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ARTICLE INFO ABSTRACT

MSC: The distribution function is a functional parameter of great interest in many research areas, such
62D05 as medicine or economics. Among other properties, it facilitates the estimation of parameters
Keywords: such as quantiles. Accordingly, techniques are needed to estimate this function efficiently.
Sampling Survey statisticians have access to large, high-dimension databases and use them to optimise
Distribution function the estimates obtained. One way to incorporate auxiliary information in the estimation stage
Calibration is through the calibration method, which was initially designed to estimate totals and means

Multidimensional scaling and consists of adjusting new sample weights in order to reduce the variance of estimators.

However, calibration techniques may be subject to over-calibration, i.e. the loss of efficiency
when high-dimension auxiliary data sets are incorporated.

Although alternative approaches have been proposed, in which the calibration method incor-
porates auxiliary information in the estimation of the distribution function, these alternatives do
not seek to incorporate qualitative auxiliary information, which must be introduced in the usual
way through dummy variables. However, this workaround can greatly increase the dimension
of the auxiliary information, producing either over-calibration or even incompatible calibration
constraints.

In this article, we propose adapting the calibration method through multidimensional
scaling, in order to incorporate quantitative and qualitative information, thus avoiding the
negative consequences of over-calibration in the estimation of the distribution function.

1. Introduction

The estimation of the distribution function, a parameter that is non-linear and functional, is currently a significant topic in the
context of sampling surveys. Among other reasons for its importance, in several cases the estimation of the distribution function is
more helpful than that of the totals and the means [1], since this function allows us to obtain other parameters such as the reliability
function [2], the Gini index [3,4], the Headcount index [5], the poverty incidence, the poverty gap and the poverty severity [6],
as well as population quantiles [7-9], which are commonly addressed in research areas such as medicine [10], toxicology [11],
edaphology [12] and economics [13].

Recent technological advances in automatic collection and storage capacity have increased the volume of information available
and facilitated access to it [14]. Thus, survey statisticians, for example, can now consider an extensive range of variables linked to
the population of interest, which can be incorporated as auxiliary information to improve the estimations obtained.
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In view of this ease of access to a significant volume of auxiliary information, together with the notable relevance of the
distribution function, we believe it essential to derive indirect estimators of the distribution function that efficiently incorporate the
available auxiliary information. One way to do so, in the estimation phase, is to use the calibration method, which was originally
developed to estimate finite population totals or means [15]. Calibration provides a weighting system that satisfies a set of calibration
restrictions and minimises a specified distance measure between the design weight system and the calibration weight system [15].

Some recent proposals have been made to adapt the calibration method to estimate the distribution function [16-21]. Among
these, the approach described by [19] is especially useful, as it provides estimators that are true distribution functions under smooth
requirements. Moreover, it offers computational simplicity. On the contrary, the asymptotic behaviour of the estimators discussed
in [19] depends on the choice of an auxiliary vector [22,23] whose optimal selection can have a large dimension [24]. All of these
previous studies assume that the auxiliary information available is quantitative, while none consider how we might incorporate
auxiliary information of a qualitative nature. To the best of our knowledge, this issue has received very little attention in the
context of calibration research [25].

Under present conditions, the volume of auxiliary information related to the target population may be high, and therefore
it cannot be assumed that there does not exist a large set of qualitative variables included as auxiliary variables. To date, the
incorporation of qualitative auxiliary variables in the estimation of the distribution function has been achieved by means of the
corresponding dummy variables. However, this means of incorporating qualitative variables might further increase the dimension
of the auxiliary information used in the calibration process.

Calibration is generally agreed to be a reliable method to incorporate auxiliary information and obtain new asymptotically
unbiased estimators for several parameters [26,27], even in difficult sampling contexts such as when the sample has missing
data [28], or when successive sampling is performed [29] or in the case of dual frame surveys [30]. However, the use of a set of
high-dimension auxiliary variables in the calibration process can pose several major problems. Firstly, the calibration process might
incorporate restrictions that are incompatible and/or unstable. Moreover, even if these restrictions are compatible, the estimators
thus obtained may suffer from over-calibration when the dimension of the auxiliary information exceeds a certain threshold [31],
which is quite plausible if a large set of qualitative variables are represented by dummy variables. Over-calibration can reduce the
efficiency of the calibrated estimator [14], preventing it from making the best use of the large volume of auxiliary information made
available.

In this context, various approaches have been proposed to reduce the dimension of the auxiliary information when calibrated
estimation is used to determine totals and means [18,25,32-36]. According to [19], there are alternative means of reducing the
dimension of the auxiliary information used in the calibration process when estimating the distribution function [37,38], although
these methods assume that all the auxiliary variables are quantitative. Consequently, alternative approaches to dummy variables are
necessary in order to incorporate qualitative information into the calibration process without considerably increasing the dimension
of auxiliary information.

In order to overcome the limitations detected in previous approaches, and in line with [25] regarding the estimation of totals, the
aim of the present study is to develop an alternative approach to calibration, based on multidimensional scaling (MDS), which makes
it possible to incorporate all the auxiliary information available, both quantitative and qualitative, in estimating the distribution
function. Under this new proposal, which integrates the approaches of [19,25], new calibration estimators are developed for the
distribution function, seeking to incorporate both qualitative and quantitative information and thus avoid over-calibration.

2. Calibration estimators of the distribution function

Consider a finite population U = {1,..., N} of size N and a given sampling design p(-) with inclusion probabilities of first and
second order z, > 0 and n,; > 0 k,i € U. Then, we denote by d, = 77:;1 the sampling design weight for unit k € U. A sample
s ={1,2,...,n} with fixed size n is selected according to the sampling design p(-) from the population U. If Y is the study variable
we denote by y, the value of the study variable for unit & that is only known for units included in s. We consider J auxiliary variables
X, ..., X; whose values are available for all population units (complete auxiliary information) and we denote by xl’( = (Xpgs e s Xgp)
the vector with the J auxiliary variables at unit k. Our aim in this is to estimate the distribution function F(7) for the study variable
Y, given by:

1
F )=~ Y 4=y )
=
where
1 ifr> Vi
At -y = Lo c
=0 {0 if 1 < yy.

A well-known unbiased estimator for F,(¢) is the Horvitz,AiThompson estimator, which is defined by

~ 1
Fyyr() = = ¥ dida = ). @
kes
However, this estimator Fy;;(f) does not take advantage of the auxiliary information provided by x,. On the other hand, the
calibration method [15] could be used to incorporate this information in the estimation stage. Although it was originally developed
in the estimation of totals or means, some studies have adapted it to estimate the distribution function [16-23].
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Among these earlier proposals, in this study we focus on the approach described by [19] which provides estimators at modest
computational cost. Under this approach, we assume that all variables included in the auxiliary vector x; are quantitative.
Accordingly, we can define the following pseudo-variable:

g =px fork=12..,N 3

-1
f= <Z dkxkxl’(> . dexkyk 4)

kes kes

Based on this pseudo-variable g, the calibration procedure replaces the design weight d, in the Horvitz-Thompson estimator by
a new calibration weight w, that meets the following calibration restrictions:

1 .
¥ 2 @A —g) = Fy(t)) j=1.2,...P ©)

kes

and at the same time minimises the chi-square distance:

(0 —dy)?
D (v, dy) = _—
ST % dqy

(6)

where we assume that g, are positive constants not related to dy, t; j=1,2,..., P are J points with #; <1, < --1p and that F,(z;)
denotes the distribution function of g evaluated at the point ¢;.
The resulting estimator is given by:

~ ~ ~ / ~
B = Fyr ) + (Fty = Fanr(t)) - Dty @
where 130 ur(ty) denotes the Horvitz-Thompson estimator for F,(ty) evaluated at ty =(ty,....1 p) and

D(ty) =T7"- Y dyqpAlty — g A = y,)

kes

and where it is essential to assume that the matrix

T =Y dgAty - g)Alty — &)’
kes
is nonsingular.
Among the advantages of ﬁyc(t), [19] established that ﬁyc(t) is a true distribution function if ¢, = ¢ for all k € s and if 7, is large
enough to guarantee F,(7p) = 1, so it can be used in the estimation of quantiles [8]. Additionally, fyc(t) is asymptotically unbiased
and its asymptotic variance can be established by the following expression:

AV (E,.(0) = % 3 Y Ay E@ Ep ®)

keU IeU
where E; = A(t — y;) — Aty — g - D(ty), with

-1
D(ty) = < Y aiAlty — g)At, — gk>’> - < Y aiAlty — g A - yk>>. ©)

keU keU

However, the asymptotic behaviour of I?yc(t) is linked to the selection of the vector ty, and therefore the optimum choice of this vector
is needed. Under simple random sampling, previous analyses have considered the optimal selection for t, [9,23,24,39]. Thus, [24]
stated both the optimal dimension and the optimal selection of the vector topt (1) that minimises the asymptotic variance of ﬁyc(t),
and thus defined a new estimator based on the optimal vector, Fymp,(t).

In the next section, based on the approach described by [25], we propose estimators for the distribution function that incorporate
both quantitative and qualitative variables, whilst seeking to avoid high dimensionality in the auxiliary information. In this proposal,
the calibration weights are calculated using a projection of the auxiliary information onto a low-dimension Euclidean space, using
the MDS procedure together with an appropriate dissimilarity measure to address the auxiliary obtained from categorical variables.

