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A B S T R A C T

The distribution function is a functional parameter of great interest in many research areas, such
as medicine or economics. Among other properties, it facilitates the estimation of parameters
such as quantiles. Accordingly, techniques are needed to estimate this function efficiently.

Survey statisticians have access to large, high-dimension databases and use them to optimise
the estimates obtained. One way to incorporate auxiliary information in the estimation stage
is through the calibration method, which was initially designed to estimate totals and means
and consists of adjusting new sample weights in order to reduce the variance of estimators.
However, calibration techniques may be subject to over-calibration, i.e. the loss of efficiency
when high-dimension auxiliary data sets are incorporated.

Although alternative approaches have been proposed, in which the calibration method incor-
porates auxiliary information in the estimation of the distribution function, these alternatives do
not seek to incorporate qualitative auxiliary information, which must be introduced in the usual
way through dummy variables. However, this workaround can greatly increase the dimension
of the auxiliary information, producing either over-calibration or even incompatible calibration
constraints.

In this article, we propose adapting the calibration method through multidimensional
scaling, in order to incorporate quantitative and qualitative information, thus avoiding the
negative consequences of over-calibration in the estimation of the distribution function.

1. Introduction

The estimation of the distribution function, a parameter that is non-linear and functional, is currently a significant topic in the
context of sampling surveys. Among other reasons for its importance, in several cases the estimation of the distribution function is
more helpful than that of the totals and the means [1], since this function allows us to obtain other parameters such as the reliability
function [2], the Gini index [3,4], the Headcount index [5], the poverty incidence, the poverty gap and the poverty severity [6],
as well as population quantiles [7–9], which are commonly addressed in research areas such as medicine [10], toxicology [11],
edaphology [12] and economics [13].

Recent technological advances in automatic collection and storage capacity have increased the volume of information available
and facilitated access to it [14]. Thus, survey statisticians, for example, can now consider an extensive range of variables linked to
the population of interest, which can be incorporated as auxiliary information to improve the estimations obtained.
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In view of this ease of access to a significant volume of auxiliary information, together with the notable relevance of the
istribution function, we believe it essential to derive indirect estimators of the distribution function that efficiently incorporate the
vailable auxiliary information. One way to do so, in the estimation phase, is to use the calibration method, which was originally
eveloped to estimate finite population totals or means [15]. Calibration provides a weighting system that satisfies a set of calibration
estrictions and minimises a specified distance measure between the design weight system and the calibration weight system [15].

Some recent proposals have been made to adapt the calibration method to estimate the distribution function [16–21]. Among
hese, the approach described by [19] is especially useful, as it provides estimators that are true distribution functions under smooth
equirements. Moreover, it offers computational simplicity. On the contrary, the asymptotic behaviour of the estimators discussed
n [19] depends on the choice of an auxiliary vector [22,23] whose optimal selection can have a large dimension [24]. All of these
revious studies assume that the auxiliary information available is quantitative, while none consider how we might incorporate
uxiliary information of a qualitative nature. To the best of our knowledge, this issue has received very little attention in the
ontext of calibration research [25].

Under present conditions, the volume of auxiliary information related to the target population may be high, and therefore
t cannot be assumed that there does not exist a large set of qualitative variables included as auxiliary variables. To date, the
ncorporation of qualitative auxiliary variables in the estimation of the distribution function has been achieved by means of the
orresponding dummy variables. However, this means of incorporating qualitative variables might further increase the dimension
f the auxiliary information used in the calibration process.

Calibration is generally agreed to be a reliable method to incorporate auxiliary information and obtain new asymptotically
nbiased estimators for several parameters [26,27], even in difficult sampling contexts such as when the sample has missing
ata [28], or when successive sampling is performed [29] or in the case of dual frame surveys [30]. However, the use of a set of
igh-dimension auxiliary variables in the calibration process can pose several major problems. Firstly, the calibration process might
ncorporate restrictions that are incompatible and/or unstable. Moreover, even if these restrictions are compatible, the estimators
hus obtained may suffer from over-calibration when the dimension of the auxiliary information exceeds a certain threshold [31],
hich is quite plausible if a large set of qualitative variables are represented by dummy variables. Over-calibration can reduce the
fficiency of the calibrated estimator [14], preventing it from making the best use of the large volume of auxiliary information made
vailable.

In this context, various approaches have been proposed to reduce the dimension of the auxiliary information when calibrated
stimation is used to determine totals and means [18,25,32–36]. According to [19], there are alternative means of reducing the
imension of the auxiliary information used in the calibration process when estimating the distribution function [37,38], although
hese methods assume that all the auxiliary variables are quantitative. Consequently, alternative approaches to dummy variables are
ecessary in order to incorporate qualitative information into the calibration process without considerably increasing the dimension
f auxiliary information.

In order to overcome the limitations detected in previous approaches, and in line with [25] regarding the estimation of totals, the
im of the present study is to develop an alternative approach to calibration, based on multidimensional scaling (MDS), which makes
t possible to incorporate all the auxiliary information available, both quantitative and qualitative, in estimating the distribution
unction. Under this new proposal, which integrates the approaches of [19,25], new calibration estimators are developed for the
istribution function, seeking to incorporate both qualitative and quantitative information and thus avoid over-calibration.

. Calibration estimators of the distribution function

Consider a finite population 𝑈 = {1,… , 𝑁} of size 𝑁 and a given sampling design 𝑝(⋅) with inclusion probabilities of first and
second order 𝜋𝑘 > 0 and 𝜋𝑘𝑖 > 0 𝑘, 𝑖 ∈ 𝑈 . Then, we denote by 𝑑𝑘 = 𝜋−1

𝑘 the sampling design weight for unit 𝑘 ∈ 𝑈 . A sample
= {1, 2,… , 𝑛} with fixed size 𝑛 is selected according to the sampling design 𝑝(⋅) from the population 𝑈 . If 𝑌 is the study variable
e denote by 𝑦𝑘 the value of the study variable for unit 𝑘 that is only known for units included in 𝑠. We consider 𝐽 auxiliary variables
1,… , 𝑋𝐽 whose values are available for all population units (complete auxiliary information) and we denote by 𝐱′𝑘 = (𝑥1𝑘,… , 𝑥𝐽𝑘)

the vector with the 𝐽 auxiliary variables at unit 𝑘. Our aim in this is to estimate the distribution function 𝐹𝑦(𝑡) for the study variable
Y, given by:

𝐹𝑦(𝑡) =
1
𝑁

∑

𝑘∈𝑈
𝛥(𝑡 − 𝑦𝑘) (1)

where

𝛥(𝑡 − 𝑦𝑘) =
{

1 if 𝑡 ≥ 𝑦𝑘
0 if 𝑡 < 𝑦𝑘.

A well-known unbiased estimator for 𝐹𝑦(𝑡) is the Horvitz,ÄìThompson estimator, which is defined by

𝐹𝑌𝐻𝑇 (𝑡) =
1
𝑁

∑

𝑘∈𝑠
𝑑𝑘𝛥(𝑡 − 𝑦𝑘). (2)

However, this estimator 𝐹𝑌𝐻𝑇 (𝑡) does not take advantage of the auxiliary information provided by 𝐱𝑘. On the other hand, the
calibration method [15] could be used to incorporate this information in the estimation stage. Although it was originally developed
in the estimation of totals or means, some studies have adapted it to estimate the distribution function [16–23].
2
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Among these earlier proposals, in this study we focus on the approach described by [19] which provides estimators at modest
omputational cost. Under this approach, we assume that all variables included in the auxiliary vector 𝐱′𝑘 are quantitative.

Accordingly, we can define the following pseudo-variable:

𝑔𝑘 = 𝛽′𝐱𝑘 for 𝑘 = 1, 2,… , 𝑁 (3)

𝛽 =

(

∑

𝑘∈𝑠
𝑑𝑘𝐱𝑘𝐱′𝑘

)−1
⋅
∑

𝑘∈𝑠
𝑑𝑘𝐱𝑘𝑦𝑘 (4)

Based on this pseudo-variable 𝑔, the calibration procedure replaces the design weight 𝑑𝑘 in the Horvitz–Thompson estimator by
a new calibration weight 𝜔𝑘 that meets the following calibration restrictions:

1
𝑁

∑

𝑘∈𝑠
𝜔𝑘𝛥(𝑡𝑗 − 𝑔𝑘) = 𝐹𝑔(𝑡𝑗 ) 𝑗 = 1, 2,… , 𝑃 (5)

nd at the same time minimises the chi-square distance:

𝛷𝑠(𝜔𝑘, 𝑑𝑘) =
∑

𝑘∈𝑠

(𝜔𝑘 − 𝑑𝑘)2

𝑑𝑘𝑞𝑘
(6)

where we assume that 𝑞𝑘 are positive constants not related to 𝑑𝑘, 𝑡𝑗 𝑗 = 1, 2,… , 𝑃 are 𝐽 points with 𝑡1 < 𝑡2 < ⋯ 𝑡𝑃 and that 𝐹𝑔(𝑡𝑗 )
enotes the distribution function of 𝑔 evaluated at the point 𝑡𝑗 .

The resulting estimator is given by:

𝐹𝑦𝑐 (𝑡) = 𝐹𝑌𝐻𝑇 (𝑡) +
(

𝐹𝑔(𝐭𝐠) − 𝐹𝐺𝐻𝑇 (𝐭𝐠)
)′

⋅ 𝐷̂(𝐭𝐠) (7)

where 𝐹𝐺𝐻𝑇 (𝐭𝐠) denotes the Horvitz–Thompson estimator for 𝐹𝑔(𝐭𝐠) evaluated at 𝐭𝐠 = (𝑡1,… , 𝑡𝑃 )′ and

𝐷̂(𝐭𝐠) = 𝑇 −1 ⋅
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝛥(𝐭𝐠 − 𝑔𝑘)𝛥(𝑡 − 𝑦𝑘)

and where it is essential to assume that the matrix

𝑇 =
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝛥(𝐭𝐠 − 𝑔𝑘)𝛥(𝐭𝐠 − 𝑔𝑘)′

is nonsingular.
Among the advantages of 𝐹𝑦𝑐 (𝑡), [19] established that 𝐹𝑦𝑐 (𝑡) is a true distribution function if 𝑞𝑘 = 𝑐 for all 𝑘 ∈ 𝑠 and if 𝑡𝑃 is large

enough to guarantee 𝐹𝑔(𝑡𝑃 ) = 1, so it can be used in the estimation of quantiles [8]. Additionally, 𝐹𝑦𝑐 (𝑡) is asymptotically unbiased
and its asymptotic variance can be established by the following expression:

𝐴𝑉 (𝐹𝑦𝑐 (𝑡)) =
1
𝑁2

∑

𝑘∈𝑈

∑

𝑙∈𝑈
𝛥𝑘𝑙(𝑑𝑘𝐸𝑘)(𝑑𝑙𝐸𝑙) (8)

where 𝐸𝑘 = 𝛥(𝑡 − 𝑦𝑘) − 𝛥(𝐭𝐠 − 𝑔𝑘)′ ⋅𝐷(𝐭𝐠), with

𝐷(𝐭𝐠) =
(

∑

𝑘∈𝑈
𝑞𝑘𝛥(𝐭𝐠 − 𝑔𝑘)𝛥(𝐭𝐠 − 𝑔𝑘)′

)−1

⋅

(

∑

𝑘∈𝑈
𝑞𝑘𝛥(𝐭𝐠 − 𝑔𝑘)𝛥(𝑡 − 𝑦𝑘)

)

. (9)

However, the asymptotic behaviour of 𝐹𝑦𝑐 (𝑡) is linked to the selection of the vector 𝐭𝐠, and therefore the optimum choice of this vector
is needed. Under simple random sampling, previous analyses have considered the optimal selection for 𝐭𝐠 [9,23,24,39]. Thus, [24]
stated both the optimal dimension and the optimal selection of the vector 𝐭𝐨𝐩𝐭 (𝑡) that minimises the asymptotic variance of 𝐹𝑦𝑐 (𝑡),
nd thus defined a new estimator based on the optimal vector, 𝐹𝑦𝑐𝑜𝑝𝑡(𝑡).

In the next section, based on the approach described by [25], we propose estimators for the distribution function that incorporate
oth quantitative and qualitative variables, whilst seeking to avoid high dimensionality in the auxiliary information. In this proposal,
he calibration weights are calculated using a projection of the auxiliary information onto a low-dimension Euclidean space, using
he MDS procedure together with an appropriate dissimilarity measure to address the auxiliary obtained from categorical variables.

