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ORDER ISOMORPHISMS OF LITTLE LIPSCHITZ ALGEBRAS

A. JIMÉNEZ-VARGAS AND MOISÉS VILLEGAS-VALLECILLOS

Communicated by Kenneth R. Davidson

Abstract. For compact metric spaces (X, dX) and (Y, dY ) and scalars

α, β ∈ (0, 1), we prove that every order isomorphism T between little Lips-

chitz algebras lip(X, dαX) and lip(Y, dβY ) is a weighted composition operator

of the form T (f) = a · (f ◦ h) for all f ∈ lip(X, dαX), where a is a nonvan-

ishing positive function in lip(Y, dβY ) and h is a Lipschitz homeomorphism

from (Y, dβY ) onto (X, dαX).

1. Introduction

Let (X, d) be a metric space, let K be the set of complex or real numbers and
let α be a real number in (0, 1]. A function f : X → K is called Lipschitz-α
if it satisfies the Lipschitz condition with respect to the metric dα defined by
dα(x, y) = (d(x, y))α, that is, if there exists a constant k ∈ R+ such that

|f(x)− f(y)| ≤ k · dα(x, y), ∀x, y ∈ X.

Following [7], we denote by Lip(X, dα) the Banach space of all bounded Lipschitz-
α functions f : X → K with the norm ‖f‖α = pα(f) + ‖f‖∞, where

‖f‖∞ = sup {|f(x)| : x ∈ X}

and
pα(f) = sup {|f(x)− f(y)| /dα(x, y) : x, y ∈ X, x 6= y} .

Moreover, we denote by lip(X, dα) the closed subspace of Lip(X, dα) consisting
of all those functions f in Lip(X, dα) with the property that for each ε > 0, there
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exists δ > 0 such that 0 < d(x, y) < δ implies |f(x)− f(y)| /dα(x, y) < ε. In the
case α = 1, we write Lip(X, d) and lip(X, d).

The spaces Lip(X, dα) and lip(X, dα) are both unital self-adjoint commutative
Banach algebras with respect to pointwise multiplication, but they also are or-
dered vector spaces with respect to pointwise order defined by f ≥ 0 if and only
if f(x) ∈ R and f(x) ≥ 0 for all x ∈ X. We say that a function f in Lip(X, dα)
is positive if f ≥ 0.

Following [5, Definition 1.1], a commutative Banach algebra A is called Lips-
chitz if there exists a metric space (X, d) such that A is either Lip(X, dα) (known
as big Lipschitz algebra) or lip(X, dα) (called little Lipschitz algebra). The alge-
braic structure of Lispchitz algebras has been intensively studied, but so much
like its order structure (see, for example, [11] and its references).

Weaver has studied the order structure of Lipschitz function spaces in a series
of papers [8, 9, 10]. In [10], Weaver focuses his attention on the algebraic and
order structures of Lip0(X, d), the space of all Lipschitz complex-valued functions
on X vanishing at some fixed point, when X is a complete metric space with
finite diameter. In [8, 9], Lip(X, d)-spaces have been abstractly characterized as
vector lattices when X is a complete metric space with diameter at most 2. This
condition on the diameter is not restrictive in view of [11, Proposition 1.7.1].

Let A(X) and B(Y ) be ordered vector spaces (with respect to pointwise order)
of real or complex-valued functions on the sets X and Y , respectively. A linear
map T : A(X)→ B(Y ) is said to be order-preserving if f ≤ g implies T (f) ≤ T (g)
for all f, g ∈ A(X). If T is bijective and both T and T−1 are order-preserving, then
we say that T is an order isomorphism. In the case that the spaces A(X) and
B(Y ) are both vector lattices of real functions, order isomorphisms are known
also in the literature as vector lattice isomorphisms. Recall that T is unital if
T (1X) = 1Y , where 1X and 1Y denote the functions constantly 1 on X and Y ,
respectively.

Order isomorphisms between Lip(X, d)-spaces have been studied by several
authors. Weaver [8, Main theorem] and Garrido–Jaramillo [3, Theorem 3.10]
have characterized the Lipschitz structure of an arbitrary complete metric space
X in terms of the (purely algebraic) unital vector lattice structure of the family
Lip(X, d). More precisely, they proved that if (X, dX) and (Y, dY ) are complete
metric spaces, then Lip(X, dX) is isomorphic to Lip(Y, dY ) as unital vector lattices
if and only if X is Lipschitz homeomorphic to Y . Furthermore, they stated
that every unital vector lattice isomorphism T from Lip(X, dX) onto Lip(Y, dY )
is a composition operator of the form T (f) = f ◦ h where h : Y → X is a
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Lipschitz homeomorphism, in a natural connection with the classical Banach–
Stone theorem.

