
Using Binary Trees for the Evaluation of Influence Diagrams

Rafael Cabañas, Manuel Gómez-Olmedo and Andrés Cano

Published in:
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

DOI (link to publication from Publisher):
https://doi.org/10.1142/S0218488516500045

Publication date:
2016

Document Version:
Accepted author manuscript, peer reviewed version

Citation for published version (APA):
Cabanas, R., Gómez-Olmedo, M., & Cano, A. (2016). Using binary trees for the
evaluation of influence diagrams. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 24(01), 59-89.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
c� World Scientific Publishing Company

Using Binary Trees for the Evaluation of Influence Diagrams ⇤

Rafael Cabañas, Manuel Gómez-Olmedo, Andrés Cano

Dept. Computer Science and Artificial Intelligence, University of Granada, CITIC-UGR

C/ Daniel Saucedo Aranda s/n, Granada, 18071, Spain

{rcabanas,mgomez,acu}@decsai.ugr.es

Received (received date)
Revised (revised date)

This paper proposes the use of binary trees for representing and managing the poten-
tials involved in Influence Diagrams. This kind of tree allows representing context-specific
independencies that are finer-grained compared to those encoded using other represen-
tations. This enhanced capability can be used to improve the e�ciency of the inference
algorithms used for Influence Diagrams. Moreover, binary trees allow computing approx-
imate solutions when exact inference is not feasible. In this work we describe how binary
trees can be used to perform this approximate evaluation and we compare them with
other structures present in the literature.

Keywords: Probabilistic Graphical Models; Influence diagrams; Approximate computa-
tion; Variable elimination; Context-specific independencies.

1. Introduction

Influence Diagrams (IDs) 2,3 provide a framework to model decision problems with
uncertainty for a single decision maker. The goal of evaluating an ID is to obtain
the best option for the decision maker (optimal policy) and its utility. The eval-
uation of IDs modelling complex decision problems becomes unfeasible due to its
computational cost. It is thus necessary to use alternative methods for IDs evalua-
tion such as LIMIDs

4, or simulation techniques 5,6. Other solutions propose using
alternative representations for potentials such as numerical trees (NTs) 7,8,9 trying
to o↵er e�cient data structures for storing and managing quantitative information
(probabilities and utilities). This data structure takes advantage of context-specific
independencies

10 so that identical values can be grouped into a single one o↵ering
a compact storage. Moreover, when NTs are too large they can be pruned and con-
verted into smaller trees leading to approximate encodings.

Other alternative representations for potentials are binary trees (BTs)11, where
the internal nodes always have two children. The objective of this paper is to de-
scribe and to test the use of BTs for evaluating IDs. These trees allow representing

⇤A preliminary version of this paper was presented at PGM’12 Workshop 1

1

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

2 R.Cabañas, M. Gómez-Olmedo, A. Cano

finer-grained context-specific independencies than NTs, and should lead to more
e�cient algorithms. In addition, approximate solutions obtained with BTs should
be more accurate than those obtained with NTs. In a previous paper11, BTs were
already used for making inference in Bayesian Networks (BNs). By contrast, here
we detail how this data structure can be used for representing and managing the
potentials involved in IDs.

In the experimental work, the behaviour of BTs for evaluating IDs is analyzed.
For that purpose, BTs, NTs and tables are compared in di↵erent aspects (com-
putability, computation time, storage and error level) and using di↵erent evaluation
algorithms (Variable Elimination

12,13, Lazy Evaluation
14,15 and Symbolic Proba-

bilistic Inference
16). BTs are also compared with other approaches for representing

potentials such as ADDs and AADDs17. However this comparison is performed us-
ing Bayesian networks (BNs) instead of IDs due to the lack of any proposal for
using them when evaluating IDs.

In a preliminary version of this paper1, the evaluation of IDs using BTs was
already considered, however there are some di↵erences. In the previous approach
only utility potentials were approximated while here probabilities are approximated
as well. In addition, a more detailed description of the algorithms is given and the
experimental work has been improved: here we analyze a larger number of IDs with
three di↵erent evaluation algorithms.

The paper is organized as follows: Section 2 introduces basic concepts about
IDs, context-specific independencies and NTs; Section 3 describes key issues about
BTs and the operations for building and pruning them; Section 4 explains how BTs
are used during the evaluation; Section 5 includes the experimental work; finally
Section 6 details our conclusions and lines for future work.

2. Preliminaries

2.1. Influence Diagrams

An ID 2,3 is a directed acyclic graph (DAG) used for representing and evaluating
decision problems under uncertainty. An ID contains three types of nodes: decision
nodes (squares) that correspond with the actions which the decision maker can
control; chance nodes (ellipses) representing random variables; and utility nodes

(diamonds) representing the decision maker preferences. Figure 1 shows an exam-
ple of an ID used for the treatment of gastric NHL disease 18.

We denote by UC the set of chance nodes, by UD the set of decision nodes, and by
UV the set of utility nodes. The decision nodes have a temporal order, D1, . . . , Dn,
and the chance nodes are partitioned into a collection of disjoint sets according to
when they are observed: I0 is the set of chance nodes observed before D1, and Ii

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 3

Figure 1. A real world ID used for the treatment of gastric NHL disease.

is the set of chance nodes observed after Di is and before Di+1. Finally, In is the
set of chance nodes observed after Dn. That is, there is a partial order:

I0 � D1 � I1 � · · · � Dn � In

The universe of the ID is U = UC[UD = {X1, . . . , Xm}. Let us suppose that each
variable Xi takes values on a finite set ⌦Xi = {x1, . . . , xk}. If I is a set of indexes,
we shall write XI for the set of variables {Xi|i 2 I}, defined on ⌦XI = ⇥i2I⌦Xi .
The elements of ⌦XI are called configurations of XI and will be represented as xI .
We denote by x#XJ

I the projection of the configuration xI onto the set of variables
XJ , XJ ✓ XI .

In the present paper we will consider IDs satisfying non-forgetting assumption:
previous decisions and observations are known at each decision. Arcs that satisfy
this condition (non-forgetting arcs) are usually assumed implicit to reduce com-
plexity of the graphical display. In this paper we assume non-forgetting arcs to
be present. The set of direct predecessors (parents) of a chance or value node Xi

are called conditional predecessors and denoted pa(Xi). Similarly, the set of direct
predecessors of a decision node Di are designated informational predecessors and
denoted pa(Di). That is, the informational predecessors are the variables known to
the decision maker when deciding on Di. Non-forgetting assumption implies that
informational predecessors of each decision Di must include previous decisions and
their informational predecessors.

In an ID, each chance node Xi has a conditional probability distribution
P (Xi|pa(Xi)) associated. Similarly, each utility node Vi has a utility function
U(pa(Vi)) associated. In general, we will talk about potentials (not necessarily nor-

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

4 R.Cabañas, M. Gómez-Olmedo, A. Cano

malized). Let XI be the set of all variables involved in a potential, then a probability

potential denoted by � is a mapping � : ⌦XI ! [0, 1]. A utility potential denoted
by is a mapping : ⌦XI ! R. The set of all probability and utility potentials
are denoted by � and respectively.

A policy �Di for a decision Di is a mapping from past observations and decisions
to the possible decision options at Di such that �Di : ⌦pa(Di) ! ⌦Di . A strategy
� is an ordered set of policies � = {�D1 , �D2 . . . , �Dn}, including a policy for each
decision variable. When evaluating and ID, we must identify an optimal strategy,
denoted b�, maximizing the expected utility for the decision maker and to compute
the maximum expected utility MEU(b�). For each Di, this optimal strategy includes
an optimal policy b�Di , which is a mapping that specifies the best action for the de-
cision maker for each configuration in ⌦pa(Di).