. Calibration estimators of 𝐅𝒚(𝒕) based on multidimensional scaling

.1. Multidimensional scaling based on the auxiliary information 𝐱𝐤

As mentioned above, survey statisticians today have ready access to large databases and it is quite common for these to include
oth quantitative and qualitative variables. Given an auxiliary vector 𝐱𝑘, we assume that its dimension 𝐽 is a large value and,
oreover, that a set of 𝐿 < 𝐽 variables included in the auxiliary vector 𝐱𝑘 are qualitative variables. To obtain the pseudo-variable
from the approach presented by [19], we must consider the representation of the qualitative variables through the corresponding
ummy variables. Thus, if we assume without loss of generality that the variables 𝑥1, 𝑥2,… , 𝑥𝐿 are qualitative and that 𝐹𝑙 ≥ 2
3

enotes the number of different categories or levels in the 𝑙th variable, with 𝑙 = 1,… , 𝐿, then to avoid perfect multicollinearity,
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we must consider 𝐹𝑙 − 1 dummy variables in order to incorporate 𝑥𝑙 into the definition of the pseudo-variable 𝑔. Therefore, given
the variable 𝑥𝑙, we consider the dummy variables corresponding to its first 𝐹𝑙 − 1 categories, that is, the dummy variables 𝐼𝑗𝑙 with
𝑗 = 1,… , 𝐹𝑙 − 1 given by:

𝐼𝑗𝑙𝑘 =
{

1 if unit 𝑘 has the category 𝑗𝑙
0 otherwise

Now, if we denote by 𝐴𝑗𝑘 the vector (𝐼1𝑙𝑘, 𝐼2𝑙𝑘,… , 𝐼(𝐹𝑙−1)𝑙𝑘), for 𝑙 = 1,… , 𝐿, we can replace the original auxiliary vector 𝐱𝑘 by a new
auxiliary vector given by

𝐳𝑘 = (𝐴1𝑘,… , 𝐴𝐿𝑘, 𝑥(𝐿+1)𝑘,… , 𝑥𝑃𝑘) for 𝑘 ∈ 𝑈

The dimension of the new vector 𝐳𝑘 is given by 𝑀 = 𝐽 +𝑄 − 2 ⋅ 𝐿 where

𝑄 =
𝐿
∑

𝑙=1
𝐹𝑙 ≥ 2 ⋅ 𝐿

so the new dimension 𝑀 > 𝐽 . Hence, it is very likely that when using the new auxiliary vector 𝐳𝑘 to obtain the pseudo-variable 𝑔,
there will be multicollinearity among the auxiliary variables.

To avoid this multicollinearity, instead of considering the representation of the qualitative variables 𝑥1, 𝑥2,… , 𝑥𝐿 through their
corresponding dummy vectors 𝐴1𝑘,… , 𝐴𝐿𝑘, we now discuss an alternative approach based on the proposal by [25].

For this purpose, consider a new set of auxiliary variables, obtained from the multidimensional scaling application with the
original vector 𝐱𝑘. This multidimensional scaling procedure is based on the similarity matrix calculated from that defined by
Gower [40].

To introduce Gower’s similarity measure, we assume that among the 𝐿 qualitative variables, 𝐿1 are binary and 𝐿2 are non-binary,
so that 𝐿1 +𝐿2 = 𝐿. Consequently, 𝐿3 = 𝐽 −𝐿 = 𝐽 −𝐿1 −𝐿2 quantitative variables are included in the auxiliary vector 𝐱𝑘. For two
units 𝑖, 𝑘 ∈ 𝑈 , the similarity index proposed by Gower is given by:

𝑆𝑖𝑘 =

𝑏1 + 𝑏2 +
𝐿3
∑

𝑙=1

(

1 −
|𝑥𝑙𝑖 − 𝑥𝑙𝑘|

𝑅𝑙

)

(𝐿1 − 𝑏1) + 𝐿2 + 𝐿3
(10)

where 𝑏1 and 𝑏1 denote the positive and negative matches, respectively, for the 𝐿1 binary variables, 𝑏2 denotes the matches for the
2 non-binary qualitative variables and 𝑅𝑙 is the range of the 𝑙th quantitative variable.

From [40], the 𝑁 × 𝑁 similarity matrix 𝐒 which entries 𝑆𝑖𝑘 for all pairs of units 𝑖, 𝑘 ∈ 𝑈 is positive semi-definite. This is a
elevant property because it allows us to represent the matrix 𝐒 as a set of points in a multidimensional Euclidean space [41]. To
o so, we consider the measure of distance given by:

𝐷𝑖𝑘 =
√

2(1 − 𝑆𝑖𝑘)

and the following matrix

𝐁 = −1
2
𝐄𝐅𝐄 = 𝐄𝐒𝐄

ith 𝐅 = 𝐷2
𝑖𝑘 and

𝐄 = 𝐈 − 1
𝑁

⋅ 𝟏𝟏′

where 𝑟𝑎𝑛𝑘(𝐁) = 𝐻 ≤ 𝑁 − 1.
Since the matrix 𝐒 is positive semidefinite, the distance matrix 𝐃 is Euclidean and 𝐵 is positive semidefinite [41]. If we consider

the eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝐻 > 0 of 𝐁, the matrix

𝐂 = 𝐕Λ1∕2

s a 𝑁 ×𝐻 matrix whose associated Euclidean distance matrix is 𝐃, where

𝐕 = (𝑣(1),… , 𝑣(ℎ))

s a 𝑁 ×𝐻 matrix with the eigenvectors 𝑣(𝑖) associated with the positive eigenvalues of 𝐁 by column such that 𝑣′(𝑖)𝑣(𝑖) = 𝜆𝑖 and Λ is
a 𝐻 ×𝐻 diagonal matrix with the positive eigenvalues of 𝐁 [41].

In the first alternative approach to developing a new calibration estimator for 𝐹𝑦(𝑡), if we denote by 𝐜𝑘 for 𝑘 ∈ 𝑈 , the vector
of dimension 𝐻 from the matrix 𝐂, the dimension of 𝐜𝑘 can be reduced by multidimensional scaling. To do so, we take the ℎ ≤ 𝐻
largest eigenvalues of 𝐁, and then define the following matrix:

𝐂ℎ = 𝐕ℎΛ
1∕2
ℎ

where 𝐕ℎ is a 𝑁 × ℎ matrix that contains the eigenvectors 𝑣(𝑖) associated with the ℎ largest eigenvalues of 𝐁 by column and Λℎ is
a ℎ × ℎ diagonal matrix with largest eigenvalues of 𝐁 [41].
4
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Now, with the auxiliary vector 𝐜ℎ𝑘 of dimension ℎ for 𝑘 ∈ 𝑈 extracted from 𝐂ℎ we can define the following pseudo-variable:

𝑔∗𝑘 = 𝛽′𝑐𝐜
ℎ
𝑘 for 𝑘 = 1, 2,… , 𝑁

𝛽𝑐 =

(

∑

𝑘∈𝑠
𝑑𝑘𝐜ℎ𝑘(𝐜

ℎ
𝑘)

′
)−1

⋅
∑

𝑘∈𝑠
𝑑𝑘𝐜ℎ𝑘𝑦𝑘. (11)

The new set of auxiliary variables is related to the original set of qualitative or mixed variables through the Euclidean distances,
ut at the same time we maintain the implicit assumption of linearity [25] in constructing the pseudo-variable.

Thus, a new calibration estimator can be obtained for 𝐹𝑦(𝑡) by minimising (6) under the condition:

1
𝑁

∑

𝑘∈𝑠
𝜔𝑘𝛥(𝝂𝐠∗ − 𝑔∗𝑘) = 𝐹𝑔∗ (𝝂𝐠∗ ) (12)

where 𝐹𝑔∗ (𝝂𝐠∗ ) denotes the distribution function for 𝑔∗ evaluated at 𝝂𝐠∗ = (𝜈1,… , 𝜈𝑃 )′ and where 𝜈𝑗 𝑗 = 1, 2,… , 𝑃 are points chosen
such that 𝜈1 < 𝜈2 < ⋯ 𝜈𝑃 .

If we assume that the following matrix 𝛤 is nonsingular:

𝛤 =
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝛥(𝝂𝐠∗ − 𝑔∗𝑘)𝛥(𝝂𝐠∗ − 𝑔∗𝑘)

′

the calibration estimator obtained is given by:

𝐹𝑦𝑚𝑑𝑠1(𝑡) = 𝐹𝑌𝐻𝑇 (𝑡) +
(

𝐹𝑔∗ (𝝂𝐠∗ ) − 𝐹𝐺∗𝐻𝑇 (𝝂𝐠∗ )
)′

⋅ 𝛩(𝝂𝐠∗ ) (13)

where

𝛩(𝝂𝐠∗ ) = 𝛤−1 ⋅
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝛥(𝝂𝐠∗ − 𝑔∗𝑘)𝛥(𝑡 − 𝑦𝑘)

and 𝐹𝐺∗𝐻𝑇 (𝝂𝐠∗ ) is the Horvitz–Thompson estimator of 𝐹𝑔∗ at 𝝂𝐠∗ .
The resulting estimator 𝐹𝑦𝑚𝑑𝑠1(𝑡) is asymptotically unbiased and the asymptotic variance is [19]:

𝐴𝑉 (𝐹𝑦𝑚𝑑𝑠1(𝑡)) =
1
𝑁2

∑

𝑘∈𝑈

∑

𝑙∈𝑈
𝛥𝑘𝑙(𝑑𝑘𝑈𝑘)(𝑑𝑙𝑈𝑙) (14)

where 𝑈𝑘 = 𝛥(𝑡 − 𝑦𝑘) − 𝛥(𝝂𝐠∗ − 𝑔∗𝑘)
′ ⋅ 𝛩(𝝂𝐠∗ ), with

𝛩(𝝂𝐠∗ ) =

(

∑

𝑘∈𝑈
𝑞𝑘𝛥(𝝂𝐠∗ − 𝑔∗𝑘)𝛥(𝝂𝐠∗ − 𝑔∗𝑘)

′

)−1

⋅

(

∑

𝑘∈𝑈
𝑞𝑘𝛥(𝝂𝐠∗ − 𝑔∗𝑘)𝛥(𝑡 − 𝑦𝑘)

)

. (15)

As the asymptotic behaviour of 𝐹𝑦𝑚𝑑𝑠1(𝑡) depends on the vector 𝝂𝐠∗ , under simple random sampling, we can consider the optimal
vector 𝐭𝐨𝐩𝐭 (𝑡) from [24] or its reduced version from [37].

3.2. Multidimensional scaling based on the complete information related to the auxiliary distribution functions

To take advantage of all available auxiliary information, we now consider a second alternative.
In this case, for all variables 𝑧𝑚𝑘 with 𝑚 = 1,… ,𝑀 in the auxiliary vector 𝐳𝑘, we can define the 𝑁-dimensional auxiliary vector

given by:

(𝝉𝑚𝑘 )
′ =

(

𝛥(𝑧𝑚1 − 𝑧𝑚𝑘),… , 𝛥(𝑧𝑚𝑁 − 𝑧𝑚𝑘)
)

, 𝑚 = 1,… ,𝑀

Next, with the 𝑀 auxiliary vectors (𝝉𝑚𝑘 ), 𝑚 = 1,… ,𝑀 , we can define the following 𝑁 ⋅𝑀-dimensional vector:

Υ′
𝑘 = ((𝝉1𝑘)

′,… , (𝝉𝑀𝑘 )′). (16)

Although all the information about the distribution functions of the variables incorporated in the auxiliary vector 𝐳𝑘 are embraced
in the auxiliary vector Υ𝑘, we cannot calibrate an estimator for 𝐹𝑦(𝑡) with Υ𝑘 since this would generate a large number of calibration
conditions, many of which might be incompatible, or otherwise produce over-calibration.

Once again, multidimensional scaling can be used to reduce the dimension of Υ𝑘 with Gower’s similarity measure, given by:

𝑆𝑖𝑘 =

𝑀
∑

𝑚=1

𝑁
∑

𝑙=1

(

1 − |𝛥(𝑧𝑚𝑙 − 𝑧𝑚𝑖) − 𝛥(𝑧𝑚𝑙 − 𝑧𝑚𝑘)|
)

𝑀𝑁
(17)

The derived distance 𝐷𝑖𝑘 =
√

2(1 − 𝑆𝑖𝑘) is equivalent to the distance from Manhattan and we consider the matrix 𝐒𝛶 and 𝐃𝛶
with the entries 𝑆𝑖𝑘 and 𝐷𝑖𝑘, respectively. As in the previous cases, the following matrix:

𝐁 = −1𝐄𝐃 𝐄 = 𝐄𝐒 𝐄
5

𝛶 2 𝛶 𝛶
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is positive semi-definite. If we consider that 𝑟𝑎𝑛𝑘(𝐁𝛶 ) = 𝐽 ≤ 𝑁 −1 with the 𝑗 largest egienvalues, we can obtain the matrix 𝐂𝑗 as in
the previous cases and the corresponding auxiliary vector 𝐫𝑘 = 𝐜𝑗𝑘 for all population unit 𝑘 ∈ 𝑈 .