3. Calibration estimators of F, @) based on multidimensional scaling
3.1. Multidimensional scaling based on the auxiliary information x

As mentioned above, survey statisticians today have ready access to large databases and it is quite common for these to include
both quantitative and qualitative variables. Given an auxiliary vector x,, we assume that its dimension J is a large value and,
moreover, that a set of L < J variables included in the auxiliary vector x, are qualitative variables. To obtain the pseudo-variable
g from the approach presented by [19], we must consider the representation of the qualitative variables through the corresponding
dummy variables. Thus, if we assume without loss of generality that the variables x,x,,...,x; are qualitative and that F;, > 2
denotes the number of different categories or levels in the /th variable, with / = 1, ..., L, then to avoid perfect multicollinearity,
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we must consider F; — 1 dummy variables in order to incorporate x; into the definition of the pseudo-variable g. Therefore, given
the variable x;, we consider the dummy variables corresponding to its first F, — 1 categories, that is, the dummy variables I; with
j=1,...,F —1 given by:

I = 1 if unit k£ has the category j;
Jik ™10 otherwise

Now, if we denote by A, the vector Iy, I, ---» Lg,—1y)> for I =1,..., L, we can replace the original auxiliary vector x; by a new
auxiliary vector given by

2y = (A - AL X(Li1yks -+ Xpg)  for k€U

The dimension of the new vector z; is given by M = J + Q — 2 - L where

M=

0=YFz>21L

1

so the new dimension M > J. Hence, it is very likely that when using the new auxiliary vector z, to obtain the pseudo-variable g,
there will be multicollinearity among the auxiliary variables.

To avoid this multicollinearity, instead of considering the representation of the qualitative variables x,, x,, ..., x; through their
corresponding dummy vectors Ay, ..., A;;, we now discuss an alternative approach based on the proposal by [25].

For this purpose, consider a new set of auxiliary variables, obtained from the multidimensional scaling application with the
original vector x,. This multidimensional scaling procedure is based on the similarity matrix calculated from that defined by
Gower [40].

To introduce Gower’s similarity measure, we assume that among the L qualitative variables, L, are binary and L, are non-binary,
so that L, + L, = L. Consequently, L; =J — L = J — L, — L, quantitative variables are included in the auxiliary vector x,. For two
units i, k € U, the similarity index proposed by Gower is given by:

S0 =l
b1+b2+2<1—%)
I=1 !
Sy = ! (10)
(Ly=b)+ Ly+ Ly

where b, and b, denote the positive and negative matches, respectively, for the L, binary variables, b, denotes the matches for the
L, non-binary qualitative variables and R, is the range of the /th quantitative variable.

From [40], the N x N similarity matrix S which entries S;, for all pairs of units i,k € U is positive semi-definite. This is a
relevant property because it allows us to represent the matrix S as a set of points in a multidimensional Euclidean space [41]. To
do so, we consider the measure of distance given by:

Dy =20 = 5,)
and the following matrix

B= —%EFE =ESE

with F = D[Zk and

E=1--L .11
N

where rank(B)=H < N — 1.
Since the matrix S is positive semidefinite, the distance matrix D is Euclidean and B is positive semidefinite [41]. If we consider
the eigenvalues 4, > -+ > Ay > 0 of B, the matrix

C=VA'/
is a N x H matrix whose associated Euclidean distance matrix is D, where

V=@ vmw)

is a N x H matrix with the eigenvectors v, associated with the positive eigenvalues of B by column such that UEI_)
a H x H diagonal matrix with the positive eigenvalues of B [41].

In the first alternative approach to developing a new calibration estimator for F,(#), if we denote by ¢, for k € U, the vector
of dimension H from the matrix C, the dimension of ¢, can be reduced by multidimensional scaling. To do so, we take the h < H

largest eigenvalues of B, and then define the following matrix:

v = 4; and A is

1/2

Cp=V)A,

where V,, is a N X h matrix that contains the eigenvectors v; associated with the h largest eigenvalues of B by column and A, is
a h x h diagonal matrix with largest eigenvalues of B [41].
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Now, with the auxiliary vector cz of dimension 4 for k € U extracted from C, we can define the following pseudo-variable:

g =pcfork=12..N

-1
B. = (Z dkcﬁ(cﬁ)’> Y dielyy. 11

kes kes
The new set of auxiliary variables is related to the original set of qualitative or mixed variables through the Euclidean distances,
but at the same time we maintain the implicit assumption of linearity [25] in constructing the pseudo-variable.
Thus, a new calibration estimator can be obtained for Fy(n by minimising (6) under the condition:

1
¥ 2 OAvg —g)) = Fpe(vy) (12)
kes
where Foe(vg) denotes the distribution function for g* evaluated at Vg = (Vy5.ens vp) and where v ; J=12,... Pare points chosen

such that v| < v, < - vp.
If we assume that the following matrix I" is nonsingular:

r= Z A gy A(vge — g AV — 7))
kes

the calibration estimator obtained is given by:

~ A~ A~ !/ ~
gt 0 = Fypr(0) + (Fg*(vg*) — Fgepr(vge )) B 13)
where
O(vg) =T dgiA(vy — gDAI - y))
kes

and F. ur(vg) is the Horvitz-Thompson estimator of Fy. at v..

The resulting estimator ﬁymd“(r) is asymptotically unbiased and the asymptotic variance is [19]:

AV (F g1 (1) = % > Y Aud U U) a4
keU leU

where Uy = A(t — y;) — A(vge — g;) - O(v,»), with

-1
O(vg:) = < Y Ay — g)AVy — g;;>’> : ( Y G A(vy — g - yk>>. (15)

keU keU

As the asymptotic behaviour of ﬁymd:l(t) depends on the vector v,
VeCtor to, () from [24] or its reduced version from [37].

> under simple random sampling, we can consider the optimal

3.2. Multidimensional scaling based on the complete information related to the auxiliary distribution functions

To take advantage of all available auxiliary information, we now consider a second alternative.
In this case, for all variables z,,, with m = 1,..., M in the auxiliary vector z,, we can define the N-dimensional auxiliary vector
given by:
@) = (8t = 2 s My =2 )5 M= 1o, M

Next, with the M auxiliary vectors (), m=1,...,M, we can define the following N - M-dimensional vector:
Y, =), ..M. (16)

Although all the information about the distribution functions of the variables incorporated in the auxiliary vector z, are embraced
in the auxiliary vector Y, we cannot calibrate an estimator for F,(r) with Y since this would generate a large number of calibration
conditions, many of which might be incompatible, or otherwise produce over-calibration.

Once again, multidimensional scaling can be used to reduce the dimension of Y, with Gower’s similarity measure, given by:

M N
Z Z(l - |A(zm1 - Zmi) - A(zml - zmk)l)
_ m=1i=1

MN

The derived distance D, = 1/2(1 —.S;;) is equivalent to the distance from Manhattan and we consider the matrix S, and D,
with the entries S;;, and D, respectively. As in the previous cases, the following matrix:

aa7)

Sik

B, = —%EDYE =ES,E
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is positive semi-definite. If we consider that rank(By) = J < N — 1 with the j largest egienvalues, we can obtain the matrix C; as in
the previous cases and the corresponding auxiliary vector r, = c{c for all population unit k € U.
By minimising (6) under the constraints:

1 Z 1 =
LY or =+ e =R (18)
N kes N ket

we can obtain a new calibration estimator ﬁymdﬁ(z) for F(r) given by

~

~ ~ _ _ !
Fopasn®) = Fygr() + (R - RHT) -0 (19)

where we assume that the matrix ¥:

U= Z dyqry -,

kes

is non-singular and

0=0"" 3 digriAlt - y)
kes
and Ry is the Horvitz-Thompson estimator for R.
Following [19], the estimator F,,;,(t) is asymptotically unbiased and its asymptotic variance is:

AV (Fpan(0) = % D A (d U, U)) (20)
keU leU

where U, = A(t - y;) -1, - O, with

-1
0= (Z R r,’c> - <Z T Al — yk)). 21

keUu keUu

3.3. Multidimensional scaling based on the auxiliary vector x, and the auxiliary distribution functions

Let us now consider an alternative, incorporating the auxiliary information from the auxiliary vector x, and the auxiliary
distribution functions associated with the ordered qualitative and quantitative variables included in x,. Previously, to do so, given
the auxiliary vector x;, we assumed that the variables x;,x,,...,x; were qualitative and that x;;,x,,...,x; were quantitative.
Among the qualitative attributes, F; denoted the number of different categories or levels in the /th variable, with / =1, ..., L and
we assumed that L, were binary variables and L, were non-binary variables. Now, for the L, binary variables, we assume that L,
are qualitative variables with non-ordered categories and L, are qualitative variables with ordered attributes with L,y +Lp = L;.
Similarly, for the L, non-binary variables, we assume that L,y are qualitative variables with non-ordered categories and L,, are
qualitative variables with ordered attributes with L,y + L,p = L,.

For the L, binary qualitative variables with ordered attributes, for each unit k € U, we consider the vector F10, with the
distribution function values associated:

F10 = (F10y, ..., F10, ) (22)
where
1
F10y = er;A(xlk —x;), I=1,...,Lp.

In a similar way, for the L,, non-binary qualitative variables with ordered attributes, for each unit k € U, we consider the vector
F20, given by:

F20; = (F20yy, ..., F20,, ;) (23)
where
1
F20, = ;A(x,k —x;), 1=1,...,Ly.

Finally, for the L; quantitative variables x; we also consider for each k € U the vector with the distribution function values:
Fe=(Fpe o Fr) 24
with

1
Fy = N ZA(xlk =xp), I=1,....L;.
ieU
Now, for every unit k € U, we can consider the following auxiliary vector

T} = (x|, F10}, F20,, F,)
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It is clear that the dimension of T) is
Li+Ly+Ly+Lig+Lyg+ L3 =2J — Ly —Lyy.

