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Abstract

In this paper we investigate the existence and multiplicity of weak
solutions of a nonlinear elliptic problem involving the fractional Lapla-
cian, (−∆)su(x) = λf(u(x)), x ∈ Ω, u(x) = 0, x ∈ RN \ Ω, with
s ∈ (0, 1), under some certain conditions of the set Ω (bounded open
domain of RN with smooth boundary) and of the function f , which has
to satisfy a necessary condition about its integral between its zeroes, in
order to the solutions exist, what we also prove. Particularly we want
to see that there are at least two positive solutions between each two
zeroes of f .

To achieve this goal, we base mainly on the work about the frac-
tional Laplacian by Ros-Oton and Serra [17], and some results for
the classical Laplacian by P. Hess, [12] and by E. N. Dancer and K.
Schmitt, [6] by studying some properties of the solutions of a truncated
version of our problem, such as radial symmetry, regularity, bounds
with the use of Leray Schauder degree, results involving the Sobolev
space Hs

0(Ω), convergence results for sequences, compact embeddings
and some well known results about Lebesgue integration.
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Resumen

En este art́ıculo investigamos la existencia y multiplicidad de solu-
ciones débiles de un problema eĺıptico no lineal que involucra el lapla-
ciano fraccionario, (−∆)su(x) = λf(u(x)), x ∈ Ω, u(x) = 0, x ∈
RN \ Ω, con s ∈ (0, 1), bajo ciertas condiciones del conjunto Ω ( un
dominio abierto, acotado de RN con borde suave) y de la función f ,
que tiene que cumplir una condición necesaria sobre su integral entre
sus ceros, para que existan las soluciones, lo que también demostramos.
En particular queremos ver que hay al menos dos soluciones positivas
entre cada dos ceros de f .

Para ello, nos basamos principalmente en el trabajo sobre el Lapla-
ciano fraccional de Laplacian by Ros-Oton and Serra [17], algunos re-
sultados para el Laplaciano clásico de P. Hess, [12] y de E. N. Dancer
y K. Schmitt, [6] estudiando algunas propiedades de las soluciones de
una versión truncada de nuestro problema, como simetŕıa radial, regu-
laridad, acotaciones con el uso del grado de Leray Schauder, resultados
que involucran el espacio de Sobolev Hs

0(Ω), resultados de convergencia
para sucesiones, embebimientos compactos y algunos resultados cono-
cidos sobre la integración de Lebesgue.
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Introduction

This work culminates my training in the Master’s degree in Math-
ematics and is also a consequence of my previous training in the de-
gree in Mathematics and my initiation into research as a collaboration
intern in the mathematics department, when I began the study of cer-
tain nonlocal operators involving the Fractional Laplacian Operator.
My proposal for this TFM is to provide unprecedented results, to the
best of my knowledge, about the study of certain boundary problems
such that involve the Fractional Laplacian from some well known result
about local operators such as the classical Laplacian operator. Partic-
ularly we will extend the known multiplicity results in the local case for
nonlinearities that have multiplies zeroes. Later, we will make explicit
reference to bibliographical references.

We will start by noting that in recent years, the study of nonlo-
cal operators and nonlocal models have increasingly impacted upon
different branches of science and technology.

We will focus on the fractional Laplacian operator, (−∆)s for some
s ∈ (0, 1). Let us recall that the fractional Laplacian is a pseudo-
differential operator of order 2s defined according to [15], with the
symbol |ξ|2s, by:

(1) (−∆)su = F−1(|ξ|2sFu),

where F is the Fourier transformation and u : RN → R belongs to
the Schwartz space of C∞ functions. This definition may be extended
by duality to a larger class of distributions. However we will use the
alternative definition, which also is found in [15], motivated by some
stochastic processes (Lévy processes):

(2) (−∆)su(x) = cN,sp.v.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

with x ∈ RN and where p.v refers to Cauchy principal value and the
normalization constant cN,s is given by:

cN,s =

(∫
RN

1− cos (y1)

|y|n+2s
dy

)−1

> 0.
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6 INTRODUCTION

This operator play an important role in many fields of sciences
such as fluid dynamics or economy. It is essential in order to model
anomalous diffusion, which has been found in several environments.
There are many documents where this fact is reflected, for example
in [2] the authors have performed experiments and theoretical studies
into contaminant transport in aquifers and in [5] is used in study of
crime diffusion.

In relation to the study of this operator, the properties of the frac-
tional Laplacian and the regularity of solutions of problems, such as the
Dirichlet Problem for this operator, began in the 1960s, when Eskin
and Vishik used a factorization property of pseudo-differential symbols
to derive important mapping properties of fractional Laplacian, [21].

After that, the work by Caffarelli and Silvestre [4] appeared, based
in a well known relation, that the Dirichlet-to-Neumann map of the
harmonic extension problem in the upper half-space is given by the
square root of the Laplacian, what means that for a smooth bounded
function f : RN → R and for the extension problem:{

u(x, 0) = f(x) x ∈ RN ,

∆u(x, y) = 0 (x, y) ∈ RN × R+,

we can realize (−∆)1/2 as the operator T : f → −uy(x, 0). They gen-
eralize this relation to a similar extension problem for each fractional
power of the Laplacian. Then, for any s ∈ (0, 1), this relation connects
the nonlocal operator given by (1) or (2) with local operators and al-
lows to use local differential operators for its analysis. After this work
nonlocal operators generated a lot of interest, so a lot of recent work
has appeared. One of the most important works about the regular-
ity of the solutions to (−∆)su(x) = g(x) in a bounded domain Ω was
performed by Ros-Oton and Serra [17], where they studied the Hölder
regularity up to the boundary of solutions to the Dirichlet problem,
i.e. u(x) = 0 in RN \ Ω. Their estimates measure in a precise way the
singular behavior of solutions near the boundary.

Great attention has also been devoted to symmetry results for equa-
tions involving the fractional Laplacian, such those known in the local
case since the pioneering works by Serrin in 1971 [18], and Gidas, Ni
and Nirenberg ten years later [11], who initiated the study of radial
symmetry and monotonicity of positive solutions for non-linear ellip-
tic equations in bounded domains using the moving planes, a method
based on the Maximum Principle.
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The purpose of this Master thesis is the study of the existence and
multiplicity of solutions to the following nonlinear elliptic eigenvalue
problem involving the fractional Laplacian:

(3)

{
(−∆)su = λf(u) in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN (N ≥ max{2, 3−2s}), is a bounded domain with smooth
boundary ∂Ω, (it’s enough if Ω is a C1,1 domain), λ is a nonnegative
constant. With respect to the nonlinear term f we assume that it has
multiple zeroes. More precisely we assume that f satisfies the following
hypotheses:

(A1) f ∈ C1,1−s(R+,R), particularly f ∈ C0,1
loc (R+,R).

(A2) f(0) > 0, and f(s) = f(0) for s < 0.
(A3) For some a1, a2, ..., am ∈ R with 0 < a1 < ... < am we have

that f(ak) = 0, k = 1, ...,m.
(A4) If we define F (s) =

∫ s
0
f(σ)dσ, then we have, with k = 2, ...,m,

that max {F (s) : 0 ≤ s ≤ ak−1} < F (ak).

Observe that (A3)-(A4) imply, in the case of a unique zero sk of f in
(ak, ak+1) with f(s) < 0 for every s ∈ (ak, sk) and f(s) > 0 for every
s ∈ (sk, ak+1), then we have that

∫ ak+1

d
f(s)ds > 0, for any d ≤ sk.

Problem (3) has been studied in the local case, i.e. for the Laplacian
operator. Thus, in the paper by P. Hess, [12], he proved, for large λ, the
existence of at least two solutions having uniform norm between each
two zeroes of f in which f is positive. E. N. Dancer and K. Schmitt in
[6] obtained the optimal sufficient condition in order to have a solution
with given uniform norm.

In this work we want to prove similar results to those in [12] and
[6] but working with a different kind of operator, the fractional Lapla-
cian. Up to our knowledge, this problem has not been considered for
the fractional Laplacian, where the regularity results by Ros-Oton and
Serra in [17] will be a key point.

In addition, this work is clearly connected with [10], where I stud-
ied for the first time the fractional Laplacian and the fractional porous
media equation. In that work I focused on the different concepts of
solutions, introducing the elementary concepts, Sobolev Spaces, basic
properties of the operator, etc. Therefore, I will try to make the writ-
ing of this work as self-contained as possible but avoiding the explicit
developments already showed in [10].
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The development of our work is organised in 5 Chapters:

� In the first chapter we will make a brief introduction to some
fundamental concepts that we will use later, by outstanding
the mainly results and by developing some of them. In order
to do this, we divide it in 5 sections.

