\cap\Delta(W)$ is w^* -open in $\Delta(W)$ and we have that $\widetilde{\delta}_{(x,y)}\in V_1\cap\Delta(W)\subset\Delta(B_{\varepsilon}(x,y))\subset\Delta(U)$.

Step 6. Given (x, y) in W, the map Δ is a homeomorphism from $B_{\varepsilon}(x, y)$ into $(\Delta(B_{\varepsilon}(x, y)), w^*)$.

Proof. The proof is deduced from the above steps.

From now on F(W) stands for the set

$$\{\tau \widetilde{\delta}_{(x,y)} : \tau \in S_{\mathbb{K}}, \ (x,y) \in W\}.$$

Every element of F(W) is an extreme point of the unit ball of $C^{\alpha}(X, x_0)^*$, but the reciprocal is not true. However we have the following fact:

Lemma 3.5. Every extreme point of the unit ball of $C^{\alpha}(X, x_0)^*$ belongs to the w^* -closure of F(W).

Proof. Let Φ be an extreme point of the unit ball of $C^{\alpha}(X, x_0)^*$. Then $\Phi = \tau \widetilde{\delta}_w$ for some $\tau \in S_{\mathbb{K}}$ and some $w \in \beta W$ by Lemma 3.1. If $w \in W$, there is nothing to prove. If $w \in \beta W \setminus W$, since W is dense in βW , we can select a net $\{w_i\}$ from W converging to w in βW . Reasoning as in the proof of Step 4 in Lemma 3.4, we show that $\{\widetilde{\delta}_{w_i}\}$ converges to $\widetilde{\delta}_w$ in $(C(X, x_0)^*, w^*)$ and so Φ is in the w^* -closure of F(W).

A complete description of the extreme points of the unit ball of $C^{\alpha}(X, x_0)^*$ of the form $\tilde{\delta}_w$ with $w \in \beta W \backslash W$ appears difficult ([5], see page 185). For example, Johnson ([4], Theorem 2.8) states that if the compact metric space X is an infinite set, then the unit ball of the space $C^{\alpha}(X)^*$ has extreme points of this type, and Sherbert ([10], Chapter III) shows that these functionals must be point derivations.

However the w^* -topology supplies a property which permits us to distinguish the extreme points of the form $\widetilde{\delta}_{(x,y)}$ with $(x,y) \in W$ from those which are of the form $\widetilde{\delta}_w$ with $w \in \beta W \setminus W$.

Lemma 3.6. Let Φ be an extreme point of the unit ball of $C^{\alpha}(X, x_0)^*$. Then Φ belongs to F(W) if and only if Φ has a w^* -metrizable neighbourhood in the w^* -closure of F(W).

Proof. The proof of the necessity is immediate since $(\Delta(W), w^*)$ and W are locally homeomorphic by Lemma 3.4.

To prove the sufficiency suppose that $\Phi \notin F(W)$ and that Φ has a w^* -metrizable neighbourhood in the w^* -closure of F(W). The existence of this neighbourhood implies that there is a sequence $\{\Phi_n\}$ in F(W) such that $\{\Phi_n\}$ converges to Φ in the w^* -topology.

Since $\Phi \notin F(W)$, then $\Phi = \tau \widetilde{\delta}_w$ for some $\tau \in S_{\mathbb{K}}$ and $w \in \beta W \setminus W$ by Lemma 3.1. Since W is dense in βW , there is a net $\{w_i\} = \{(x_i, y_i)\}$ in W converging to w in βW . By ([10], Lemma 9.6) the nets $\{x_i\}$ and $\{y_i\}$ converge in X to the same point $x_w \in X$ and this point x_w is independent of the choice of net $\{w_i\}$ from W.

In view of these comments we can suppose without loss of generality that $\Phi_n = \tau \widetilde{\delta}_{(x_n,y_n)}$ with $\{x_n\}$ and $\{y_n\}$ converging to x_w . Following the proof of ([9], Theorem 2.3), we construct a function $f \in C^{\alpha}(X,x_0)$ such that $\lim_{n\to\infty} \widetilde{\delta}_{(x_n,y_n)}(f)$ does not exist and so we obtain a contradiction.