The aim of this note is to determine the form of all order isomorphisms between
little Lipschitz algebras.

Let (X, dX) and (Y, dY ) be compact metric spaces and let α, β ∈ (0, 1). Ob-
viously, if a : Y → (0,∞) is a function in lip(Y, dβY ) and h is a Lipschitz homeo-
morphism from (Y, dβY ) onto (X, dαX), then the map T : lip(X, dαX) → lip(Y, dβY )
defined by T (f) = a · (f ◦ h) for every f ∈ lip(X, dαX), is an order isomorphism.

Our purpose is to prove that the converse is also true: every order isomorphism
T from lip(X, dαX) onto lip(Y, dβY ) is a weighted composition operator of the form
above. In particular, T is an algebra isomorphism followed by multiplication with
an invertible positive element. Thus, the pointwise order in lip(X, dαX) determines
the Lipschitz structure of compact metric space X. Analogous assertions hold for
order isomorphisms from Lip(X, dαX) onto Lip(Y, dβY ), as a consequence of [3,
Theorem 3.10].

We must point out that our approach is different of those of Weaver [8] and
Garrido–Jaramillo [3], and depends on the analysis of the support map asso-
ciated with every order isomorphism. Precisely, the support map of an order
isomorphism T from lip(X, dαX) onto lip(Y, dβY ) is the Lipschitz homeomorphism
h : Y → X. The concept of support map appears in the study of the multi-
plicative representation of disjointness preserving operators on vector lattices [1],
similar in form to our Banach–Stone type representation. Following this line of
research, order isomorphisms between some types of Fourier algebras were studied
in [2, 4].

The authors are thankful to referee for his/her suggestions improving the qual-
ity of the paper.

2. The results

We begin by proving that every order-preserving linear map between little
Lipschitz algebras is automatically continuous for the respective Lipschitz norms.

Lemma 2.1. Let (X, dX) and (Y, dY ) be metric spaces and let α, β ∈ (0, 1]. Every
order-preserving linear map T : lip(X, dαX)→ lip(Y, dβY ) is continuous.

Proof. In order to prove the continuity of the linear map T , we use the closed
graph theorem. Let (fn)n∈N be a sequence in lip(X, dαX) such that ‖fn‖α con-
verges to 0, and ‖T (fn)− g‖β converges to 0 for some g ∈ lip(Y, dβY ). We have
to show that g = 0. Since convergence in the Lipschitz norm implies uniform
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convergence, then ‖fn‖∞ and ‖T (fn)− g‖∞ converge to 0. From the inequalities

−‖fn‖∞ 1X ≤ Re(fn) ≤ ‖fn‖∞ 1X ,

−‖fn‖∞ 1X ≤ Im(fn) ≤ ‖fn‖∞ 1X ,

we deduce that

−‖fn‖∞ T (1X) ≤ T (Re(fn)) ≤ ‖fn‖∞ T (1X),

−‖fn‖∞ T (1X) ≤ T (Im(fn)) ≤ ‖fn‖∞ T (1X),

which yield

‖T (fn)‖∞ ≤ 2 ‖fn‖∞ ‖T (1X)‖∞ .

Then ‖T (fn)‖∞ converges to 0 and thus g = 0. �

We now need to recall some separation properties of Lipschitz algebras. Given
a compact metric space (X, d), Sherbert proved that Lip(X, dα) for α ∈ (0, 1] is
regular [6, Corollary 4.3]. Using the regularity of Lip(X, d) and the easily checked
fact that Lip(X, d) ⊂ lip(X, dα) when α ∈ (0, 1), Sherbert deduced the regularity
of lip(X, dα) for α ∈ (0, 1) [7, Proposition 2.1]. On the other hand, lip(X, d) is not
regular in general since there are spaces lip(X, d) which consist only of constant
functions (see [7, p. 245] for an example). Moreover, Sherbert stated without
proof in [7, p. 253] that Lip(X, d) is normal. From the two methods suggested
by him to prove this fact, the more direct one is perhaps the following: if Ak
and Bk are disjoint closed subsets of X, then d(Ak, Bk) > 0 and the function
hk : X → [0, 1] defined by hk(z) = max {0, 1− d(z,Bk)/d(Ak, Bk)} belongs to
Lip(X, d) and satisfies that hk(z) = 0 for all z ∈ Ak and hk(z) = 1 for all z ∈ Bk.