By minimising (6) under the constraints:
1
𝑁

∑

𝑘∈𝑠
𝜔𝑘𝐫𝑘 = 1

𝑁
∑

𝑘∈𝑈
𝐫𝑘 = 𝑅̄ (18)

we can obtain a new calibration estimator 𝐹𝑦𝑚𝑑𝑠2(𝑡) for 𝐹𝑦(𝑡) given by

𝐹𝑦𝑚𝑑𝑠2(𝑡) = 𝐹𝑌𝐻𝑇 (𝑡) +
(

𝑅̄ − 𝑅̄𝐻𝑇

)′
⋅ 𝑄̂ (19)

where we assume that the matrix Ψ:

Ψ =
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝐫𝑘 ⋅ 𝐫′𝑘

is non-singular and

𝑄̂ = Ψ−1 ⋅
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝐫𝑘𝛥(𝑡 − 𝑦𝑘)

and 𝑅̄𝐻𝑇 is the Horvitz–Thompson estimator for 𝑅̄.
Following [19], the estimator 𝐹𝑦𝑚𝑑𝑠2(𝑡) is asymptotically unbiased and its asymptotic variance is:

𝐴𝑉 (𝐹𝑦𝑚𝑑𝑠2(𝑡)) =
1
𝑁2

∑

𝑘∈𝑈

∑

𝑙∈𝑈
𝛥𝑘𝑙(𝑑𝑘𝑈𝑘)(𝑑𝑙𝑈𝑙) (20)

where 𝑈𝑘 = 𝛥(𝑡 − 𝑦𝑘) − 𝐫′𝑘 ⋅𝑄, with

𝑄 =

(

∑

𝑘∈𝑈
𝑞𝑘𝐫𝑘 ⋅ 𝐫′𝑘

)−1

⋅

(

∑

𝑘∈𝑈
𝑞𝑘𝐫𝑘𝛥(𝑡 − 𝑦𝑘)

)

. (21)

3.3. Multidimensional scaling based on the auxiliary vector 𝐱𝐤 and the auxiliary distribution functions

Let us now consider an alternative, incorporating the auxiliary information from the auxiliary vector 𝐱𝐤 and the auxiliary
distribution functions associated with the ordered qualitative and quantitative variables included in 𝐱𝐤. Previously, to do so, given
the auxiliary vector 𝐱𝑘, we assumed that the variables 𝑥1, 𝑥2,… , 𝑥𝐿 were qualitative and that 𝑥𝐿+1, 𝑥2,… , 𝑥𝐽 were quantitative.
Among the qualitative attributes, 𝐹𝑙 denoted the number of different categories or levels in the 𝑙th variable, with 𝑙 = 1,… , 𝐿 and
we assumed that 𝐿1 were binary variables and 𝐿2 were non-binary variables. Now, for the 𝐿1 binary variables, we assume that 𝐿1𝑁
are qualitative variables with non-ordered categories and 𝐿1𝑂 are qualitative variables with ordered attributes with 𝐿1𝑁 +𝐿1𝑂 = 𝐿1.
Similarly, for the 𝐿2 non-binary variables, we assume that 𝐿2𝑁 are qualitative variables with non-ordered categories and 𝐿2𝑂 are
qualitative variables with ordered attributes with 𝐿2𝑁 + 𝐿2𝑂 = 𝐿2.

For the 𝐿1𝑂 binary qualitative variables with ordered attributes, for each unit 𝑘 ∈ 𝑈 , we consider the vector 𝐹1𝑂𝑘 with the
distribution function values associated:

𝐹1𝑂𝑘 = (𝐹1𝑂1𝑘,… , 𝐹1𝑂𝐿1𝑂𝑘)
′ (22)

where

𝐹1𝑂𝑙𝑘 = 1
𝑁

∑

𝑖∈𝑈
𝛥(𝑥𝑙𝑘 − 𝑥𝑙𝑖), 𝑙 = 1,… , 𝐿1𝑂 .

In a similar way, for the 𝐿2𝑂 non-binary qualitative variables with ordered attributes, for each unit 𝑘 ∈ 𝑈 , we consider the vector
𝐹2𝑂𝑘 given by:

𝐹2𝑂𝑘 = (𝐹2𝑂1𝑘,… , 𝐹2𝑂𝐿2𝑂𝑘)
′ (23)

where

𝐹2𝑂𝑙𝑘 = 1
𝑁

∑

𝑖∈𝑈
𝛥(𝑥𝑙𝑘 − 𝑥𝑙𝑖), 𝑙 = 1,… , 𝐿2𝑂 .

Finally, for the 𝐿3 quantitative variables 𝑥𝑙 we also consider for each 𝑘 ∈ 𝑈 the vector with the distribution function values:

𝐹𝑘 = (𝐹1𝑘,… , 𝐹𝐿3𝑘)
′ (24)

with

𝐹𝑙𝑘 = 1
𝑁

∑

𝑖∈𝑈
𝛥(𝑥𝑙𝑘 − 𝑥𝑙𝑖), 𝑙 = 1,… , 𝐿3.

Now, for every unit 𝑘 ∈ 𝑈 , we can consider the following auxiliary vector

𝐓′ = (𝐱′ , 𝐹1𝑂′ , 𝐹2𝑂′ , 𝐹 )
6

𝑘 𝑘 𝑘 𝑘 𝑘
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It is clear that the dimension of 𝐓′
𝑘 is

𝐿1 + 𝐿2 + 𝐿3 + 𝐿1𝑂 + 𝐿2𝑂 + 𝐿3 = 2𝐽 − 𝐿1𝑁 − 𝐿2𝑁 .

The dimension of the new vector 𝐓′
𝑘 can be reduced with multidimensional scaling. To do so, we obtain the similarity matrix 𝐒𝐓

with entries 𝑆𝑖𝑗 calculated with Gower’s similarity index:

𝑆𝑖𝑘 =

𝑏1 + 𝑏2 +
𝐿3
∑

𝑙=1

(

1 −
|𝑥𝑙𝑖 − 𝑥𝑙𝑘|

𝑅𝑙

)

+
𝐿1𝑂
∑

𝑙=1

(

1 −
|𝐹1𝑂𝑙𝑖 − 𝐹1𝑂𝑙𝑘|

𝑅𝑙

)

(𝐿1 − 𝑏1) + 𝐿1𝑂 + 𝐿2 + 𝐿2𝑂 + 2𝐿3

+

𝐿2𝑂
∑

𝑙=1

(

1 −
|𝐹2𝑂𝑙𝑖 − 𝐹2𝑂𝑙𝑘|

𝑅𝑙

)

+
𝐿3
∑

𝑙=1

(

1 −
|𝐹𝑙𝑖 − 𝐹𝑙𝑘|

𝑅𝑙

)

(𝐿1 − 𝑏1) + 𝐿1𝑂 + 𝐿2 + 𝐿2𝑂 + 2𝐿3
(25)

and the corresponding distance matrix 𝐃𝐓.
As in the previous cases, with the 𝑢 largest eigenvalues from the matrix

𝐁𝐓 = −1
2
𝐄𝐅𝐓𝐄 = 𝐄𝐒𝐓𝐄

e can obtain the matrix 𝐂𝑢 in the usual way that for every unit 𝑘 ∈ 𝑈 contains an auxiliary vector 𝐦𝑘 = 𝐜𝑢𝑘.
A new calibration estimator 𝐹𝑦𝑚𝑑𝑠3(𝑡) can be obtained by minimising (6) under the following conditions:

1
𝑁

∑

𝑘∈𝑠
𝜔𝑘𝐦𝑘 = 1

𝑁
∑

𝑘∈𝑈
𝐦𝑘 = 𝑀̄. (26)

If we denote the Horvitz–Thompson estimator for 𝑀̄ by 𝑀̄𝐻𝑇 , the expression for 𝐹𝑦𝑚𝑑𝑠3(𝑡) is given as follows:

𝐹𝑦𝑚𝑑𝑠3(𝑡) = 𝐹𝑌𝐻𝑇 (𝑡) +
(

𝑀̄ − 𝑀̄𝐻𝑇

)′
⋅𝑊 (27)

ith

𝑊 = 𝝌−1 ⋅
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝐦𝑘𝛥(𝑡 − 𝑦𝑘)

here we assume that the matrix 𝝌 defined as:

𝝌 =
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘𝐦𝑘 ⋅𝐦′

𝑘

s non-singular.
Using the linearity properties of the calibration estimator given in [15], it can be obtained that the estimator 𝐹𝑦𝑚𝑑𝑠3(𝑡) is

symptotically unbiased with an asymptotic variance given by the following expression:

𝐴𝑉 (𝐹𝑦𝑚𝑑𝑠3(𝑡)) =
1
𝑁2

∑

𝑘∈𝑈

∑

𝑙∈𝑈
𝛥𝑘𝑙(𝑑𝑘𝜀𝑘)(𝑑𝑙𝜀𝑙) (28)

where 𝜀𝑘 = 𝛥(𝑡 − 𝑦𝑘) −𝐦′
𝑘 ⋅𝐾, with

𝐾 =

(

∑

𝑘∈𝑈
𝑞𝑘𝐦𝑘 ⋅𝐦′

𝑘

)−1

⋅

(

∑

𝑘∈𝑈
𝑞𝑘𝐦𝑘𝛥(𝑡 − 𝑦𝑘)

)

. (29)

4. Properties of the calibration estimators based on multidimensional scaling

When a new estimator 𝐹𝑦(𝑡) of the distribution function 𝐹𝑦(𝑡) is introduced, it is important to determine whether 𝐹𝑦(𝑡) is also a
distribution function, that is, whether 𝐹𝑦(𝑡) satisfies the following properties:

(i) 𝐹𝑦(𝑡) is continuous on the right,
(ii) (a) lim𝑡→−∞ 𝐹𝑦(𝑡) = 0 and (b) lim𝑡→+∞ 𝐹𝑦(𝑡) = 1,

(iii) 𝐹𝑦(𝑡) is monotone nondecreasing.

Compliance with the above properties allows us to estimate population quantiles and wage inequality measures based on
quantiles, through the inverse function of the estimator 𝐹𝑦(𝑡) [8,42]. However, not all the new calibration estimators proposed
satisfy all the properties of the distribution function.

The estimator 𝐹𝑦𝑚𝑑𝑠1(𝑡) always satisfies properties (i) and (iia) whereas properties (iib) and (iii) are respectively satisfied if a
7

sufficiently large value of 𝜈𝑃 is selected in the vector 𝝂𝐠∗ and if we choose 𝑞𝑘 = 𝑐 for all 𝑘 ∈ 𝑈 .
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Both 𝐹𝑦𝑚𝑑𝑠2(𝑡) and 𝐹𝑦𝑚𝑑𝑠3(𝑡) satisfy conditions (i) and (iia). Additionally, both of them satisfy condition (iib) if the following
onstraint

1
𝑁

∑

𝑘∈𝑠
𝜔𝑘 = 1 (30)

is added to the respective calibration processes (18) and (26). Henceforth, we assume the inclusion of condition (30) in the
calibration processes to obtain the respective estimators 𝐹𝑦𝑚𝑑𝑠2(𝑡) and 𝐹𝑦𝑚𝑑𝑠3(𝑡).

Finally, the estimators 𝐹𝑦𝑚𝑑𝑠2(𝑡) and 𝐹𝑦𝑚𝑑𝑠3(𝑡) satisfy property (iii) if and only if the respective calibrated weights 𝜔𝑘 are positive
or all 𝑘 ∈ 𝑠. With the chi-square distance (6), we cannot guarantee positive calibrated weights for all sample units, but the distance
unction associated with the raking method avoids negative calibrated weights [43]. Specifically, the distance based on the raking
ethod is given as follows:

𝐺𝑠(𝜔𝑘, 𝑑𝑘) =
∑

𝑘∈𝑠

1
𝑞𝑘

(

𝜔𝑘 log
𝜔𝑘
𝑑𝑘

− 𝜔𝑘 + 𝑑𝑘

)

. (31)

The raking distance is especially recommended when we wish to calibrate with respect to qualitative auxiliary information or if
we wish to calibrate for known cell counts or known marginal counts in a frequency table of any dimension [25,43] and this can
be a useful option for satisfying property (iii) with the estimators 𝐹𝑦𝑚𝑑𝑠2(𝑡) and 𝐹𝑦𝑚𝑑𝑠3(𝑡).

. Simulation study

In this section, we discuss a simulation study conducted to compare the performance of the proposed estimators 𝐹𝑦𝑚𝑑𝑠1(𝑡);
𝑦̂𝑚𝑑𝑠2(𝑡) and 𝐹𝑦𝑚𝑑𝑠3(𝑡). To analyse these estimators, the simulation study was carried out applying specific procedures developed in
[version 4.3.1]. In addition, alternative estimators of the distribution function 𝐹𝑦(𝑡) were included. These alternative estimators
ere the Horvitz–Thompson estimator 𝐹𝐻𝑇 and the following indirect estimators, the Chambers–Dunstan estimator [44] 𝐹𝐶𝐷(𝑡), the
ovar–Mantel Rao-Estimator [45] 𝐹𝑅𝐾𝑀 (𝑡) and the calibration estimator 𝐹𝑦𝑐 (𝑡) proposed by [19], for which two alternatives were
onsidered. Denoting by 𝑄𝑔(𝛼) the quantile of variable 𝑔 of order 𝛼, we considered the calibration estimators: 𝐹 1

𝑦𝑐 (𝑡), with auxiliary
ector 𝐭𝐠 = (𝑄𝑔(0.5)) and 𝐹 3

𝑦𝑐 (𝑡) with auxiliary vector 𝐭𝐠 = (𝑄𝑔(0.25), 𝑄𝑔(0.5), 𝑄𝑔(0.75)). All of these indirect estimators employ the
seudo-variable 𝑔 based on the auxiliary vector 𝐳 that includes the representation of the qualitative information through dummy
ariables. For the proposed estimator 𝐹𝑦𝑚𝑑𝑠1(𝑡), we also included two versions, 𝐹 1

𝑦𝑚𝑑𝑠1(𝑡) based on 𝝂𝐠∗ = (𝑄𝑔∗ (0.5)) and 𝐹 3
𝑦𝑚𝑑𝑠1(𝑡) based

n 𝝂𝐠∗ = (𝑄𝑔∗ (0.25), 𝑄𝑔∗ (0.5), 𝑄𝑔∗ (0.75)).
The simulation study encompassed three populations, one of which is real and the rest, simulated.
The first population is a generated population of size 𝑁 = 500 called SPANISH500. The population includes the variables age,

ationality, gender, weight and access to the Internet. These variables were generated such that the final population was similar to
he Spanish population pyramid. The study variable is defined as follows:

𝑦𝑘 = 3 + 5 ⋅ Internet + Age∕5 + 𝜖𝑘

here the values 𝜖𝑘 are independent identically distributed random variables with 𝜖𝑘 ∼ 𝑁(0, 0.1).
The second population is a simulated population called SIMPOPULATION. The population size is 𝑁 = 1000 and it includes 16

ariables based on the procedure described in [46]. The first variable 𝜂𝑘 was generated using independent and identically distributed
alues from a uniform distribution in (0, 1). The other variables were generated from the following regression models:

𝑚1𝑘 = 1 + 2(𝜂𝑘 − 0.5) + 𝜀1𝑘; 𝜀1𝑘 ∼ 𝑁(0, 0.01)

𝑚2𝑘 = 1 + 2(𝜂𝑘 − 0.5) + 𝜀2𝑘; 𝜀2𝑘 ∼ 𝑁(0, 0.04)

𝑛1𝑘 = 1 + 2(𝜂𝑘 − 0.5)2 + 𝜁1𝑘; 𝜁1𝑘 ∼ 𝑁(0, 0.01)

𝑛2𝑘 = 1 + 2(𝜂𝑘 − 0.5)2 + 𝜁2𝑘; 𝜁2𝑘 ∼ 𝑁(0, 0.04)

𝑛3𝑘 = 1 + 2(𝜂𝑘 − 0.5)2 + 𝜁3𝑘; 𝜁2𝑘 ∼ 𝑁(0, 0.1)

𝑛4𝑘 = 1 + 2(𝜂𝑘 − 0.5)2 + 𝜁4𝑘; 𝜁2𝑘 ∼ 𝑁(0, 0.04)

𝑏1𝑘 = 1 + 2(𝜂𝑘 − 0.5) + exp
(

−200(𝜂𝑘 − 0.5)2
)

+ 𝛾1𝑘; 𝛾1𝑘 ∼ 𝑁(0, 0.01)

𝑏2𝑘 = 1 + 2(𝜂𝑘 − 0.5) + exp
(

−200(𝜂𝑘 − 0.5)2
)

+ 𝛾2𝑘; 𝛾2𝑘 ∼ 𝑁(0, 0.04)

𝑏3𝑘 = 1 + 2(𝜂𝑘 − 0.5) + exp
(

−200(𝜂𝑘 − 0.5)2
)

+ 𝛾3𝑘; 𝛾3𝑘 ∼ 𝑁(0, 0.1)

𝑏4𝑘 = 1 + 2(𝜂𝑘 − 0.5) + exp
(

−200(𝜂𝑘 − 0.5)2
)

+ 𝛾4𝑘; 𝛾4𝑘 ∼ 𝑁(0, 0.4)

𝑒1𝑘 = exp(−8𝜂𝑘) + 𝜏1𝑘; 𝜏1𝑘 ∼ 𝑁(0, 0.01)

𝑒2𝑘 = exp(−8𝜂𝑘) + 𝜏2𝑘; 𝜏2𝑘 ∼ 𝑁(0, 0.04)

𝑒3𝑘 = exp(−8𝜂𝑘) + 𝜏3𝑘; 𝜏3𝑘 ∼ 𝑁(0, 0.1)

𝑒4𝑘 = exp(−8𝜂𝑘) + 𝜏4𝑘; 𝜏4𝑘 ∼ 𝑁(0, 0.4)

𝑐1𝑘 = 2 + sin(2𝜋𝜂𝑘) + 𝜌1𝑘; 𝜌1𝑘 ∼ 𝑁(0, 0.01)

𝑐 = 2 + sin(2𝜋𝜂 ) + 𝜌 ; 𝜌 ∼ 𝑁(0, 0.01)
8
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Table 1
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0024 1 0.0042 1 0.0017 1 0.0013 1
𝐹𝐶𝐷 0.0084 0.9263 0.0063 0.9456 0.0045 0.9393 0.0034 0.9462
𝐹𝑅𝐾𝑀 0.0037 1.0130 0.0035 1.0094 0.0016 1.0016 0.0015 1.0003
𝐹 1
𝑦𝑐 0.0011 1.5237 0.0042 1.5522 0.0013 1.5480 0.0012 1.5873

𝐹 3
𝑦𝑐 0.0020 1.4429 0.0060 1.4164 0.0018 1.3934 0.0012 1.4382

𝐹 1
𝑦𝑚𝑑𝑠1 0.0051 1.1109 0.0036 1.0724 0.0015 1.1096 0.0045 1.0971

𝐹 3
𝑦𝑚𝑑𝑠1 0.0044 0.9082 0.0044 0.8231 0.0022 0.8658 0.0029 0.7937

𝐹𝑦𝑚𝑑𝑠2 0.0107 0.4714 0.0078 0.4681 0.0013 0.5008 0.0022 0.2944
𝐹𝑦𝑚𝑑𝑠3 0.0037 0.7565 0.0085 0.7323 0.0029 0.7536 0.0012 0.7364

The study variable is 𝑐2𝑘 and the remaining variables are considered in the auxiliary vector 𝐱𝑘. The variables 𝑚2𝑘, 𝑛2𝑘, 𝑛4𝑘 and
𝑏2𝑘 are divided into two categories via the median, and the variables 𝑚1𝑘, 𝑛1𝑘, 𝑛3𝑘, 𝑏1𝑘 and 𝑏3𝑘 via the quartiles, into four categories.

The last population considered was the dataset EUSILC from the R package ‘‘laeken’’. This population is synthetically generated
from the European Union Statistics on Income and Living Conditions in Austria. The dataset has 14 827 observations and 27 variables.
The study variable was employee cash or near cash income (var 𝑝𝑦010𝑛) and the remaining variables were included in the auxiliary
vector 𝐱𝑘.

The selection criterion for the dimension of principal coordinates obtained through multidimensional scaling is based on the
goodness of fit measure (GOF) [41] given by:

𝐺𝑂𝐹 (ℎ) =

ℎ
∑

𝑘=1
𝜆𝑘

𝐻
∑

𝑘=1
|𝜆𝑘|

⋅ 100 (32)

In all populations, the following percentages 𝑃𝐸 = 50%, 60%, 70% and 80% were considered. Thus, in each case the minimum
number of principal coordinates ℎ was retained so that the 𝐺𝑂𝐹 (ℎ) value was greater than or equal to the 𝑃𝐸 value considered. For
ach percentage value 𝑃𝐸, 1000 different samples were drawn by simple random sampling without replacement for four different
izes. With each sample, estimates of the distribution function 𝐹 (𝑡) at 11 points were obtained with all the estimators included in
he simulation study. The 11 points considered were the quantiles 𝑄𝑦(𝛼) for 𝛼 = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and
.9.

The measures employed to compare the performance of each estimator included in the simulation study were the average relative
ias (avrb) and the average relative efficiency (avre), respectively given by:

avrb(𝑡) = 1
11

11
∑

𝑞=1
|rb(𝑡𝑞)|, avre(𝑡) = 1

11

11
∑

𝑞=1
re(𝑡𝑞)

with

rb(𝑡) = 1
𝐵

𝐵
∑

𝑏=1

𝐹 (𝑡)𝑏 − 𝐹𝑦(𝑡)
𝐹𝑦(𝑡)

and re(𝑡) = 𝑀𝑆𝐸[𝐹 (𝑡)]
𝑀𝑆𝐸[𝐹𝐻𝑇 (𝑡)]

, (33)

nd 𝑀𝑆𝐸[𝐹 (𝑡)] denotes the empirical mean square error for 𝐹 (𝑡) defined as follows:

𝑀𝑆𝐸[𝐹 (𝑡)] = 𝐵−1
𝐵
∑

𝑏=1
[𝐹 (𝑡)𝑏 − 𝐹𝑦(𝑡)]2

where 𝑏 indexes the 𝑏th simulation run, 𝐹 (𝑡) is an estimator for the distribution function and 𝑀𝑆𝐸[𝐹𝐻𝑇 (𝑡)] is the empirical mean
square error for the Horvitz–Thompson estimator.

This simulation study is implemented in the statistical computing environment R using code developed by the authors. This code
is available from the authors on request.

The results for the first simulation study with the SPANISH500 population are summarised in Tables 1, 2, 3 and 4 for the different
values of 𝑃𝐸.

As can be seen, all the estimators perform well in terms of relative bias, and none is uniformly better than any other. Concerning
efficiency, in all cases 𝐹𝑦𝑚𝑑𝑠2 outperforms the other estimators, especially with regard to 𝐹𝐻𝑇 . Moreover, the estimators 𝐹𝑦𝑚𝑑𝑠3 and
̂3
𝑦𝑚𝑑𝑠1 are more efficient than 𝐹𝐻𝑇 . The remaining indirect estimators are less efficient than 𝐹𝐻𝑇 , with the exception of 𝐹𝐶𝐷, which

s slightly better. Another aspect of interest is that for 𝑃𝐸 = 80 (except when size 𝑛 = 125), the efficiency of estimator 𝐹 3 is
9

𝑦𝑚𝑑𝑠1
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Table 2
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0146 1 0.0049 1 0.0030 1 0.0037 1
𝐹𝐶𝐷 0.0166 0.9115 0.0077 0.9381 0.0031 0.9585 0.0047 0.9630
𝐹𝑅𝐾𝑀 0.0173 1.0124 0.0056 1.0132 0.0027 1.0095 0.0043 1.0146
𝐹 1
𝑦𝑐 0.0170 1.6334 0.0052 1.5832 0.0030 1.5235 0.0036 1.5857

𝐹 3
𝑦𝑐 0.0164 1.4899 0.0047 1.4428 0.0027 1.4223 0.0034 1.5075

𝐹 1
𝑦𝑚𝑑𝑠1 0.0175 1.1115 0.0085 1.1030 0.0046 1.1189 0.0072 1.0915

𝐹 3
𝑦𝑚𝑑𝑠1 0.0154 0.9149 0.0051 0.8387 0.0029 0.8067 0.0055 0.8302

𝐹𝑦𝑚𝑑𝑠2 0.0051 0.4874 0.0027 0.4758 0.0069 0.4752 0.0018 0.2902
𝐹𝑦𝑚𝑑𝑠3 0.0079 0.7665 0.0038 0.7445 0.0037 0.7355 0.0028 0.7398

Table 3
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0050 1 0.0032 1 0.0017 1 0.0013 1
𝐹𝐶𝐷 0.0069 0.9227 0.0065 0.9393 0.0045 0.9415 0.0044 0.9592
𝐹𝑅𝐾𝑀 0.0052 1.0168 0.0031 1.0099 0.0014 1.0043 0.0021 1.0064
𝐹 1
𝑦𝑐 0.0051 1.4904 0.0036 1.4625 0.0015 1.5336 0.0023 1.5872

𝐹 3
𝑦𝑐 0.0050 1.4257 0.0052 1.3873 0.0016 1.4251 0.0021 1.4318

𝐹 1
𝑦𝑚𝑑𝑠1 0.0075 1.0654 0.0073 1.0800 0.0038 1.0980 0.0019 1.0736

𝐹 3
𝑦𝑚𝑑𝑠1 0.0066 0.8538 0.0057 0.8705 0.0023 0.8315 0.0021 0.8090

𝐹𝑦𝑚𝑑𝑠2 0.0079 0.3294 0.0017 0.3141 0.0010 0.3029 0.0016 0.3113
𝐹𝑦𝑚𝑑𝑠3 0.0065 0.7758 0.0033 0.7622 0.0018 0.7553 0.0030 0.7260

Table 4
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0038 1 0.0094 1 0.0025 1 0.0037 1
𝐹𝐶𝐷 0.0063 0.9244 0.0097 0.9501 0.0048 0.9449 0.0035 0.9553
𝐹𝑅𝐾𝑀 0.0024 1.0185 0.0092 1.0099 0.0031 1.0079 0.0013 1.0044
𝐹 1
𝑦𝑐 0.0038 1.5763 0.0091 1.5534 0.0026 1.5553 0.0013 1.5282

𝐹 3
𝑦𝑐 0.0057 1.4531 0.0112 1.3963 0.0030 1.4258 0.0015 1.4536

𝐹 1
𝑦𝑚𝑑𝑠1 0.0035 0.8653 0.0059 0.8816 0.0030 0.8417 0.0048 1.1002

𝐹 3
𝑦𝑚𝑑𝑠1 0.0127 0.3830 0.0059 0.3540 0.0067 0.3481 0.0021 0.8139

𝐹𝑦𝑚𝑑𝑠2 0.0086 0.2830 0.0070 0.2601 0.0031 0.2537 0.0012 0.2965
𝐹𝑦𝑚𝑑𝑠3 0.0052 0.8853 0.0054 0.7063 0.0027 0.7016 0.0019 0.7513

considerably higher, while the estimator 𝐹 1
𝑦𝑚𝑑𝑠1 is more efficient than 𝐹𝐶𝐷 and 𝐹𝐻𝑇 . Finally, the proposed estimators 𝐹 1

𝑦𝑚𝑑𝑠1, 𝐹
3
𝑦𝑚𝑑𝑠1,

enerally achieve better values for AVRE than their respective versions based on the usual calibration.
For the second simulation study with the SIMPOPULATION, Tables 5, 6, 7 and 8 summarise the results for the four values of

