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Abstract

Structural causal models permit causal and counterfactual reasoning, and can be regarded
as an extension of Bayesian networks. The model consists of endogenous and exogenous
variables, with exogenous variables often being of unknown semantic interpretation. Conse-
quently, they are typically non-observable, with the result that counterfactual queries may
be unidentifiable. In this setting, standard inference algorithms for Bayesian networks are
insufficient. Recent methods attempt to bound unidentifiable queries through imprecise
estimation of exogenous probabilities. However, these approaches become unfeasible with
growing cardinality of the exogenous variables. This paper proposes a divide and conquer
method that transforms a general causal model into a set of models with low-cardinality
exogenous variables, for which any query can be calculated exactly. Bounds for a query in
the original model are then efficiently approximated by aggregating the results for the set
of smaller models. Experimental results demonstrate that these bounds can be computed
with lower error levels and less resource consumption compared to existing methods.

Keywords: Structural causal models; causality; counterfactual reasoning; Satisfiability;
Heuristic search.

1. Introduction

Structural causal models (SCMs) with discrete variables (Pearl, 2009; Bareinboim et al.,
2022) are a type of probabilistic graphical model (PGM) for causal and counterfactual
reasoning. SCMs enable reasoning about hypothetical scenarios, such as estimating the
probability of recovery for a deceased patient in a medical trial if they had received a dif-
ferent treatment. SCMs consist of endogenous (observable) and exogenous (usually latent)
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variables, with endogenous values determined from exogenous ones through structural equa-
tions. Often, the exogenous probabilities are unavailable due to the lack of data for these
variables. Consequently, many queries are non-identifiable and cannot be calculated.

One of the first approaches for addressing this problem was proposed by Kang and Tian
(2006), who presented a systematic technique to derive constraints on a causal query, albeit
with exponential growth. Sachs et al. (2023) introduced a method for deriving bounds on
causal effects. Zhang et al. (2022) proposed approximating credible intervals based on sam-
pling algorithms. More related to our work, Zaffalon et al. (2020) proposed transforming
SCMs into credal networks (Cozman, 2000), requiring the solution of various linear pro-
gramming problems. However, this approach may be infeasible due to the large cardinality
of exogenous variables. More recently, Zaffalon et al. (2024) introduced EMCC for approx-
imating the bounds of any non-identifiable query. This involves repeatedly running the
expectation-maximization (EM) algorithm (Koller and Friedman, 2009) to obtain precise
specifications of exogenous distributions. Queries can then be separately calculated and
aggregated to approximate the bounds. The problem with EMCC is that each individual
EM run necessitates an exceptionally large number of iterations to achieve low error.

This paper introduces theDivide and Conquer for Causal Computation (DCCC) method,
which integrates elements of the two previously mentioned approaches. It aims to obtain
precise specifications of exogenous distributions, from which any query can be calculated.
DCCC reduces SCMs by removing certain exogenous states, transforming the SCMs into
collections of less complex models. Then, various linear programming problems with unique
solutions are solved in the reduced models. Experimental results show that DCCC achieves
these bounds with lower error levels and in less time compared to EMCC.

2. Background

2.1. Basic notation

With respect to the general notation, upper-case letters are used to denote random variables
and lower-case for their possible values (or states). That is, given a variable V , v is an
element of its domain, denoted by ΩV . We assume that all the variables are discrete.
Similarly, V = {V1, V2, . . . , Vn} denotes a set of variables and v a joint state of its domain
ΩV = ×V ∈VΩV . For the sake of simplicity, variables are omitted from assignments when
their context is clear. For instance, P (V = v) will be denoted simply as P (v). In a directed
graph, PaV are the parents (i.e., the immediate predecessors) of V .

2.2. Structural causal models

Structural Causal Models (SCMs) (Pearl, 2009) are a class of probabilistic graphical models
(PGMs) used for causal and counterfactual reasoning, consisting of two types of nodes:
endogenous nodes, which represent the internal variables of the modeled problem, and
exogenous nodes, which represent factors outside the model. SCMs can be more formally
defined as follows (Bareinboim et al., 2022).

Definition 1 A structural causal model (SCM) is defined as a 5-tuple ⟨U,V,G,F ,P⟩,
where U and V are respectively the sets of exogenous and endogenous variables; G is a
directed acyclic graph (DAG) representing the causal relationships among variables in U∪V;
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F is a set of structural equations (SEs) {fV1 , fV2 , ..., fVn}, such that each of them is a map
fX : ΩPaV → ΩV ; P is a set containing a probability distribution P (U) for each U ∈ U.