The dimension of the new vector T) can be reduced with multidimensional scaling. To do so, we obtain the similarity matrix Sy
with entries §;; calculated with Gower’s similarity index:

Lio
X=X F10,; - F10
b1+b2+§( Al ”‘l)+§(1——| "R “‘|>
1

=1

(L4 —b1)+LlO+L2+L20+2L3

L L
f(l_ |F201i_F201k|>+23(1_ |Fli_F1k|)
R, R

— 1
+ =1 (25)

(Ly = b))+ Lig+ Ly + Log + 2L,

and the corresponding distance matrix Dy.
As in the previous cases, with the u largest eigenvalues from the matrix

By = —JEFyE = ES,E

we can obtain the matrix C, in the usual way that for every unit k € U contains an auxiliary vector m, = ¢}.

A new calibration estimator F, ymas3(t) can be obtained by minimising (6) under the following conditions:

—Zwkmk:—ka_ y (26)

ket

If we denote the Horvitz-Thompson estimator for M by M, the expression for ﬁymd 3(1) is given as follows:

A ~ o o
Fynass(®) = Fyyr@®) + (M - MHT) W (27)
with

W=y Y dugamAi -y

kes
where we assume that the matrix y defined as:
xX= Zdemk -y
kes
is non-singular.

Using the linearity properties of the calibration estimator given in [15], it can be obtained that the estimator ﬁymdﬁ(t) is
asymptotically unbiased with an asymptotic variance given by the following expression:

AV (Fg3(1)) = N2 Z ZAkl(dkgk)(dlgl) (28)
keU ieU

where g, = A(t - y,) —m, - K, with

-1
= (Z g,m; .m;() . <Z gy At — yk)>. (29)

ket keU

4. Properties of the calibration estimators based on multidimensional scaling

When a new estimator ﬁy(t) of the distribution function F,(¢) is introduced, it is important to determine whether ﬁy(t) is also a
distribution function, that is, whether ﬁy(t) satisfies the following properties:

(i) ﬁy(t) is continuous on the right,
(i) () lim,_,_,, F,()=0and (b) lim,_,, F,() =1,
(iii) F,(r) is monotone nondecreasing.

Compliance with the above properties allows us to estimate population quantiles and wage inequality measures based on
quantiles, through the inverse function of the estimator ﬁy(t) [8,42]. However, not all the new calibration estimators proposed
satisfy all the properties of the distribution function.

The estimator Fymdsl(t) always satisfies properties (i) and (iia) whereas properties (iib) and (iii) are respectively satisfied if a

sufficiently large value of vp is selected in the vector v,. and if we choose g, =c for all k € U.
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Both ﬁymd:Z(t) and ﬁymdﬁ(t) satisfy conditions (i) and (iia). Additionally, both of them satisfy condition (iib) if the following
constraint
% Y =1 (30)
kes
is added to the respective calibration processes (18) and (26). Henceforth, we assume the inclusion of condition (30) in the
calibration processes to obtain the respective estimators ﬁymd_yZ(I) and ﬁymdﬁ(t).

Finally, the estimators F, ymas2 () and F\ymds:;(t) satisfy property (iii) if and only if the respective calibrated weights w, are positive
for all k € s. With the chi-square distance (6), we cannot guarantee positive calibrated weights for all sample units, but the distance
function associated with the raking method avoids negative calibrated weights [43]. Specifically, the distance based on the raking
method is given as follows:

1 %)
Gy d) =) q—<wk logd—k —a)k+dk>. (31)
k

kes 1k
The raking distance is especially recommended when we wish to calibrate with respect to qualitative auxiliary information or if
we wish to calibrate for known cell counts or known marginal counts in a frequency table of any dimension [25,43] and this can
be a useful option for satisfying property (iii) with the estimators F,,;,,(*) and F,, ().

5. Simulation study

In this section, we discuss a simulation study conducted to compare the performance of the proposed estimators ﬁymdﬂ(t);
ﬁymdsz(l) and ﬁymds3(t). To analyse these estimators, the simulation study was carried out applying specific procedures developed in
R [version 4.3.1]. In addition, alternative estimators of the distribution function F(r) were included. These alternative estimators
were the Horvitz-Thompson estimator ﬁHT and the following indirect estimators, the Chambers-Dunstan estimator [44] ﬁc p(D), the
Kovar-Mantel Rao-Estimator [45] F rim () and the calibration estimator fyc (t) proposed by [19], for which two alternatives were
considered. Denoting by Q,(«) the quantile of variable g of order «, we considered the calibration estimators: ﬁylc(t), with auxiliary
vector t, = (Q,(0.5)) and ﬁjﬁ(r) with auxiliary vector ty = (0,(0.25),0,(0.5),0,(0.75)). All of these indirect estimators employ the
pseudo-variable g based on the auxiliary vector z that includes the representation of the qualitative information through dummy
variables. For the proposed estimator ﬁymdsl(t)’ we also included two versions, ﬁy‘m 251 @ based on Vg = (0,(0.5)) and ﬁ;m 251D based
on Vg = (Qy:(0.25), 0, (0.5), 0+ (0.75)).

The simulation study encompassed three populations, one of which is real and the rest, simulated.

The first population is a generated population of size N = 500 called SPANISH500. The population includes the variables age,
nationality, gender, weight and access to the Internet. These variables were generated such that the final population was similar to
the Spanish population pyramid. The study variable is defined as follows:

¥ =345 - Internet + Age/5 + ¢,

where the values ¢, are independent identically distributed random variables with ¢, ~ N(0,0.1).

The second population is a simulated population called SIMPOPULATION. The population size is N = 1000 and it includes 16
variables based on the procedure described in [46]. The first variable 5, was generated using independent and identically distributed
values from a uniform distribution in (0, 1). The other variables were generated from the following regression models:

my = 1+ 2 — 0.5) + &35 €15 ~ N(0,0.01)

My = 142 — 0.5) + £45 €95 ~ N(0,0.04)

ne = 1+20 — 052 + & &ie ~ N(0,0.01)

o = 14+2(1 — 0.5 + &ops Sox ~ N(0,0.04)

e = 1+ 20 — 0.5)2 + &35 & ~ N(0,0.1)

nge = 1+201 — 0.5 + & Sop ~ N(0,0.04)

by =1+ 20, — 0.5) + exp(=200(7; — 0.5)%) + 745 1 ~ N(0,0.01)
by = 1+ 20, — 0.5) + exp(=200(7; — 0.5)%) + 7245 ¥x ~ N(0,0.04)
by = 1+ 20, — 0.5) + exp(=200(7; — 0.5)%) + y3;5 73 ~ N(0,0.1)
by = 1+20m; — 0.5) + exp (2000, — 0.5)%) + y4r; 74 ~ N(0,0.4)

ey, = exp(=8m;) + 715 Ty, ~ N(0,0.01)
ey = exp(=8my) + Ty; Ty ~ N(0,0.04)
ez = exp(—8ny) + 735 13, ~ N(0,0.1)

ey = exp(=8my) + 45 T4 ~ N(0,0.4)
cip =2+ sinQan) + pyi; prp ~ N(0,0.01)
Cop =2 +sinany) + poi; por ~ N(0,0.01)
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Table 1
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and PE = 50%.

n=50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
{-‘A\HT 0.0024 1 0.0042 1 0.0017 1 0.0013 1
Iicn 0.0084 0.9263 0.0063 0.9456 0.0045 0.9393 0.0034 0.9462
Fricm 0.0037 1.0130 0.0035 1.0094 0.0016 1.0016 0.0015 1.0003
I?)L 0.0011 1.5237 0.0042 1.5522 0.0013 1.5480 0.0012 1.5873
ﬁi 0.0020 1.4429 0.0060 1.4164 0.0018 1.3934 0.0012 1.4382
[’;\:mdsl 0.0051 1.1109 0.0036 1.0724 0.0015 1.1096 0.0045 1.0971
ﬁfmdrl 0.0044 0.9082 0.0044 0.8231 0.0022 0.8658 0.0029 0.7937

ymds2 0.0107 0.4714 0.0078 0.4681 0.0013 0.5008 0.0022 0.2944

ﬁmdﬁ 0.0037 0.7565 0.0085 0.7323 0.0029 0.7536 0.0012 0.7364

The study variable is ¢,, and the remaining variables are considered in the auxiliary vector x,. The variables my;, n,;, n,, and
b, are divided into two categories via the median, and the variables m,, ny, n3;, by, and b3, via the quartiles, into four categories.

The last population considered was the dataset EUSILC from the R package “laeken”. This population is synthetically generated
from the European Union Statistics on Income and Living Conditions in Austria. The dataset has 14 827 observations and 27 variables.
The study variable was employee cash or near cash income (var py010n) and the remaining variables were included in the auxiliary
vector x;.

The selection criterion for the dimension of principal coordinates obtained through multidimensional scaling is based on the
goodness of fit measure (GOF) [41] given by:

h

2

k=1

D 1Al
k=1

In all populations, the following percentages PE = 50%, 60%, 70% and 80% were considered. Thus, in each case the minimum
number of principal coordinates # was retained so that the GO F(h) value was greater than or equal to the PE value considered. For
each percentage value PE, 1000 different samples were drawn by simple random sampling without replacement for four different
sizes. With each sample, estimates of the distribution function F(¢) at 11 points were obtained with all the estimators included in
the simulation study. The 11 points considered were the quantiles Q,(a) for « = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and
0.9.

The measures employed to compare the performance of each estimator included in the simulation study were the average relative
bias (avre) and the average relative efficiency (avre), respectively given by:

GOF(h) = - 100 (32)

11 11
1 1
AVRB(?) = T 2 [RB(,)|, AVRE(H) = T z RE(?,)
q=1 q=1

with

B F(t), — F, i
% Z ®)p — F, (0 and () = MSE[F®)) 33)

RB(f) = — s
= BO MSE[Fyp®)]

and MSE [ﬁ(z)] denotes the empirical mean square error for ﬁ(t) defined as follows:

B
MSE[F()] = B~ Y [F(t), - F,(0))
b=1

where b indexes the bth simulation run, F (¢) is an estimator for the distribution function and M SE[ﬁHT(t)] is the empirical mean
square error for the Horvitz-Thompson estimator.