𝐸.
As with the previous populations, the results for the SIMPOPULATION show that there is no estimator that minimises the bias

n a uniform way. However, a notable bias reduction is achieved by 𝐹𝑦𝑚𝑑𝑠3 for the cases 𝑃𝐸 = 60 and 𝑃𝐸 = 80 with size 𝑛 = 125.
Concerning efficiency, the estimators 𝐹𝑦𝑚𝑑𝑠2, 𝐹𝑦𝑚𝑑𝑠3 and 𝐹 3

𝑦𝑚𝑑𝑠1 present a notable improvement over 𝐹𝐻𝑇 . In general, the
stimators 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 uniformly present the lowest values of AVRE. The estimator 𝐹 1

𝑦𝑚𝑑𝑠1 is also more efficient than 𝐹𝐻𝑇

n all cases. Among the other indirect estimators, only 𝐹𝐶𝐷 is more efficient than 𝐹𝐻𝑇 , and then only slightly so. Moreover, this
stimator always performs worse than 𝐹𝑦𝑚𝑑𝑠2, 𝐹𝑦𝑚𝑑𝑠3, 𝐹 3

𝑦𝑚𝑑𝑠1 and 𝐹 1
𝑦𝑚𝑑𝑠1. As in the previous populations, the proposed estimators

̂1
𝑦𝑚𝑑𝑠1, 𝐹

3
𝑦𝑚𝑑𝑠1 present lower values of AVRE than their respective usual calibration versions 𝐹 1

𝑦𝑐 , 𝐹 3
𝑦𝑐 .
10

Finally, the results for the EUSILC population, for all values of 𝑃𝐸, are summarised in Tables 9, 10, 11 and 12.
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Table 5
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0015 1 0.0036 1 0.0021 1 0.0031 1
𝐹𝐶𝐷 0.0092 0.9365 0.0091 0.9457 0.0068 0.9548 0.0057 0.9489
𝐹𝑅𝐾𝑀 0.0010 1.0033 0.0042 1.0144 0.0022 1.0088 0.0032 1.0040
𝐹 1
𝑦𝑐 0.0016 1.5062 0.0015 1.5478 0.0021 1.5053 0.0033 1.5155

𝐹 3
𝑦𝑐 0.0015 1.3917 0.0026 1.4138 0.0027 1.3488 0.0029 1.3624

𝐹 1
𝑦𝑚𝑑𝑠1 0.0020 0.8989 0.0012 0.9495 0.0022 0.9272 0.0032 0.8718

𝐹 3
𝑦𝑚𝑑𝑠1 0.0035 0.4462 0.0022 0.4774 0.0025 0.4381 0.0033 0.4171

𝐹𝑦𝑚𝑑𝑠2 0.0041 0.4943 0.0044 0.4965 0.0026 0.4785 0.0017 0.2938
𝐹𝑦𝑚𝑑𝑠3 0.0020 0.3396 0.0015 0.3531 0.0019 0.3302 0.0022 0.3084

Table 6
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0044 1 0.0013 1 0.0043 1 0.0026 1
𝐹𝐶𝐷 0.0112 0.9369 0.0088 0.9384 0.0067 0.94082 0.0091 0.9523
𝐹𝑅𝐾𝑀 0.0042 1.0112 0.0010 1.0008 0.0048 1.0029 0.0026 1.0025
𝐹 1
𝑦𝑐 0.0049 1.4890 0.0010 1.5656 0.0042 1.4757 0.0026 1.5667

𝐹 3
𝑦𝑐 0.0050 1.4024 0.0013 1.4039 0.0047 1.3751 0.0025 1.4179

𝐹 1
𝑦𝑚𝑑𝑠1 0.0038 0.8879 0.0036 0.9000 0.0025 0.8927 0.0026 0.8758

𝐹 3
𝑦𝑚𝑑𝑠1 0.0041 0.3740 0.0022 0.4023 0.0038 0.3661 0.0027 0.4297

𝐹𝑦𝑚𝑑𝑠2 0.0055 0.3153 0.0029 0.3236 0.0008 0.3085 0.0028 0.3079
𝐹𝑦𝑚𝑑𝑠3 0.0049 0.3202 0.0024 0.3263 0.0006 0.3120 0.0028 0.3146

Table 7
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0042 1 0.0033 1 0.0030 1 0.0021 1
𝐹𝐶𝐷 0.0094 0.9456 0.0084 0.9441 0.0099 0.9430 0.0082 0.9559
𝐹𝑅𝐾𝑀 0.0038 1.0115 0.0033 1.0109 0.0029 1.0028 0.0020 1.0021
𝐹 1
𝑦𝑐 0.0040 1.5081 0.0036 1.5142 0.0029 1.5529 0.0019 1.5258

𝐹 3
𝑦𝑐 0.0040 1.3974 0.0040 1.3832 0.0029 1.3859 0.0022 1.3653

𝐹 1
𝑦𝑚𝑑𝑠1 0.0056 0.8793 0.0033 0.8744 0.0029 0.8881 0.0022 0.8899

𝐹 3
𝑦𝑚𝑑𝑠1 0.0033 0.3898 0.0047 0.3772 0.0029 0.3850 0.0015 0.4339

𝐹𝑦𝑚𝑑𝑠2 0.0057 0.3075 0.0013 0.3020 0.0031 0.3053 0.0028 0.3070
𝐹𝑦𝑚𝑑𝑠3 0.0051 0.2889 0.0024 0.2804 0.0037 0.2775 0.0024 0.3140

The estimator 𝐹𝐶𝐷 presents obvious problems of bias and efficiency in all cases. All other estimators present good results for
ias. For efficiency, the best estimators are clearly 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3, followed by 𝐹 3

𝑦𝑚𝑑𝑠1 and 𝐹 1
𝑦𝑚𝑑𝑠1. Only these four estimators are

ore efficient than 𝐹𝐻𝑇 , except in the cases of 𝑃𝐸 = 80 and 𝑛 = 75, where 𝐹 1
𝑦𝑚𝑑𝑠1 performs worse than 𝐹𝐻𝑇 .

From the results derived from the three simulation studies carried out, we conclude that in general the efficiency of estimator
𝑦̂𝑚𝑑𝑠1 is considerably improved when the calibration process is considered with three points (estimator 𝐹 3

𝑦𝑚𝑑𝑠1) rather than a single
oint (estimator 𝐹 1

𝑦𝑚𝑑𝑠1). Additionally, it is not necessary to consider a high value of 𝑃𝐸 to achieve a notable improvement in
fficiency, since with 𝑃𝐸 = 50% a considerable reduction in the 𝐴𝑉 𝑅𝐸 is achieved with the proposed estimators. In fact, in general,
he improvement in efficiency with 𝑃𝐸 = 50% remains stable with higher values of 𝑃𝐸, with the sole exception of the estimator
𝑦̂𝑚𝑑𝑠2, in which case the efficiency is substantially higher for 𝑃𝐸 = 80 in all populations except EUSILC. This efficiency improvement
or 𝑃𝐸 = 80 is also shown by the estimators 𝐹 1 and 𝐹 3 but only for the SPANISH500 population.
11
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Table 8
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0015 1 0.0031 1 0.0043 1 0.0039 1
𝐹𝐶𝐷 0.0092 0.9366 0.0097 0.9452 0.0067 0.9408 0.0082 0.9560
𝐹𝑅𝐾𝑀 0.0010 1.0033 0.0026 1.0051 0.0048 1.0029 0.0043 1.0100
𝐹 1
𝑦𝑐 0.0016 1.5056 0.0029 1.5273 0.0042 1.4757 0.0029 1.5239

𝐹 3
𝑦𝑐 0.0014 1.3918 0.0028 1.3691 0.0047 1.3751 0.0034 1.4123

𝐹 1
𝑦𝑚𝑑𝑠1 0.0040 0.8761 0.0029 0.8733 0.0030 0.8991 0.0015 0.9345

𝐹 3
𝑦𝑚𝑑𝑠1 0.0060 0.3996 0.0044 0.3958 0.0052 0.3756 0.0023 0.4422

𝐹𝑦𝑚𝑑𝑠2 0.0050 0.2603 0.0032 0.2384 0.0013 0.2386 0.0022 0.3150
𝐹𝑦𝑚𝑑𝑠3 0.0038 0.2954 0.0030 0.2776 0.0008 0.2712 0.0018 0.3213

Table 9
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0023 1 0.0005 1 0.0011 1 0.0013 1
𝐹𝐶𝐷 0.1821 9.8648 0.1810 13.2486 0.1799 17.0118 0.1832 21.1746
𝐹𝑅𝐾𝑀 0.0024 1.0141 0.0006 1.0373 0.0016 1.0198 0.0012 0.9916
𝐹 1
𝑦𝑐 0.0040 1.4453 0.0008 1.5029 0.0010 1.4942 0.0009 1.4107

𝐹 3
𝑦𝑐 0.0036 1.2670 0.0005 1.3270 0.0012 1.3331 0.0010 1.2541

𝐹 1
𝑦𝑚𝑑𝑠1 0.0037 0.8738 0.0008 0.9674 0.0011 0.8759 0.0015 0.9486

𝐹 3
𝑦𝑚𝑑𝑠1 0.0017 0.6855 0.0010 0.7308 0.0019 0.6752 0.0008 0.6900

𝐹𝑦𝑚𝑑𝑠2 0.0006 0.3265 0.0007 0.3251 0.0019 0.3199 0.0009 0.3225
𝐹𝑦𝑚𝑑𝑠3 0.0015 0.3942 0.0006 0.3946 0.0015 0.3889 0.0006 0.3840

Table 10
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0010 1 0.0014 1 0.0009 1 0.0005 1
𝐹𝐶𝐷 0.1841 9.7379 0.1807 12.8360 0.1797 16.5563 0.1835 19.3017
𝐹𝑅𝐾𝑀 0.0008 1.0272 0.0017 1.0226 0.0014 1.0232 0.0007 1.0093
𝐹 1
𝑦𝑐 0.0027 1.5920 0.0018 1.4387 0.0012 1.4551 0.0005 1.4627

𝐹 3
𝑦𝑐 0.0014 1.3313 0.0013 1.2632 0.0015 1.2744 0.0012 1.2942

𝐹 1
𝑦𝑚𝑑𝑠1 0.0019 0.9521 0.0019 0.9488 0.0010 0.8931 0.0017 0.8892

𝐹 3
𝑦𝑚𝑑𝑠1 0.0008 0.7043 0.0010 0.7362 0.0009 0.6780 0.0011 0.6521

𝐹𝑦𝑚𝑑𝑠2 0.0009 0.3286 0.0003 0.3195 0.0005 0.3286 0.0009 0.3139
𝐹𝑦𝑚𝑑𝑠3 0.0012 0.3857 0.0005 0.3943 0.0006 0.3869 0.0007 0.3727

5.1. Simulation studies with Midzuno sampling

To illustrate the robustness of the proposed estimators against the sampling design used, the simulations were repeated in all
opulations but obtaining the samples through Midzuno sampling.

For the SPANISH500 population, Midzuno sampling was performed considering the variable 𝐴𝑔𝑒. Tables 13, 14, 15 and 16
ummarise the results obtained for the same sample size 𝑛 and 𝑃𝐸 values considered previously.

Tables 13, 14, 15 and 16 show that the relative bias results obtained with Midzuno sampling differ from those of simple random
ampling in that the best-performing estimators in most cases are 𝐹𝐶𝐷 and 𝐹𝑅𝐾𝑀 , although 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 present very similar
alues. Indeed, the latter has the lowest relative bias of all for 𝑃𝐸 = 70 and 𝑛 = 75, 100, 125. In general, 𝐹 3

𝑦𝑚𝑑𝑠1 presents higher levels
f bias than 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3, but as the 𝑃𝐸 value increases, this bias decreases sharply, such that for 𝑃𝐸 = 80, it is less than that
ecorded for 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3. The estimator 𝐹 1

𝑦𝑚𝑑𝑠1 performs better than 𝐹𝐻𝑇 and the usual calibrated estimators 𝐹 1
𝑦𝑐 and 𝐹 3

𝑦𝑐 .
Concerning relative efficiency, all the indirect estimators perform better than 𝐹𝐻𝑇 , and 𝐹𝑦𝑚𝑑𝑠2 is by far the best in all cases. The

̂ ̂ ̂ ̂3
12

stimator 𝐹𝑦𝑚𝑑𝑠3 is also more efficient than the other estimators except in the case of 𝑃𝐸 = 80, where 𝐹𝐶𝐷, 𝐹𝑅𝐾𝑀 and 𝐹𝑦𝑚𝑑𝑠1 present
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Table 11
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0027 1 0.0014 1 0.0011 1 0.0011 1
𝐹𝐶𝐷 0.1832 9.9963 0.1824 13.0813 0.1800 15.9325 0.1839 19.8261
𝐹𝑅𝐾𝑀 0.0025 1.0004 0.0019 1.0255 0.0013 1.0158 0.0015 0.9947
𝐹 1
𝑦𝑐 0.0032 1.4711 0.0004 1.5680 0.0011 1.4756 0.0009 1.4387

𝐹 3
𝑦𝑐 0.0031 1.3031 0.0011 1.3098 0.0022 1.2555 0.0010 1.2312

𝐹 1
𝑦𝑚𝑑𝑠1 0.0013 0.9541 0.0007 0.9542 0.0005 0.9070 0.0013 0.9094

𝐹 3
𝑦𝑚𝑑𝑠1 0.0009 0.7258 0.0022 0.7308 0.0021 0.6819 0.0008 0.6696

𝐹𝑦𝑚𝑑𝑠2 0.0006 0.3440 0.0006 0.3395 0.0004 0.3194 0.0007 0.3102
𝐹𝑦𝑚𝑑𝑠3 0.0012 0.4155 0.0006 0.4057 0.0004 0.3906 0.0005 0.3828