Optimal Policy and Expected Utility 13: Let ID be an influence diagram over

the universe U = UC [UD and let UV the set of utility nodes. Let us suppose that

non-forgetting arcs are present in the ID. Let the temporal order of the variables be

described as I0 � D1 � I1 � · · · � Dn � In. Then:

(a) An optimal policy for Di is

b�Di(I0, D1, . . . , Ii�1) =

argmax
Di

X

Ii

max
Di+1

· · ·max
Dn

X

In

Y

X2UC

P (X|pa(X))

X

V 2UV

U(pa(V))

!
(1)

(b) If the decision maker follows the optimal policy b�Di (and acts optimally in the

future), the expected utility is:

EU(I0, D1, . . . , Ii�1) =
1

P (I0, . . . , Ii�1|D1, . . . , Di�1)

max
Di

X

Ii

max
Di+1

· · ·max
Dn

X

In

Y

X2UC

P (X|pa(X))

X

V 2UV

U(pa(V))

!
(2)

and the optimal strategy b� yields the maximum expected utility:

MEU(b�) =
X

I0

max
D1

· · ·max
Dn

X

In

Y

X2UC

P (X|pa(X))

X

V 2UV

U(pa(V))

!
(3)

2.2. Context-specific independencies

The power of IDs lies in the representation of conditional independencies (CIs)
which are exploited in order to provide savings in the representation of the joint
probability distribution and computational savings during the inference process.
However, independencies that only hold for certain contexts cannot be captured
with the ID structure, i.e. given a specific assignment of values to some variables.
This kind of independence is called context-specific independence (CSI), and was

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 5

first introduced by Boutilier 10. Let X,Y,C,Z be pairwise disjoint sets of variables.
We say X and Y are contextually independent given Z and the context C = c,
denoted by Ic(X;Y|Z, c) if:

P (X|Z, c,Y) = P (X|Z, c) (4)

whenever P (Z, c,Y) > 0. Clearly, a CI is a special case of CSI, namely, a CSI
becomes a CI when the CSI holds for all c 2 ⌦C. Similarly, CSIs can also exist in
utility functions if:

U(X,Z, c,Y) = U(X,Z, c) (5)

2.3. Numerical Trees

Traditionally, potentials have been represented using tables. However, alternative
representations can be used to reduce the storage size and improve the e�ciency
of the evaluation. For example, numerical trees (NTs) have been used to represent
potentials in BNs 7,8 and IDs 9. NTs can be used to encode probability and utility
functions, and therefore will be called numerical probability trees (NPTs) and nu-

merical utility trees (NUTs) respectively. The basic operations for evaluating IDs
can be directly performed on NTs.

A NT defined over the set of variables XI is a directed tree, where each internal
node is labelled with a variable (random or decision), and each leaf node is labelled
with a number (a probability or a utility value). We use Lt to denote the label of

node t. Each internal node has an outgoing arc for each state of the variable asso-
ciated with that node. Outgoing arcs from node Xi are labelled with the name of a
state (xi 2 ⌦Xi) of Xi. Calligraphic letters will denote concrete trees. The size of a
tree NT , denoted size(NT), is defined as its number of nodes (internal nodes and
leaves). A sub-tree of NT is a terminal tree of NT if it contains one node labelled
with a variable and all its children are leaf nodes. Figure 2 shows three di↵erent
representations for the same utility potential:

U(A,B) b1 b2 b3 b4
a1 30 30 30 30
a2 15 15 20 20
a3 25 25 25 25

A

30

a1

B

15

b1

15

b2

20

b3

20

b4

a2

25

a3
A

30

a1

17.5

a2

25

a3

(a) (b) (c)

Figure 2. Utility potential represented as (a) a table, (b) an exact NUT, and (c) an approximate
NUT

The main advantage of NTs is that they allow the specification of CSIs. For
example, the table in Figure 2 requires 12 numbers for representing the potential.
When A = a1, the potential will always take the value 30, regardless of the value
of B. Similarly happens when A = a3. In that case, a tree representing the same

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

6 R.Cabañas, M. Gómez-Olmedo, A. Cano

utility potential requires only 8 nodes. Moreover, a NT can be pruned 7,8,9 in order
to reduce its storage size and the execution time in propagation algorithms. Thus
approximate versions of the potentials will be obtained. The tree approximating
the potential (part c of Figure 2) has been obtained by replacing a terminal tree
by the average of their leaves. This tree requires only 4 nodes. However, this last
representation introduces error during computing. But it must be considered that
an exact solution will be unfeasible for some complex IDs.

3. Binary Trees

A binary tree (BT)11 is similar to a NT. It is also a directed labelled tree, where
each internal node is labelled with a variable (Lt denotes the label of node t), and
each leaf is labelled with a real number. It also represents a potential for a set of
variables XI . But in this case each internal node has always two outgoing arcs, and
as a consequence, a variable can appear more than once labelling the nodes in the
path from the root to a leaf node. Another di↵erence is that, for an internal node
t labelled with Xi, the outgoing arcs can usually be labelled with more than one
state of ⌦Xi . We denote by Llb(t) and Lrb(t) the labels (two subsets of ⌦t

Xi
) of the

left and right branches of node t. Then, we denote by tl and tr the two children of t
(tr for the right child and tl for the left one). Trees encoding probability potentials
will be called binary probability trees (BPTs) and those for utility potentials will
be called binary utility trees (BUTs). Calligraphic letters will denote concrete trees.
The size of a tree BT , denoted size(BT), is defined as its number of nodes (internal
nodes and leaves).

An advantage of BTs is that they allow representing CSIs which are finer-grained
(also called contextual-weak independencies

19) than those represented using NTs.
As an example, Figure 3 shows the same utility potential presented in Figure 2
represented as an exact BUT (b) and an approximate BUT (c).

U(A,B) b1 b2 b3 b4
a1 30 30 30 30
a2 15 15 20 20
a3 25 25 25 25

A(1)

30(2)
a1

A(3)

B(4)

15(6)
b1, b2

20(7)
b3, b4

a2
25(5)
a3

a2, a3

A(1)

30(2)
a1

21.25(3)
a2, a3

(a) (b) (c)

Figure 3. Utility potential represented as (a) a table, (b) an exact BUT, and (c) an approximate
BUT

As it happens in the representation of this approximate potential as a NT (see
Figure 2), when A = a1, the potential will always take the value 30, regardless of
the value of B. A similar situation happens when A = a3. In these cases the BT has
been pruned and only one value has been necessary to represent four configurations.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 7

The use of BTs allows pruning more nodes: nodes with values 15 and 20 can also be
represented by two nodes in Figure 3, part (b). Therefore, the exact BUT requires
7 nodes for representing the potential. A sub-tree of BT is a terminal tree of BT if
it contains one node labelled with a variable and its both children are leaf nodes.
Terminal trees can be pruned and replaced by the average of their leaves obtaining
a tree which approximates the potential using only three, see Figure 3, part (c).

In order to define the operations with BTs, it is necessary to extend the defi-
nition of configuration of a set of variables. An extended configuration of a set of
variables XI , denoted by AXI or A, is defined as {Ai ✓ ⌦Xi |Xi 2 XI}. It can
also be seen as a mapping assigning to each Xi 2 XI a subset Ai ✓ ⌦Xi . An
extended configuration of a set of variables defines a set of configurations of that
set of variables. That is, the set of configurations defined by AXI is denoted by
SAXI

and it is obtained with the Cartesian product of the subsets of sates in AXI .
For example, let us consider the set of variables XI = {A,B} whose domains are
⌦A = {a1, a2, a3} and ⌦B = {b1, b2, b3, b4} respectively. Then, an extended con-
figuration could be AXI = {{a3}, {b1, b2}} which defines the set of configurations
SAXI

= {{a3, b1}, {a3, b2}}.

Given a node t in a BT defined over the set of variables XI , the set of its ances-
tors is denoted by Xt

I and the set of available states of Xi at t is denoted by ⌦t
Xi

.
If Xi 2 Xt

I , then ⌦
t
Xi

is the set of states labelling the outgoing branch of Xi in its
last occurrence in the path from the root to t. Otherwise, ⌦t

Xi
is equal to ⌦Xi . For

example, in Figure 3 part (b), the set of available states of A at the node (3) is
{a2, a3}. The associated extended configuration for t, denoted by At, is defined as
{Ai ✓ ⌦t

Xi
|Xi 2 XI}. For example, the associated extended configuration for the

node labelled with the value 15 in Figure 3.b is {{a2}, {b1, b2}}.