This simulation study is implemented in the statistical computing environment R using code developed by the authors. This code
is available from the authors on request.

The results for the first simulation study with the SPANISH500 population are summarised in Tables 1, 2, 3 and 4 for the different
values of PE.

As can be seen, all the estimators perform well in terms of relative bias, and none is umformly better than any other. Concerning
efficiency, in all cases F ymds2 outperforms the other estimators, especially with regard to FHT Moreover, the estimators F, ymds3 and

F; 451 are more efficient than Fyyr. The remaining indirect estimators are less efficient than Fj;,, with the exception of ., which

is slightly better. Another aspect of interest is that for PE = 80 (except when size n = 125), the efficiency of estimator ﬁ;m ds1 1S
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Table 2
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and PE = 60%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I-iHT 0.0146 1 0.0049 1 0.0030 1 0.0037 1
I;“CD 0.0166 0.9115 0.0077 0.9381 0.0031 0.9585 0.0047 0.9630
Frim 0.0173 1.0124 0.0056 1.0132 0.0027 1.0095 0.0043 1.0146
I?)L 0.0170 1.6334 0.0052 1.5832 0.0030 1.5235 0.0036 1.5857
ﬁi 0.0164 1.4899 0.0047 1.4428 0.0027 1.4223 0.0034 1.5075
A;mdsl 0.0175 1.1115 0.0085 1.1030 0.0046 1.1189 0.0072 1.0915
ﬁfmdrl 0.0154 0.9149 0.0051 0.8387 0.0029 0.8067 0.0055 0.8302

ymds2 0.0051 0.4874 0.0027 0.4758 0.0069 0.4752 0.0018 0.2902
ﬁy,m3 0.0079 0.7665 0.0038 0.7445 0.0037 0.7355 0.0028 0.7398
Table 3

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and PE = 70%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
IEHT 0.0050 1 0.0032 1 0.0017 1 0.0013 1
I::CD 0.0069 0.9227 0.0065 0.9393 0.0045 0.9415 0.0044 0.9592
Frxm 0.0052 1.0168 0.0031 1.0099 0.0014 1.0043 0.0021 1.0064
I?}"L_ 0.0051 1.4904 0.0036 1.4625 0.0015 1.5336 0.0023 1.5872
ﬁﬁ[ 0.0050 1.4257 0.0052 1.3873 0.0016 1.4251 0.0021 1.4318
ﬁy‘mm 0.0075 1.0654 0.0073 1.0800 0.0038 1.0980 0.0019 1.0736
ﬁﬁmm 0.0066 0.8538 0.0057 0.8705 0.0023 0.8315 0.0021 0.8090
Fpas 0.0079 0.3294 0.0017 0.3141 0.0010 0.3029 0.0016 0.3113
Fis 0.0065 0.7758 0.0033 0.7622 0.0018 0.7553 0.0030 0.7260

Table 4
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, simple random sampling and PE = 80%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁi,,.,. 0.0038 1 0.0094 1 0.0025 1 0.0037 1
Fep 0.0063  0.9244 0.0097  0.9501 0.0048  0.9449 0.0035  0.9553
Fryu 0.0024  1.0185 0.0092  1.0099 0.0031  1.0079 0.0013  1.0044
E! 0.0038  1.5763 0.0091  1.5534 0.0026  1.5553 0.0013  1.5282
P 0.0057  1.4531 0.0112  1.3963 0.0030  1.4258 0.0015  1.4536
Fl s 0.0035  0.8653 0.0059  0.8816 0.0030  0.8417 0.0048  1.1002
B 0.0127  0.3830 0.0059  0.3540 0.0067  0.3481 0.0021  0.8139
Foas 0.0086  0.2830 0.0070  0.2601 0.0031  0.2537 0.0012  0.2965
Foass 0.0052  0.8853 0.0054  0.7063 0.0027  0.7016 0.0019  0.7513

considerably higher, while the estimator F ‘m 451 1s more efficient than fc p and ﬁHT. Finally, the proposed estimators F ylm a1 l:“\;m A1

generally achieve better values for AVRE than their respective versions based on the usual calibration.

For the second simulation study with the SIMPOPULATION, Tables 5, 6, 7 and 8 summarise the results for the four values of
PE.

As with the previous populations, the results for the SIMPOPULATION show that there is no estimator that minimises the bias
in a uniform way. However, a notable bias reduction is achieved by ﬁymds3 for the cases PE = 60 and PE = 80 with size n = 125.

Concerning efficiency, the estimators ﬁym[m, ﬁymds3 and F3

~ ~ ymds1 ~ ~
estimators F),;,, and F,, uniformly present the lowest values of AVRE. The estimator Fylm 451 18 also more efficient than F

present a notable improvement over ﬁHT. In general, the

in all cases. Among the other indirect estimators, only ﬁc » is more efficient than Fy;;, and then only slightly so. Moreover, this

. fay A3 Al . . . .
estimator always performs worse than F, 0, Fyuis3» L. and Fogs As in the previous populations, the proposed estimators

Fl F3  present lower values of AVRE than their respective usual calibration versions F' , F> .
ymds1 ymds1 ye ye

Finally, the results for the EUSILC population, for all values of PE, are summarised in Tables 9, 10, 11 and 12.
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Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and PE = 50%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
IEHT 0.0015 1 0.0036 1 0.0021 1 0.0031 1
{cn 0.0092 0.9365 0.0091 0.9457 0.0068 0.9548 0.0057 0.9489
Frxm 0.0010 1.0033 0.0042 1.0144 0.0022 1.0088 0.0032 1.0040
[?)L 0.0016 1.5062 0.0015 1.5478 0.0021 1.5053 0.0033 1.5155
ﬁﬁ[ 0.0015 1.3917 0.0026 1.4138 0.0027 1.3488 0.0029 1.3624
ﬁ;mdsl 0.0020 0.8989 0.0012 0.9495 0.0022 0.9272 0.0032 0.8718
/\Smml 0.0035 0.4462 0.0022 0.4774 0.0025 0.4381 0.0033 0.4171

ymds2 0.0041 0.4943 0.0044 0.4965 0.0026 0.4785 0.0017 0.2938
ﬁmdﬂ 0.0020 0.3396 0.0015 0.3531 0.0019 0.3302 0.0022 0.3084
Table 6

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and PE = 60%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
IE,,T 0.0044 1 0.0013 1 0.0043 1 0.0026 1
[:CD 0.0112 0.9369 0.0088 0.9384 0.0067 0.94082 0.0091 0.9523
Frem 0.0042 1.0112 0.0010 1.0008 0.0048 1.0029 0.0026 1.0025
I?;[ 0.0049 1.4890 0.0010 1.5656 0.0042 1.4757 0.0026 1.5667
ﬁjc 0.0050 1.4024 0.0013 1.4039 0.0047 1.3751 0.0025 1.4179
ﬁ;mm 0.0038 0.8879 0.0036 0.9000 0.0025 0.8927 0.0026 0.8758
ﬁjmdxl 0.0041 0.3740 0.0022 0.4023 0.0038 0.3661 0.0027 0.4297
ﬁymm 0.0055 0.3153 0.0029 0.3236 0.0008 0.3085 0.0028 0.3079
ﬁymd.\'S 0.0049 0.3202 0.0024 0.3263 0.0006 0.3120 0.0028 0.3146

Table 7

Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and PE = 70%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
éHT 0.0042 1 0.0033 1 0.0030 1 0.0021 1
chn 0.0094 0.9456 0.0084 0.9441 0.0099 0.9430 0.0082 0.9559
Frim 0.0038 1.0115 0.0033 1.0109 0.0029 1.0028 0.0020 1.0021
ﬁy‘c 0.0040 1.5081 0.0036 1.5142 0.0029 1.5529 0.0019 1.5258
ﬁfc 0.0040 1.3974 0.0040 1.3832 0.0029 1.3859 0.0022 1.3653
ﬁ)’md.\'l 0.0056 0.8793 0.0033 0.8744 0.0029 0.8881 0.0022 0.8899
A;mm 0.0033 0.3898 0.0047 0.3772 0.0029 0.3850 0.0015 0.4339
Fonas 0.0057 0.3075 0.0013 0.3020 0.0031 0.3053 0.0028 0.3070
A),,,,dv; 0.0051 0.2889 0.0024 0.2804 0.0037 0.2775 0.0024 0.3140

The estimator ﬁc p Dbresents obvious problems of bias and efficiency in all cases. All other estimators present good results for
bias. For efficiency, the best estimators are clearly ﬁymdsZ and ﬁymdﬁ, followed by ﬁjm 451 and ﬁy‘m 451+ Only these four estimators are
more efficient than Fy;;, except in the cases of PE = 80 and n = 75, where f’\ylm 451 performs worse than Fyp.