We start by defining the concept of weak solutions and
the functional spaces where we will work. After that, we will
describe some notions about the topological Leray-Scahuder
degree. The following section is focus on some convergence
results about sequences and compact embeddings, that will
be essential. In the next section we will deal with variational
results by studying some properties of a functional, whose min-
imum will be a key point in the existence of solutions. Finally,
the last section is dedicated to the Maximum principle for the
fractional Laplacian, by showing two results about it, that will
be helpful to show the uniqueness of the solution to our prob-
lem and to show properties such as positivity. In addition
to a sub-supersolution method that yields the existence of a
maximal solution of a truncated version of (3).

� In the second chapter, in the first section, we will study regu-
larity results about solutions of (3) and in the second section
we will focus on the demonstration of a necessary condition of
our function f , about the integral of this function between its
zeroes, in order to guarantee the existence of solutions of our
problem.

� The third chapter is where we will work with the truncated
version of (3) to demonstrate a multiplicity result for solutions
to our problem by showing in the first section the existence of
a solution to this truncated version based on some variational
results about the minimum of a truncated functional, as con-
sequence we will guarantee that there is, between each zeroes
of our f , a solution of (3). And in the second section we will
develop an result of existence of solutions of our truncated
problem by using the degree theory.

� In the fourth chapter we will use the previous results about
existence and the degree theory developed in the first section
of this chapter, to demonstrate that there at least two solution
two our problem between two zeroes of our f in the last part
of the chapter.

� Finally, in the last section I reach several conclusions about the
work, also indicating what I would like to continue developing.



CHAPTER 1

Preliminaries

For convenience of the reader, we provide some preliminary results
and comments about the notation, which will be useful in the next
chapters. Most of the results presented in the following sections are
well known although not all of them has been studied in my curricula.
Thus, a deep analysis on each of these concepts and proofs will require
a proper Master thesis. Therefore we will focus on our main objective
and will prove only the results most directly related with it. We will
provide the reader with some references for detailed proofs of each
result.

1. Concept of solution and regularity

The fractional Sobolev space where we consider problem (3) is the
subspace of

Hs(RN) =

{
u ∈ L2(RN) :

u(x)− u(y)

|x− y|N/2+s
∈ L2(RN × RN)

}
,

given by Hs
0(Ω) = {u ∈ Hs(RN) : u ≡ 0 a.e. x ∈ RN \ Ω}. This is a

Hilbert space with the scalar product

〈u, v〉 =
cN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy, u, v ∈ Hs

0(Ω).

The main properties of the fractional Sobolev spaces are well described
in [7]. In the following lemma we summarize the main properties re-
lated with the concept of solution.

Lemma 1.1. Assume that u, v ∈ H1
0 (Ω) then it is satisfied that:

(1) ‖u‖2
H1

0 (Ω)
= ‖(−∆)

s
2u‖2

L2(RN ).

(2)

∫
Ω

v(−∆)su =

∫
RN

(−∆)
s
2u(−∆)

s
2v = 〈u, v〉.

Now we may define the concept of solution of (3) as follows.

9
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Definition 1.1. A weak solution of problem (3) is a function u in
the space Hs

0(Ω)
⋂
L∞(Ω) satisfying that:

cN,s
2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dydx = λ

∫
Ω

f(u(x))v(x)dx,

for all v ∈ Hs
0(Ω).

We will say that this function u is classical solution of our problem
(3), if the fractional Laplacian of u is well defined at any point of Ω
and u satisfies the equation in a pointwise sense.

Most of the results concerning to problem (3) require some regular-
ity of solutions to problems with fixed data at the right hand side of
the equation. We use the following notation:

Note 1.1. When σ > 0 is not a integer, we define Cσ(Ω) :=
Ck,α(Ω), where k is the greatest integer such that k < σ and σ = k+α,
k ∈ N.

The regularity of solutions established in the following result was
proved in [17], Proposition 1.1 for bounded Lipschitz domains satisfy-
ing the exterior ball condition (in particular for smooth domains).

Proposition 1.1. Let Ω be a bounded smooth domain, g ∈ L∞(Ω),
and u be a solution to the problem

(4)

{
(−∆)su = g in Ω,

u = 0 in RN \ Ω.

Then u ∈ Cs(RN) = C0,α(RN) and

‖u‖C0,α(RN) ≤ C‖g‖L∞(Ω)

where C is a constant depending only on Ω and s.

As usual, more regularity on the data g produces more regularity
on solutions. Next result is a consequence of that, proved in [17],
Proposition 1.4 where the optimal Hölder regularity is established.

Proposition 1.2. Let Ω be a bounded domain, and β > 0 be such
that neither β, β + 2s is an integer. Let g ∈ Cβ(Ω) and u ∈ Cs(RN)
be a solution of (4). Then, u ∈ Cβ+2s(Ω).

2. Leray-Schauder degree

Degree theory is a powerful tool to deal with the existence of so-
lutions of equations in general. Leray-Schauder degree is used in [12]
to study the local version of (3). In this section, we are going to make
a brief introduction to the Leray-Schauder, by using some definitions
and properties that can be consulted in [16], [1], [14].
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Definition 1.2. Let X be a Banach space and denote D(X) the
class of (φ,Ωd, b), where:

a) Ωd is an open subset of X.
b) φ = I−T , where I denotes the identity in X and T ∈ C(Ωd, X)

is a compact map.
c) b ∈ X \ φ(∂Ωd).

Leray-Schauder topological degree is defined in the following theo-
rem where we summarize its main properties.

Theorem 1.1. Let X be a Banach space. There exists a unique
function (called Leray-Schauder degree) deg : D(X)→ Z such that:

(1) Normalization property: deg(I,Ωd, b) = 1 for every b ∈ Ωd.
(2) Additivity property: If Ωd1 and Ωd2 are open, bounded disjoint

subsets in Ωd and b /∈ φ(Ωd \ (Ωd1

⋂
Ωd2)), then deg(φ,Ωd, b) =

deg(φ,Ωd1 , b) + deg(φ,Ωd2 , b).
(3) Homotopy property: Let H ∈ C([0, 1] × Ωd, X) be a compact

homotopy. If b ∈ C([0, 1], X) satisfies b(t) /∈ I − H(t, ∂Ωd),
for every t ∈ [0, 1], then deg(I −H(t, ·),Ω, b) is constant.

(4) Solution property: If deg(φ,Ωd, b) 6= 0, then there exists x ∈ Ωd

such that φ(x) = b.
(5) Excision property: Let K ⊂ Ωd be any compact set such that

b /∈ φ(K). Then deg(φ,Ω, b) = deg(φ,Ω \K, b).

The proof of this theorem relies on the fact that compact perturba-
tions of the identity operator on Banach spaces can be approximated
by finite rank continuous operators. Therefore Leray-Schauder topo-
logical degree is the natural extension of the finite dimensional Brouwer
degree for continuous functions. Let us recall its definition in the case
of regular values of differentiable functions.

Definition 1.3. A regular value of a differentiable function f :
Rm → Rn with n ≤ m, is a value c ∈ Rn such that the differential of
f is surjective at every preimage of c, f−1(c), which are not critical
points of f .

Now we deal with the definition of Brouwer degree.

Definition 1.4. Let consider R the class of the triples (fd,Ωd, b),
where Ωd is a bounded open set in RN , fd ∈ C(Ωd,RN)

⋂
C1(Ωd,RN)

and b /∈ f(∂Ωd) a regular value of fd in Ω, then we can define the
Brouwer degree:

d(fd,Ωd, b) =
∑

fd(x)=b

sign(Jfd(x)),
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where Jfd(x) is the determinant of the Jacobian of fd at x, f ′d(x).

Notice that the set of preimage of b, {x ∈ Ω : f(x) = b} is finite,
due to the fact that b is a regular value and Ω is bounded.

To extend the definition of the Brouwer degree to singular values b
of fd, i.e., G(fd) = {x ∈ Ωd : Jfd(x) = 0}, Sard’s lemma is used:

Lemma 1.2. The set of singular values, fd(G(fd)), has zero Lebesgue
measure.

In addition, as a consequence, the class of functions fd ∈ C∞(Ωd,RN)
for which b is a regular value, is dense in the space C(Ωd,RN), thus the
degree defined for R is uniquely extended to a continuous map in the
class of (fd,Ωd, b) with fd ∈ C(Ωd,RN), Ωd a bounded open set in RN

and b /∈ fd(∂Ωd).

Let us finally introduce the concept of index for isolated fixed points
of a compact operator in a Banach space.

Definition 1.5. Let a ∈ X be an isolated fixed point of a compact
operator T : X → X. We define the index of φ = I − T at a as:

i(φ, a) = deg(φ,B(a, r), 0),

which is constant for small r > 0.

Particularly, we are interested in the next theorem that works with
Leray-Schauder index and that is proved in [16], Theorem 1.1.

Theorem 1.2. Let E be an infinite dimensional Hilbert space, y ∈
E, Ω bounded neighborhood of y, and g ∈ C1(Ω,R) with g′(u) = u −
T (u) where T is compact. Suppose y is a local minimum and isolated
critical point for g. Then i(g′, y, 0) = 1.