3.1. Building a BUT

The method for building a BPT for a probability potential was described in a pre-
vious work 11. It was inspired by the methods for learning classification trees from
a set of examples 20. Herein we describe how to extend such method for building a
BUT given a utility potential . It must be noticed that, in general, several BUTs
can be built to represent the same potential. However, we are interested in find-
ing the smaller one. Therefore, the task of building a BUT from a table can be
seen as an optimization problem interested in choosing the labels for internal nodes
(variables) and arcs (states). This requires an heuristic procedure for ordering the
variables according to their information. The most informative variables will be lo-
cated at the highest nodes of the tree. The motivation for such ordering is to obtain
leaf nodes as similar as possible. This condition will minimize the error produced
when pruning the trees collapsing several leaves into a single one.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

8 R.Cabañas, M. Gómez-Olmedo, A. Cano

The algorithm proposed here builds a BUT using a top-down approach, choosing
at each step a variable and a partition of its states. The general scheme for building
a BUT representing a utility potential defined over the set of variables XI is:

(1) Build an initial BUT with a single node labelled with the average of the values
in the potential: Lt =

P
xI2⌦XI

 (xI)/|⌦xI |

(2) While BUT contains any leaf node t that can be expanded:

(a) Select a leaf node t.
(b) According to any criteria, select a variable Xi and partition its available

states at t into two subsets, ⌦tl
Xi

and ⌦tr
Xi

.
(c) Expand the leaf node t (with t rooting the terminal tree and being tl and tr

its children).
(d) Label t with Xi and the two outgoing arcs with ⌦tl

Xi
and ⌦tr

Xi
. The two leaf

nodes tl and tr will be labelled with the average of values consistent with
the states labelling the path from the root to tl and tr respectively.

(3) Return BUT

The process begins with an initial BUT 0 which has only one node labelled with
the average of the values in the potential (step 1). Then, a greedy algorithm (step
2) is applied until an exact BUT is obtained (there is not any leaf node that can be
expanded). At each iteration, a new BUT j+1 is generated from the previous one,
BUT j . This new tree is the result of expanding one of the leaf nodes t in BUT j with
a terminal tree (with t rooting the terminal tree and being tl and tr its children).
The label of the node t will be replaced with one of the candidate variables. A vari-
able Xi is candidate if At contains more than one state for Xi. The set of available
states ⌦t

Xi
of the chosen candidate variable Xi will be partitioned into two subsets,

⌦tl
Xi

and ⌦tr
Xi

. Each subset labels one of the two outgoing arcs (left and right) of
t. The two leaf nodes tl and tr in the new terminal tree will be labelled with the
average of values consistent with the states labelling the path from the root to tl

and tr respectively.

The candidate variable and the partition of its states must be chosen using any
criteria or heuristic (step 2.b). Any partition of ⌦t

Xi
would be possible, but checking

all of them would be a very time-consuming task. In order to reduce the complexity,
we assume that the set of available states for Xi at node t is ordered and we only
check partitions into subsets with consecutive states. For example, given a variable
X with ⌦t

X = {x1, x2, x3}, we will only check the partitions {{x1}, {x2, x3}} and
{{x1, x2}, {x3}}. In our approach we propose choosing the variable and partition
that maximizes the information gain, defined in the following paragraph.

Information Gain: Let be the utility potential to be represented as a tree BUT j

and BUT j+1(t,Xi,⌦
tr
Xi

,⌦tl
Xi

) the tree resulting of expanding the leaf node t with the

candidate variable Xi and a partition of its available states into sets ⌦tl
Xi

and ⌦tr
Xi

.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 9

Let D(,BUT j) be the distance between a potential and a tree. The information

gain can be defined as:

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) = D(,BUT j)�D(,BUT j+1(t,Xi,⌦
tl
Xi

,⌦tl
Xi

)) (6)

For computing the information gain, we need to use a distance measure between
a potential and a tree. We propose using the Euclidean distance (Equation (7)).
We performed some tests with other distances and divergences and the best results
were obtained with the Euclidean distance.

D((XI),BUT (XI)) =
s X

xI2⌦XI

((xI)� BUT (xI))
2 (7)

where BUT (xI) is the value that the tree assigns to the configuration xI . A leaf
node t can be expanded if there exists any candidate variable and partition of its
states such that the information gain is greater than 0. That is, the values of
consistent with At are not equal.

Some of the computations performed to calculate the information gain when a
node is expanded are also performed in posterior iterations when the children are
expanded. Proposition 1 shows an alternative expression for computing the infor-
mation gain that takes advantage of these repeated computations.

Proposition 1. Let be a utility potential with n values v1, v2, . . . , vn represented

by a tree BUT j with a single leaf labelled with the mean
Pn

i=1 vi/n. The result of

expanding the leaf node with the candidate variable Xi and a partition of its available

states into sets ⌦tl
Xi

and ⌦tr
Xi

node is a terminal tree. The utility values consistent

with ⌦tl
Xi

are vl1, vl2, . . . , vlnl and those consistent with ⌦tr
Xi

are vr1, vr2, . . . , vrnr .

The left child is labelled with
Pnl

i=1 vli/nl and the right child is labelled
Pnr

i=1 vri/nr.

Then, the information gain (Equation (6)) can be calculated in the following way:

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) =

vuut
nX

i=1

v
2
i �

(
Pn

i=1 vi)
2

n

�

vuut
nlX

i=1

vl
2
i �

(
Pnl

i=1 vli)
2

nl
+

nrX

i=1

vr
2
i �

(
Pnr

i=1 vri)
2

nr
(8)

It should be noticed that computing the information gain with this expression
is more e�cient than using Equation (6), since the first term can be obtained from
the information gain computed when the father node was expanded. The proof for
this proposition is given in the Appendix.

In order to illustrate the process for building a BUT, let us consider the poten-
tial shown in Figure 3. The intermediate trees obtained during the building process
of this tree are shown in Figure 4.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

10 R.Cabañas, M. Gómez-Olmedo, A. Cano

23.75 A

30

a1
21.5

a2, a3
A

30

a1
A

17.5

a2
25

a3

a2, a3
A

30

a1
A

B

15

b1, b2
20

b3, b4

a2
25

a3

a2, a3

BUT 0 BUT 1 BUT 2 BUT 3

)))

Figure 4. Process for building a BUT from a potential in Figure 3

The initial tree BUT 0 contains a single node labelled with the value 23.75, which
is the average of all the values in the potential. Then, the information gain for each
candidate variable and partition is calculated as follows:

I(t, A, {a1}, {a2, a3}) = 6.758

I(t, A, {a1, a2}, {a3}) = 0.113

I(t, B, {b1}, {b2, b3, b4}) = 0.075

I(t, B, {b1, b2}, {b3, b4}) = 0.227

I(t, B, {b1, b2, b3, }, {b4}) = 0.075

The highest value for the information gain is obtained if the variable A and the
partition {{a1}, {a2, a3}} are chosen to expand the node. After that, the algorithm
repeats the same process until the exact BUT is obtained. The node labelled with 30
at BUT 1 will not be expanded any more: all configurations in the utility potential
consistent with A = a1 are equal to 30.

3.2. Pruning a BUT

Sometimes the size of a BUT can be too large making unfeasible its management
during the propagation. In that case, it can be pruned in order to get an approxi-
mate one. Pruning a BUT consists of replacing a terminal tree by the average value
of its leaves. We apply the following heuristic procedure to decide when to prune a
terminal tree. This procedure is guided by a threshold ".

Pruning a terminal tree Let BUT be a binary utility tree encoding a utility

potential , t the root of a terminal tree of BUT labelled with Xi, tl and tr its chil-

dren, ⌦tl
Xi

and ⌦tr
Xi

the sets of states for the left and right child respectively, max()
and min() the maximum and minimum values in , and " a given threshold such

that " � 0. Then, the terminal tree can be pruned if:

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) " · (max()�min()) (9)

In previous definition, I can be locally computed using Equation (8). The goal
of pruning involves detecting leaves that can be replaced by one value without a

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 11

great increment in the euclidean distance between BUT and . Here, I is considered
as the information loss produced in the current binary tree rooted by t is pruned.
The pruning process would finish when there are not more terminal trees in BUT

verifying condition in Equation (9). As utility potentials are not normalized, the
highest information loss allowed when pruning depends on a threshold " � 0 but
also on the maximum and minimum values in . Low values of " will produce large
trees with low errors while low values of " will lead to small trees and big errors.
If ✏ = 0, there is not approximation: a terminal tree will be pruned only if both
children have the same value. Figure 5 shows an example of pruning, where the
node consistent with the configuration A = {a2} in the left tree has been replaced
by the average value of its children in the right tree.