From the results derived from the three simulation studies carried out, we conclude that in general the efficiency of estimator
F\ymd“ is considerably improved when the calibration process is considered with three points (estimator I?ym 451) Tather than a single
point (estimator ﬁ;m 4s1)- Additionally, it is not necessary to consider a high value of PE to achieve a notable improvement in
efficiency, since with PE = 50% a considerable reduction in the AV RE is achieved with the proposed estimators. In fact, in general,
the improvement in efficiency with PE = 50% remains stable with higher values of PE, with the sole exception of the estimator
F in which case the efficiency is substantially higher for PE = 80 in all populations except EUSILC. This efficiency improvement

F

ymds2> N ~

for PE = 80 is also shown by the estimators F! and F3 but only for the SPANISH500 population.
ymdsl ymdsl

11
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Table 8
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, simple random sampling and PE = 80%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I-iHT 0.0015 1 0.0031 1 0.0043 1 0.0039 1
I;“CD 0.0092 0.9366 0.0097 0.9452 0.0067 0.9408 0.0082 0.9560
Frim 0.0010 1.0033 0.0026 1.0051 0.0048 1.0029 0.0043 1.0100
I?)L 0.0016 1.5056 0.0029 1.5273 0.0042 1.4757 0.0029 1.5239
ﬁi 0.0014 1.3918 0.0028 1.3691 0.0047 1.3751 0.0034 1.4123
ﬁ;md” 0.0040 0.8761 0.0029 0.8733 0.0030 0.8991 0.0015 0.9345
ﬁfmdrl 0.0060 0.3996 0.0044 0.3958 0.0052 0.3756 0.0023 0.4422

ymds2 0.0050 0.2603 0.0032 0.2384 0.0013 0.2386 0.0022 0.3150
ﬁy,m3 0.0038 0.2954 0.0030 0.2776 0.0008 0.2712 0.0018 0.3213
Table 9

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and PE = 50%.

n=>50 n="75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
IEHT 0.0023 1 0.0005 1 0.0011 1 0.0013 1
Ii(‘n 0.1821 9.8648 0.1810 13.2486 0.1799 17.0118 0.1832 21.1746
Frxm 0.0024 1.0141 0.0006 1.0373 0.0016 1.0198 0.0012 0.9916
I?}"L_ 0.0040 1.4453 0.0008 1.5029 0.0010 1.4942 0.0009 1.4107
ﬁﬁ[ 0.0036 1.2670 0.0005 1.3270 0.0012 1.3331 0.0010 1.2541
ﬁy‘mm 0.0037 0.8738 0.0008 0.9674 0.0011 0.8759 0.0015 0.9486
ﬁﬁmm 0.0017 0.6855 0.0010 0.7308 0.0019 0.6752 0.0008 0.6900
Fpas 0.0006 0.3265 0.0007 0.3251 0.0019 0.3199 0.0009 0.3225
Fig 0.0015 0.3942 0.0006 0.3946 0.0015 0.3889 0.0006 0.3840

Table 10
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and PE = 60%.

n=>50 n="175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
i,*j,.,»,- 0.0010 1 0.0014 1 0.0009 1 0.0005 1
[:C” 0.1841 9.7379 0.1807 12.8360 0.1797 16.5563 0.1835 19.3017
Frm 0.0008 1.0272 0.0017 1.0226 0.0014 1.0232 0.0007 1.0093
I?;‘_ 0.0027 1.5920 0.0018 1.4387 0.0012 1.4551 0.0005 1.4627
I?i_ 0.0014 1.3313 0.0013 1.2632 0.0015 1.2744 0.0012 1.2942
A)'mdﬂ 0.0019 0.9521 0.0019 0.9488 0.0010 0.8931 0.0017 0.8892
ﬁfmm 0.0008 0.7043 0.0010 0.7362 0.0009 0.6780 0.0011 0.6521
Fynasa 0.0009 0.3286 0.0003 0.3195 0.0005 0.3286 0.0009 0.3139
F, 0.0012 0.3857 0.0005 0.3943 0.0006 0.3869 0.0007 0.3727

5.1. Simulation studies with Midzuno sampling

To illustrate the robustness of the proposed estimators against the sampling design used, the simulations were repeated in all
populations but obtaining the samples through Midzuno sampling.

For the SPANISH500 population, Midzuno sampling was performed considering the variable Age. Tables 13, 14, 15 and 16
summarise the results obtained for the same sample size n and PE values considered previously.

Tables 13, 14, 15 and 16 show that the relative bias results obtalned w1th Midzuno samphng differ frorn those of simple random
sampling in that the best-performing estimators in most cases are Fc p and F Rk M although F,.,, and F,, ;. present very similar
values. Indeed, the latter has the lowest relative bias of all for PE = 70 and n = 75, 100, 125. In general, ﬁ;m 451 Presents higher levels
of bias than F)de 52 and F X’”d”’ but as the PE value increases, this bias decreases sharply, such that for PE = 80, it is less than that
recorded for F,,,, and F,,,;. The estimator F s Performs better than Fyyr and the usual calibrated estimators F, Fl and F*

Concerning relative efficiency, all the 1nd1rect estimators perform better than F;;, and F ymds2 18 by far the best in all cases. The
estimator F, ymas3 18 also more efficient than the other estimators except in the case of PE = 80, where FC D> F rim and F ds1 PrESENt
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Table 11
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and PE = 70%.

n=>50 n="75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I-iHT 0.0027 1 0.0014 1 0.0011 1 0.0011 1
I;“CD 0.1832  9.9963 0.1824  13.0813 0.1800  15.9325 0.1839  19.8261
Frim 0.0025  1.0004 0.0019  1.0255 0.0013  1.0158 0.0015  0.9947
I?)L 0.0032  1.4711 0.0004  1.5680 0.0011 1.4756 0.0009  1.4387
ﬁi 0.0031 1.3031 0.0011 1.3098 0.0022 1.2555 0.0010 1.2312
ﬁ;mm 0.0013  0.9541 0.0007  0.9542 0.0005  0.9070 0.0013  0.9094
ﬁfmdrl 0.0009  0.7258 0.0022  0.7308 0.0021  0.6819 0.0008  0.6696

ymds2 0.0006 0.3440 0.0006 0.3395 0.0004 0.3194 0.0007 0.3102
ﬁmm 0.0012  0.4155 0.0006  0.4057 0.0004  0.3906 0.0005  0.3828
Table 12

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, simple random sampling and PE = 80%.

n =50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁHT 0.0009 1 0.0013 1 0.0010 1 0.0008 1
I,T\CD 0.1833 10.3742 0.1800 13.7810 0.1796 16.9243 0.1834 20.4737
ﬁRKM 0.0010 1.0207 0.0004 1.0300 0.0012 1.0108 0.0008 1.0116
I'A“}!L_ 0.0008 1.5386 0.0023 1.5078 0.0010 1.5612 0.0007 1.4983
Fﬁ[ 0.0008 1.2853 0.0019 1.2928 0.0009 1.3077 0.0007 1.2999
ﬁy‘mm 0.0025 0.9613 0.0029 1.0067 0.0023  0.9684 0.0020 0.8411
ﬁfmm 0.0012 0.7384 0.0015 0.7267 0.0029  0.6982 0.0024 0.5950
ﬁmm 0.0007 0.3346 0.0008 0.3455 0.0011 0.3476 0.0007 0.1887
ﬁymdﬁ 0.0009 0.4070 0.0013 0.4224 0.0018  0.4148 0.0008 0.2594

Table 13

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and PE = 50%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
i,*j,.,»,- 0.9890 1.0000 0.9753 1.0000 0.9561 1.0000 0.9312 1.0000
f:cu 0.0089 0.0374 0.0124 0.0251 0.0132 0.0187 0.0150 0.0151
Frim 0.0116 0.0414 0.0139 0.0270 0.0135 0.0199 0.0147 0.0160
I?;p 0.4735 0.2700 0.4734 0.2630 0.4618 0.2544 0.4449 0.2461
I?i_ 0.2481 0.1054 0.2445 0.0905 0.2411 0.0832 0.2312 0.0771
A)'mdﬂ 0.2508 0.1015 0.2548 0.0944 0.2509 0.0903 0.2472 0.0894
ﬁfmdsl 0.1129 0.0437 0.1243 0.0357 0.1295 0.0326 0.1346 0.0315
Fynasa 0.0155 0.0261 0.0167 0.0161 0.0158 0.0127 0.0158 0.0096
F, 0.0097 0.0375 0.0156 0.0236 0.0174 0.0177 0.0184 0.0139

better efficiency. As with the results for bias, the efficiency of ﬁ;m 451 improves as the value of PE increases, and for PE = 80 it is
only outperformed by l?ymds
surpasses the efficiency of l?jc.

Midzuno sampling was then applied to the SIMPOPULATION, using the variable b,,. Tables 17, 18, 19 and 20 show the results
for the usual sample sizes n and for the usual PE values.

These Tables 17, 18, 19 and 20 also show that no estimator uniformly presents a lower bias, although in most cases F ymds2 and
F mds3 present the lowest relative bias, specially for high values of PE, results that are only surpassed, in some c1rcumstances, by

P
F, =k M- As in the previous cases, the bias obtained by estimator B is considerably less than that recorded for F F3 and F, HT-

». The estimator ﬁy'm always achieves much higher efficiency than Fy,; and ﬁylc and in general it also

dsl

ymdsl
73
Moreover, Fym 451 also presents lower values for bias than Fy o Iy, and Fur

All estimators considerably improve the efficiency of Fyr, but fym[m, F

ymds3 and F nds]

F 452 uniformly presenting the best performance. The estimator F1  achieves better eff1c1ency than the usual calibrated estimators
ymds. ymds1

il 3
ch and ch .

are outstanding in this respect, with
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Table 14
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and PE = 60%.

n=>50 n=175 n =100 n=125
AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I-iHT 0.9892 1.0000 0.9755 1.0000 0.9561 1.0000 0.9311 1.0000
I;“CD 0.0153 0.0386 0.0134 0.0249 0.0148 0.0190 0.0111 0.0149
Frim 0.0173 0.0424 0.0147 0.0270 0.0145 0.0200 0.0113 0.0156
I?)L 0.4880 0.2794 0.4798 0.2675 0.4627 0.2555 0.4400 0.2429
ﬁi 0.2651 0.1111 0.2553 0.0944 0.2401 0.0827 0.2255 0.0754
ﬁ;mm 0.2511 0.1007 0.2461 0.0914 0.2391 0.0855 0.2321 0.0832
ﬁfmdrl 0.0799 0.0432 0.0753 0.0298 0.0727 0.0255 0.0671 0.0222
ymds2 0.0250 0.0280 0.0175 0.0170 0.0166 0.0120 0.0101 0.0097
ﬁmm 0.0231 0.0380 0.0199 0.0233 0.0165 0.0169 0.0117 0.0134
Table 15