Given a set X and a function f : X → K, let coz(f) denote the set of all points
x ∈ X such that f(x) 6= 0, and let coz(f) denote the closure of coz(f) in X. The
following lemma is a version for Lip(X, d) of the classical result on the existence
of a partition of the unity on X subordinate to a covering. We include it for the
sake of completeness.

Lemma 2.2. Let (X, d) be a compact metric space and let {U1, ..., Un} be an open
covering of X. Then there exist positive functions f1, ..., fn in Lip(X, d) such that∑n
k=1 fk = 1X and coz(fk) ⊂ Uk for each k ∈ {1, ..., n}.

Proof. For each x ∈ X, let W (x) be a compact neighborhood of x such that
W (x) ⊂ Uk for some k ∈ {1, ..., n}. Since X is compact, there exist x1, ..., xm ∈ X
such that X ⊂ ∪mj=1W (xj). For each k ∈ {1, ..., n}, let Vk be the union of all
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compact sets W (xj) such that W (xj) ⊂ Uk. Since each Vk is compact and
Vk ⊂ Uk, we have d(X\Uk, Vk) > 0 and the function hk : X → [0, 1] defined by

hk(z) = max {0, 1− d(z, Vk)/d(X\Uk, Vk)}

is in Lip(X, d) with hk(z) = 1 for all z ∈ Vk and coz(hk) ⊂ Uk. Let us define the
following functions:

f1 = h1,

f2 = (1X − h1)h2,
...

...
fn = (1X − h1)(1X − h2) · · · (1X − hn−1)hn.

Clearly, coz(fk) ⊂ coz(hk) ⊂ Uk for k = 1, ..., n. Given x ∈ X, we have

f1(x) + f2(x) = h1(x) + (1− h1(x))h2(x)

= 1− (1− h1(x)) + (1− h1(x))h2(x) = 1− (1− h1(x))(1− h2(x)).

By induction, we prove at once that

f1(x) + f2(x) + · · ·+ fn(x)

= 1− (1− h1(x))(1− h2(x)) · · · (1− hn(x)).

Since x ∈ X ⊂ ∪mj=1W (xj), there exists k0 ∈ {1, ..., n} such that x ∈ Vk0 . Then
hk0(x) = 1 and f1(x) + f2(x) + · · ·+ fn(x) = 1. �

For any functional F in the dual space lip(X, dα)∗ of lip(X, dα), we define
supp(F ) to be the set of all points x ∈ X such that for each neighborhood U of
x, there exists a function f ∈ lip(X, dα) with coz(f) ⊂ U such that F (f) 6= 0.

In lip(X, dα)∗ we can define the following order which we also denote by ≥: if
F ∈ lip(X, dα)∗, let F ≥ 0 if and only if F (f) ≥ 0 for all f ∈ lip(X, dα) such that
f ≥ 0. In the case that F ≥ 0, we can improve the definition of supp(F ) with the
next observation.

Lemma 2.3. Let (X, d) be a compact metric space, let α ∈ (0, 1) and let F ∈
lip(X, dα)∗ with F ≥ 0. Then x ∈ supp(F ) if and only if for every neighborhood
U of x there exists a positive function f ∈ Lip(X, d) with coz(f) ⊂ U such that
F (f) > 0.

Proof. To prove the “only if” part, let x ∈ supp(F ) and let U be a neighborhood
of x. Let V be a neighborhood of x such that V ⊂ U . By the definition of supp(F ),
one has a g ∈ lip(X, dα) such that coz(g) ⊂ V and F (g) 6= 0. Since coz(g) is
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closed and coz(g) ⊂ U , by the normality of Lip(X, d) there exists f ∈ Lip(X, d)
with f ≥ 0 such that coz(f) ⊂ U and f(z) = 1 for all z ∈ coz(g). Then

−‖g‖∞ f ≤ Re(g) ≤ ‖g‖∞ f,

−‖g‖∞ f ≤ Im(g) ≤ ‖g‖∞ f.