A

B

25
b1

50
b2

a1

A

B

45
b1

20
b2

a2
B

25
b1

50
b2

a3

a2, a3
A

B

25
b1

50
b2

a1

A

32.5
a2

B

25
b1

50
b2

a3

a2, a3

=)

Figure 5. Example of pruning a terminal node in a BT

4. ID evaluation

4.1. Operations for ID evaluation

Evaluating an ID requires performing several operations with the potentials. Herein
we describe how these operations can be performed directly on BTs. In par-
ticular, evaluation algorithms require multiple types of combinations (multiplica-

tion, division, addition and maximum), multiple types of marginalizations (sum-

marginalization and max-marginalization) and a restriction operation. Next, we
define two generic operations that allow to define all the types of combinations and
marginalizations:

• Let BT 1 and BT 2 be two binary trees representing two (probability or util-
ity) potentials �1 and �2 defined on the sets of variables XI and XJ re-
spectively. Their generic combination BT 1 ⌦ BT 2 is another binary tree over
XI [XJ such as for each configuration x 2 ⌦XI[XJ , (BT 1 ⌦ BT 2)(x) =
f(�1(x#XI),�2(x#XJ)), where f is a function from R2 on R that depends on
the particular operation we are carrying out.

• Let BT be a binary tree representing a (probability or utility) potential defined
on the set of variables XI and a variable Y 2 XI where ⌦Y = {y1, y2, . . . yn}.
The marginalization of Y out of BT , denoted

⌃

Y BT , is another binary tree de-
fined over XI\{Y } such as for each configuration x 2 ⌦XI\{Y }, (

⌃

Y BT)(x) =

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

12 R.Cabañas, M. Gómez-Olmedo, A. Cano

g(�(x, y1),�(x, y2), . . . ,�(x, yn)) where g is a function from Rn on R that de-
pends on the particular operation we are carrying out.

Each operation with potentials required for the evaluation of an ID can be now
defined as a particularization of ⌦ and

⌃

by specifying the function f or g. Table 1
shows these functions for each particular combination of two binary trees BT 1 and
BT 1 whose root nodes are t1 and t2. Similarly, Table 2 shows the functions g for
carrying out each each particular marginalization of a variable Y out of a binary
tree BT whose root node is t.

Operation notation f

multiplication(t1, t2) BT 1 · BT 2 �1(x#XI) · �2(x#XJ)
addition(t1, t2) BT 1 + BT 2 �1(x#XI) + �2(x#XJ)
division(t1, t2) BT 1/BT 2 �1(x#XI)/�2(x#XJ)

maximum(t1, t2) maximum(BT 1,BT 2) max(�1(x#XI),�2(x#XJ))

Table 1. Particularizations of the generic combination operation ⌦ and their corresponding func-
tions f . For the division, convention 0/0 = 0 is adopted.

Operation notation g

sum-marginalization(t, Y, |⌦Y |)
P

Y BT �(x, y1) + �(x, y2) + · · ·+ �(x, yn)
max-marginalization(t, Y) maxY BT max(�(x, y1),�(x, y2), . . . ,�(x, yn))

Table 2. Particularizations of the generic marginalization operation

⌃

and their corresponding
functions g.

Algorithm 1 explains how to perform the generic combination operation ⌦ of
two binary trees BT 1 and BT 2. The inputs for the algorithm are t1 and t2, the root
nodes of both trees. If t1 is not a leaf node (lines 13 to 18) a new node with the
same label t1 and the same labels Llb(t1) and Lrb(t1) for the branches is built. The
left child of the new tree is the result of the generic combination operation between
the left child of t1 and the restriction of t2 to the states of Llb(t1) (the restriction
operation is later explained). Similarly, the right child of the new tree is the result of
the generic combination operation between the right child of t1 and the restriction
of t2 to the states of Lrb(t1). If t1 is a leaf node but t2 is not (lines 7 to 11), the tree
BT 2 is traversed until both nodes are leaf nodes. In that case (line 5), a new node
labelled with the result of applying the corresponding function f is built. Figure
6 shows an example of the maximum operation between two BUTs. The result of
applying any other combination operation ⌦ to these BTs is another BT with the
same structure but with di↵erent values in their leaves.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 13

Algorithm 1: Generic Combination algorithm

input : t1 and t2 (root nodes of BT 1 and BT 2);
output: the root of BT = BT 1 ⌦ BT 2

Build a new node tn1

if t1 is a leaf node then2

if t2 is a leaf node then3

// Sets the label of the leaf depending on the operation4

Ltn = f(Lt1 , Lt2)5

else6

Ltn = Lt2 // Sets the label of tn7

Llb(tn) = Llb(t2) // Sets labels for both branches8

Lrb(tn) = Lrb(t2)9

tnl=combination(t1, t2l) // Sets children10

tnr=combination(t1, t2r)11

else12

Let Xi be the variable labelling t113

Ltn = Lt1 // Sets the label of tn14

Llb(tn) = Llb(t1) // Sets the labels of both branches15

Lrb(tn) = Lrb(t1)16

tnl=combination(t1l ,BT
R(Xi,Llb(t1))
2) // Sets children17

tnr =combination(t1r ,BT
R(Xi,Lrb(t1))
2)18

return tn19

A

30
a1

A

B

45
b1

20
b2

a2
B

25
b1

50
b2

a3

a2, a3
A

100
a1

A

C

20
c1

80
c2

a2
10

a3

a2, a3

A

100
a1

A

B

C

45
c1

80
c2

b1
C

20
c1

80
c2

b2

a2
B

25
b1

50
b2

a3

a2, a3

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

=maximum

,

Figure 6. Maximum operation between two BUTs

The restriction operation of a given BT to a set of states SXj is denoted by

BT
R(Xj ,SXj). In lines 17 and 18 of Algorithm 1 this operation is used to calculate

BT
R(Xi,Llb(t1))
2 and BT

R(Xi,Lrb(t1))
2 . The restriction of a potential to a given con-

figuration xJ consists of returning the part of the potential that is consistent with
the configuration. If BT is a binary tree defined on XI , and xJ a configuration for
XJ , XJ ✓ XI , then BT

R(xJ) will denote the tree restricted to those configurations

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

14 R.Cabañas, M. Gómez-Olmedo, A. Cano

compatible with xJ . For binary trees, we need to extend the definition of this op-
eration, to an extended configuration AXJ , which means returning the part of the
tree consistent with the configurations in the set SAXI

. Algorithm 2 describes the
restriction of a BT to a set of states SXj (SXj ✓ ⌦Xj) of a variable Xj . As an
example, Figure 7 shows the restriction of a BUT to the configuration {B = b1}.
The restriction of a binary tree to an extended configuration AXJ can be performed
by repeating Algorithm 2 for each one of the variables in XJ .

Algorithm 2: Restriction

input : t (root node of BT); Xj (variable to restrict); SXj (set of states of
Xj to restrict)

output: The root of BT R(SXj)

if t is not a leaf node then1

if Lt == Xj then2

Set Sl
Xj

= Llb(t) \ SXj and S
r
Xj

= Lrb(t) \ SXj ;3

if S
l
Xj

== ; then4

return Restriction(tr,Xj,S
r
Xj

)5

end6

else if S
r
Xj

== ; then7

return Restriction(tl,Xj,S
l
Xj

)8

end9

else10

Llb(t) = S
l
Xj

//Sets the labels of both branches11

Lrb(t) = S
r
Xj

12

tl = Restriction(tl,Xj ,Sl
Xj

) //the new left child of t;13

tr = Restriction(tr,Xj ,Sr
Xj

) //the new right child of t14

end15

end16

else17

tl = Restriction(tl,Xj ,SXj) // Sets children;18

tr = Restriction(tr,Xj ,SXj)19

end20

end21

return t22

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 15

A

B

25
b1

50
b2

a1

A

B

45
b1

20
b2

a2
B

25
b1

50
b2

a3

a2, a3
A

25

a1

A

45
a2

25
a3

a2, a3

=)

Figure 7. Restriction of a BUT to the configuration {B = b1}.