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and PE = 70%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁHT 0.9891 1.0000 0.9753 1.0000 0.9559 1.0000 0.9309 1.0000
I,*“\CD 0.0089 0.0396 0.0125 0.0254 0.0105 0.0181 0.0120 0.0149
ﬁRKM 0.0115 0.0431 0.0136 0.0272 0.0125 0.0190 0.0135 0.0159
I'A“}!L_ 0.4920 0.2855 0.4738 0.2613 0.4561 0.2501 0.4393 0.2428
Fﬁ[ 0.2582 0.1114 0.2508 0.0912 0.2353 0.0802 0.2248 0.0750
ﬁy‘mm 0.2437 0.0991 0.2420 0.0911 0.2368 0.0856 0.2340 0.0842
ﬁfmm 0.0577 0.0430 0.0553 0.0291 0.0521 0.0224 0.0510 0.0191
ﬁmm 0.0311 0.0224 0.0275 0.0139 0.0326 0.0104 0.0324 0.0086
ﬁymdﬁ 0.0127 0.0423 0.0096 0.0243 0.0055 0.0171 0.0044 0.0146

Table 16

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SPANISH500, Midzuno sampling and PE = 80%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
i,*j,.,»,- 0.9892 1.0000 0.9755 1.0000 0.9561 1.0000 0.9311 1.0000
f:cu 0.0153 0.0386 0.0134 0.0249 0.0148 0.0190 0.0111 0.0149
Frim 0.0173 0.0424 0.0147 0.0270 0.0145 0.0200 0.0113 0.0156
I?;p 0.4880 0.2794 0.4798 0.2675 0.4627 0.2555 0.4400 0.2429
I?i_ 0.2651 0.1111 0.2553 0.0944 0.2401 0.0827 0.2255 0.0754
A)'mdﬂ 0.1800 0.0782 0.1731 0.0692 0.1703 0.0643 0.1640 0.0617
ﬁfmm 0.0366 0.0209 0.0336 0.0133 0.0334 0.0103 0.0303 0.0086
Fynasa 0.0429 0.0212 0.0358 0.0118 0.0336 0.0088 0.0319 0.0072
F, 0.0380 0.0623 0.0448 0.0319 0.0487 0.0220 0.0576 0.0203

Finally, for the EUSILC population, Midzuno sampling was performed considering the variable Age and results are displayed in
Tables 21, 22, 23 and 24.
From the results shown in Tables 21, 22, 23 and 24, we conclude that the estimator that most reduces the bias is fym,m in all

cases, followed by F, ymds2- The estimator F nds) 10 shows less bias than the other estimators except for PE = 70,80 where it is

shghtly surpassed by F RK M * Regardmg relatlve efficiency, as in the previous case, all the indirect estimators are more efficient than
Fyp. Estimators F, ymds2 and F, Wm are notably more efficient than the other estimators. Likewise, F3m 451 is generally more efficient
than the other estimators, while F.;, obtains the worst results of all the indirect estimators.

5.2. Variability of the set of calibration weights
In this subsection, we further analyse the performance of the proposed estimators by focusing on the variability of the final
set of calibration weights for each of the estimators considered and also for the usual calibration estimator. For each of the three

populations analysed using the Midzuno sampling design, we now measure the variability of the calibrated weights in each of

14
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Table 17
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Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and PE = 50%.

n=>50 n=175 n =100 n=125
AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I-iHT 0.9976 1.0000 0.9945 1.0000 0.9901 1.0000 0.9845 1.0000
I;“CD 0.0096 0.0360 0.0135 0.0238 0.0105 0.0181 0.0091 0.0140
Frim 0.0052 0.0398 0.0051 0.0259 0.0035 0.0193 0.0035 0.0149
I?)L 0.4738 0.2516 0.4808 0.2510 0.4742 0.2429 0.4707 0.2401
ﬁi 0.2168 0.0821 0.2269 0.0738 0.2205 0.0656 0.2191 0.0618
ﬁ;md” 0.1568 0.0788 0.1604 0.0693 0.1598 0.0644 0.1591 0.0617
Afmdxl 0.0295 0.0221 0.0318 0.0150 0.0352 0.0115 0.0314 0.0095
ymds2 0.0026 0.0170 0.0056 0.0101 0.0037 0.0073 0.0033 0.0056
ﬁy,m3 0.0024 0.0177 0.0062 0.0105 0.0054 0.0075 0.0047 0.0057
Table 18

Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and PE = 60%.

n =50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
5,” 0.9976 1.0000 0.9944 1.0000 0.9901 1.0000 0.9845 1.0000
I:cu 0.0117 0.0370 0.0111 0.0228 0.0093 0.0173 0.0081 0.0147
Frim 0.0035 0.0409 0.0067 0.0250 0.0011 0.0184 0.0010 0.0154
ﬁy‘[ 0.4772 0.2537 0.4721 0.2427 0.4744 0.2426 0.4724 0.2416
ﬁjc 0.2195 0.0827 0.2181 0.0689 0.2221 0.0664 0.2194 0.0625
ﬁ;mm 0.1612 0.0785 0.1587 0.0680 0.1585 0.0644 0.1565 0.0617
ﬁjmdxl 0.0325 0.0218 0.0304 0.0145 0.0303 0.0119 0.0287 0.0100
Fas2 0.0068 0.0167 0.0028 0.0100 0.0015 0.0077 0.0015 0.0060
i?ymdﬁ 0.0056 0.0173 0.0028 0.0104 0.0025 0.0080 0.0023 0.0061

Table 19

Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and PE = 70%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
IEHT 0.9976 1.0000 0.9944 1.0000 0.9902 1.0000 0.9845 1.0000
chn 0.0087 0.0363 0.0076 0.0244 0.0112 0.0172 0.0100 0.0139
Frim 0.0053 0.0405 0.0070 0.0265 0.0054 0.0183 0.0026 0.0147
ﬁy‘c 0.4728 0.2515 0.4741 0.2450 0.4787 0.2476 0.4738 0.2434
ﬁfp 0.2190 0.0828 0.2174 0.0704 0.2267 0.0676 0.2233 0.0640
ﬁ)’md.\'l 0.1590 0.0782 0.1556 0.0686 0.1588 0.0639 0.1570 0.0611
ﬁ;mdvl 0.0302 0.0215 0.0298 0.0140 0.0299 0.0112 0.0300 0.0091
Fonas 0.0022 0.0168 0.0016 0.0097 0.0031 0.0072 0.0017 0.0053
F, 0.0017 0.0172 0.0019 0.0099 0.0033 0.0075 0.0026 0.0056

the calibrated estimators and that of each of the selected samples. Thus, for each PE value, for each sample size n and for each
calibration estimator, we have 1000 measurements of the variability of the final set of weights. Figs. 1, 2, 3 and 4 show the boxplots
of these 1000 measurements for each calibration estimator according to the PE value, organised by sample sizes for the SPANISH500
population. Figs. 5, 6, 7 and 8 and Figs. 9, 10, 11 and 12, respectively, show similar boxplots for the SIMPOPULATION and EUSILC

populations.

For the SPANISH500 population, Figs. 1, 2, 3 and 4 show that, in general, there is a similar degree of variability of the weight
system for each calibrated estimator, although ﬁymdsZ and ﬁymdﬁ present less variability and the usual calibrated estimators I?ylc and

F\j’c present greater variability. Moreover, as the sample size n increases, the variability of the set of weights of all the estimators

decreases considerably, to the extent that the differences among estimators become almost imperceptible.

Regarding the SIMPOPULATION, Figs. 5, 6, 7 and 8 reflect a general situation that is very similar to that shown for the
SPANISH500 population, but on this occasion the estimator F y‘m 451 Presents slightly greater variability in the weights than F y3c.
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Table 20
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population SIMPOPULATION, Midzuno sampling and PE = 80%.

n=50 n="175 n =100 n=125
AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁHT 0.9976 1.0000 0.9945 1.0000 0.9901 1.0000 0.9845 1.0000
ﬁcn 0.0082 0.0370 0.0095 0.0236 0.0099 0.0184 0.0094 0.0130
ﬁRKM 0.0053 0.0405 0.0021 0.0254 0.0035 0.0199 0.0038 0.0139
ﬁy‘c 0.4762 0.2549 0.4762 0.2466 0.4735 0.2419 0.4685 0.2375
ﬁy’i 0.2205 0.0843 0.2216 0.0709 0.2202 0.0656 0.2165 0.0600
ﬁ}fmm 0.1572 0.0779 0.1581 0.0683 0.1579 0.0646 0.1581 0.0608
im_] 0.0303 0.0209 0.0297 0.0144 0.0317 0.0117 0.0300 0.0096
Aymde 0.0011 0.0163 0.0018 0.0099 0.0035 0.0075 0.0018 0.0055
ﬁymdﬁ 0.0024 0.0165 0.0017 0.0102 0.0047 0.0078 0.0037 0.0057
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Fig. 1. Boxplot for variability of calibration weights SPANISH500 population, PE = 50.

Finally, for the EUSILC population, Figs. 9, 10, 11 and 12 show that the estimator Fymds2 achieves the lowest variability, while
ﬁjm 451 and ﬁymds3 show the greatest variability in the set of weights. However, while the variability of ﬁjm 451 18 less than that of the

other estimators as the value of PE increases, the variability of ﬁymdﬁ increases.
5.3. Simulation studies in subpopulations
To better understand the proposed estimators, in this subsection we analyse their performance with respect to the distribution

function in different subpopulations. Specifically, we estimate the distribution function in the subpopulation of women from the
SPANISH500 population (Tables 25, 26, 27 and 28) and the subpopulation of people with Internet access from the same population
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Fig. 2. Boxplot for variability of calibration weights SPANISH500 population, PE = 60.