4. The isometry group of $C^{\alpha}(X,x_0)$

Now we are ready to characterize the isometries of $C^{\alpha}(X, x_0)$. The isometries between pairs of spaces of this type have been studied in [9].

Proof of Theorem 2.2. It is easy to verify that the map T of the form $T(\rho(f)) = \rho(\tau f \circ \varphi)$ for all $f \in C^{\alpha}(X)$ with τ, φ under the assumptions of Theorem 2.2, is a surjective linear isometry of $C^{\alpha}(X, x_0)$.

Now suppose that T is a surjective isometry of $C^{\alpha}(X, x_0)$. Then the adjoint map T^* is a surjective isometry of $C^{\alpha}(X, x_0)^*$ as well, and therefore T^* is a bijection of the set of the extreme points of the unit ball of $C^{\alpha}(X, x_0)^*$. Moreover, as T^* is a homeomorphism of $(C^{\alpha}(X, x_0)^*, w^*)$, T^* carries points which possess a w^* -metrizable neighbourhood in the w^* -closure of F(W) into points with the same property.

Let (x,y) be in W. By Lemmas 3.3 and 3.6, $\widetilde{\delta}_{(x,y)}$ is an extreme point of the unit ball of $C^{\alpha}(X,x_0)^*$ which has a w^* -metrizable neighbourhood in the w^* -closure of F(W). In view of the above comments, $T^*(\widetilde{\delta}_{(x,y)})$ satisfies the same properties. Applying again Lemma 3.6, $T^*(\widetilde{\delta}_{(x,y)})$ belongs to F(W). Therefore there are $\sigma \in S_{\mathbb{K}}$ and $(u,v) \in W$ such that

$$T^*(\widetilde{\delta}_{(x,y)}) = \sigma \widetilde{\delta}_{(u,v)}.$$

Let X_2 be the collection of all subsets of X having exactly two elements. Clearly T^* defines a bijection $\Phi: X_2 \to X_2$ by

$$\Phi(\{x,y\}) = \operatorname{supp}\left(T^*(\widetilde{\delta}_{(x,y)})\right).$$

This definition of Φ makes sense because if $\tau, \sigma \in S_{\mathbb{K}}$, $(x, y), (u, v) \in W$ and $\tau \widetilde{\delta}_{(x, y)} = \sigma \widetilde{\delta}_{(u, v)}$, then $\{x, y\} = \{u, v\}$. This follows as in Step 1 of Lemma 3.4.

There is a bijection $\varphi: X \to X$ such that $\Phi(\{x,y\}) = \{\varphi(x), \varphi(y)\}$ for every $x,y \in X$ (see [1], Lemma 3). Plainly

$$T^*(\widetilde{\delta}_{(x,y)}) = \sigma(x,y)\widetilde{\delta}_{(\varphi(x),\varphi(y))},$$

where $\sigma(x,y) \in S_{\mathbb{K}}$. If for each x in X, δ_x denotes the evaluation functional

$$\delta_x(f) = f(x), \quad \forall f \in C^{\alpha}(X, x_0),$$

we can write the preceding equality as

$$T^* \left(\frac{\delta_x - \delta_y}{d^{\alpha}(x, y)} \right) = \sigma(x, y) \frac{\delta_{\varphi(x)} - \delta_{\varphi(y)}}{d^{\alpha}(\varphi(x), \varphi(y))}.$$

Let us see that $\sigma(x,y) \frac{d^{\alpha}(x,y)}{d^{\alpha}(\varphi(x),\varphi(y))}$ does not depend on x,y. Let $z \notin \{x,y\}$. Then

$$\begin{split} \sigma(x,y) \frac{d^{\alpha}(x,y)}{d^{\alpha}(\varphi(x),\varphi(y))} (\delta_{\varphi(x)} - \delta_{\varphi(y)}) &= T^{*}(\delta_{x} - \delta_{y}) \\ &= T^{*}(\delta_{x} - \delta_{z} + \delta_{z} - \delta_{y}) = T^{*}(\delta_{x} - \delta_{z}) + T^{*}(\delta_{z} - \delta_{y}) \\ &= \sigma(x,z) \frac{d^{\alpha}(x,z)}{d^{\alpha}(\varphi(x),\varphi(z))} (\delta_{\varphi(x)} - \delta_{\varphi(z)}) + \sigma(z,y) \frac{d^{\alpha}(z,y)}{d^{\alpha}(\varphi(z),\varphi(y))} (\delta_{\varphi(z)} - \delta_{\varphi(y)}), \end{split}$$