Since F ≥ 0 and Re(g), Im(g) ∈ lip(X, dα), it follows that

−‖g‖∞ F (f) ≤ F (Re(g)) ≤ ‖g‖∞ F (f),

−‖g‖∞ F (f) ≤ F (Im(g)) ≤ ‖g‖∞ F (f),

and thus |F (g)| ≤ 2 ‖g‖∞ F (f). This implies F (f) > 0 since F (g) 6= 0. The proof
of the “if” part is trivial. �

After this preparation, we formulate our main result. Recall that a map be-
tween metric spaces h : X → Y is a Lipschitz homeomorphism if h is a bijection
such that h and h−1 are both Lipschitz.

Theorem 2.4. Let (X, dX) and (Y, dY ) be compact metric spaces and let α, β ∈
(0, 1). A bijective linear map T : lip(X, dαX)→ lip(Y, dβY ) is an order isomorphism
if and only if there exists a nonvanishing positive function a in lip(Y, dβY ) and a
Lipschitz homeomorphism h from (Y, dβY ) onto (X, dαX) such that T is of the form

T (f) = a · (f ◦ h), ∀f ∈ lip(X, dαX).

Moreover,

T−1(g) = [1/(a ◦ h−1)] · (g ◦ h−1), ∀g ∈ lip(Y, dβY ).

Proof. It is straightforward to check that every map T of the form T (f) =
a · (f ◦ h) for all f ∈ lip(X, dαX) with a, h being as in the statement above, is a
linear bijection from lip(X, dαX) onto lip(Y, dβY ) such that T and T−1 are both
order-preserving.

Let us suppose now that T : lip(X, dαX)→ lip(Y, dβY ) is an order isomorphism.
For each y ∈ Y , let δy be the linear functional on lip(Y, dβY ) defined by δy(f) =
f(y). The idea to define the function h is to show that for each point y ∈ Y ,
the set supp(δy ◦ T ) is a singleton of X, which we shall denote by h(y). We have
divided the proof of the “only if” part into five steps.

Step 1. For each y ∈ Y , supp(δy ◦ T ) is a singleton.
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Proof. Let y ∈ Y . Since T is surjective and lip(Y, dβY ) separates the points
of Y , we have δy ◦ T 6= 0. Let us suppose that supp(δy ◦ T ) is empty. Then,
for each x ∈ X, there exists a neighborhood U(x) of x such that T (f)(y) = 0
for all f ∈ lip(X, dαX) satisfying that coz(f) ⊂ U(x). By the compactness of
X, we have X = ∪nk=1U(xk) for some natural n. By Lemma 2.2, there exist
f1, ..., fn ∈ Lip(X, dX) such that

∑n
k=1 fk = 1X and coz(fk) ⊂ U(xk) for all

k ∈ {1, ..., n}. Then, for any f ∈ lip(X, dαX), we have f =
∑n
k=1 ffk, and

therefore

T (f)(y) = T (
n∑
k=1

ffk)(y) =
n∑
k=1

T (ffk)(y) = 0,

since T is linear and ffk ∈ lip(X, dαX) with coz(ffk) ⊂ coz(fk) ⊂ U(xk) for every
k ∈ {1, ..., n}. Thus δy ◦ T = 0, which is a contradiction. Hence supp(δy ◦ T ) is
nonempty.

On the other hand, let us suppose that x1 and x2 are two distinct points of
supp(δy ◦T ). Let U1 and U2 be disjoint neighborhoods of x1 and x2, respectively.
Since δy ◦ T ≥ 0 (f ≥ 0 implies T (f) ≥ 0 since T is order-preserving linear,
and so (δy ◦ T )(f) = T (f)(y) ≥ 0), Lemma 2.3 gives us two positive functions
f1, f2 ∈ Lip(X, dX) such that coz(f1) ⊂ U1, coz(f2) ⊂ U2, T (f1)(y) > 0 and
T (f2)(y) > 0. Let k = min {T (f1), T (f2)}. It is easily seen that k ∈ lip(Y, dβY )
with 0 ≤ k ≤ T (f1) and 0 ≤ k ≤ T (f2). Furthermore, k is nonzero since k(y) > 0.
Let j = T−1(k). Since T−1 is order-preserving linear, we have 0 ≤ j ≤ f1 and
0 ≤ j ≤ f2. But j is also nonzero, hence there exists a point x ∈ X such that
0 < j(x) ≤ f1(x) and 0 < j(x) ≤ f2(x). This implies x ∈ U1 ∩ U2, which is
impossible. �

Step 1 permits us to define a mapping h : Y → X such that h(y) = supp(δy◦T )
for any y ∈ Y . Following the literature, we call h the support map of T .