3. Some convergence results for sequences of functions

Since we will use Leray-Schauder topological degree in some Banach
space of functions defined in a bounded domain of RN some convergence
results and compact embedding will be needed. We present in this
section some of this results.

3.1. Lebesgue integration results. Now we are going to recall
some well-known results about integration that are helpful in our work.

Theorem 1.3 (Lebesgue’s dominated convergence theorem). Let
Ω ⊂ RN be a measurable set and fn ∈ L1(Ω) be a sequence pointwise
convergent to a measurable function f . If there exists an integrable
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function g, such that |fn(x)| ≤ g(x) for every n ∈ N and a.e. x ∈ Ω,
then f ∈ L1(Ω) and ∫

Ω

f = lim
n→∞

∫
Ω

fn.

Theorem 1.4 (Fubini’s Theorem). Assume that f ∈ L1(A × B).
Then∫

A×B
f(x, y) =

∫
A

(∫
B

f(x, y)dy

)
dx =

∫
B

(∫
A

f(x, y)dx

)
dy.

Moreover if f(x, y) = g(x)h(y), then it is satisfied that:∫
A×B

f(x, y) =

∫
A

g(x)dx

∫
B

h(y)dy.

3.2. Compact embeddings. We first recall the classical compact
embedding of Hölder continuous functions in the space of continuous
functions

Theorem 1.5 (Arzelà-Ascoli Theorem). Let Ω ⊂ Rn, α ∈ (0, 1),
and let {fi}i∈N be any sequence of functions fi satisfying

‖fi‖C0,α(Ω) ≤ C,

where C is a constant. Then, there exists a subsequence fij which

converges uniformly to a function f ∈ C0,α(Ω).

The next compact embedding involves the fractional Sobolev space
Hs

0(Ω) which is compactly embedded in some Lebesgue spaces. This is
a consequence of the general result established in [7], Corollary 7.2 for
more general fractional Sobolev spaces in bounded extension domains
which is valid for Hs

0(Ω) in the case of a bounded domain with smooth
boundary.

Theorem 1.6. Let s ∈ (0, 1), 2s < N , q ∈
[
1, 2N

N−2s

)
and let

Ω ⊂ RN be a bounded domain with smooth boundary. Then Hs
0(Ω)

is compactly embedded in Lq(Ω).

4. Variational results

In this section, taking into account the variational structure of the
problem in Definition 1.1, we will summarize the main abstract varia-
tional results and we will prove those related to our problem.

Observe, that given g ∈ L∞(Ω), the functional Φ : Hs
0(Ω) → R

given by:

Φ(u) =
1

2
‖u‖2

Hs
0(Ω) −

∫
Ω

g(x)u,
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satisfies that Φ ∈ C1(Hs
0(Ω),R) and critical points of Φ are weak solu-

tions to (4).
Let us recall that as a direct consequence of the Weierstrass theorem

we have following result (see [1]).

Theorem 1.7. Assume that H is a Hilbert space and J ∈ C1(H,R)
is coercive and weak lower semicontinuous. Then J is bounded from
below and has a global minimum.

The first important result deals with the existence of solution to
(4) as a minimum of the functional Φ.

Theorem 1.8. For every g ∈ L∞(Ω) there exists u ∈ Hs
0(Ω) a

solution to (4) which is a minimum of the functional Φ.

Proof. First we observe that Φ is a weak lower semicontinuous
function, i.e., if un ⇀ u in Hs

0(Ω), then

lim inf Φ(un) ≥ Φ(u).

Indeed, let un be a sequence such that un ⇀ u in Hs
0(Ω) then, using

the compact embedding (Theorem 1.6) un strongly converges to u in
L2(Ω) and, using also that ‖ · ‖2

Hs
0(Ω) is weak lower semicontinuous we

have

lim inf Φ(un) =
1

2
lim inf ‖un‖2

Hs
0(Ω) −

∫
Ω

g(x)u ≥ Φ(u).

Now we prove that Φ is a coercive function. Indeed,

1

2
‖u‖2

Hs
0(Ω) − λ

∫
Ω

g(x)u ≥ 1

2
‖u‖2

Hs
0(Ω) − C‖u‖Hs

0(Ω)

which implies that lim
‖u‖Hs0(Ω)→+∞

Φ(u) = +∞.

Thus we can use Theorem 1.7 and we finished the proof. �

Remark 1.1. The previous proof is also valif for the funtional

Φk(u) =
1

2
‖u‖2

Hs
0(Ω) +

k

2
‖u‖2

L2(Ω) −
∫

Ω

g(x)u.

Thus, for every k > 0, we have the existence of solution for the problem

(5)

{
(−∆)su+ ku = g in Ω,

u = 0 in RN \ Ω.
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5. Maximum principles and Symmetry

In this subsection we will show some maximum principles for the
fractional Laplacian which are essential in order to deal with prob-
lem (3).

In Theorem 2.2 of [13] it is shown that classical Harnack’s inequality
is not true in the nonlocal case without having into account the values
outside Ω. Thus, the nonlocal case of the maximum principle, weak or
strong, does not admit an analogous formulation to the local case. The
result in [13] proves the existence of a s-harmonic function in B1(0)
which is positive in B1(0) \ {0} and u(0) = 0.

However, most of the techniques to deal with problem (3) in the
local case deeply involves the maximum principle and the strong max-
imum principle. We give here the precise formulation we will use in
this manuscript.

Firstly we have the result proved in [20], Proposition 2.2.8.

Proposition 1.3. Let Ω ⊂ RN be an open bounded set, let u be a
lower semicontinuous function in Ω, such that (−∆)su ≥ 0 in Ω and
u ≥ 0 in RN \ Ω. Then u ≥ 0 in RN . Moreover, if u(x) = 0, for one
point x inside Ω, then u = 0 in the whole RN .

Remark 1.2. Observe that this result immediately implies unique-
ness of solution of (4). Moreover, the uniqueness is also true for (5)
as a consequence of the next remark.

Remark 1.3. Observe that for k ≥ 0 and w ∈ L2
loc(RN) such that

w(x)− w(y)

|x− y|N/2+s
∈ L2(RN × RN) and

(6)

{
(−∆)sw + kw ≥ 0 Ω,

w ≥ 0 RN \ Ω,
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we have that w ≥ 0. Indeed, multiplying (6) by w− = min{w, 0} and
integrating we have, with Ω− = {x ∈ RN : w(x) < 0} ⊂ Ω, that

0 ≥
∫
RN

∫
RN

(w(x)− w(y))(w−(x)− w−(y))

|x− y|N+2s
dydx

=

∫
RN

∫
RN\Ω−

(w(x)− w(y))(w−(x))

|x− y|N+2s
dydx

+

∫
RN

∫
Ω−

(w(x)− w(y))(w−(x)− w−(y))

|x− y|N+2s
dydx

=

∫
Ω−

∫
RN\Ω−

(w−(x)− w(y))(w−(x))

|x− y|N+2s
dydx

+

∫
RN\Ω−

∫
Ω−

(w(x)− w−(y))(−w−(y))

|x− y|N+2s
dydx

+

∫
Ω−

∫
Ω−

(w−(x)− w−(y))(w−(x)− w−(y))

|x− y|N+2s
dydx

≥
∫
RN

∫
RN

(w−(x)− w−(y))(w−(x)− w−(y))

|x− y|N+2s
dydx ≥ 0

In particular, ‖w−‖Hs
0(Ω) = 0 and w ≥ 0.

Remark 1.4. Using condition (A2) we can assure that any solution
to (3) is non-negative. Indeed, we may take v = u− as test function in
Definition 1.1 and arguing as in Remark 1.3 we obtain that u− ≡ 0.

Remark 1.5. Observe that given a nontrivial function w ≥ 0 in
RN , for every x0 ∈ RN such that w(x0) = 0 and for every k ∈ R we
have that

(−∆)sw(x0) + kw(x0) = cN,sP.V.

∫
RN

−w(y)

|x0 − y|N+2s
dy < 0.

In particular, nontrivial and non-negative functions w : RN → R for
which (−∆)sw + kw ≥ 0 in Ω ⊂ RN are strictly positive in Ω.

The previous remarks allow us to prove nonexistence results for
nonlinear problems, we include here the proof in the next lemma.

Lemma 1.3. Let g ∈ C0,1
loc (R,R) and assume that g(s0) ≤ 0 for

some s0 > 0. Assume also that u ∈ Hs
0(Ω) ∩ L∞(Ω) is a weak solution

of {
(−∆)su = λg(u) in Ω,
u = 0 in RN \ Ω,

then ‖u‖∞ 6= s0.