Table 21
Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and PE = 50%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁHT 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
ﬁcu 0.1883 0.0696 0.1883 0.0675 0.1856 0.0653 0.1856 0.0644
I?RKM 0.0732 0.0120 0.0752 0.0108 0.0742 0.0099 0.0727 0.0091
ﬁy‘c 0.1387 0.0357 0.1358 0.0345 0.1373 0.0347 0.1385 0.0346
I?fc 0.0907 0.0130 0.0912 0.0120 0.0911 0.0115 0.0908 0.0110
ﬁy‘md” 0.1863 0.0579 0.1847 0.0574 0.1851 0.0576 0.1847 0.0575
ﬁ;mdﬂ 0.0632 0.0114 0.0618 0.0106 0.0621 0.0102 0.0625 0.0098
l?ymm 0.0437 0.0036 0.0446 0.0034 0.0455 0.0032 0.0448 0.0030
A),,,,dﬂ 0.0363 0.0038 0.0350 0.0031 0.0351 0.0028 0.0352 0.0025

(Tables 29, 30, 31 and 32). As in the previous simulation studies, we considered the same sample sizes and the same values for PE,
and the sampling design considered was simple random sampling.

Regarding the results obtained in the subpopulation of women, no estimator was uniformly better than the rest in terms of
relative bias. Although in most cases ﬁyl s 1:"\36 ang Frm prefent the least bias, in certain situations (n = 75,125 for PE = 70), ﬁymdﬁ
is the least biased. Regarding e{ficiency, again F,,,, and F,,, perform best, especially the first of thsse, because for high values
of PE, the results obtained by F,,,,; are slightly worse, and the efficiency is less than that obtained by Fyr for PE = 80 and n = 50,
perhaps because this estimator begins to suffer from overcalibration. The estimators ﬁylm 451 and ﬁjm 451 are more efficient than F y‘c
and I?jc, especially for large PE values, and even for PE = 80 their efficiency is greater than that of F.;, and Fgy .

Finally, for the subpopulation of people with Internet access, Tables 29, 30, 31 and 32 show that in general all estimators obtain
similar values for relative bias, with the exception of ﬁc p»> which presents generalised problems in this respect, ﬁymd 52 for low values
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Fig. 3. Boxplot for variability of calibration weights SPANISH500 population, PE = 70.

Table 22
Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and PE = 60%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
éHT 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
IjCD 0.1887 0.0689 0.1890 0.0672 0.1867 0.0664 0.1852 0.0642
Frim 0.0753 0.0120 0.0756 0.0107 0.0713 0.0093 0.0728 0.0090
ﬁy‘c 0.1372 0.0356 0.1369 0.0346 0.1380 0.0347 0.1382 0.0345
I?fc 0.0899 0.0127 0.0908 0.0120 0.0902 0.0113 0.0897 0.0107
ﬁy‘md” 0.1789 0.0562 0.1793 0.0563 0.1792 0.0562 0.1801 0.0564
ﬁ;mdﬂ 0.0637 0.0104 0.0616 0.0094 0.0604 0.0090 0.0595 0.0085
—p 0.0426 0.0037 0.0429 0.0034 0.0435 0.0032 0.0433 0.0030
A),,,,dﬂ 0.0308 0.0041 0.0304 0.0031 0.0298 0.0027 0.0306 0.0024

of PE and small sample sizes and F Fy453 for PE = 80. No estimator uniformly achieves the lowest value for relative bias. As with
the Women subpopulation, the estimator F ymas2 Presents the greatest efficiency, followed by F3 , and F ymds3: but for PE = 80, the

estimator ﬁymdﬁ shows signs of overcalibration, with efficiency values even lower than those obtamed by Fy;r. And again as in the
Women subpopulation, the estimator ﬁylm 451 Outperforms F ylc and ﬁyi and for PE = 80 it exceeds the efficiency of F.p, and Fry -

6. Discussion
[25] first proposed the MDS technique for selecting appropriate variables for calibration weighting in surveys. This procedure
can reduce the variance of the population estimator of the total or the mean of a variable, when survey calibration is used with

auxiliary information that includes qualitative variables.
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Fig. 4. Boxplot for variability of calibration weights SPANISH500 population, PE = 80.

Table 23
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and PE = 70%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
EHT 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
ficn 0.1883 0.0684 0.1891 0.0672 0.1862 0.0655 0.1853 0.0646
Frium 0.0766 0.0126 0.0751 0.0107 0.0742 0.0099 0.0720 0.0089
I?;L_ 0.1383 0.0356 0.1381 0.0350 0.1367 0.0346 0.1374 0.0345
I?j[ 0.0908 0.0130 0.0899 0.0118 0.0900 0.0113 0.0902 0.0108
ﬁy‘mm 0.1626 0.0545 0.1641 0.0546 0.1646 0.0548 0.1643 0.0549
F;m/lxl 0.0801 0.0099 0.0774 0.0091 0.0789 0.0090 0.0777 0.0087
Fpas 0.0280 0.0026 0.0275 0.0023 0.0290 0.0021 0.0291 0.0020
Fis 0.0266 0.0029 0.0243 0.0022 0.0263 0.0020 0.0255 0.0017

Based on this idea, we propose three alternatives to incorporate multidimensional scaling-based calibration [47] into the
estimation of the distribution function. This approach provides a reliable alternative when mixed auxiliary information (i.e. with both
qualitative and quantitative variables) is used to estimate the distribution function, compared to the usual procedure of incorporating
qualitative variables through corresponding dummy variables. The methods we describe reduce the dimension of the auxiliary
information and avoid overcalibration problems. Moreover, and unlike other alternatives based on principal components [38] that
only admit quantitative auxiliary information, our proposal also facilitates the incorporation of qualitative auxiliary information.
All of these proposals can be applied with any probability sampling design and provide a single set of calibrated weights that do
not depend on the values of the study variable.
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Table 24
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Population EUSILC, Midzuno sampling and PE = 80%.

n=>50 n=175 n =100 n=125
AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁHT 0.9988 1.0000 0.9978 1.0000 0.9965 1.0000 0.9950 1.0000
ﬁcn 0.1902 0.0704 0.1878 0.0677 0.1874 0.0653 0.1851 0.0639
ﬁRKM 0.0716 0.0115 0.0735 0.0108 0.0753 0.0101 0.0741 0.0095
I?;C 0.1403 0.0360 0.1385 0.0351 0.1374 0.0344 0.1371 0.0345
ﬁfb 0.0881 0.0127 0.0897 0.0119 0.0904 0.0113 0.0905 0.0110
ﬁ,\}mdx] 0.1596 0.0531 0.1597 0.0531 0.1597 0.0531 0.1593 0.0532
ﬁfmd” 0.0770 0.0094 0.0777 0.0090 0.0762 0.0086 0.0762 0.0084
FymdsZ 0.0128 0.0012 0.0136 0.0010 0.0129 0.0008 0.0125 0.0007
Aymdﬁ 0.0077 0.0018 0.0094 0.0014 0.0087 0.0011 0.0089 0.0009
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Fig. 5. Boxplot for variability of calibration weights SIMPOPULATION, PE = 50.

The proposed estimators present all the properties of a genuine distribution function under non-restrictive conditions. Perhaps,
to satisfy the condition of nondecreasing monotony, we should ensure that the calibrated weights are nonnegative for the estimators
ﬁymd.vZ and F\ymdﬁ although this can also be achieved by using the raking distance in the calibration process.

In summary, we have conducted a simulation study with three different populations to compare the performance of the proposed
methods with other indirect estimators of the distribution function. In this study, the distribution function was estimated with
respect to a range of scenarios, with different sampling designs and estimations in the subpopulations. Additionally, we analysed
the variability of the final set of calibrated weights of the proposed estimators, compared to the usual calibration estimators.
From the results obtained, we conclude that the proposed estimators generally improve the relative efficiency of their respective
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Fig. 6. Boxplot for variability of calibration weights SIMPOPULATION, PE = 60.

Table 25
Average relative bias (avks) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and PE = 50%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
E"” 0.0069 1.0000 0.0110 1.0000 0.0019 1.0000 0.0037 1.0000
ECD 0.0156 0.5943 0.0174 0.5929 0.0130 0.5863 0.0138 0.6340
Frim 0.0072 0.6706 0.0052 0.6433 0.0051 0.6265 0.0029 0.6637
ﬁ}}c 0.0093 0.9602 0.0049 0.9477 0.0027 0.9560 0.0036 0.9756
I?fc 0.0085 0.8768 0.0063 0.8217 0.0043 0.8192 0.0027 0.8703
A)fmdsl 0.0104 0.8554 0.0131 0.7876 0.0035 0.7402 0.0031 0.7467
ﬁ;mdsl 0.0091 0.7753 0.0141 0.6718 0.0082 0.6364 0.0048 0.6346
Fonas 0.0206 0.3928 0.0095 0.3437 0.0065 0.3352 0.0056 0.3555
Aym,m 0.0231 0.4353 0.0102 0.3747 0.0071 0.3707 0.0056 0.3843

versions based on the usual calibration, and in some cases they also achieve a lower relative bias. In all the scenarios considered,
one of the estimators that we propose always achieves the best efficiency compared to the other indirect estimators included for

comparison purposes, and although no estimator consistently shows the best performance, F , and I?y,,,dﬁ are generally the ones

ymds’
that significantly improve the efficiency of the estimates. However, in some cases, the estimator F,,,,; presents efficiency problems
and considerable variability in the final set of calibrated weights for high GOF values, perhaps derived from overcalibration problems.
On the other hand, estimator ﬁymdsZ presents a more stable pattern of efficiency and its set of calibrated weights has the least
variability of all the calibrated estimators. Consequently, we believe the estimator ﬁymd.ﬂ is a reliable option for estimating the
distribution function in the presence of auxiliary information that includes both qualitative and quantitative variables. For this
reason and given that ﬁymdsz can be used under any sampling design and as the calibrated weights neither depend on the study

variable nor present excessive variability, we recommend their use in estimating the distribution function.
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Fig. 7. Boxplot for variability of calibration weights SIMPOPULATION, PE = 70.