Table 12
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0009 1 0.0013 1 0.0010 1 0.0008 1
𝐹𝐶𝐷 0.1833 10.3742 0.1800 13.7810 0.1796 16.9243 0.1834 20.4737
𝐹𝑅𝐾𝑀 0.0010 1.0207 0.0004 1.0300 0.0012 1.0108 0.0008 1.0116
𝐹 1
𝑦𝑐 0.0008 1.5386 0.0023 1.5078 0.0010 1.5612 0.0007 1.4983

𝐹 3
𝑦𝑐 0.0008 1.2853 0.0019 1.2928 0.0009 1.3077 0.0007 1.2999

𝐹 1
𝑦𝑚𝑑𝑠1 0.0025 0.9613 0.0029 1.0067 0.0023 0.9684 0.0020 0.8411

𝐹 3
𝑦𝑚𝑑𝑠1 0.0012 0.7384 0.0015 0.7267 0.0029 0.6982 0.0024 0.5950

𝐹𝑦𝑚𝑑𝑠2 0.0007 0.3346 0.0008 0.3455 0.0011 0.3476 0.0007 0.1887
𝐹𝑦𝑚𝑑𝑠3 0.0009 0.4070 0.0013 0.4224 0.0018 0.4148 0.0008 0.2594

Table 13
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9890 1.0000 0.9753 1.0000 0.9561 1.0000 0.9312 1.0000
𝐹𝐶𝐷 0.0089 0.0374 0.0124 0.0251 0.0132 0.0187 0.0150 0.0151
𝐹𝑅𝐾𝑀 0.0116 0.0414 0.0139 0.0270 0.0135 0.0199 0.0147 0.0160
𝐹 1
𝑦𝑐 0.4735 0.2700 0.4734 0.2630 0.4618 0.2544 0.4449 0.2461

𝐹 3
𝑦𝑐 0.2481 0.1054 0.2445 0.0905 0.2411 0.0832 0.2312 0.0771

𝐹 1
𝑦𝑚𝑑𝑠1 0.2508 0.1015 0.2548 0.0944 0.2509 0.0903 0.2472 0.0894

𝐹 3
𝑦𝑚𝑑𝑠1 0.1129 0.0437 0.1243 0.0357 0.1295 0.0326 0.1346 0.0315

𝐹𝑦𝑚𝑑𝑠2 0.0155 0.0261 0.0167 0.0161 0.0158 0.0127 0.0158 0.0096
𝐹𝑦𝑚𝑑𝑠3 0.0097 0.0375 0.0156 0.0236 0.0174 0.0177 0.0184 0.0139

better efficiency. As with the results for bias, the efficiency of 𝐹 3
𝑦𝑚𝑑𝑠1 improves as the value of 𝑃𝐸 increases, and for 𝑃𝐸 = 80 it is

nly outperformed by 𝐹𝑦𝑚𝑑𝑠2. The estimator 𝐹 1
𝑦𝑚𝑑𝑠1 always achieves much higher efficiency than 𝐹𝐻𝑇 and 𝐹 1

𝑦𝑐 and in general it also
urpasses the efficiency of 𝐹 3

𝑦𝑐 .
Midzuno sampling was then applied to the SIMPOPULATION, using the variable 𝑏4𝑘. Tables 17, 18, 19 and 20 show the results

or the usual sample sizes 𝑛 and for the usual 𝑃𝐸 values.
These Tables 17, 18, 19 and 20 also show that no estimator uniformly presents a lower bias, although in most cases 𝐹𝑦𝑚𝑑𝑠2 and

𝑦̂𝑚𝑑𝑠3 present the lowest relative bias, specially for high values of 𝑃𝐸, results that are only surpassed, in some circumstances, by
𝑅̂𝐾𝑀 . As in the previous cases, the bias obtained by estimator 𝐹 3

𝑦𝑚𝑑𝑠1 is considerably less than that recorded for 𝐹 1
𝑦𝑐 , 𝐹 3

𝑦𝑐 and 𝐹𝐻𝑇 .
oreover, 𝐹 1

𝑦𝑚𝑑𝑠1 also presents lower values for bias than 𝐹 1
𝑦𝑐 , 𝐹 3

𝑦𝑐 and 𝐹𝐻𝑇

All estimators considerably improve the efficiency of 𝐹𝐻𝑇 , but 𝐹𝑦𝑚𝑑𝑠2, 𝐹𝑦𝑚𝑑𝑠3 and 𝐹 3
𝑦𝑚𝑑𝑠1 are outstanding in this respect, with

𝑦̂𝑚𝑑𝑠2 uniformly presenting the best performance. The estimator 𝐹 1
𝑦𝑚𝑑𝑠1 achieves better efficiency than the usual calibrated estimators

̂1 and 𝐹 3 .
13
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Table 14
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9892 1.0000 0.9755 1.0000 0.9561 1.0000 0.9311 1.0000
𝐹𝐶𝐷 0.0153 0.0386 0.0134 0.0249 0.0148 0.0190 0.0111 0.0149
𝐹𝑅𝐾𝑀 0.0173 0.0424 0.0147 0.0270 0.0145 0.0200 0.0113 0.0156
𝐹 1
𝑦𝑐 0.4880 0.2794 0.4798 0.2675 0.4627 0.2555 0.4400 0.2429

𝐹 3
𝑦𝑐 0.2651 0.1111 0.2553 0.0944 0.2401 0.0827 0.2255 0.0754

𝐹 1
𝑦𝑚𝑑𝑠1 0.2511 0.1007 0.2461 0.0914 0.2391 0.0855 0.2321 0.0832

𝐹 3
𝑦𝑚𝑑𝑠1 0.0799 0.0432 0.0753 0.0298 0.0727 0.0255 0.0671 0.0222

𝐹𝑦𝑚𝑑𝑠2 0.0250 0.0280 0.0175 0.0170 0.0166 0.0120 0.0101 0.0097
𝐹𝑦𝑚𝑑𝑠3 0.0231 0.0380 0.0199 0.0233 0.0165 0.0169 0.0117 0.0134

Table 15
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9891 1.0000 0.9753 1.0000 0.9559 1.0000 0.9309 1.0000
𝐹𝐶𝐷 0.0089 0.0396 0.0125 0.0254 0.0105 0.0181 0.0120 0.0149
𝐹𝑅𝐾𝑀 0.0115 0.0431 0.0136 0.0272 0.0125 0.0190 0.0135 0.0159
𝐹 1
𝑦𝑐 0.4920 0.2855 0.4738 0.2613 0.4561 0.2501 0.4393 0.2428

𝐹 3
𝑦𝑐 0.2582 0.1114 0.2508 0.0912 0.2353 0.0802 0.2248 0.0750

𝐹 1
𝑦𝑚𝑑𝑠1 0.2437 0.0991 0.2420 0.0911 0.2368 0.0856 0.2340 0.0842

𝐹 3
𝑦𝑚𝑑𝑠1 0.0577 0.0430 0.0553 0.0291 0.0521 0.0224 0.0510 0.0191

𝐹𝑦𝑚𝑑𝑠2 0.0311 0.0224 0.0275 0.0139 0.0326 0.0104 0.0324 0.0086
𝐹𝑦𝑚𝑑𝑠3 0.0127 0.0423 0.0096 0.0243 0.0055 0.0171 0.0044 0.0146

Table 16
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9892 1.0000 0.9755 1.0000 0.9561 1.0000 0.9311 1.0000
𝐹𝐶𝐷 0.0153 0.0386 0.0134 0.0249 0.0148 0.0190 0.0111 0.0149
𝐹𝑅𝐾𝑀 0.0173 0.0424 0.0147 0.0270 0.0145 0.0200 0.0113 0.0156
𝐹 1
𝑦𝑐 0.4880 0.2794 0.4798 0.2675 0.4627 0.2555 0.4400 0.2429

𝐹 3
𝑦𝑐 0.2651 0.1111 0.2553 0.0944 0.2401 0.0827 0.2255 0.0754

𝐹 1
𝑦𝑚𝑑𝑠1 0.1800 0.0782 0.1731 0.0692 0.1703 0.0643 0.1640 0.0617

𝐹 3
𝑦𝑚𝑑𝑠1 0.0366 0.0209 0.0336 0.0133 0.0334 0.0103 0.0303 0.0086

𝐹𝑦𝑚𝑑𝑠2 0.0429 0.0212 0.0358 0.0118 0.0336 0.0088 0.0319 0.0072
𝐹𝑦𝑚𝑑𝑠3 0.0380 0.0623 0.0448 0.0319 0.0487 0.0220 0.0576 0.0203

Finally, for the EUSILC population, Midzuno sampling was performed considering the variable 𝐴𝑔𝑒 and results are displayed in
Tables 21, 22, 23 and 24.

From the results shown in Tables 21, 22, 23 and 24, we conclude that the estimator that most reduces the bias is 𝐹𝑦𝑚𝑑𝑠3 in all
ases, followed by 𝐹𝑦𝑚𝑑𝑠2. The estimator 𝐹 3

𝑦𝑚𝑑𝑠1 also shows less bias than the other estimators except for 𝑃𝐸 = 70, 80 where it is
lightly surpassed by 𝐹𝑅𝐾𝑀 . Regarding relative efficiency, as in the previous case, all the indirect estimators are more efficient than
𝐻̂𝑇 . Estimators 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 are notably more efficient than the other estimators. Likewise, 𝐹 3

𝑦𝑚𝑑𝑠1 is generally more efficient
han the other estimators, while 𝐹𝐶𝐷 obtains the worst results of all the indirect estimators.

.2. Variability of the set of calibration weights

In this subsection, we further analyse the performance of the proposed estimators by focusing on the variability of the final
et of calibration weights for each of the estimators considered and also for the usual calibration estimator. For each of the three
opulations analysed using the Midzuno sampling design, we now measure the variability of the calibrated weights in each of
14
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Table 17
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9976 1.0000 0.9945 1.0000 0.9901 1.0000 0.9845 1.0000
𝐹𝐶𝐷 0.0096 0.0360 0.0135 0.0238 0.0105 0.0181 0.0091 0.0140
𝐹𝑅𝐾𝑀 0.0052 0.0398 0.0051 0.0259 0.0035 0.0193 0.0035 0.0149
𝐹 1
𝑦𝑐 0.4738 0.2516 0.4808 0.2510 0.4742 0.2429 0.4707 0.2401

𝐹 3
𝑦𝑐 0.2168 0.0821 0.2269 0.0738 0.2205 0.0656 0.2191 0.0618

𝐹 1
𝑦𝑚𝑑𝑠1 0.1568 0.0788 0.1604 0.0693 0.1598 0.0644 0.1591 0.0617

𝐹 3
𝑦𝑚𝑑𝑠1 0.0295 0.0221 0.0318 0.0150 0.0352 0.0115 0.0314 0.0095

𝐹𝑦𝑚𝑑𝑠2 0.0026 0.0170 0.0056 0.0101 0.0037 0.0073 0.0033 0.0056
𝐹𝑦𝑚𝑑𝑠3 0.0024 0.0177 0.0062 0.0105 0.0054 0.0075 0.0047 0.0057

Table 18
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9976 1.0000 0.9944 1.0000 0.9901 1.0000 0.9845 1.0000
𝐹𝐶𝐷 0.0117 0.0370 0.0111 0.0228 0.0093 0.0173 0.0081 0.0147
𝐹𝑅𝐾𝑀 0.0035 0.0409 0.0067 0.0250 0.0011 0.0184 0.0010 0.0154
𝐹 1
𝑦𝑐 0.4772 0.2537 0.4721 0.2427 0.4744 0.2426 0.4724 0.2416

𝐹 3
𝑦𝑐 0.2195 0.0827 0.2181 0.0689 0.2221 0.0664 0.2194 0.0625

𝐹 1
𝑦𝑚𝑑𝑠1 0.1612 0.0785 0.1587 0.0680 0.1585 0.0644 0.1565 0.0617

𝐹 3
𝑦𝑚𝑑𝑠1 0.0325 0.0218 0.0304 0.0145 0.0303 0.0119 0.0287 0.0100

𝐹𝑦𝑚𝑑𝑠2 0.0068 0.0167 0.0028 0.0100 0.0015 0.0077 0.0015 0.0060
𝐹𝑦𝑚𝑑𝑠3 0.0056 0.0173 0.0028 0.0104 0.0025 0.0080 0.0023 0.0061

Table 19
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9976 1.0000 0.9944 1.0000 0.9902 1.0000 0.9845 1.0000
𝐹𝐶𝐷 0.0087 0.0363 0.0076 0.0244 0.0112 0.0172 0.0100 0.0139
𝐹𝑅𝐾𝑀 0.0053 0.0405 0.0070 0.0265 0.0054 0.0183 0.0026 0.0147
𝐹 1
𝑦𝑐 0.4728 0.2515 0.4741 0.2450 0.4787 0.2476 0.4738 0.2434

𝐹 3
𝑦𝑐 0.2190 0.0828 0.2174 0.0704 0.2267 0.0676 0.2233 0.0640

𝐹 1
𝑦𝑚𝑑𝑠1 0.1590 0.0782 0.1556 0.0686 0.1588 0.0639 0.1570 0.0611

𝐹 3
𝑦𝑚𝑑𝑠1 0.0302 0.0215 0.0298 0.0140 0.0299 0.0112 0.0300 0.0091

𝐹𝑦𝑚𝑑𝑠2 0.0022 0.0168 0.0016 0.0097 0.0031 0.0072 0.0017 0.0053
𝐹𝑦𝑚𝑑𝑠3 0.0017 0.0172 0.0019 0.0099 0.0033 0.0075 0.0026 0.0056

the calibrated estimators and that of each of the selected samples. Thus, for each 𝑃𝐸 value, for each sample size 𝑛 and for each
calibration estimator, we have 1000 measurements of the variability of the final set of weights. Figs. 1, 2, 3 and 4 show the boxplots
of these 1000 measurements for each calibration estimator according to the 𝑃𝐸 value, organised by sample sizes for the SPANISH500
population. Figs. 5, 6, 7 and 8 and Figs. 9, 10, 11 and 12, respectively, show similar boxplots for the SIMPOPULATION and EUSILC
populations.