5. MAXIMUM PRINCIPLES AND SYMMETRY 17

Proof. We argue by contradiction and assume that ‖u‖∞ = s0.
Since g ∈ C0,1

loc (R,R) we can take k > 0 such that |g(x)−g(y)| ≤ k|x−y|
for every x, y ∈ [0, s0], particularly for 0 < y < x < s0 we have that
g(x) − g(y) ≥ −k(x − y), i.e. we have that g(s) + ks is an increasing
function in [0, s0].

Now, we take w = s0 − u ∈ L2
loc(RN) and

w(x)− w(y)

|x− y|N/2+s
∈ L2(RN ×

RN). We claim that{
(−∆)sw + λkw ≥ 0 Ω,

w ≥ 0 RN \ Ω.

Indeed, by definition we have w(x) ∈ [0, s0] for a.e. x ∈ RN and,
using that g(s0) ≤ 0, g(s) + ks is non decreasing in [0, s0] and that
(−∆)ss0 = 0, we have that:

(−∆)sw + λkw =− (−∆)su+ λks0 − λku
≥g(s0) + λks0 − (g(u) + λku) ≥ 0.

Thus we have w = s0 − u > 0 in RN \ Ω, see Remark 1.5, which
contradicts that ‖u‖∞ = s0.

�

An important result, consequence of the maximum principle is the
existence of solution between a sub and a super solution in the sense
of the following definition.

Definition 1.6. We say that u ∈ L2
loc(RN) with

u(x)− u(y)

|x− y|N/2+s
∈

L2(RN × RN) is a supersolution to problem (3) if it satisfies{
(−∆)su ≥ λf(u) in Ω,
u ≥ 0 in RN \ Ω,

i.e., u ≥ 0 in RN \ Ω and for every v ∈ Hs
0(Ω) it is satisfied that

cN,s
2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dydx ≥ λ

∫
Ω

f(u(x))v(x)dx,

Analogously we say that u is a subsolution if weakly satisfies{
(−∆)su ≤ λf(u) in Ω,
u ≤ 0 in RN \ Ω.

We include now the result of existence of solution between a subso-
lution and a supersolution. We include here the proof for convenience
of the reader.



18 1. PRELIMINARIES

Theorem 1.9. Let Ω ⊂ RN be an open bounded smooth domain
and let u and u, with u ≥ u ≥ 0 and u ∈ L∞(Ω), be a subsolution
and a supersolution respectively of the problem (3). Then there exists
a solution u ∈ Hs

0(Ω) ∩ L∞(Ω) of this problem in [u, u].

Proof. As in the proof of Lemma 1.3, we can choose k > 0 such
that f(s) + ks is an increasing function in the interval [0, ‖u‖∞]. Now
let us consider the sequence {un} ∈ Hs

0(Ω) definded inductively as:{
(−∆)sun+1 + λkun+1 = λf(un) + λkun in Ω,

un+1 = 0 in RN \ Ω,

and u0 = u. We will prove, through several steps, that this sequence is
well defined and converges to a solution.
Step 1. We claim that 0 ≤ un ≤ u for every n ∈ N∪{0}. This implies,
using Theorem 1.8 (see also Remark 1.1) that un+1 is well defined. In
order to prove that we are going to use induction.

(1) By hypothesis it is satisfied that 0 ≤ u0 = u ≤ u.
(2) Now we suppose that 0 ≤ un ≤ u for some n and let us prove

that 0 ≤ un+1 ≤ u. Since λf(un)+λkun ≥ λf(0)+λk0 ≥ 0 we
can argue as in Remark 1.3 and obtain that 0 ≤ un+1. Observe
that

(−∆)sun+1 + λkun+1 = λf(un) + λkun,

(−∆)su+ λku ≥ λf(u) + λku.

So, subtracting these two expressions above

(−∆)s(u− un+1) + λk(u− un+1) ≥ 0, in Ω.

Here we have used that un ∈ [0, ‖u‖∞] and that f(s) + ks is
increasing in that interval. On the other hand

u− un+1 ≥ 0, in RN \ Ω.

Therefore, Remark 1.3 yields that un+1 ≤ u in RN .

Step 2. We claim that un ≤ un+1. In order to prove that we are going
to use induction again.

(1) Firstly, let us prove that u0 ≤ u1. Observe that

(−∆)su1 + λku1 = λf(u) + λku,

(−∆)su+ λku ≤ λf(u) + λku.

So, subtracting these two expressions above

(−∆)s(u1 − u) + λk(u1 − u) ≥ 0, in Ω.

And on other hand u1−u ≥ 0, in RN\Ω. Therefore, Remark 1.3
yields that u1 ≥ u in RN .
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(2) Now we suppose that un ≤ un+1 and let us prove that un+1 ≤
un+2. We have that

(−∆)sun+2 + λkun+2 = λf(un+1) + λkun+1,

(−∆)sun+1 + λkun+1 = λf(un) + λkun.

Again by subtracting these two expressions above

(−∆)s(un+2 − un+1)+λk(un+2 − un+1) =

λ[f(un+1) + kun+1 − (f(un) + kun)] ≥ 0,

in Ω. Thanks to the fact that f(u) + k(u) is increasing and to
our assumption un ≤ un+1. And by using again Remark 1.3,
we have that un+2 ≤ un+1.

Then, we have that {un} is an increasing sequence.
Step 3. To finish the proof we are going to prove that our sequence
converges to a solution of (3). First of all, we know that {un} is an
increasing sequence and is bounded between u and u, then we can
guarantee that un → u a.e. Moreover

(7) 〈un+1, v〉 = λ

∫
Ω

(f(un) + k(un − un+1))v,

for every v ∈ Hs
0(Ω). Taking v = un+1 and using that f is continuous

and un bounded we deduce that ‖un‖Hs
0(Ω) is bounded. Thus, up to a

subsequence, we have that un weakly converges in Hs
0(Ω). Moreover,

using the compact embedding in Theorem 1.6 we may assume strong
convergence in L2(Ω) and a.e. in Ω. In particular u is the weak limit
of un and

〈un+1, v〉 →〈u, v〉

λ

∫
Ω

(f(un) + k(un − un+1))v →λ
∫

Ω

f(u)v,

for every v ∈ Hs
0(Ω). Here we have used Theorem 1.3 for the last limit.

Thus, taking into account (7) we have that u is a solution of (3). �

Remark 1.6. Observe that the solution obtained in the above proof
is minimal in the sense that any other solution is greater. Indeed, given
v ∈ Hs

0(Ω) ∩ L∞(Ω) solution of (3) in [u, u] we can perform the same
proof with v = u and the solution u obtained in this proof satisfies
u ≤ v. Even more, taking u0 = u and arguing similarly we can assure
the existence of a maximal solution. However we do not know if the
maximal and the minimal solutions are different.
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Now we deal with another important property for solutions when
the domain presents some symmetry properties and which is deduced
from the maximum principle. Thus, it is possible to deduce radial
symmetry of solutions in a ball. More precisely, in [8], Theorem 1.1 it
is proved the next result in the unit ball B.

Theorem 1.10. Assume that f : [0,∞) → R is a locally Lipschitz
function and g : [0, 1)→ R is a non-increasing function. Assume also
that u is a classical solution to{

(−∆)su = λf(u) + g(|x|) in B,
u = 0 in RN \B.

Then u is radially symmetric and strictly decreasing in r = |x| for
r ∈ (0, 1).

Observe that the previous result is also true for a ball of any ratio
R instead of 1.

It would be useful, in case of radial symmetry, to have an expression
of the spatial fractional Laplacian only in terms of the ratio. Next result
is proved in [9], Theorem 1.1 and give us such expression.

Theorem 1.11. Let s ∈ (0, 1). For every radial function u ∈ C2(Ω)
satisfying ∫ +∞

0

|u(r)|
(1 + r)N+2s

rN−1dr < +∞,

we have that

(−∆)su(r) =

cN,s
r2s

∫ +∞

1

(
u(r)− u(rτ) +

(
u(r)− u

( r
τ

))
τ−N+2s

)
H(τ)dτ,

where r = |x| and H is the positive and continuous function defined,
for τ > 1, by:

H(τ) =
2παnτ

(τ 2 − 1)1+2s

∫ π

0

senN−2

(
σ

(
√
τ 2 − sen2 σ + cosσ)1+2s

√
τ 2 − sen2 σ

)
dσ,

where αn =
π
N−3

2

Γ(N−1
2

)
and Γ denotes the Euler’s gamma function.



CHAPTER 2

Necessary condition for the existence of solution

In this chapter we include one of the main contributions of this work
which is a necessary condition for the existence of a solution of the
original problem in terms of the area enclosed by f between its zeros.
The result was known for the Laplacian operator (see [6]) although the
proof in the case of the fractional Laplacian is not a simple adaptation
of the previous one since no direct relation is available, as in the case
of the Laplacian, between the fractional Laplacian of a radial solution
and the one-dimensional fractional Laplacian in terms of the radius.

In the first section we summarize the main regularity properties of
the solutions to (3) and in the second section we prove the necessary
condition.