Algorithm 3 describes the generic marginalization

⌃

of a variable Y out of a
binary tree BT . This algorithm must be called using |⌦Y | as the input parameter
k. In recursive calls to the algorithm, k will be set to the number of available states
of Y at current node of the tree. This algorithm is recursively executed until a node
labelled with the variable to be removed is found. When it happens (lines 12 to
17), the algorithm marginalizes the left and right children trees and combines both
them. The type of this combination depends on the type of marginalization: addition
is used when sum-marginalizing while maximum is used when max-marginalizing.
If the variable Lt labelling the current node t di↵ers from the variable to be re-
moved Y (lines 19 to 24), a new node labelled with Lt is built. Their children are
then marginalized. When a leaf node is reached (lines 3 to 8), the new leaf node
is returned whose value depends on the specific type of marginalization: for the
max-marginalization this node takes the value Lt and for the sum-marginalization
takes the value Lt · k. Figure 8 shows the application of this operation to a BUT in
order to remove variable B.

A

30
a1

A

B

C

45
c1

10
c2

b1
20
b2

a2
B

25
b1

50
b2

a3

a2, a3 A

30
a1

A

C

45
c1

20
c2

a2
50
a3

a2, a3
=)

Figure 8. Max-marginalization of a BUT with respect to variable B

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

16 R.Cabañas, M. Gómez-Olmedo, A. Cano

Algorithm 3: Generic Marginalization algorithm

input : t (root node of BT); Y (variable to remove); k (a factor for
multiplying the labels of leaf nodes)

; output: the root of

⌃

Y BT1

if t is a leaf node then2

Build a new node tn3

// Sets the label of tn4

if sum-marginalization then5

Ltn = Lt · k6

else7

Ltn = Lt //max-marginalization8

else9

// If the variable of the node is the one to remove10

if Lt == Y then11

t1 = marginalization(tl, Y, |Llb(tn)|) // Make recursive calls12

t2 = marginalization(tr, Y, |Llr(tn)|)13

if sum-marginalization then14

tn = addition(t1, t2)15

else16

tn = maximum(t1, t2)17

else18

Build a new node tn19

Ltn = Lt // Sets the label of the new node20

Llb(tn) = Llb(t) // Sets the label of both branches21

Llr(tn) = Llr(t)22

tnl=marginalization(tl, Y, k) // Make recursive calls on children23

tnr=marginalization(tr, Y, k)24

return tn25

4.2. Complexity analysis

The complexity of the operations on potentials depends on the size of the structure
used to represent them. That is, the number of values in a table or the number of
nodes in the completely expanded tree (internal nodes and leaves).

Let �(X1, X2, . . . Xn) be a potential with n variables. Assuming that all the
variables have the same number of states, i.e. k = |⌦X1 | = |⌦X2 | = · · · = |⌦Xn |,
the size of a table T , representing this potential is given by Equation (10), which
corresponds with the size of the Cartesian product of the variable domains:

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 17

size(T) = |⌦X1 | · |⌦X2 | · . . . · |⌦Xn | = k
n (10)

In the level 0 of a NT representing � there is only one node (the root). In a
level i with i = 1, . . . , n, there are k

i nodes. Then, the size of NT :

size(NT) = 1 +
nX

i=1

k
i =

k
n+1

� 1

k � 1
(11)

A BT representing � has k
n leaves (number of values in �) and k

n internal
nodes. Then, the size of BT is:

size(BT) = 2 · kn � 1 (12)

It can be observed that in general the size of BTs is higher than NTs or tables
but the complexity of traversing these representations is similar: exponential O(kn).
However, as BTs allow a more compact representation encoding more context-
specific independencies, it is expected a certain benefit when pruning operations
are performed. This point is proved empirically in Section 5.

4.3. ID evaluation algorithms with BTs

Inference algorithms for IDs can be easily adapted for working with BTs. The global
structure of the algorithms is not changed: the main di↵erence is that they require
an initialization phase where initial BTs are built from tables and pruned in order
to obtain smaller trees. BUTs representing utility potentials are built and pruned
using the procedures explained in Sections 3.1 and 3.2 respectively. Procedures for
building and pruning BPTs representing probability potentials are explained in a
previous work 11. Once all the potentials are transformed into BTs and pruned, the
evaluation algorithms are quite similar to the algorithms that use tables: computa-
tion is done using operations for BTs (Section 4.1), instead of their counterparts for
tables. Herein three ID evaluation algorithms from the literature are described for
working with BTs: Variable Elimination

12,13, Lazy Evaluation
14,15 and Symbolic

Probabilistic Inference
16.

4.3.1. Variable Elimination

The Variable Elimination algorithm (VE) 13 is one of the most common algorithms
used for evaluating IDs. It has many similarities with the corresponding method for
BNs 12: it starts with a set of potentials and it eliminates all the variables one by one.
There are however some di↵erences compared to the VE algorithm for BNs. First,
all the variables must be removed in reverse order of information precedence given
by �. Secondly, chance variables are removed using sum-marginalization whereas
for decisions max-marginalization is used. That is, it first sum-marginalizes In, then
max-marginalizes Dn, sum-marginalizes Ii�1, etc. This type of elimination order is

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

18 R.Cabañas, M. Gómez-Olmedo, A. Cano

called a strong elimination order
21. The method adapted for working with BTs is

shown below.

(1) Initialization phase

(a) For each � 2 � obtain a BPT representing �.
(b) For each 2 obtain a BUT representing .
(c) Prune all trees.

(2) While there are variables to remove

(a) Select the next variable to remove (X).
(b) Let �X the set of all BPTs containing X. Combine (multiplication) all the

BPTs in �X giving as a result a new tree BPT X .
(c) Let X the set of all BUTs containing X. Combine (addition) all the BUTs

in X giving as a result a new tree BUT X .
(d) Remove the variable X using sum-marginalization (chance nodes) or max-

marginalization (decision nodes) from BPT X and BUT X . New trees are
obtained as result: BUT 0

X and BPT
0
X .

(e) Update the potential sets:

� = (�\�X) [{BPT
0
X} = (\ X) [{

BUT
0
X

BPT
0
X

}

4.3.2. Lazy Evaluation

Lazy Evaluation (LE) 22,14 is an evaluation algorithm based on message passing
in a strong junction tree, which is a representation of an ID built by moralization
and by triangulating the graph using a strong elimination order 21. Nodes in the
strong junction tree correspond to cliques (maximal complete sub-graphs) of the
triangulated graph. Two neighbour cliques are connected by a separator which
contains the intersection of the variables in both cliques. Initially, each potential is
associated to the clique closest to the root containing all its variables. Propagation
is performed by message-passing from leaves to the root. A message consists on
a list of potentials from which variables not present in the parent separator has
been removed using the VE algorithm (see 22,14 for more details about the message
computation). For the message computation, operations with BTs are used instead
of their counterparts for tables. The general scheme of LE for working with BTs is
shown below.

(1) Initialization phase:

(a) For each � 2 � obtain a BPT representing �.
(b) For each 2 obtain a BUT representing .
(c) Prune all trees.

(2) Build the Strong Junction Tree from the ID.
(3) Propagation phase:

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 19

(a) Associate each potential (trees) in � [to only one clique containing all
the variables in its domain.

(b) Start message-passing from leaves to root.

4.3.3. Symbolic Probabilistic Inference

The Symbolic Probabilistic Inference algorithm (SPI) 23,24,16 is an algorithm that
tries to find the optimal order for the combinations and marginalizations by choosing
at each step the best operation. For evaluating IDs, as VE does, SPI removes all
variables in the decision problem in reverse order of the partial ordering imposed by
the information constraints. Yet, VE is guided by an elimination order while SPI is
guided by a combination order. That is, VE chooses at each step the next variable
to remove while SPI chooses the next pair of potentials to combine and eliminate
the variables when possible. In this sense SPI is finer grained than VE. More details
about this method for evaluating IDs are given in a previous work16. The general
scheme of SPI algorithm with BTs is:

(1) Initialization phase

(a) For each � 2 � obtain a BPT representing �.
(b) For each 2 obtain a BUT representing .
(c) Prune all trees.

(2) For k = n until 1

(a) Using a greedy algorithm, combine potentials (trees) containing any variable
in Ik. After each iteration, sum-marginalize out all the variables in Ik that
are contained in only one potential.

(b) Using a greedy algorithm combine all potentials (trees) containingDk. Then
max-marginalize out Dk.

(3) Proceed as in step 2.a for removing variables in I0

5. Experimental Work

In this section, the performance of NTs and BTs for IDs inference is analyzed.
However, we must introduce first some concepts aboutMulti-Objective Optimization

Problems.