For the SPANISH500 population, Figs. 1, 2, 3 and 4 show that, in general, there is a similar degree of variability of the weight
system for each calibrated estimator, although 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 present less variability and the usual calibrated estimators 𝐹 1

𝑦𝑐 and
̂3
𝑦𝑐 present greater variability. Moreover, as the sample size 𝑛 increases, the variability of the set of weights of all the estimators
ecreases considerably, to the extent that the differences among estimators become almost imperceptible.

Regarding the SIMPOPULATION, Figs. 5, 6, 7 and 8 reflect a general situation that is very similar to that shown for the
̂1 ̂3
15

PANISH500 population, but on this occasion the estimator 𝐹𝑦𝑚𝑑𝑠1 presents slightly greater variability in the weights than 𝐹𝑦𝑐 .



Journal of Computational and Applied Mathematics 446 (2024) 115876S. Martínez et al.

5

f
S

Table 20
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9976 1.0000 0.9945 1.0000 0.9901 1.0000 0.9845 1.0000
𝐹𝐶𝐷 0.0082 0.0370 0.0095 0.0236 0.0099 0.0184 0.0094 0.0130
𝐹𝑅𝐾𝑀 0.0053 0.0405 0.0021 0.0254 0.0035 0.0199 0.0038 0.0139
𝐹 1
𝑦𝑐 0.4762 0.2549 0.4762 0.2466 0.4735 0.2419 0.4685 0.2375

𝐹 3
𝑦𝑐 0.2205 0.0843 0.2216 0.0709 0.2202 0.0656 0.2165 0.0600

𝐹 1
𝑦𝑚𝑑𝑠1 0.1572 0.0779 0.1581 0.0683 0.1579 0.0646 0.1581 0.0608

𝐹 3
𝑦𝑚𝑑𝑠1 0.0303 0.0209 0.0297 0.0144 0.0317 0.0117 0.0300 0.0096

𝐹𝑦𝑚𝑑𝑠2 0.0011 0.0163 0.0018 0.0099 0.0035 0.0075 0.0018 0.0055
𝐹𝑦𝑚𝑑𝑠3 0.0024 0.0165 0.0017 0.0102 0.0047 0.0078 0.0037 0.0057

Fig. 1. Boxplot for variability of calibration weights SPANISH500 population, 𝑃𝐸 = 50.

Finally, for the EUSILC population, Figs. 9, 10, 11 and 12 show that the estimator 𝐹𝑦𝑚𝑑𝑠2 achieves the lowest variability, while
𝐹 3
𝑦𝑚𝑑𝑠1 and 𝐹𝑦𝑚𝑑𝑠3 show the greatest variability in the set of weights. However, while the variability of 𝐹 3

𝑦𝑚𝑑𝑠1 is less than that of the
other estimators as the value of 𝑃𝐸 increases, the variability of 𝐹𝑦𝑚𝑑𝑠3 increases.

.3. Simulation studies in subpopulations

To better understand the proposed estimators, in this subsection we analyse their performance with respect to the distribution
unction in different subpopulations. Specifically, we estimate the distribution function in the subpopulation of women from the
PANISH500 population (Tables 25, 26, 27 and 28) and the subpopulation of people with Internet access from the same population
16
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Fig. 2. Boxplot for variability of calibration weights SPANISH500 population, 𝑃𝐸 = 60.

Table 21
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
𝐹𝐶𝐷 0.1883 0.0696 0.1883 0.0675 0.1856 0.0653 0.1856 0.0644
𝐹𝑅𝐾𝑀 0.0732 0.0120 0.0752 0.0108 0.0742 0.0099 0.0727 0.0091
𝐹 1
𝑦𝑐 0.1387 0.0357 0.1358 0.0345 0.1373 0.0347 0.1385 0.0346

𝐹 3
𝑦𝑐 0.0907 0.0130 0.0912 0.0120 0.0911 0.0115 0.0908 0.0110

𝐹 1
𝑦𝑚𝑑𝑠1 0.1863 0.0579 0.1847 0.0574 0.1851 0.0576 0.1847 0.0575

𝐹 3
𝑦𝑚𝑑𝑠1 0.0632 0.0114 0.0618 0.0106 0.0621 0.0102 0.0625 0.0098

𝐹𝑦𝑚𝑑𝑠2 0.0437 0.0036 0.0446 0.0034 0.0455 0.0032 0.0448 0.0030
𝐹𝑦𝑚𝑑𝑠3 0.0363 0.0038 0.0350 0.0031 0.0351 0.0028 0.0352 0.0025

(Tables 29, 30, 31 and 32). As in the previous simulation studies, we considered the same sample sizes and the same values for 𝑃𝐸,
and the sampling design considered was simple random sampling.

Regarding the results obtained in the subpopulation of women, no estimator was uniformly better than the rest in terms of
relative bias. Although in most cases 𝐹 1

𝑦𝑐 , 𝐹 3
𝑦𝑐 and 𝐹𝑅𝐾𝑀 present the least bias, in certain situations (𝑛 = 75,125 for 𝑃𝐸 = 70), 𝐹𝑦𝑚𝑑𝑠2

is the least biased. Regarding efficiency, again 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 perform best, especially the first of these, because for high values
of 𝑃𝐸, the results obtained by 𝐹𝑦𝑚𝑑𝑠3 are slightly worse, and the efficiency is less than that obtained by 𝐹𝐻𝑇 for 𝑃𝐸 = 80 and 𝑛 = 50,
perhaps because this estimator begins to suffer from overcalibration. The estimators 𝐹 1

𝑦𝑚𝑑𝑠1 and 𝐹 3
𝑦𝑚𝑑𝑠1 are more efficient than 𝐹 1

𝑦𝑐
nd 𝐹 3

𝑦𝑐 , especially for large 𝑃𝐸 values, and even for 𝑃𝐸 = 80 their efficiency is greater than that of 𝐹𝐶𝐷 and 𝐹𝑅𝐾𝑀 .
Finally, for the subpopulation of people with Internet access, Tables 29, 30, 31 and 32 show that in general all estimators obtain

imilar values for relative bias, with the exception of 𝐹 , which presents generalised problems in this respect, 𝐹 for low values
17
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Fig. 3. Boxplot for variability of calibration weights SPANISH500 population, 𝑃𝐸 = 70.

Table 22
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
𝐹𝐶𝐷 0.1887 0.0689 0.1890 0.0672 0.1867 0.0664 0.1852 0.0642
𝐹𝑅𝐾𝑀 0.0753 0.0120 0.0756 0.0107 0.0713 0.0093 0.0728 0.0090
𝐹 1
𝑦𝑐 0.1372 0.0356 0.1369 0.0346 0.1380 0.0347 0.1382 0.0345

𝐹 3
𝑦𝑐 0.0899 0.0127 0.0908 0.0120 0.0902 0.0113 0.0897 0.0107

𝐹 1
𝑦𝑚𝑑𝑠1 0.1789 0.0562 0.1793 0.0563 0.1792 0.0562 0.1801 0.0564

𝐹 3
𝑦𝑚𝑑𝑠1 0.0637 0.0104 0.0616 0.0094 0.0604 0.0090 0.0595 0.0085

𝐹𝑦𝑚𝑑𝑠2 0.0426 0.0037 0.0429 0.0034 0.0435 0.0032 0.0433 0.0030
𝐹𝑦𝑚𝑑𝑠3 0.0308 0.0041 0.0304 0.0031 0.0298 0.0027 0.0306 0.0024

of 𝑃𝐸 and small sample sizes and 𝐹𝑦𝑚𝑑𝑠3 for 𝑃𝐸 = 80. No estimator uniformly achieves the lowest value for relative bias. As with
the Women subpopulation, the estimator 𝐹𝑦𝑚𝑑𝑠2 presents the greatest efficiency, followed by 𝐹 3

𝑦𝑚𝑑𝑠1 and 𝐹𝑦𝑚𝑑𝑠3, but for 𝑃𝐸 = 80, the
stimator 𝐹𝑦𝑚𝑑𝑠3 shows signs of overcalibration, with efficiency values even lower than those obtained by 𝐹𝐻𝑇 . And again as in the
omen subpopulation, the estimator 𝐹 1

𝑦𝑚𝑑𝑠1 outperforms 𝐹 1
𝑦𝑐 and 𝐹 3

𝑦𝑐 and for 𝑃𝐸 = 80 it exceeds the efficiency of 𝐹𝐶𝐷 and 𝐹𝑅𝐾𝑀 .

. Discussion

[25] first proposed the MDS technique for selecting appropriate variables for calibration weighting in surveys. This procedure
an reduce the variance of the population estimator of the total or the mean of a variable, when survey calibration is used with
uxiliary information that includes qualitative variables.
18
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Fig. 4. Boxplot for variability of calibration weights SPANISH500 population, 𝑃𝐸 = 80.

Table 23
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
𝐹𝐶𝐷 0.1883 0.0684 0.1891 0.0672 0.1862 0.0655 0.1853 0.0646
𝐹𝑅𝐾𝑀 0.0766 0.0126 0.0751 0.0107 0.0742 0.0099 0.0720 0.0089
𝐹 1
𝑦𝑐 0.1383 0.0356 0.1381 0.0350 0.1367 0.0346 0.1374 0.0345

𝐹 3
𝑦𝑐 0.0908 0.0130 0.0899 0.0118 0.0900 0.0113 0.0902 0.0108

𝐹 1
𝑦𝑚𝑑𝑠1 0.1626 0.0545 0.1641 0.0546 0.1646 0.0548 0.1643 0.0549

𝐹 3
𝑦𝑚𝑑𝑠1 0.0801 0.0099 0.0774 0.0091 0.0789 0.0090 0.0777 0.0087

𝐹𝑦𝑚𝑑𝑠2 0.0280 0.0026 0.0275 0.0023 0.0290 0.0021 0.0291 0.0020
𝐹𝑦𝑚𝑑𝑠3 0.0266 0.0029 0.0243 0.0022 0.0263 0.0020 0.0255 0.0017

Based on this idea, we propose three alternatives to incorporate multidimensional scaling-based calibration [47] into the
stimation of the distribution function. This approach provides a reliable alternative when mixed auxiliary information (i.e. with both
ualitative and quantitative variables) is used to estimate the distribution function, compared to the usual procedure of incorporating
ualitative variables through corresponding dummy variables. The methods we describe reduce the dimension of the auxiliary
nformation and avoid overcalibration problems. Moreover, and unlike other alternatives based on principal components [38] that
nly admit quantitative auxiliary information, our proposal also facilitates the incorporation of qualitative auxiliary information.
ll of these proposals can be applied with any probability sampling design and provide a single set of calibrated weights that do
19

ot depend on the values of the study variable.
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Table 24
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
𝐹𝐶𝐷 0.1902 0.0704 0.1878 0.0677 0.1874 0.0653 0.1851 0.0639
𝐹𝑅𝐾𝑀 0.0716 0.0115 0.0735 0.0108 0.0753 0.0101 0.0741 0.0095
𝐹 1
𝑦𝑐 0.1403 0.0360 0.1385 0.0351 0.1374 0.0344 0.1371 0.0345

𝐹 3
𝑦𝑐 0.0881 0.0127 0.0897 0.0119 0.0904 0.0113 0.0905 0.0110

𝐹 1
𝑦𝑚𝑑𝑠1 0.1596 0.0531 0.1597 0.0531 0.1597 0.0531 0.1593 0.0532

𝐹 3
𝑦𝑚𝑑𝑠1 0.0770 0.0094 0.0777 0.0090 0.0762 0.0086 0.0762 0.0084

𝐹𝑦𝑚𝑑𝑠2 0.0128 0.0012 0.0136 0.0010 0.0129 0.0008 0.0125 0.0007
𝐹𝑦𝑚𝑑𝑠3 0.0077 0.0018 0.0094 0.0014 0.0087 0.0011 0.0089 0.0009

Fig. 5. Boxplot for variability of calibration weights SIMPOPULATION, 𝑃𝐸 = 50.

The proposed estimators present all the properties of a genuine distribution function under non-restrictive conditions. Perhaps,
to satisfy the condition of nondecreasing monotony, we should ensure that the calibrated weights are nonnegative for the estimators
𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 although this can also be achieved by using the raking distance in the calibration process.

In summary, we have conducted a simulation study with three different populations to compare the performance of the proposed
methods with other indirect estimators of the distribution function. In this study, the distribution function was estimated with
respect to a range of scenarios, with different sampling designs and estimations in the subpopulations. Additionally, we analysed
the variability of the final set of calibrated weights of the proposed estimators, compared to the usual calibration estimators.
From the results obtained, we conclude that the proposed estimators generally improve the relative efficiency of their respective
20
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Fig. 6. Boxplot for variability of calibration weights SIMPOPULATION, 𝑃𝐸 = 60.