Table 26
Average relative bias (avks) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and PE = 60%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
ﬁH, 0.0040 1.0000 0.0045 1.0000 0.0039 1.0000 0.0058 1.0000
ﬁcu 0.0189 0.6107 0.0160 0.6181 0.0129 0.6060 0.0115 0.5889
ﬁRKM 0.0034 0.6815 0.0018 0.6637 0.0027 0.6439 0.0016 0.6217
ﬁ}}c 0.0046 0.9340 0.0020 0.9410 0.0025 0.9331 0.0028 0.9222
I?fc 0.0047 0.9247 0.0022 0.8648 0.0032 0.8349 0.0023 0.8003
ﬁ)’md:] 0.0085 0.8413 0.0048 0.8080 0.0028 0.7755 0.0039 0.7547
ﬁ;mdxl 0.0124 0.7570 0.0098 0.6921 0.0065 0.6460 0.0052 0.6123
I?),mdxz 0.0215 0.4084 0.0136 0.3585 0.0076 0.3399 0.0078 0.3347
Aym3 0.0203 0.4365 0.0117 0.3831 0.0074 0.3705 0.0071 0.3620

Finally, this study is subject to certain limitations that could usefully be addressed in future research. Firstly, all the proposals we
discuss are based on Gower’s measure of similarity (1971). This is the most popular way of measuring the similarity/dissimilarity be-
tween observations in the presence of mixed variables, but some modifications of the unweighted distance have been proposed [48],
seeking to balance the contribution of the different variables to the overall distance. Further analysis is needed to determine whether
there exist other, more suitable, similarity measures for estimating the distribution function. Another question that remains to be
considered is the optimal value of GOF taken to maximise the performance of the proposed distribution function estimators. Thirdly,
our simulation study considers only simple random sampling or Midzuno sampling. It would be useful to examine how the proposed
estimators behave in practice for other complex sample designs. Finally, additional research is needed to better characterise the
performance of the proposed estimators when estimating population quantiles.
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Fig. 8. Boxplot for variability of calibration weights SIMPOPULATION, PE = 80.

Table 27
Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and PE = 70%.

n=>50 n=175 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
f," 0.0084 1.0000 0.0050 1.0000 0.0036 1.0000 0.0063 1.0000
{cu 0.0221 0.6170 0.0193 0.6138 0.0162 0.6344 0.0137 0.6117
Frxm 0.0095 0.6881 0.0088 0.6705 0.0032 0.6781 0.0040 0.6441
ﬁ}}c 0.0089 0.9784 0.0045 0.9482 0.0029 0.9816 0.0060 0.9458
I:"\;L_ 0.0066 0.9143 0.0040 0.8679 0.0036 0.8679 0.0057 0.8510
I?}fmd“ 0.0074 0.8382 0.0113 0.8162 0.0093 0.8660 0.0085 0.7665
I?fmdﬂ 0.0078 0.8014 0.0125 0.7111 0.0075 0.7413 0.0088 0.6442
Fpas 0.0103 0.3495 0.0034 0.2944 0.0047 0.2942 0.0025 0.2611
F, 0.0304 0.5479 0.0188 0.4481 0.0089 0.4159 0.0066 0.3720

Data availability
Data will be made available on request.
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Fig. 9. Boxplot for variability of calibration weights EUSILC population, PE = 50.

Table 28
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. Women Subpopulation of SPANISH500, simple random sampling and PE = 80%.

n=50 n=175 n=100 n=125
AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
Fur 0.0066  1.0000 0.0063  1.0000 0.0042  1.0000 0.0040  1.0000
Fep 0.0201  0.5641 0.0172  0.6039 0.0114  0.5930 0.0094  0.6157
Frcry  0.0054 06270 0.0057  0.6483 0.0029  0.6352 0.0046  0.6441
Bl 0.0097  0.9792 0.0081  0.9515 0.0027  0.9619 0.0059  0.9358
B 0.0072  0.8570 0.0063  0.8458 0.0022  0.8448 0.0055  0.8361
Bl 00177 0.4909 0.0096  0.5044 0.0040  0.4744 0.0049  0.5060
B, 00130 02450 0.0065  0.2211 0.0028  0.2178 0.0037  0.2122
Frg  0.0086  0.4311 0.0084  0.3016 0.0078  0.2419 0.0067  0.2316
Fogs 00471  1.3630 0.0260  0.6073 0.0130  0.4278 0.0114  0.4126
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Fig. 10. Boxplot for variability of calibration weights EUSILC population, PE = 60.

Table 29
Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and PE = 50%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I::HT 0.0076 1.0000 0.0089 1.0000 0.0034 1.0000 0.0030 1.0000
{cn 0.0196 0.6043 0.0099 0.6383 0.0105 0.6691 0.0135 0.6858
Frim 0.0089 0.6858 0.0093 0.7091 0.0030 0.7227 0.0035 0.7322
ﬁ}fc 0.0059 0.9994 0.0072 1.0065 0.0041 1.0146 0.0034 1.0639
I,*“\fc 0.0077 0.9473 0.0042 0.9323 0.0031 0.9200 0.0032 0.9419
I:"\y]mdxl 0.0061 0.6798 0.0123 0.7020 0.0043 0.6841 0.0032 0.7131
ﬁjmdsl 0.0069 0.5554 0.0056 0.5437 0.0033 0.5281 0.0026 0.5370
—p 0.0138 0.3217 0.0067 0.3320 0.0045 0.3055 0.0052 0.3278
ﬁymds} 0.0092 0.5528 0.0048 0.5589 0.0032 0.5164 0.0034 0.5501
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Fig. 11. Boxplot for variability of calibration weights EUSILC population, PE = 70.

Table 30
Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and PE = 60%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
I::HT 0.0029 1.0000 0.0081 1.0000 0.0034 1.0000 0.0069 1.0000
{cn 0.0142 0.6175 0.0131 0.5982 0.0133 0.6470 0.0089 0.6536
Frim 0.0041 0.6974 0.0052 0.6664 0.0031 0.7026 0.0052 0.6950
ﬁ}fc 0.0050 1.0088 0.0067 0.9686 0.0032 1.0026 0.0032 0.9730
I,*“\fc 0.0066 0.9510 0.0056 0.9062 0.0035 0.8843 0.0037 0.8906
I:"\y]mdxl 0.0087 0.6998 0.0091 0.6802 0.0053 0.6442 0.0093 0.6652
ﬁjmdsl 0.0040 0.5696 0.0063 0.5190 0.0033 0.5015 0.0041 0.4970
—p 0.0121 0.3405 0.0109 0.3254 0.0056 0.3231 0.0015 0.3171
ﬁymds} 0.0069 0.5712 0.0075 0.5141 0.0045 0.5130 0.0029 0.5152
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Fig. 12. Boxplot for variability of calibration weights EUSILC population, PE = 80.

Table 31
Average relative bias (avrs) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and PE = 70%.

n=>50 n=75 n =100 n=125

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
fHT 0.0036 1.0000 0.0035 1.0000 0.0040 1.0000 0.0034 1.0000
IjCD 0.0148 0.6252 0.0105 0.6554 0.0102 0.6450 0.0139 0.6371
Frim 0.0029 0.7075 0.0042 0.7173 0.0028 0.7061 0.0047 0.6825
ﬁy‘c 0.0039 0.9903 0.0038 0.9850 0.0031 1.0082 0.0039 0.9911
I?fp 0.0060 0.9129 0.0037 0.8755 0.0025 0.9050 0.0043 0.8888
ﬁy‘md” 0.0082 0.7246 0.0110 0.6780 0.0040 0.6908 0.0037 0.6675
[?;mdﬂ 0.0022 0.6215 0.0077 0.5423 0.0027 0.5487 0.0025 0.5062
—p 0.0069 0.2375 0.0033 0.2076 0.0034 0.2057 0.0036 0.1868
F, 0.0151 0.6625 0.0059 0.5677 0.0092 0.5694 0.0090 0.5330
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Table 32
Average relative bias (avre) and average relative efficiency (avre) of the estimators compared for several sample
sizes. People with Internet access Subpopulation of SPANISH500, simple random sampling and PE = 80%.

n=>50 n=175 n =100 n=125
AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE
IEHT 0.0024 1.0000 0.0029 1.0000 0.0037 1.0000 0.0014 1.0000
{‘:cn 0.0133 0.6340 0.0123 0.6139 0.0141 0.6734 0.0127 0.6332
Frim 0.0024 0.7182 0.0030 0.6827 0.0032 0.7236 0.0015 0.6760
I?y'c 0.0076 1.0145 0.0036 1.0228 0.0051 0.9884 0.0018 1.0045
ﬁy’i 0.0097 0.9665 0.0023 0.9213 0.0041 0.9180 0.0035 0.8633
ﬁ;mdxl 0.0030 0.5571 0.0043 0.5345 0.0014 0.5170 0.0016 0.4922
fmdr] 0.0099 0.2356 0.0071 0.2202 0.0026 0.2029 0.0033 0.2111
ymds2 0.0072 0.2375 0.0060 0.1724 0.0029 0.1467 0.0022 0.1490
ﬁymdﬁ 0.1570 1.6472 0.1152 1.4035 0.0738 1.1705 0.0535 1.1398
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