5.1. Multi-Objective Optimization Problems

When approximating a potential represented as a tree there are two objectives to
consider: size and error of the approximation. These two objectives can be con-
trolled with a threshold for pruning, ". Low values of " will produce large trees with
low errors while low values of " will lead to small trees and big errors. Thus, the
problem of finding the best approximation can be considered as a multi-objective

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

20 R.Cabañas, M. Gómez-Olmedo, A. Cano

optimization problem (MOP) 25 with two objectives to be minimized. Hence, opti-
mizing means finding a solution with acceptable values for all the objectives.

There are several possible solutions for this optimization problem as there is
not additional information about the preferred objective. Moreover, both objec-
tives are in conflict as it was stated when the role of the threshold for pruning "
was discussed. In MOPs the set of acceptable solutions composes the Pareto set
(non-dominated solutions). In order to compare two solution sets (produced by two
di↵erent representations of potentials) we have used the hyper-volume indicator
26. It is based on representing the solution set in a n-dimensional space being n

the number of objectives. In this space a reference point r characterizes the worst
possible solution. In our case, the axis of the space represents the size of the po-
tentials and the error produced by the approximation. The hyper-volume indicator
is an unary value measuring the percentage of area dominated by a certain set of
solutions (Pareto-set). Its maximum value is 1 and corresponds to a solution set
dominating the rest of possible solutions (the best one). Figure 9 shows an example
of a Pareto-set containing six di↵erent trees represented by x1, x2, x3, x4, x5, and
x6. The hyper-volume measures the portion of area in grey.

error

si
ze

x1

x2

x3

x4

x5
x6

r

Figure 9. Hyper-volume for a minimization problem

5.2. Objectives and procedure

There are several objectives related to the set of experiments performed in this
paper. Given a certain set of IDs whose potentials are represented as BTs, NTs and
tables we try:

• To test if the representation as BTs requires less memory space than using NTs
or tables. The gain in memory space should imply two benefits: a reduction in
the computation time as well as the ability to evaluate more complex models.

• To check what representation gives better performance (respect to memory
space and error) when computing approximate solutions varying ".

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 21

• To compare BTs with other representations as algebraic decision diagrams
(ADDs) 27 and a�ne algebraic decision diagrams (AADDs) 17.

The set of IDs used for this experimental work⇤ must be complex enough in
order to justify the computation of an approximate solution. However, they must be
simple enough to allow an exact evaluation as well. This is the only way to compute
the error introduced in the approximate solutions. The IDs used for testing contain:

• A real world ID used for the treatment of gastric NHL disease 18 with 3 decision
nodes, 1 value node and 17 chance nodes. The average number of states in each
variable is 2.90 and the average potential size is 468.11 values.

• A set of 100 randomly generated IDs. The features for this set are shown in
Table 3.

Average Minimum Maximum

Chance nodes 25.6 8 46

Value nodes 1 1 1

Decision nodes 2.5 2 3

Average number of states 3.33 2 5.38

Average potential size 13.2 7.2 22.4

Table 3. Features of random generated IDs.

For the experiments, each ID is evaluated using tables, NTs and BTs with
di↵erent " in the interval [0, 1]. The inference algorithms employed are VE, LE, and
SPI (see Section 4.3). For each evaluation it is measured:

• The storage size of potentials is measured before and after the removal of each
variable (or a set of variables for the SPI algorithm). The reduction in memory
space requirements is computed as

spaceSavings = 1�
meanPotSizetrees

meanPotSizetables
(13)

• The gain respect to computation time is computed with Equation (14). It should
be noticed that the evaluation time with trees also includes the time required
for building the trees from tables and pruning them.

speedup =
timetables

timetrees
(14)

• To analyze the error produced by the approximation, the MEU is calculated
using trees and tables (see Equation (3)). Then, the absolute error is computed

⇤All the IDs are available in http://leo.ugr.es/rcabanas/binarytrees/

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

22 R.Cabañas, M. Gómez-Olmedo, A. Cano

with Equation (15) . The error is analyzed together with the storage require-
ments: all the pairs (meanPotSizetrees, absoluteError) for the same kind of
representation compose a solution set. Pareto front and hyper-volume are com-
puted for every solution set.

absoluteError = |MEUtrees(b�)�MEUtables(b�)| (15)

5.3. Results for NHL ID

5.3.1. Storage requirements and computation time

Figure 10 shows the storage requirements for handling all the potentials during the
evaluation of the NHL ID with two di↵erent values of " and the algorithms VE,
LE and SPI. The vertical axis represents the storage size using a logarithmic scale.
The horizontal axis indicates the evaluation stages (removal of all its variables).
The corresponding space savings are shown in Table 4. It can be observed that,
using any of the three algorithms, less space is needed with trees (NTs and BTs)
than with tables. As long as " is increased the memory space reduction is more
noticeable. We can also observe that, in the final evaluation stages, there are not
noticeable di↵erences in storage requirements. This may be due to the combination
of the potentials producing another ones where the e↵ect of the initial prune is lost.
If we compare the space savings obtained with both kinds of trees, the reduction is
higher with BTs than with NTs. Similar space savings values are obtained for all
the evaluation algorithms analyzed.

VE LE SPI
" = 0.0 " = 0.05 " = 0.0 " = 0.05 " = 0.0 " = 0.05

NTs 0.318 0.959 0.431 0.965 0.55 0.924

BTs 0.524 0.997 0.666 0.997 0.592 0.992

Table 4. Space savings that results from using trees (NTs and BTs) instead of tables during NHL
ID evaluation with two di↵erent " thresholds values and the algorithms VE, LE and SPI.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 23

Figure 10. Size of potentials during NHL ID evaluation with tables, NTs and BTs with two di↵erent
" threshold values and the algorithms VE, LE and SPI.

Figure 11 shows the computation time with di↵erent " values. Since the eval-
uation time using tables is much higher than using trees, this is not shown in the
graphic. The evaluation time for each algorithm with tables is approximately 14000
ms, 13000 ms and 10000 ms.

It can be observed that the computation with BTs requires less time with a
decreasing reduction as long as " value increases. Perhaps this can be explained
due to the behaviour of pruning operation on NTs: the values for all the states are
collapsed into a single one. That is, this operation is more drastic on NTs although
more error will be introduced in the solutions. If the speed up values obtained with
each algorithm are compared, it can be observed that the highest improvements
are obtained with the VE algorithm for BTs. The reason for that is that the VE
algorithm for tables is the slowest one. We can also observe that the computation
time required by LE with trees is higher than the required one by VE: the reason

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

24 R.Cabañas, M. Gómez-Olmedo, A. Cano

Figure 11. Evaluation time and speed up obtained during NHL ID evaluation with NTs and BTs
and di↵erent values for " and the algorithms VE, LE and SPI. The evaluation time for each
algorithm with tables is approximately 14000 ms, 13000 ms and 10000 ms.

for that is that LE has an overhead due to the time needed for building the strong
junction tree (which is independent of the potential representation). Thus, another
conclusion is that the use of BTs makes the VE algorithm faster than LE.

5.3.2. Error against size

The experiments reveal that, using any of the algorithms proposed, BTs produce
better approximations than NTs: the same error level is achieved using smaller
trees. This situation can be shown in Figure 12. For each algorithm, it includes
one graphic showing a comparison of the absolute error versus the mean potential

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 25

size obtained for computing the MEU of the NHL ID. Each point corresponds to a
di↵erent evaluation with certain value of ". It can be observed that the dominated
area is always bigger for BTs.

Figure 12. Comparison of the absolute error versus the mean potential size for computing the MEU
of the NHL ID. This ID has been evaluated with di↵erent threshold values and the algorithms
VE, LE and SPI.

All the pairs (meanPotSizetrees, absoluteError) for the same representation
compose a solution set. For each solution set the Pareto front and hyper-volume are
computed using the reference point r. These numbers are included in Table 5. Each
column corresponds to one evaluation algorithm whereas each row is used for every
kind of potential: NT and BT. It can be observed that the higher hyper-volume

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

26 R.Cabañas, M. Gómez-Olmedo, A. Cano

values using BTs (HBT) are always larger (better) than those using NTs (HBT).
Thus, we conclude that better approximations are achieved using BTs for this ID.