1. Regularity of solutions to (3)

We prove in this section that solutions of (3) are actually C2(Ω)
functions.

Lemma 2.1. Assume (A1), (A2) and that u ∈ Hs
0(Ω) ∩ L∞(Ω) is

a weak solution of (3). Then:

(1) u ∈ C(Ω)
⋂
C2+s(Ω).

(2) u is positive.

Proof. (1) u ∈ C(Ω)
⋂
C2+s(Ω).

In order to prove it, we are going to use Proposition 1.1. It’s clear
that our space Ω and our function g(x) = λf(u(x)) satisfy hypotheses
of Proposition 1.1 (because we have a bounded domain Ω with smooth
boundary, it’s enough if is a C1,1 domain, λ is a constant and f(u) ∈
L∞(Ω) since f ∈ C(R) and u ∈ Hs

0(Ω)
⋂
L∞(Ω)). Thus, our solution

u ∈ Cs(RN), what implies that u ∈ C(RN) particularly u ∈ C(Ω).
In addition, we know that f ∈ C2−s(R+), u ∈ Cs(RN), so we can

be sure that f(u) ∈ Cs(Ω) and by Proposition 1.2 with β = s we
have u ∈ C3s(Ω). Therefore, f(u) ∈ Cβ1(Ω) for β1 = min{2 − s, 3s},
if β1 = 3s then, applying again Proposition 1.2, we have that u ∈
C5s(Ω). Arguing inductively we have that f(u) ∈ Cβn(Ω) for βn =
min{2− s, (2n+ 1)s}. Thus, after a finite number of steps, βn = 2− s,

21
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i.e. f(u) ∈ C2−s(Ω) and by using one last time Proposition 1.2, with
β = 2− s, we have u ∈ C2+s(Ω).
(2) u is positive as was shown in Remark 1.3 (see also Remark 1.4). �

2. Necessary condition.

We proved in Lemma 1.3 that if u ∈ Hs
0(Ω) ∩ L∞(Ω) is a solution

of (3) with ‖u‖∞ = γ then f(γ) > 0. In this section we prove that
actually a stronger condition is necessary. More precisely we need∫ γ
d
f(s)ds > 0 for every d < γ. This was first observed in [6] for

the Laplacian operator.

Theorem 2.1. Let Ω be a bounded domain with smooth boundary
and f a function satisfying (A1), (A2) and f(a) = 0 for some a > 0.
Assume that u ∈ Hs

0(Ω)∩L∞(Ω) is a solution of (3) with ‖u‖∞ = γ ∈
(0, a), then

(8)

∫ γ

d

f(s)ds > 0, for every d ∈ (0, γ).

Proof. We are going to argue by contradiction, assume that there
exists d∗ < γ such that

(9)

∫ γ

d∗
f(s)ds ≤ 0.

Let B be a ball in RN , with radius R, centered at the origin such
that Ω ⊂ B. We consider the following problem:

(10)

{
(−∆)su = λf(u) in B,

u = 0 in RN \B.

Now let define the function α(x):

α(x) =

{
u(x) in Ω,

0 in RN \ Ω.

Observe that α is a sub-solution of (10) since: (−∆)sα(x) = (−∆)su(x) = λf(u(x)) = λf(α(x)) in Ω,
(−∆)sα(x) = 0 < λf(0) = λf(α(x)) in B \ Ω,
α(x) = 0 in RN \B.

On the other hand, if we consider β(x) = a we have that β(x) is a
super-solution of of (10):{

(−∆)sβ(x) = 0 = λf(a) = f(β(x)) in B,
β(x) > 0 in RN \B.
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Hence, by using Theorem 1.9, problem (10) admits a solution v ∈
Hs

0(B) ∩ L∞(B) such that v(x) ∈ (α(x), β(x)) a.e. x ∈ B, so ‖v‖∞ ∈
[γ, a).

It follows from the symmetry result of Theorem 1.10, (applied to
(10) with g = 0) that v is a radially symmetric solution. Now, thanks
to the regularity of v that we have seen before in Lemma 2.1, we have
that v ∈ C2+s(B).

Then, we can write v(x) = w(‖x‖) = w(ρ) and by Theorem 1.11,
it solves the following problem:

cN,s
ρ2s

∫∞
1

(
w(ρ)− w(ρτ) + (w(ρ)− w(ρ/τ)) τ−N+2s

)
H(τ)dτ

= λf(w(ρ)), ρ ∈ (0, R)

w(R) = 0.

Where R is the radius of B. Then, multiplying by w′(ρ)ρ1−N we have:

cN,s
ρ2s−1+N

∫ ∞
1

(
w(ρ)− w(ρτ) + (w(ρ)− w(ρ/τ)) τ−N+2s

)
H(τ)dτw′(ρ)

= λρ1−Nf(w(ρ))w′(ρ).

Recall that γ = ‖v‖∞ = v(0) = w(0) (since v is radially non-
increasing). Let us choose also r < R such that d∗ = w(r) < γ. Now,
we integrate for ρ ∈ (0, r), performing the change of variable σ = w(ρ),
we have that:∫ r

0

cN,s
ρ2s−1+N

∫ ∞
1

(
w(ρ)− w(ρτ) + (w(ρ)− w(ρ/τ)) τ−n+2s

)
w′(ρ)τ

H(τ)dτdρ = −λ
∫ w(0)

w(r)

f(σ)dσ = −λ
∫ γ

d∗
f(σ)dσ ≥ 0.

Here we have used our assumption (9).
Now, we claim that the integral in the left hand side is negative, so

we have a contradiction.
First of all, using Theorem 1.4 we have that the left hand side is

equal to

cN,s

∫ ∞
1

∫ r

0

(w(ρ)− w(ρτ) + (w(ρ)− w(ρ/τ)) τ−n+2s)

ρ2s−1+N
w′(ρ)dρH(τ)dτ.

Now we argue as in Section 3 of [9] and we have that

w(ρ)− w(ρτ) + (w(ρ)− w(ρ/τ)) τ−N+2s =

− 1

2
ρ2 (τ − 1)2(τN+2−2s + 1)

τN+2−2s

(
w′′(ρ) +

2τ(τN+1−2s − 1)

(1 + τN+2−2s)(τ − 1)

w′(ρ)

ρ

)
+ o(τ − 1)2.
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Then, we can write that

sign

[∫ r

0

(
w(ρ)− w(ρτ) + (w(ρ)− w(ρ/τ)) τ−N+2s

)
w′(ρ)

ρ2s−1+N
dρ

]
=

− sign
[∫ r

0

ρ−2s+3−N
(

1

2

(τ − 1)2(τN+2−2s + 1)

τN+2−2s
w′′(ρ)

+
(τ − 1)(τN+1−2s − 1)

τN+2−2s

w′(ρ)

ρ

)
w′(ρ)dρ

]
.

Let a(τ) = 1
2

(τ−1)2(τN+2−2s+1)
τN+2−2s and b(τ) = (τ−1)(τN+1−2s−1)

τN+2−2s which are
positive functions for τ > 1 and observe that∫ r

0

ρ−2s+3−N
(
a(τ)

d

dρ
(w′(ρ))2 + b(τ)

(w′(ρ))2

ρ

)
dρ

= b(τ)

∫ r

0

(w′(ρ))2ρ−2s+2−Ndρ

+ a(τ)

∫ r

0

ρ−2s+3−N d

dρ

(
(w′(ρ))2

)
dρ

= b(τ)

∫ r

0

(w′(ρ))2ρ−2s+2−Ndρ

+ a(τ)

∫ r

0

d

dρ

(
ρ−2s+3−N(w′(ρ))2

)
dρ

− a(τ)

∫ r

0

d

dρ

(
ρ−2s+3−N) (w′(ρ))2dρ

= b(τ)

∫ r

0

(w′(ρ))2ρ−2s+2−Ndρ

+ a(τ)
(
r−2s+3−N(w′(r))2

)
+ (N + 2s− 3)a(τ)

∫ r

0

(
ρ−2s+2−N) (w′(ρ))2dρ > 0.

Thus, we have the claim proved which leads to a contradiction con-
cluding the proof. �

Remark 2.1. Observe that conditions (A3) and (A4) implies that
condition (8) is satisfied for every γ such that γ < ak and |γ−ak| small
enough.



CHAPTER 3

Existence and multiplicity of solutions with
uniform norm separated by zeroes of f

In this chapter we prove our first multiplicity result for solutions
to (3). Let us illustrate it in the case of non-negative nonlinearity f .
In this case (A4) is always satisfied for any finite family a1, . . . , am of
zeroes of f . In this chapter we will prove that for large λ there exists
at least a solution uk ∈ Hs

0(Ω) ∩ L∞(Ω) such that

ak−1 < ‖uk‖∞ < ak, k = 2, . . . ,m.

Actually, when f changes sign, (A3)−(A4) implies that ak is a zero
of the function f such that f is positive at the left hand side of ak (i.e.
if f changes sign in (ak−1, ak) then f has at least another zero in this
interval) and previous inequality can be improved.