Table 25
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0069 1.0000 0.0110 1.0000 0.0019 1.0000 0.0037 1.0000
𝐹𝐶𝐷 0.0156 0.5943 0.0174 0.5929 0.0130 0.5863 0.0138 0.6340
𝐹𝑅𝐾𝑀 0.0072 0.6706 0.0052 0.6433 0.0051 0.6265 0.0029 0.6637
𝐹 1
𝑦𝑐 0.0093 0.9602 0.0049 0.9477 0.0027 0.9560 0.0036 0.9756

𝐹 3
𝑦𝑐 0.0085 0.8768 0.0063 0.8217 0.0043 0.8192 0.0027 0.8703

𝐹 1
𝑦𝑚𝑑𝑠1 0.0104 0.8554 0.0131 0.7876 0.0035 0.7402 0.0031 0.7467

𝐹 3
𝑦𝑚𝑑𝑠1 0.0091 0.7753 0.0141 0.6718 0.0082 0.6364 0.0048 0.6346

𝐹𝑦𝑚𝑑𝑠2 0.0206 0.3928 0.0095 0.3437 0.0065 0.3352 0.0056 0.3555
𝐹𝑦𝑚𝑑𝑠3 0.0231 0.4353 0.0102 0.3747 0.0071 0.3707 0.0056 0.3843

versions based on the usual calibration, and in some cases they also achieve a lower relative bias. In all the scenarios considered,
one of the estimators that we propose always achieves the best efficiency compared to the other indirect estimators included for
comparison purposes, and although no estimator consistently shows the best performance, 𝐹𝑦𝑚𝑑𝑠2 and 𝐹𝑦𝑚𝑑𝑠3 are generally the ones
hat significantly improve the efficiency of the estimates. However, in some cases, the estimator 𝐹𝑦𝑚𝑑𝑠3 presents efficiency problems
nd considerable variability in the final set of calibrated weights for high GOF values, perhaps derived from overcalibration problems.
n the other hand, estimator 𝐹𝑦𝑚𝑑𝑠2 presents a more stable pattern of efficiency and its set of calibrated weights has the least
ariability of all the calibrated estimators. Consequently, we believe the estimator 𝐹𝑦𝑚𝑑𝑠2 is a reliable option for estimating the
istribution function in the presence of auxiliary information that includes both qualitative and quantitative variables. For this
eason and given that 𝐹𝑦𝑚𝑑𝑠2 can be used under any sampling design and as the calibrated weights neither depend on the study
21

ariable nor present excessive variability, we recommend their use in estimating the distribution function.
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Fig. 7. Boxplot for variability of calibration weights SIMPOPULATION, 𝑃𝐸 = 70.

Table 26
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0040 1.0000 0.0045 1.0000 0.0039 1.0000 0.0058 1.0000
𝐹𝐶𝐷 0.0189 0.6107 0.0160 0.6181 0.0129 0.6060 0.0115 0.5889
𝐹𝑅𝐾𝑀 0.0034 0.6815 0.0018 0.6637 0.0027 0.6439 0.0016 0.6217
𝐹 1
𝑦𝑐 0.0046 0.9340 0.0020 0.9410 0.0025 0.9331 0.0028 0.9222

𝐹 3
𝑦𝑐 0.0047 0.9247 0.0022 0.8648 0.0032 0.8349 0.0023 0.8003

𝐹 1
𝑦𝑚𝑑𝑠1 0.0085 0.8413 0.0048 0.8080 0.0028 0.7755 0.0039 0.7547

𝐹 3
𝑦𝑚𝑑𝑠1 0.0124 0.7570 0.0098 0.6921 0.0065 0.6460 0.0052 0.6123

𝐹𝑦𝑚𝑑𝑠2 0.0215 0.4084 0.0136 0.3585 0.0076 0.3399 0.0078 0.3347
𝐹𝑦𝑚𝑑𝑠3 0.0203 0.4365 0.0117 0.3831 0.0074 0.3705 0.0071 0.3620

Finally, this study is subject to certain limitations that could usefully be addressed in future research. Firstly, all the proposals we
iscuss are based on Gower’s measure of similarity (1971). This is the most popular way of measuring the similarity/dissimilarity be-
ween observations in the presence of mixed variables, but some modifications of the unweighted distance have been proposed [48],
eeking to balance the contribution of the different variables to the overall distance. Further analysis is needed to determine whether
here exist other, more suitable, similarity measures for estimating the distribution function. Another question that remains to be
onsidered is the optimal value of 𝐺𝑂𝐹 taken to maximise the performance of the proposed distribution function estimators. Thirdly,
ur simulation study considers only simple random sampling or Midzuno sampling. It would be useful to examine how the proposed
stimators behave in practice for other complex sample designs. Finally, additional research is needed to better characterise the
erformance of the proposed estimators when estimating population quantiles.
22
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Fig. 8. Boxplot for variability of calibration weights SIMPOPULATION, 𝑃𝐸 = 80.

Table 27
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0084 1.0000 0.0050 1.0000 0.0036 1.0000 0.0063 1.0000
𝐹𝐶𝐷 0.0221 0.6170 0.0193 0.6138 0.0162 0.6344 0.0137 0.6117
𝐹𝑅𝐾𝑀 0.0095 0.6881 0.0088 0.6705 0.0032 0.6781 0.0040 0.6441
𝐹 1
𝑦𝑐 0.0089 0.9784 0.0045 0.9482 0.0029 0.9816 0.0060 0.9458

𝐹 3
𝑦𝑐 0.0066 0.9143 0.0040 0.8679 0.0036 0.8679 0.0057 0.8510

𝐹 1
𝑦𝑚𝑑𝑠1 0.0074 0.8382 0.0113 0.8162 0.0093 0.8660 0.0085 0.7665

𝐹 3
𝑦𝑚𝑑𝑠1 0.0078 0.8014 0.0125 0.7111 0.0075 0.7413 0.0088 0.6442

𝐹𝑦𝑚𝑑𝑠2 0.0103 0.3495 0.0034 0.2944 0.0047 0.2942 0.0025 0.2611
𝐹𝑦𝑚𝑑𝑠3 0.0304 0.5479 0.0188 0.4481 0.0089 0.4159 0.0066 0.3720

Data availability

Data will be made available on request.
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Fig. 9. Boxplot for variability of calibration weights EUSILC population, 𝑃𝐸 = 50.

Table 28
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0066 1.0000 0.0063 1.0000 0.0042 1.0000 0.0040 1.0000
𝐹𝐶𝐷 0.0201 0.5641 0.0172 0.6039 0.0114 0.5930 0.0094 0.6157
𝐹𝑅𝐾𝑀 0.0054 0.6270 0.0057 0.6483 0.0029 0.6352 0.0046 0.6441
𝐹 1
𝑦𝑐 0.0097 0.9792 0.0081 0.9515 0.0027 0.9619 0.0059 0.9358

𝐹 3
𝑦𝑐 0.0072 0.8570 0.0063 0.8458 0.0022 0.8448 0.0055 0.8361

𝐹 1
𝑦𝑚𝑑𝑠1 0.0177 0.4909 0.0096 0.5044 0.0040 0.4744 0.0049 0.5060

𝐹 3
𝑦𝑚𝑑𝑠1 0.0130 0.2450 0.0065 0.2211 0.0028 0.2178 0.0037 0.2122

𝐹𝑦𝑚𝑑𝑠2 0.0086 0.4311 0.0084 0.3016 0.0078 0.2419 0.0067 0.2316
𝐹𝑦𝑚𝑑𝑠3 0.0471 1.3630 0.0260 0.6073 0.0130 0.4278 0.0114 0.4126
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Fig. 10. Boxplot for variability of calibration weights EUSILC population, 𝑃𝐸 = 60.

Table 29
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 50%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0076 1.0000 0.0089 1.0000 0.0034 1.0000 0.0030 1.0000
𝐹𝐶𝐷 0.0196 0.6043 0.0099 0.6383 0.0105 0.6691 0.0135 0.6858
𝐹𝑅𝐾𝑀 0.0089 0.6858 0.0093 0.7091 0.0030 0.7227 0.0035 0.7322
𝐹 1
𝑦𝑐 0.0059 0.9994 0.0072 1.0065 0.0041 1.0146 0.0034 1.0639

𝐹 3
𝑦𝑐 0.0077 0.9473 0.0042 0.9323 0.0031 0.9200 0.0032 0.9419

𝐹 1
𝑦𝑚𝑑𝑠1 0.0061 0.6798 0.0123 0.7020 0.0043 0.6841 0.0032 0.7131

𝐹 3
𝑦𝑚𝑑𝑠1 0.0069 0.5554 0.0056 0.5437 0.0033 0.5281 0.0026 0.5370

𝐹𝑦𝑚𝑑𝑠2 0.0138 0.3217 0.0067 0.3320 0.0045 0.3055 0.0052 0.3278
𝐹𝑦𝑚𝑑𝑠3 0.0092 0.5528 0.0048 0.5589 0.0032 0.5164 0.0034 0.5501
25
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Fig. 11. Boxplot for variability of calibration weights EUSILC population, 𝑃𝐸 = 70.

Table 30
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 60%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0029 1.0000 0.0081 1.0000 0.0034 1.0000 0.0069 1.0000
𝐹𝐶𝐷 0.0142 0.6175 0.0131 0.5982 0.0133 0.6470 0.0089 0.6536
𝐹𝑅𝐾𝑀 0.0041 0.6974 0.0052 0.6664 0.0031 0.7026 0.0052 0.6950
𝐹 1
𝑦𝑐 0.0050 1.0088 0.0067 0.9686 0.0032 1.0026 0.0032 0.9730

𝐹 3
𝑦𝑐 0.0066 0.9510 0.0056 0.9062 0.0035 0.8843 0.0037 0.8906

𝐹 1
𝑦𝑚𝑑𝑠1 0.0087 0.6998 0.0091 0.6802 0.0053 0.6442 0.0093 0.6652

𝐹 3
𝑦𝑚𝑑𝑠1 0.0040 0.5696 0.0063 0.5190 0.0033 0.5015 0.0041 0.4970

𝐹𝑦𝑚𝑑𝑠2 0.0121 0.3405 0.0109 0.3254 0.0056 0.3231 0.0015 0.3171
𝐹𝑦𝑚𝑑𝑠3 0.0069 0.5712 0.0075 0.5141 0.0045 0.5130 0.0029 0.5152
26
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Fig. 12. Boxplot for variability of calibration weights EUSILC population, 𝑃𝐸 = 80.

Table 31
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 70%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0036 1.0000 0.0035 1.0000 0.0040 1.0000 0.0034 1.0000
𝐹𝐶𝐷 0.0148 0.6252 0.0105 0.6554 0.0102 0.6450 0.0139 0.6371
𝐹𝑅𝐾𝑀 0.0029 0.7075 0.0042 0.7173 0.0028 0.7061 0.0047 0.6825
𝐹 1
𝑦𝑐 0.0039 0.9903 0.0038 0.9850 0.0031 1.0082 0.0039 0.9911

𝐹 3
𝑦𝑐 0.0060 0.9129 0.0037 0.8755 0.0025 0.9050 0.0043 0.8888

𝐹 1
𝑦𝑚𝑑𝑠1 0.0082 0.7246 0.0110 0.6780 0.0040 0.6908 0.0037 0.6675

𝐹 3
𝑦𝑚𝑑𝑠1 0.0022 0.6215 0.0077 0.5423 0.0027 0.5487 0.0025 0.5062

𝐹𝑦𝑚𝑑𝑠2 0.0069 0.2375 0.0033 0.2076 0.0034 0.2057 0.0036 0.1868
𝐹𝑦𝑚𝑑𝑠3 0.0151 0.6625 0.0059 0.5677 0.0092 0.5694 0.0090 0.5330
27
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Table 32
Average relative bias (avrb) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and 𝑃𝐸 = 80%.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125

avrb avre avrb avre avrb avre avrb avre

𝐹𝐻𝑇 0.0024 1.0000 0.0029 1.0000 0.0037 1.0000 0.0014 1.0000
𝐹𝐶𝐷 0.0133 0.6340 0.0123 0.6139 0.0141 0.6734 0.0127 0.6332
𝐹𝑅𝐾𝑀 0.0024 0.7182 0.0030 0.6827 0.0032 0.7236 0.0015 0.6760
𝐹 1
𝑦𝑐 0.0076 1.0145 0.0036 1.0228 0.0051 0.9884 0.0018 1.0045

𝐹 3
𝑦𝑐 0.0097 0.9665 0.0023 0.9213 0.0041 0.9180 0.0035 0.8633

𝐹 1
𝑦𝑚𝑑𝑠1 0.0030 0.5571 0.0043 0.5345 0.0014 0.5170 0.0016 0.4922

𝐹 3
𝑦𝑚𝑑𝑠1 0.0099 0.2356 0.0071 0.2202 0.0026 0.2029 0.0033 0.2111

𝐹𝑦𝑚𝑑𝑠2 0.0072 0.2375 0.0060 0.1724 0.0029 0.1467 0.0022 0.1490
𝐹𝑦𝑚𝑑𝑠3 0.1570 1.6472 0.1152 1.4035 0.0738 1.1705 0.0535 1.1398
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