VE LE SPI

HNT 0.835 0.649 0.407

HBT 0.992 0.995 0.987

Table 5. Hyper-volume values obtained from points shown in Figure 12.

5.4. Results for random IDs

5.4.1. Evaluability

Table 6 contains the percentage of IDs being evaluable using each kind of represen-
tation (exact and approximate). The pruning threshold " used for the approximate
evaluations is 1.0. Those IDs that can not be computed fail due to memory space
restrictions. It must be noticed that this set of random IDs may not be optimal for
making this test about evaluability: perhaps random IDs do not contain the same
level of asymmetries presented in real world IDs. However we have decided to use
this set of IDs due to the lack of a large set of real world IDs available for testing.
Anyway it can be observed that, using any of the algorithms proposed, more IDs
can be evaluated with BTs when approximate solutions are computed.

VE exact VE aprox. LE exact LE aprox. SPI exact SPI aprox.

Tables 83% � 85% � 75% �

NTs 79% 81% 79% 80% 73% 75%

BTs 79% 94% 79% 86% 73% 94%

Table 6. Percentage of random IDs that are evaluable using tables, NTs and BTs.

The following sections show the results obtained for each random ID in terms
of storage requirements, computation time and accuracy. It should be noticed that
only those IDs being evaluable using all the kinds of representations and algorithms
are considered.

5.4.2. Storage requirements and computation time

Table 7 includes the average space savings obtained using NTs and BTs and for
di↵erent " values (see Equation (13)). When exact evaluation is carried out (" = 0)
tables require less space than trees: for IDs with a low number of context-specific
independencies, the representation with tables is more e�cient due to the additional
space required for storing internal nodes in tree representations. Yet, when approx-
imate evaluation is performed (" > 0) the representation with BTs requires less

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 27

space. Similar space savings values are obtained for all the evaluation algorithms
analyzed.

" = 0.0 " = 0.05 " = 0.5 " = 1.0

VE
NTs �0.561 �0.099 0.126 0.565

BTs �0.796 0.266 0.621 0.963

LE
NTs �0.409 �0.082 0.064 0.511

BTs �0.594 0.295 0.571 0.951

SPI
NTs �0.593 �0.202 �0.026 0.392

BTs �0.841 0.281 0.634 0.966

Table 7. Average space saving obtained using trees instead of tables with di↵erent " values.

The improvement in computation time can be analyzed using speedup (Equation
(14)). Table 8 contains the speedup values for tables, NTs and BTs with di↵erent
values of ". It can be seen the improvements achieved by BTs: the algorithms VE
and SPI are faster when using BTs than with NTs or tables. However, the LE
algorithm has a better performance with tables. When this method is used with
trees, the overhead introduced by pruning and sorting the trees consumes all the
benefits for reduced size potentials.

" = 0.0 " = 0.05 " = 0.5 " = 1.0

VE
NTs 0.926 0.974 0.99 1.075

BTs 1.563 1.831 1.85 1.821

LE
NTs 0.296 0.323 0.318 0.35

BTs 0.472 0.606 0.622 0.649

SPI
NTs 0.846 0.911 0.912 0.965

BTs 1.417 1.951 1.961 2.025

Table 8. Average speedup for IDs using tables and trees (NTs and BTs).

5.4.3. Error against size

Table 9 contains the results of performing a Wilcoxon signed-rank test with the
hyper-volumes for all the random IDs evaluated with the VE, LE and SPI algo-
rithms. The null hypothesis states that there is no di↵erence between the hyper-
volumes for BTs and NTs (both share a similar performance). The significance
level for rejecting the hypothesis is 5%. For each algorithm the table contains the
p�value, the number of IDs analyzed, the percentage of IDs where BTs outperform
NTs and where NTs o↵er better results and finally the conclusion of the test. It
can be observed that the null hypothesis is always rejected. If we compare the three
evaluation algorithms, the highest percentage of IDs where BTs outperform NTs is

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

28 R.Cabañas, M. Gómez-Olmedo, A. Cano

obtained with the LE algorithm. This is due to the lower number of combinations
performed with LE.

p-value IDs BTs wins NTs wins rejected

VE 5.67·10�5 48 70.83% 25.0% yes

LE 3.52·10�9 48 95.83% 0.00% yes

SPI 6.47·10�7 48 79.17% 16.67% yes

Table 9. Results of the Wilcoxon test for the results using NTs and BTs.

5.5. Comparison with other approaches

As it was mentioned before, the comparison with ADDs and AADDs is limited to
inference in BNs due to the lack of proposals for using these structures for ID eval-
uation. Our experiment considers 6 BNs used for the experimental work presented
in 17. Table 10 contains the storage requirements for encoding the potentials using
tables, BTs, ADDs and AADDs. The data for ADDs and AADDs are taken from
the results in 17. In order to simplify the results, NTs are not considered in this
section. In previous sections it is already shown that NTs o↵er worse results than
BTs.

BTs
tables " = 0.0 " = 0.05 " = 0.5 " = 1.0 ADDs AADDs

Alarm 1192 931 467 45 37 689 405

Carpo 636 706 520 84 60 955 360

Hailfinder 9045 5974 486 56 56 4511 2538

Insurance 2104 1477 265 35 29 1596 775

NoisyMax15 6.557·104 660 84 16 16 1.254·105 1066

NoisyOr15 1.311·105 338 72 16 16 2.021·105 4.099·104

Table 10. Number of table entries/nodes in the original Bayesian networks

It can be observed that exact BTs require less space than ADDs in 4 out of 6
BNs. By contrast, AADDs use less space than BTs in 4 of the 6 BNs. However, the
main benefit of BT representation is related to its capability of producing approxi-
mate solutions with significant memory savings.

The speedups comparing computation time for 100 random queries (with a tar-
get variable and one evidence variable) are showed in Table 11. It is noticeable the
speedups obtained with BTs mainly for the last two BNs: their potentials contain
a high number of repeated values.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 29

BTs
" = 0.0 " = 0.05 " = 0.5 " = 1.0 ADDs AADDs

Alarm 1.304 2.545 3.099 3.039 1.227 2.357

Carpo 1.157 1.136 1.126 1.19 1.018 1.184

Hailfinder 2.733 4.688 6.12 17.93 2.75 9.778

Insurance 3.839 11.52 25.59 23.83 2.397 7.514

NoisyMax15 686.1 800.5 960.6 960.6 0.5478 39.29

NoisyOr15 651.8 782.2 782.2 977.8 0.7859 5.759

Table 11. Speedup comparing BTs, ADDs and AADDs with respect to the time using tables

6. Conclusions and future work

This paper proposes the use of BTs for representing the potentials involved in IDs.
This kind of tree allows representing context-specific independencies that are finer-
grained compared to those encoded using NTs or tables. In particular we focus
on the BTs representing utility potentials (BUTs): detailed methods for building
and pruning a BUT are given. BTs representing probability potentials were already
described in a previous work 11. It is also explained how BTs are used during the
evaluation of IDs using the three di↵erent algorithms (VE, LE and SPI).

The experimental work shows that, in general, less memory space is required for
storing potentials as a BT than using a NT or a table. As a consequence, the ID
evaluation is faster using BTs. In fact, some IDs which are not evaluable with tables
due to space restriction can be evaluated with BTs. However, for many IDs it is
necessary to use a threshold for pruning higher to 0 in order to obtain any benefits
from the use of BTs. Another conclusion is that using BTs for evaluating IDs o↵ers
better approximate solutions than using NTs. The same error level is achieved using
a BT of smaller size than the corresponding NT. If the three evaluation algorithms
are compared, the best improvements achieved by BTs in terms of computation
time and storage are obtained with the VE and SPI algorithms. By contrast, the
most accurate approximate solutions are obtained using the LE algorithm. BTs are
also compared with other approaches for representing potentials such as ADDs and
AADDs. However it is limited to inference in BNs due to the lack of proposals for
using these structures for ID evaluation. The possibility of approximating poten-
tials using BTs allows reducing even more the size of potentials and to obtain better
results with BTs than with ADDs and AADDs.