In the first section we will prove the existence of uk as a minimum of
a functional whose critical points give us solutions with L∞(Ω) norm
less that ak+1. In the second section we will prove the existence of
solution using degree theory this will be useful in the next chapter to
prove multiplicity even with norms between zeroes of f .

1. Existence of minimum of a truncated functional

In this section, for every k, we consider a problem whose solutions
are those of (3) with L∞(Ω) norm less than ak. Then we will prove
the existence of solution of this truncated problem as a minimum of a
truncated functional. More precisely we consider the problem

(11)

{
(−∆)su = λfk(u) in Ω,

u = 0 in RN \ Ω,

where

fk(s) =

 f(0), s ≤ 0,
f(s), 0 ≤ s ≤ ak,
0, ak ≤ s.

Lemma 3.1. Assume (A1)− A(4). Then u ∈ Hs
0(Ω) is a solution

to (3) with u ∈ L∞(Ω) and ‖u‖∞ < ak if and only if u is a solution to
(11).

25
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Proof. The proof is straightforward taking into account that, us-
ing Proposition 1.1 and Lemma 1.3, solutions of (11) are bounded and
have L∞(Ω) norm less than ak. �

Now we prove the existence of solution to (11) for every k > 1 which
is a minimum for the functional φk : Hs

0(Ω) −→ R is defined by:

φk(u) =
1

2
‖u‖2

Hs
0(Ω) − λ

∫
Ω

Fk(u(x))dx,

where Fk(s) =

∫ s

0

fk(σ)dσ.

Theorem 3.1. Assume that (A1)− (A4) are satisfied. Then φk ∈
C1(Hs

0(Ω),R) and its critical points are weak solutions to (11). More-
over φk attains its minimum and as a consequence (3) admits at least
a solution uk ∈ Hs

0(Ω) ∩ L∞(Ω) with ‖uk‖∞ < ak.

Proof. It is clear from definition that φk ∈ C1(Hs
0(Ω),R) and that

φ′k : Hs
0(Ω)→ (Hs

0(Ω))′ is given by

〈φ′k(u), v〉 = 〈u, v〉 − λ
∫

Ω

fk(u)v,

for every u, v ∈ Hs
0(Ω). In particular, critical points of φk are weak

solutions to (11).
In order to prove that φk admits a critical point which is a minimum

we will use Theorem 1.7.
First we prove that φk is a weak lower semicontinuous function, i.e.,

if un ⇀ u in Hs
0(Ω), then

lim inf φk(un) ≥ φk(u).

Let un be a sequence such that un ⇀ u in Hs
0(Ω) and observe that

φk(un) =
1

2
‖un‖2

Hs
0(Ω) − λ

∫
Ω

Fk(un(x))dx.

Since, by using Theorem 1.6, we know that Hs
0(Ω) is compactly em-

bedded in L2(Ω) we may assume that un strongly converges to u in
L1(Ω). Thus we have:∫

Ω

|Fk(un)− Fk(u)| ≤ max
r∈[0,ak]

|f(r)|
∫

Ω

|uk − u| → 0.

On the other hand, since the norm is always weak lower semicontinuous
we have that

lim inf
1

2
‖un‖2

Hs
0(Ω) ≥

1

2
‖u‖2

Hs
0(Ω).
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In particular,

lim inf

{
1

2
‖un‖2

Hs
0(Ω) − λ

∫
Ω

Fk(un(x))dx

}
≥1

2
‖u‖2

Hs
0(Ω)

− λ
∫

Ω

Fk(u(x))dx.

Now we claim that φk is coercive, i.e. lim
‖u‖Hs0(Ω)→+∞

φk(u) = +∞.

Observe that Fk(s) is upper bounded:

Fk(s) = sf(0) < 0, for s < 0,

Fk(s) ≤ max
r∈[0,ak]

|f(r)| ·min{s, ak}, for 0 ≤ s.

Then, for some constant C > 0

1

2
‖u‖2

Hs
0(Ω) − λ

∫
Ω

Fk(u(x))dx ≥ 1

2
‖u‖2

Hs
0(Ω) − C

whose limit when ‖u‖Hs
0(Ω) →∞ is +∞, thus

lim
‖u‖Hs0(Ω)→+∞

(
1

2
‖u‖2

Hs
0(Ω) − λ

∫
Ω

Fk(u(x))dx

)
= +∞.

Thus, we can apply Theorem 1.7 and we have that φk has a mini-
mum, i.e. there exists v̂ ∈ Hs

0(Ω):

φk(v̂) = inf{φk(v) : v ∈ Hs
0(Ω)},

and the proof is finished. �

Remark 3.1. Let us recall the proof of Theorem 1.7 in this particu-
lar case. Assume that un is a sequence such that φk(un)→ inf{φk(v) :
v ∈ Hs

0(Ω)}. Due to the fact that φk is coercive, then un is bounded, and
as consequence of that Hs

0(Ω) is a Banach reflexive space, we can find
a weakly convergent subsequence of un, that we will denote again as un,
such that un ⇀ v̂, then by using that φk is weak lower semicontinuous,

φk(v̂) ≤ lim inf φk(un) = inf{φk(v) : v ∈ Hs
0(Ω)}.

Thus, φk(v̂) = inf{φk(v) : v ∈ Hs
0(Ω)}.

In the next result we prove the main multiplicity result of this
chapter.

Theorem 3.2. Assume that (A1)−A(4) are satisfied. There exist
λ0 > 0 such that, for every λ > λ0, inf φk < inf φk−1 for k = 2, . . . ,m.
As a consequence (3) admits at least m different solutions, v1, . . . , vm
for λ > λ0 with

0 < ‖v1‖∞ < a1 < ‖v2‖∞ < a2 < · · · < am−1 < ‖vm‖∞ < am.
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Proof. Let vk−1 ∈ Hs
0(Ω) ∩ L∞(Ω) with ‖vk−1‖∞ < ak−1 and

φk−1(vk−1) = inf{φk−1(v) : v ∈ Hs
0(Ω)} given by Theorem 3.1. Observe

that

F (vk−1) =F (ak)− (F (ak)− F (vk−1))

≤F (ak)− (F (ak)−max{F (s) : 0 ≤ s ≤ ak−1}).

Let us denote α = F (ak) − max{F (s) : 0 ≤ s ≤ ak−1}, α > 0 due to
(A4). Thus, we have that

(12)

∫
Ω

F (vk−1) ≤
∫

Ω

F (ak)− α|Ω|.

Now, for δ > 0 let us define the set Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}
which clearly satisfies that |Ωδ| → 0 when δ → 0. Let us consider also
wδ ∈ C∞0 (Ω) with 0 ≤ wδ(x) ≤ ak for every x ∈ Ωδ and wδ(x) = ak for
every x ∈ Ω \ Ωδ. Since wδ ∈ Hs

0(Ω) (see [19, Lemma 5.1]) we have
that φk(wδ) ≥ inf φk.

We claim that, for δ small enough and λ big enough, we also have
that φk−1(vk−1) > φk(wδ). Observe that∫

Ω

F (wδ) =

∫
Ω\Ωδ

F (ak) +

∫
Ωδ

F (wδ)

=

∫
Ω

F (ak)−
∫

Ωδ

(F (ak)− F (wδ))

≥
∫

Ω

F (ak)− 2C|Ωδ|,

with C = max{|F (s)| : 0 ≤ s ≤ am}. Therefore, by using (12), we
have that ∫

Ω

F (wδ) ≥
∫

Ω

F (vk−1) + α|Ω| − 2C|Ωδ|.

If we choose a δ such that µ = α|Ω| − 2C|Ωδ| > 0, we have that

φk(wδ)− φk−1(vk−1) =
1

2

(
‖wδ‖2

Hs
0(Ω) − ‖vk−1‖2

Hs
0(Ω)

)
− λ

∫
Ω

(F (wδ)− F (vk−1))

≤1

2
‖wδ‖2

Hs
0(Ω) − λµ < 0,

this last inequality is true for λ sufficiently large. Then φk(wδ) <
φk−1(vk−1) and we have the claim proved. In particular,

inf φk ≤ φk(wδ) < φk−1(vk−1),
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and the proof is finished. Let us observe that this leads to the existence
of multiple solutions to (3) for large λ since the solutions vk given by
Theorem 3.1 for k = 2, . . . ,m satisfy

‖vk‖∞ > ak−1.

Indeed, otherwise ‖vk‖∞ < ak−1 which implies

φk−1(vk) = φk(vk) = inf φk < inf φk−1 ≤ φk−1(vk),

which is a contradiction. �

2. Solutions using degree theory

In this section we show an alternative proof of the existence of
solution to (11) using degree theory. Moreover, we will use the degree
computations in the next chapter to improve the multiplicity results.