When the distributions for the exogenous variable are unknown, we say that the model
is a partially specified SCM. Such models are denoted by calligraphic letters, like M. By
contrast, if all such distributions are provided, we say instead that it is fully specified and
denoted as, e.g., M . If we do not explicitly state whether a model is fully specified or
not, we use the most general representation, namely M. As an example, let us consider
the SCM shown in Figure 1 modeling a drug study involving 700 patients (Mueller et al.,
2021). The causal graph depicted on the left includes the endogenous variables V = {T, S}
representing the treatment and the survival respectively. The aim is to analyze whether
being treated (T = 1) helps in survival (S = 1). On the other hand, U = {V,U} is the set
of exogenous variables, which are assumed to be root and having as children endogenous
variables. In this paper, only Markovian models will be considered, meaning that each
endogenous variable has a single exogenous parent and each exogenous variable has a single
endogenous child (as the model in the example). In other words, models that do not have
hidden confounders.

T S

V U
T v0 v1
0 1 0
1 0 1

fT

T S u0 u1 u2 u3
0 0 1 1 0 0
1 0 1 0 1 0

fS

P̃ (T ) T = 0 T = 1

0.337 0.662

P̃ (S|T ) T = 0 T = 1

S = 0 0.462 0.323
S = 1 0.538 0.677

Figure 1: Elements of an SCM: (left) causal graph, (center) structural equations and (right)
empirical distribution computed from the data.

Figure 1 (center) shows the SEs as deterministic CPTs of the form P (T |V ) and P (S|T,U).
If not provided from expert knowledge, SEs can be automatically inferred from the causal
graph, without any loss of generality, via a canonical specification. This is the case of the
SEs shown in the example, where the states of an exogenous variable will then represent
all possible deterministic mechanisms between its children and their respective endogenous
parents. Conversely, under the non-canonical specification, some of the exogenous states
are assumed to be impossible and directly omitted from the CPTs. In a Markovian model,
the cardinality of each exogenous variable U is at most |ΩY ||ΩX|, where Y is its only child
and X the set of endogenous parents of Y .

When doing inference with an SCMM and a dataset D, typically only observations for
the endogenous variables are available. For example, in the model under consideration, it is
possible to calculate from D the empirical distributions P̃ (T ) and P̃ (S|T ) with the values
shown in Figure 1 (right). The task of doing inference in a partial SCM given a dataset
involves estimating a set of fully-specified SCMs that are compatible with the data. This
idea, which is fundamental for our method, is extended in the following section.

3. Imprecise characterisation

As initially proposed by Zaffalon et al. (2020) and later expanded upon by Zaffalon et al.
(2024), it has been demonstrated that an SCM can be accurately mapped into a credal
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network (Cozman, 2000), which is essentially a generalization of a Bayesian network with
an imprecise specification of its parameters. In this context, each node is associated with
a set of probability mass functions known as a credal set. Specifically, when mapping
SCMs into credal networks, the endogenous observations impose linear constraints on the
probabilities of the exogenous variables. Consequently, we can derive a separate credal set
for each exogenous variable, which here will be called the solution set, and formally defined
as follows.

Definition 2 (Solution set for an exogenous variable) A solution for an exogenous
variable U and a dataset D is the credal set defined as

K(U) :=

P (U) :
∑
u∈ΩU

P (u) · P (Y |X, u) = P̃ (Y |X)

 (1)

where Y is the only child of U , X the set of endogenous parents of Y and P̃ (Y |X) is the
empirical distribution computed from D.

In other words, K(U) is the convex set of all the distributions over U leading to the same
distribution over the endogenous children after marginalizing out the exogenous parents. In
our problem, we are interested in finding all these distributions. Each element P (U) ∈ K(U)
will be called a solution for U . This idea can be extended to an SCM as follows:

Definition 3 (Solution for an SCM) A solution for a partially-defined SCM with ex-
ogenous variables U given dataset D is a set of distributions {P (U)}U∈U where each P (U)
is in K(U), i.e., it is a solution for the given exogenous variable.

Example 1 For the modelM and the empirical distribution (from a dataset D) shown in
Figure 1, there is a unique SM,D for variable V , namely K(V ) = {P (V ) = [0.337, 0.662]}.
On the other hand, solutions for U are all the distributions that are a convex combination
of P1(U) and P2(U), defined as

P1(U) =
u0 u1 u2 u3

[ ]0.323 0.139 0 0.538 , P2(U) =
u0 u1 u2 u3
[ ]0 0.462 0.323 0.215 .

Intuitively, each fully-specified SCM that is a solution is also a model that can have
produced the available endogenous data. Thus, we can introduce the following solvability
condition:

Definition 4 (Solvable SCM) A partially-defined SCM is solvable for a given dataset D
iff there exists a non-empty solution set K(U) for each exogenous variable U ∈ U.