As regards future directions of research, we can study the impact that the heuris-
tics used for choosing the elimination order has on the results. The heuristics used
so far consider that potentials are represented as tables. It could be interesting to
use any heuristic that considers that potentials are represented as BTs. It could
also be interesting studying an alternative method for approximating utilities that

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

30 R.Cabañas, M. Gómez-Olmedo, A. Cano

prunes those values corresponding to a scenario extremely di�cult to reach. Finally,
another direction of research could be the integration of restrictions and BTs. This
would allow addressing asymmetric decision problems.

Acknowledgments

This research was supported by the Spanish Ministry of Economy and Compet-
itiveness under projects TIN2010-20900-C04-01 and TIN2013-46638-C3-2-P, the
European Regional Development Fund (FEDER), the FPI scholarship program
(BES-2011-050604). The authors have also been partially supported by “Junta de
Andalućıa” under projects P10-TIC-06016. We also thank the reviewers for their
constructive comments.

Appendix

In this section it is proved that expression given in Proposition (1) (Page 9) for
computing the information gain is equivalent to Equation (6).

Proof. The information gain in Equation (6) is:

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) = D(,BUT j)�D(,BUT j+1(t,Xi,⌦
tl
Xi

,⌦tl
Xi

)) =

=

vuut
nX

i=1

(vi �

Pn
i=1 vi

n
)2 �

vuut
nlX

i=1

(vli �

Pnr

i=1 vli

nl
)2 +

nrX

i=1

(vri �

Pnr

i=1 vri

nr
)2 (16)

The variance �2 of v1, v2, . . . , vn is:

�
2 =

Pn
i=1(vi �

Pn
i=1 vi
n)2

n
, �

2
· n =

nX

i=1

(vi �

Pn
i=1 vi

n
)2 (17)

Similarly, the variance �
2
l of vl1, vl2, . . . , vlnl and the variance �

2
r of

vr1, vr2, . . . , vrnr are:

�
2
l =

Pnl

i=1(vli �
Pnl

i=1 vli
nl

)2

nl
, �

2
l · nl =

nlX

i=1

(vli �

Pnl

i=1 vli

nl
)2 (18)

�
2
r =

Pnr

i=1(vri �
Pnr

i=1 vri
nr

)2

nr
, �

2
r · nr =

nrX

i=1

(vri �

Pnr

i=1 vri

nr
)2 (19)

Using Equations (17), (18), and (19), the information gain in Equation (16) can
be written as:

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) =
p

�2 · n�

q
�
2
l · nl + �2

r · nr (20)

Since the variance of a variable is the mean of the square variable minus the
square of the mean, then:

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

Using Binary Trees for the Evaluation of Influence Diagrams 31

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) =

vuut
 Pn

i=1 v
2
i

n
�

✓Pn
i=1 vi

n

◆2
!

· n

�

vuut
 Pnl

i=1 vl
2
i

nl
�

✓Pnl

i=1 vli

nl

◆2
!

· nl +

 Pnr

i=1 vr
2
i

nr
�

✓Pnr

i=1 vri

nr

◆2
!

· nr (21)

Finally, simplifying the following expression is obtained:

I(t,Xi,⌦
tl
Xi

,⌦tr
Xi

) =

vuut
nX

i=1

v
2
i �

(
Pn

i=1 vi)
2

n

�

vuut
nlX

i=1

vl
2
i �

(
Pnl

i=1 vli)
2

nl
+

nrX

i=1

vr
2
i �

(
Pnr

i=1 vri)
2

nr
(22)

References

1. R. Cabañas, M. Gómez, and A. Cano. Approximate inference in influence diagrams
using binary trees. In Proceedings of the Sixth European Workshop on Probabilistic

Graphical Models (PGM-12), 2012.
2. S.M. Olmsted. Representing and solving decision problems. Dissertation Abstracts

International Part B: Science and Engineering, 45(3), 1984.
3. R.A. Howard and J.E. Matheson. Influence diagram retrospective. Decision Analysis,

2(3):144–147, 2005.
4. S.L. Lauritzen and D. Nilsson. Representing and solving decision problems with lim-

ited information. Management Science, pages 1235–1251, 2001.
5. J.M. Charnes and P.P. Shenoy. Multistage Monte Carlo method for solving influence

diagrams using local computation. Management Science, pages 405–418, 2004.
6. A. Cano, M. Gómez, and S. Moral. A forward–backward Monte Carlo method for solv-

ing influence diagrams. International Journal of Approximate Reasoning, 42(1):119–
135, 2006.

7. A. Cano, S. Moral, and A. Salmerón. Penniless propagation in join trees. International
Journal of Intelligent Systems, 15(11):1027–1059, 2000.

8. A. Salmerón, A. Cano, and S. Moral. Importance sampling in Bayesian networks using
probability trees. Computational Statistics & Data Analysis, 34(4):387–413, 2000.

9. M. Gómez and A. Cano. Applying numerical trees to evaluate asymmetric decision
problems. In T.D. Nielsen and N. Zhang, editors, Symbolic and Quantitative Ap-

proaches to Reasoning with Uncertainty, volume 2711 of Lecture Notes in Computer

Science, pages 196–207. Springer Berlin Heidelberg, 2003.
10. C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific indepen-

dence in Bayesian networks. In Proceedings of the 12th International Conference on

Uncertainty in Artificial Intelligence, pages 115–123. Morgan Kaufmann Publishers
Inc., 1996.

11. A. Cano, M. Gómez-Olmedo, and S. Moral. Approximate inference in Bayesian net-
works using binary probability trees. International Journal of Approximate Reasoning,
52(1):49–62, 2011.

March 17, 2016 20:9 WSPC/INSTRUCTION FILE ijufks14

32 R.Cabañas, M. Gómez-Olmedo, A. Cano

12. N.L. Zhang and D. Poole. Exploiting causal independence in Bayesian network infer-
ence. Journal of Artificial Intelligence Research, 5:301–328, 1996.

13. F.V. Jensen and T. D. Nielsen. Bayesian networks and decision graphs. Springer Ver-
lag, 2007.

14. A.L. Madsen and F.V. Jensen. Lazy evaluation of symmetric Bayesian decision prob-
lems. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence,
pages 382–390. Morgan Kaufmann Publishers Inc., 1999.

15. A.L. Madsen. Improvements to message computation in lazy propagation. Interna-
tional Journal of Approximate Reasoning, 51(5):499–514, 2010.

16. R. Cabañas, A.L. Madsen, A. Cano, and M. Gómez-Olmedo. On SPI for evaluating
Influence Diagrams. In Information Processing and Management of Uncertainty in

Knowledge-Based Systems, pages 506–516. Springer International Publishing, 2014.
17. S. Sanner and D. McAllester. A�ne algebraic decision diagrams (AADDs) and their

application to structured probabilistic inference. In IJCAI, volume 2005, pages 1384–
1390, 2005.

18. P.J.F. Lucas and B. Taal. Computer-based decision support in the management of
primary gastric non-hodgkin lymphoma. UU-CS, (1998-33), 1998.

19. S.K.M. Wong and C.J. Butz. Contextual weak independence in Bayesian networks.
In Proceedings of the 15th conference on Uncertainty in AI, pages 670–679. Morgan
Kaufmann Publishers Inc., 1999.

20. J.R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
21. U. Kjærul↵. Triangulation of graphs – algorithms giving small total state space. Re-

search Report R-90-09, Department of Mathematics and Computer Science, Aalborg
University, Denmark, 1990.

22. A.L. Madsen and F.V. Jensen. Lazy propagation: a junction tree inference algorithm
based on lazy evaluation. Artificial Intelligence, 113(1-2):203–245, 2004.

23. R.D. Shachter, B. D’Ambrosio, and B. Del Favero. Symbolic probabilistic inference in
belief networks. In AAAI, volume 90, pages 126–131, 1990.

24. Z. Li and B. D’Ambrosio. E�cient inference in Bayes networks as a combinatorial
optimization problem. International Journal of Approximate Reasoning, 11(1):55–81,
1994.

25. Y. Jin and B. Sendho↵. Pareto-based multiobjective machine learning: An overview
and case studies. Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 38(3):397–415, 2008.
26. E. Zitzler, D. Brockho↵, and L. Thiele. The hypervolume indicator revisited: On the

design of pareto-compliant indicators via weighted integration. In Evolutionary Multi-

Criterion Optimization, pages 862–876. Springer, 2007.
27. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and

F. Somenzi. Algebric decision diagrams and their applications. Formal methods in

system design, 10(2-3):171–206, 1997.