First we will show how solutions to (11) are the fixed points of
a compact map. More precisely, for every u ∈ C(Ω) let us define
Tk(u) = w as the solution to the problem

(13)

{
(−∆)sw = λfk(u) in Ω,

w = 0 in RN \ Ω.

This function is well defined because the solution is unique for each k
and u (see Remark 1.2). Moreover, Tk : C(Ω)→ C(Ω)∩Hs

0(Ω) thanks
to Proposition 1.1. Therefore, if u ∈ Hs

0(Ω) is a solution of (11) (i.e.
it satisfies that φ′k(u) = 0) then, using Proposition 1.1, we have that
u ∈ C(Ω) and Tk(u) = u. Conversely, if Tk(u) = u, then u ∈ Hs

0(Ω)
and it is a weak solution of (11) (i.e. φ′k(u) = 0).

Proposition 3.1. Tk ∈ C(C(Ω), C(Ω) ∩Hs
0(Ω)) and is a compact

map. As a consequence Leray-Schauder degree applies to I − Tk.

Proof. In order to demonstrate that, let us consider a bounded
sequence un ∈ C(Ω), and we are going to show that Tk(un) has a
subsequence that converge uniformly in C(Ω) (i.e. it is a compact
function), and that if there exists u ∈ C(Ω) such that un → u ∈ C(Ω),
then Tk(un)→ Tk(u) ∈ Hs

0(Ω)∩C(Ω) (i.e. it is a continuous function).
Let wn = Tk(un), i.e. wn is the solution to the problem

(14)

{
(−∆)swn = λfk(un) in Ω,

wn = 0 in RN \ Ω.
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Moreover, thanks to Proposition 1.1, wn is bounded in C0,α(Ω) (what
also would mean that wn is equicontinuous), so we can apply Arzelà-
Ascoli, Theorem 1.5. Then, the sequence wn = Tk(un) has a subse-
quence that uniformly converges to w in C(Ω)

(15) wn → w.

Therefore, we know then that Tk is a compact function.
The next step is to prove the continuity of the function Tk. Let

consider again the same sequence un ∈ C(Ω) such that un → u ∈ C(Ω).
Then, by using Theorem 1.3, we get that:

(16)

∫
Ω

fk(un)ϕ→
∫

Ω

fk(u)ϕ, ∀ϕ ∈ Hs
0(Ω).

Once we have that, we go back to wn, due to the fact that wn solves
(14):

〈wn, ϕ〉Hs
0(Ω) = λ

∫
Ω

fk(un)ϕ, ∀ϕ ∈ Hs
0(Ω).

If we use ϕ = wn, we have that:

‖wn‖2
Hs

0(Ω) =λ

∫
Ω

fk(un)wn

≤λmax{|f(s)| : 0 < s < am}
∫

Ω

|wn|

≤λmax{|f(s)| : 0 < s < am}|Ω|
1
2C1‖wn‖Hs

0(Ω),

where we have used the continuous embedding Hs
0(Ω) ⊂ L2(Ω), i.e.

‖wn‖L2(Ω) ≤ C1‖wn‖Hs
0(Ω). Then

‖wn‖Hs
0(Ω) ≤ λmax{|f(s)| : 0 < s < am}|Ω|

1
2C1.

This implies that there exists w ∈ Hs
0(Ω) such that, up to a subse-

quence, wn ⇀ w in Hs
0(Ω), due also to the fact that Hs

0(Ω) is reflexive.
This implies that

〈wn, ϕ〉Hs
0(Ω) → 〈w,ϕ〉Hs

0(Ω).

Therefore, thanks to (16), we can affirm that

〈w,ϕ〉Hs
0(Ω) = λ

∫
Ω

fk(u)ϕ.

In particular, w = Tk(u) ∈ C(Ω)∩Hs
0(Ω). Moreover, since w is uniquely

determided, any subsequece of wn weakly convergent has w as weak
limit. This implies that the whole sequence wn weakly converges to w
(observe also that since wn is bounded in Hs

0(Ω) any subsequence has
a subsequence weakly convergent).
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This proves the continuity of Tk and we finish the proof. �

Once we know that we can apply the Leray-Scauder degree, we can
demonstrate the following property.

Proposition 3.2. For every λ > 0 there exists R ≡ R(λ) > 0 such
that

deg(I − Tk, BR(0), 0) = 1,

where BR(0) denotes the open ball in C(Ω) with radius R and with
center at the origin.

Remark 3.2. Observe that Proposition 3.2 gives, using the solution
property of Theorem 1.1, another proof of the existence of solution to
(11).

Proof. Let us consider the homotopy H(t, ·) defined by

H(t, ·) = tTk(·) with t ∈ [0, 1].

Observe that H ∈ C([0, 1]×C(Ω), C(Ω)) and is compact due to Propo-
sition 3.1.

We claim that for some R > 0 large, deg(I − H(t, ·), BR(0), 0) is
well-defined, i.e. the equation u−H(t, u) = 0 has no solution in ∂BR(0).

Indeed, assume that ‖u‖∞ = R and u = tTk(u), then{
(−∆)su = λtfk(u) in Ω,

u = 0 in RN \ Ω.

and by Proposition 1.1 we have that

‖u‖C0,α(RN) ≤ C‖λtfk(u)‖L∞(Ω) < B

for some positive constant B depending only on λ (not depending on
u nor t). Then

R = ||u||∞ ≤ ||u||C0,α(RN) < B.

In particular we can take any R ≥ B and we have deg(H(t, ·), BR(0), 0)
well-defined.

Now we can use the homotopy property of the degree in Theorem
1.1 to deduce that deg(I − H(t, ·), BR(0), 0) is constant for t ∈ [0, 1],
in particular

deg(I − Tk(.), BR(0), 0) = deg(I, BR(0), 0) = 1,

where the last equality follows from the normalization property in The-
orem 1.1. �
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Note 3.1. Note that solutions to (11) are also bounded in Hs
0(Ω).

Indeed, if u is such a solution then

‖u‖2
Hs

0(Ω) = λ

∫
Ω

fk(u)u ≤ λmax{|f(s)| : 0 < s < am}|Ω|‖u‖∞ ≤ C.



CHAPTER 4

Existence and multiplicity of solutions with
uniform norm between zeroes of f

In this chapter we prove, as in [12] for the Laplacian operator, that
for large λ, apart of the solution given by Theorem 3.1, which have
uniform norm in the interval (ak−1, ak) (see Theorem 3.2), there exists
another different solution with uniform norm in this interval. More
precisely we prove the following result.

Theorem 4.1. Assume (A1), (A2), (A3), (A4). Then there exists
λ > 0 such that for every λ > λ problem (3) has at least 2m − 1
classical positive solutions û1, u2, û2, . . . , um, ûm with 0 < ‖û1‖∞ < a1

and ak−1 < ‖uk‖∞, ‖ûk‖∞ < ak for k = 2, . . . ,m. In addition û1 <
û2 < . . . < ûm with the natural ordering in C(Ω).

With the same notation of the previous chapter, let us recall that
solutions of problem (3) with uniform norm less than ak correspond
with the critical points of φk. Let Kk be the set of critical points of φk:

Kk := {u ∈ Hs
0(Ω) : φ′k(u) = 0}.

Due to the continuity of φ′k, then Kk is a closed set and thanks to the
Note 3.1, it is clear that Kk is a bounded set. Moreover, we have that
Kk−1 ⊆ Kk and due to the fact that if u is a critical point of φ′k, then,
it is a solution of (11) and by Proposition 1.1, u ∈ C(Ω) we can write

Kk := {u ∈ C(Ω) : u = Tk(u)}.

The key idea for the proof of Theorem 4.1 resides in some Leray-
Schauder degree computations, performed in the first section, in some
neighbourhood of Kk. These will lead us to conclude the proof in the
second section.

1. Leray-Schauder degree computations

Let Uε(Kk−1) be the ε-neighborhood of Kk−1 in C(Ω), for k ∈
[2,m], with ε > 0, then we have an interesting lemma about the Leray-
Schauder degree of I − Tk in this neighborhood.

33
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Lemma 4.1. There exists εk−1 > 0 such that, for every 0 < ε <
εk−1, we have that

deg(I − Tk, Uε(Kk−1), 0) = 1.

Proof. Let us consider the ball BR(0) with R large enough such
that Uε(Kk−1) ⊂ BR(0). Observe that there is no critical point of φk−1

in BR(0)\Uε(Kk−1) (or equivalently no fixed point of Tk−1). Therefore

deg(I − Tk−1, BR(0) \ Uε(Kk−1), 0) = 0.

Let use now the additivity property of the Leray-Schauder degree in
Theorem 1.1 and Proposition 3.2, to calculate deg(I−Tk−1, Uε(Kk−1), 0)
for every ε > 0.

deg(I − Tk−1, Uε(Kk−1), 0) =deg(I − Tk−1, Uε(Kk−1), 0)

+ deg(I − Tk−1, BR(0) \ Uε(Kk−1), 0)

=deg(I − Tk−1(.), BR(0), 0) = 1.