Step 2. If y ∈ Y, f ∈ lip(X, dαX) with f ≥ 0 and h(y) /∈ coz(f), then T (f)(y) = 0.

Proof. Since h(y) /∈ coz(f), there exists a neighborhood U of h(y) such that
coz(f) ⊂ X\U . On the other hand, since h(y) = supp(δy ◦ T ), Lemma 2.3 gives
us a positive function g ∈ Lip(X, dX) such that coz(g) ⊂ U and T (g)(y) > 0. It
follows that fg = 0.

To obtain a contradiction, assume Tf(y) 6= 0. Since f ≥ 0, we have T (f) ≥ 0.
Define k = min {T (f), T (g)}. Clearly, k is a nonzero function in lip(Y, dβY ) such
that 0 ≤ k ≤ T (f) and 0 ≤ k ≤ T (g). Set h = T−1(k). Since T−1 is order-
preserving linear, it follows that 0 ≤ h ≤ f and 0 ≤ h ≤ g. Since h is nonzero,
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there exists some x ∈ X for which 0 < h(x) ≤ f(x) and 0 < h(x) ≤ g(x). In
consequence, we have f(x)g(x) > 0, contrary to fg = 0. �

Step 3. ker δh(y) ⊂ ker(δy ◦ T ) for every y ∈ Y .

Proof. Let y ∈ Y and suppose that ker δh(y) is not contained in ker(δy ◦ T ).
Then we can find a positive function f ∈ lip(X, dαX) such that f(h(y)) = 0, but
T (f)(y) > 0. Choose a positive real number λ such that λT (1X)(y) < T (f)(y).
Therefore

max {T (f)(y), T (λ1X)(y)} = T (f)(y).

On the other hand, since f is continuous at h(y) and f(h(y)) = 0, there ex-
ists a neighborhood U of h(y) such that f(x) < λ for all x ∈ U , and thus
max {f, λ1X} = λ1X on U . Then Step 2 yields

T (max {f, λ1X}) (y) = T (λ1X)(y).

Taking into account that

T (max {f, λ1X}) = max {T (f), T (λ1X)} ,

it follows that T (λ1X)(y) = T (f)(y), a contradiction. �

Step 4. There is a function a in lip(Y, dβY ) with a(y) > 0 for all y ∈ Y such that

T (f)(y) = a(y)f(h(y)), ∀f ∈ lip(X, dαX), ∀y ∈ Y.

Proof. Let f ∈ lip(X, dαX) and y ∈ Y . Set g = f − f(h(y))1X . Since g ∈
lip(X, dαX) and g(h(y)) = 0, Step 3 gives T (g)(y) = 0, that is, T (f)(y) =
T (1X)(y)f(h(y)). Define a = T (1X). Then T (f)(y) = a(y)f(h(y)). Clearly,
a ∈ lip(Y, dβY ) and a ≥ 0.

We claim that a(y) > 0 for all y ∈ Y . If a(y) = 0 for some y ∈ Y , we have
T (f)(y) = 0 for all f ∈ lip(X, dαX). Because of the surjectivity of T , it follows
that g(y) = 0 for all g ∈ lip(Y, dβY ), which contradicts that lip(Y, dβY ) separates
the points of Y . �

Step 5. The support map h of T is a Lipschitz homeomorphism from (Y, dβY ) to
(X, dαX).

Proof. We begin by proving that h is bijective. Since T−1 is also an order
isomorphism of lip(Y, dβY ) onto lip(X, dαX), from what has already been proved
we deduce that there exist b ∈ lip(X, dαX) with b(x) > 0 for all x ∈ X and
k : X → Y such that

T−1(g) = b · (g ◦ k), ∀g ∈ lip(Y, dβY ).
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For any f ∈ lip(X, dαX), we have

f = T−1(Tf) = T−1(a · (f ◦ h)) = b · (a ◦ k) · ((f ◦ h) ◦ k).

Taking above f = 1X , we have b = 1/(a ◦ k). We check that h ◦ k = IX , where
IX denotes the identity function on X. If it were not true, there would exist a
point x0 ∈ X for which (h ◦ k)(x0) = x1 6= x0. Taking f ∈ lip(X, dαX) such that
f(x0) = 0 and f(x1) = 1, we would have

0 = f(x0) = b(x0)a(k(x0))f(x1) = b(x0)a(k(x0)) > 0,

which is impossible. In the same manner, we can see that k ◦ h = IY . So h is
bijective and k = h−1 and b = 1/(a ◦ h−1).