so that

$$\sigma(x,y)\frac{d^{\alpha}(x,y)}{d^{\alpha}(\varphi(x),\varphi(y))}=\sigma(x,z)\frac{d^{\alpha}(x,z)}{d^{\alpha}(\varphi(x),\varphi(z))}=\sigma(z,y)\frac{d^{\alpha}(z,y)}{d^{\alpha}(\varphi(z),\varphi(y))}.$$

Hence there exists a constant k > 0 such that

$$d(\varphi(x), \varphi(y)) = kd(x, y)$$

and clearly $\operatorname{diam}(\varphi(X)) = k \operatorname{diam}(X)$. Since φ is surjective, then k = 1 and so

$$d(\varphi(x), \varphi(y)) = d(x, y).$$

Hence φ is an isometry of X. It follows that

$$\sigma(x,y) = \sigma(x,z) = \sigma(z,y)$$

and therefore there exists a $\tau \in S_{\mathbb{K}}$ such that $\sigma(x,y) = \tau$.

Finally, given $f \in C^{\alpha}(X)$ we have

$$\begin{split} \widetilde{\delta}_{(x,y)}(T(\rho(f)) &= T^*(\widetilde{\delta}_{(x,y)})(\rho(f)) = \tau \widetilde{\delta}_{(\varphi(x),\varphi(y))}(\rho(f)) = \tau \frac{f(\varphi(x)) - f(\varphi(y))}{d^{\alpha}(\varphi(x),\varphi(y))} \\ &= \frac{(\tau f \circ \varphi)(x) - (\tau f \circ \varphi)(y)}{d^{\alpha}(x,y)} = \widetilde{\delta}_{(x,y)}(\rho(\tau f \circ \varphi)) \end{split}$$

for every $(x,y) \in W$. By Lemma 3.5 it follows that $\Phi(T(\rho(f))) = \Phi(\rho(\tau f \circ \varphi))$ for every extreme point Φ of the unit ball of $C^{\alpha}(X,x_0)^*$. The Krein-Milman Theorem implies that $\Phi(T(\rho(f))) = \Phi(\rho(\tau f \circ \varphi))$ for every $\Phi \in C^{\alpha}(X,x_0)^*$ and so

$$T(\rho(f)) = \rho(\tau f \circ \varphi).$$

ACKNOWLEDGMENT

The author thanks the referee for some valuable suggestions which improve this paper.

References

- F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch. Math. 73 (1999), 373-379. MR1712142 (2000j:46047)
- [2] F. González and V.V. Uspenskij, On homomorphisms of groups of integer-valued functions, Extracta Math. 14 (1999), 19-29. MR1714426 (2000k:54016)
- [3] M. Györy and L. Molnar, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301-310. MR1640086 (99h:46098)
- [4] J. Johnson, Banach spaces of Lipschitz functions and vector valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169. MR0415289 (54:3379)
- [5] J. Johnson, Lipschitz spaces, Pacific J. Math. 58 (2) (1975), 475-482. MR0385531 (52:6392)
- [6] K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55-66. MR0140927 (25:4341)
- [7] C.K. Li and S. Pierce, Linear preservers problems, Amer. Math. Monthly 108 (2001), 591-605. MR1862098 (2002g:15005)
- [8] C.K. Li and N.K. Tsing, Linear preserving problems: A brief introduction and some special techniques, *Linear Algebra Appl.* 162–164 (1992), 217-235. MR1148401 (93b:15003)
- [9] E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), 58-74. MR0599476 (82e:46036)
- [10] D. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. MR0161177 (28:4385)
- [11] A. Tromba, On the isometries of spaces of Hölder continuous functions, Studia Math. 57 (1976), 199-208. MR0420700 (54:8712)
- [12] N. Weaver, Lipschitz Algebras, World Scientific, London, 1999. MR1832645 (2002g:46002)

DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE ALMERÍA, 04071, ALMERÍA, SPAIN

E-mail address: ajimenez@ual.es