Now we define the compact operator H1 ∈ C([0, 1] × C(Ω), C(Ω))
given by

H1(t, u) = tTk−1(u) + (1− t)Tk(u), u ∈ C(Ω).

We claim that there exists εk−1 > 0 such that

tTk−1(w) + (1− t)Tk(w) 6= w,

for every t ∈ [0, 1], w ∈ ∂Uε(Kk−1), and 0 < ε < εk−1. Otherwise, for
every ε = 1

n
with n ∈ N we find tn ∈ [0, 1] and wn ∈ Hs

0(Ω), which
satisfies that dist(wn, Kk−1) = 1/n, such that

tnTk−1(wn) + (1− tn)Tk(wn) = wn.

Then, applying (−∆)s in both sides, wn satisfies{
(−∆)swn = λ[tnfk−1(wn) + (1− tn)fk(wn)] in Ω,
wn = 0 in RN/Ω.

Observe also that

tnfk−1(s) + (1− tn)fk(s) =


f(0) ≥ 0, s ≤ 0,
f(s), 0 ≤ s ≤ ak−1,
(1− tn)f(s), ak−1 ≤ s ≤ ak,
0, ak ≤ s.

Moreover, we can guarantee that tnfk−1(s)+(1−tn)fk(s) ∈ C0,1
loc (R,R),

so we can apply Lemma 1.3 to get that ‖wn‖∞ 6= ak. In addition we
know from Lemma 2.1, that wn > 0. Even more, since tnfk−1(s) +
(1 − tn)fk(s) = 0 for every s ≥ ak, it is clear that wn ∈ [0, ak), and
‖wn‖∞ ≤ ak.
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On other hand, if ‖wn‖∞ ≤ ak−1, tnfk−1(wn) + (1 − tn)fk(wn) =
f(wn) and wn will be a solution to our original problem (3), so wn ∈
Kk−1 by Lemma 3.1. But it is a contradiction because dist(wn, Kk−1) =
1/n, then ‖wn‖∞ > ak−1.

Moreover, as we have done previously, we can use Proposition 1.1
in order to have that wn ∈ C0,α(Ω) and bounded in C0,α(Ω), so we can
apply Arzelà-Ascoli Theorem 1.5. Thus wn has a sub-sequence that
we denote as wn, such that converges uniformly to v in C(Ω), due to
the fact that dist(wn, Kk−1) = 1/n and Kk−1 is closed, we have that
v ∈ Kk−1. This implies that ‖v‖∞ < ak−1. Then ‖wn‖∞ → ‖v‖∞, and
due to the fact that ‖wn‖∞ > ak−1 we get the contradiction:

ak−1 > ‖v‖∞ = lim ‖wn‖∞ ≥ ak−1.

Hence the claim is proved. This guaranties that we have well defined
deg(I−H1(t, ·), Uε(Kk−1), 0) and it is constant in t, using the homotopy
property of the Leray-Schauder degree in Theorem 1.1. In particular

deg(I − Tk, Uε(Kk−1), 0) = deg(I − Tk−1, Uε(Kk−1), 0) = 1.

This allows us to conclude the proof. �

2. Proof of Theorem 4.1 completed

In this section we complete the proof of the main result in this
chapter with the multiplicity of solutions with uniform norm between
zeroes of f . More precisely, let us consider vk ∈ Kk as the minimum
of φk given by Theorem 3.1. We know that Kk−1 ⊂ Kk and for large
λ we have, as a consequence of Theorem 3.2, that vk /∈ Kk−1 and that
ak−1 < ‖vk‖∞ < ak.

Now we prove the multiplicity of solutions in Kk \Kk−1.

Proposition 4.1. For each k=2,...,m, there exists λk > 0 such
that for all λ > λk there are at least two different solution of (3), vk,
v̂k in Kk \Kk−1.

Proof. We take λ0 given by Theorem 3.2 and we have that vk /∈
Kk−1 for every λ > λ0 and every k = 2, . . . ,m.

Now, we are going to consider two cases for vk:

(1) If vk is not a isolated critical point of φk, then there are a lot
of points in Kk \Kk−1.

(2) If vk is an isolated critical point, we can use Theorem 1.2 to
obtain that

(17) deg(φ′k, Bε(vk), 0) = deg(I − Tk, Bε(vk), 0) = 1,
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for small ε > 0. Thus we choose 0 < ε < εk such that
Uε(Kk−1)

⋂
Bε(vk) = ∅. Once we have that ε, let us calcu-

late: deg(I − Tk(.), BR(0) \ (U ε(Kk−1)
⋃
Bε(vk)), 0). For this

purpose we know that by Proposition 3.2, Lemma 4.1 and (17)

deg(φ′k(.), BR(0), 0) = 1,

deg(φ′k−1(.), Uε(Kk−1), 0) = 1,

deg(φ′k(.), Bε(vk), 0) = 1.

Then due to the additivity property of the degree given in
Theorem (1.1)

deg(I − Tk,BR(0) \ (U ε(Kk−1)
⋃

Bε(vk)), 0) = deg(I − Tk, BR(0), 0)

− deg(I − Tk−1, Uε(Kk−1), 0)− deg(I − Tk, Bε(vk), 0)

= −1.

This means that there exists v̂k 6= vk critical point of φ′k in
BR(0) \ (U ε(Kk−1)

⋃
Bε(vk)), so v̂k ∈ Kk \Kk−1.

Then, we have at least two points in Kk \ Kk−1, which thanks to
Lemma 3.1 they satisfy that ak−1 < ‖v̂k‖∞, ‖vk‖∞ < ak. �

Now we can finish the proof of the main result.

Proof of Theorem 4.1 completed. Let consider λ > λ with
λ = max{λk : 2 ≤ k ≤ m} and λk given by Proposition 4.1. Then the
existence of û1, û2, . . . , ûm with 0 < ‖û1‖∞ < a1 and ak−1 < ‖ûk‖∞ <
ak for k = 2, . . . ,m is deduced from Theorem 3.2. Moreover, the other
m− 1 solutions u2, . . . , um with ak−1 < ‖uk‖∞ < ak for k = 2, . . . ,m is
deduced from Proposition 4.1.

Let us now prove that û1 < û2 < . . . < ûm with the natural ordering
in C(Ω). Observe that:

a) u= 0 is a subsolution to problem (3). Indeed, it satisfies that
u ∈ Hs

0(Ω)
⋂
L∞(Ω) and{

(−∆)su = 0 < λf(0) = λf(u) in Ω,
u = 0 in RN \ Ω.

b) uk = ak with k = 1, . . . ,m is a supersolution to problem (3)

since uk ∈ L2
loc(RN),

uk(x)− uk(y)

|x− y|N/2+s
∈ L2(RN × RN) and{

(−∆)suk = 0 = λf(ak) in Ω,
uk > 0 in RN \ Ω.
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Then, Theorem 1.9 (see also Remark 1.6) assures the existence of a
maximal solution uk,M to (3) between 0 and ak. Moreover, since a
solution in (0, ak) is also a solution in (0, ak+1) we inmediately have
that uk,M ≤ uk+1,M . Even more, Remark 1.5 also gives us that if
uk,M 6≡ uk+1,M then uk,M < uk+1,M .

On the other hand, due to Lemma 3.1, uk,M ∈ Kk and ûk ≤ uk,M
since uk,M is maximal. In addition, for λ > λ, using Theorem 3.2 we
have ak−1 < ‖ûk‖∞ ≤ ‖uk,M‖∞ < ak. Hence we can choose ûk to
be the maximal solution of the problem in [0, ak] and it is clear that
û1 < . . . < ûm for large λ. �

Remark 4.1. Since we can choose ûk to be the maximal solution
of the problem in [0, ak] then we can assure also that uk < ûk but we
cannot assure that ûk−1 ≤ uk but only that ‖ûk−1‖∞ < ak−1 < ‖uk‖∞.





CHAPTER 5

Conclusions

Thanks to this essay, I have been able to test my knowledge about
the things that I have learned during the degree in Mathematics and in
the Master’s degree in Mathematics, particularly about the branch of
Mathematical Analysis. In addition, it has been useful to expand that
knowledge that I knew about weak convergences, which I also studied
in the subject called Advanced Functional Analysis in the Master, and
especially about the Fractional elliptic equations, and the fractional
Laplacian Operator which I began to study in my TFG, [10].

Another important thing that have helped me this work with, is the
introduction to the world of the research in mathematics by studying
and understanding, with the great help of my tutor, the work of some
important researchers in this fields of the Mathematics.

This research that I have done, in order to do this manuscript, I
would like to follow it in the future to study some other properties of
the solutions that I haven’t got the time to do, like the behaviour of
them when they are closed to the the boundary of the space or when λ
goes to ∞, or the study of how many solutions are between every two
roots when k ≥ 2.
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