We now prove that h is Lipschitz. Fix a pair of distinct points p, q of Y and
choose a real number γ strictly between α and 1. Define fpq : X → R by

fpq(x) =
dγX(x, h(q))− dγX(x, h(p))

2dγ−αX (h(p), h(q))
, ∀x ∈ X.

We claim that fpq ∈ lip(X, dα) with ‖fpq‖α = 1 + (1/2)dαX(h(q), h(p)). First, we
have ‖fpq‖∞ = (1/2)dαX(h(q), h(p)) since

|fpq(x)| ≤ (1/2)dαX(h(q), h(p)) = |fpq(h(p))| , ∀x ∈ X.

On the other hand, pα(fpq) = 1 because

|fpq(z)− fpq(w)|
dαX(z, w)

=
|dγX(z, h(q))− dγX(z, h(p)) + dγX(w, h(p))− dγX(w, h(q))|

2dγ−αX (h(p), h(q))dαX(z, w)

≤
2 min{dγX(z, w), dγX(h(p), h(q))}

2dγ−αX (h(p), h(q))dαX(z, w)

= min

{
dαX(h(p), h(q))
dαX(z, w)

,
dγ−αX (z, w)

dγ−αX (h(p), h(q))

}
≤ 1

for all z, w ∈ X with z 6= w, and

fpq(h(p))− fpq(h(q))
dαX(h(p), h(q))

=
dγX(h(p), h(q))− (−dγX(h(q), h(p)))

2dγ−αX (h(p), h(q))dαX(h(p), h(q))
= 1.

Hence fpq ∈ Lip(X, dαX). Indeed, fpq ∈ lip(X, dαX) since, given ε > 0, define
δ = dX(h(p), h(q))ε1/(γ−α) and then 0 < dX(z, w) < δ implies

|fpq(z)− fpq(w)| ≤
dγ−αX (z, w)

dγ−αX (h(p), h(q))
dαX(z, w) < εdαX(z, w).
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This proves our claim. Consequently, ‖fpq‖α ≤ 1+(1/2)diam(X)α for all p, q ∈ Y
with p 6= q, and thus {fpq : p, q ∈ Y, p 6= q} is bounded in lip(X, dαX). It follows
that {T (fpq) : p, q ∈ Y, p 6= q} is bounded in lip(Y, dβY ) since the linear map T is
continuous by Lemma 2.1. Hence there exists a constant τ > 0 such that

pβ(T (fpq)) ≤ ‖T (fpq)‖β ≤ τ, ∀p, q ∈ Y, p 6= q.

In consequence, for any p, q ∈ Y with p 6= q, we have

(1) |T (fpq)(p)− T (fpq)(q)| ≤ τdβY (p, q).

A trivial verification yields

T (fpq)(p) = a(p)fpq(h(p)) = a(p)dαX(h(q), h(p))/2,

T (fpq)(q) = a(q)fpq(h(q)) = −a(q)dαX(h(q), h(p))/2,

and thus

(2) |T (fpq)(p)− T (fpq)(q)| = (a(p) + a(q)) (1/2)dαX(h(p), h(q)).

Substituting (2) into (1), we obtain

(3) (a(p) + a(q)) (1/2)dαX(h(p), h(q)) ≤ τdβY (p, q).

Let ρ = min {a(y) : y ∈ Y } > 0. From (3), we deduce

dαX(h(p), h(q)) ≤ (τ/ρ)dβY (p, q),

which is the desired conclusion.
Finally, we see that h−1 is also Lipschitz. We have that the map

T−1(g) = b · (g ◦ k), ∀g ∈ lip(Y, dβY )

is an order isomorphism of lip(Y, dβY ) onto lip(X, dαX), which is continuous by
Lemma 2.1. As above we can prove that k is a Lipschitz bijection of X onto Y ,
but k = h−1 as was shown. �

In this way, the proof of Theorem 2.4 is complete. �

Next, as a direct consequence of Theorem 2.4, we deduce a Banach–Stone type
result for little Lipschitz algebras.

Corollary 2.5. Let (X, dX) and (Y, dY ) be compact metric spaces and let α, β ∈
(0, 1). The following are equivalent:

(1) lip(X, dαX) is order isomorphic to lip(Y, dβY ).
(2) (X, dαX) is Lipschitz homeomorphic to (Y, dβY ).
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