In other words, a partially-defined SCM is solvable (for the available endogenous data)
if there exists at least one distribution for each exogenous variable satisfying the linear
constraints. When this happens, it is said that the dataset is M-compatible (Zaffalon et al.,
2024). Frequently, the solution for an SCM will not be unique, and hence it is required to
define a solution set for an SCM as follows.
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Definition 5 (Solution set for an SCM) A solution set for a partially-defined SCMM
given dataset D, denoted SM,D, is the set of all the fully-specified SCMs such that P (U) ∈
K(U) for each U ∈ U.

That is, each SCM contained in SM,D is a solution for the given dataset and partially-
defined SCM. This set can be represented as a credal network where each exogenous variable
has associated a credal set as defined by Equation (1) whereas the endogenous variables, T
and S, instead of a credal set, have associated a single conditional distribution corresponding
to the SEs, i.e. fS . Intuitively, this precise model represents all the fully-specified SCMs
that might have produced the available endogenous data. Typical counterfactual queries in
an SCM are the probability of sufficiency (PS) or probability of necessity (PN). For further
details see (Pearl, 2009) or (Cabañas et al., 2024). Any counterfactual query qM,D can be
transformed into a query in the credal network defined as

qM,D := {qM |M ∈ SM,D} (2)

where qM is the same query but computed in each fully-specified SCM M which is member
of the solution set. In practice, previous set of queries will be summarized by the lower and
upper bounds: [

min
M∈SM,D

qM , max
M∈SM,D

qM

]
. (3)

Example 2 In the context of the running example, the set of models contained in SM,D
is any fully-specified SCM where P (w0) = 0.337, P (w1) = 0.662 and P (U) is a convex
combination of P1(U) and P2(U). Then PS is bounded to the interval [0.301, 1.0].

4. Divide and conquer algorithm

4.1. Model reduction

The underlying idea of our method consists of transforming a complex SCM into a simpler
one with exogenous variables of smaller cardinality. The transformation proposed is essen-
tially the removal of some states from exogenous domains, namely a reduction, which can
be defined as follows.

Definition 6 LetM be a partial SCM whose set of exogenous variables is U and let u ∈ ΩU

with U ∈ U. Then the reduction operation, denoted R(M, u), produces a new partial SCM
M′ by removing assignments from F and P inM that are consistent with u.

This reduction operation will be applied to various states of the different exogenous
variables, i.e., to a set defined as AU := {u(i)}mi=1 s.t. u(i) ∈ ΩU and U ∈ U. For simplicity
we can recursively define this as R(M,AU) = R

(
R(M, u(1)),AU \ {u(1)}

)
. The reduction

operation R(M, u) is equivalent to imposing the additional constraint that P (u) = 0 on
M. Thus, when looking for the solution set of a reduced SCM, we can equivalently look
for all the solutions from the original solution set that are consistent with that constraint.
The following theorem simplifies calculating the set of queries given in Equation (2).
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Theorem 1 LetM be a partially-defined SCM, and D an M-compatible dataset. IfM′ =
R(M,AU) is solvable for D, then it holds that SM′,D ⊆ SM,D.

Proof Any fully-specified model member of SM,D by definition satisfies the linear con-
straints specified in Equation (1) for each U ∈ U. The same constraints are satisfied by
any member of SM′,D. Additionally, any fully specified SCM in the latter set also respects
the additional constraints imposed by R(M,AU) stating that P

(
u(i)

)
= 0 on M for all

AU = {u(i)}mi=1 s.t u(i) ∈ ΩU and U ∈ U. Given that the set of constraints associated to
SM,D is a subset of those associated to SM′,D, it holds that if M ∈ SM′,D then M ∈ SM,D,
and the result follows.

Corollary 1 LetM be a partially-defined SCM, and D an M-compatible dataset. IfM′ =
R(M,AU) is solvable for D, then it holds that qM′,D ⊆ qM,D.

Proof According to Equation (2), and taking into account that, as stated by Theorem 1,
SM′,D ⊆ SM,D,

qM′,D = {qM |M ∈ SM′,D} ⊆ {qM |M ∈ SM,D} = qM,D.

Example 3 If the reduction R(M, u2) is applied to the running example, the solution set
for U is K(U) = {[P (u0) = 0.323, P (u1) = 0.139, P (u3) = 0.538]} and PS is 0.301, which
is the lower bound in Example 2.

4.2. Scope of the method

The most general specification of a Markovian SCM M lets each endogenous variable Y
have a single exogenous parent U with states that index all the possible deterministic
structural equations from the set of Y ’s endogenous parents inM to Y . With this general
specification, for a dataset D, any model M that is compatible with D is contained in SM,D.
For such a model, the size of the state space of an exogenous variable U is determined by
the size of the state spaces of its endogenous child variable Y and of Y ’s endogenous parents
X = PaY \ {U}, with |ΩU | = |ΩY ||ΩX|. Letting m = |ΩY ||ΩX|, define ΩU = {ui}m−1

i=0 . A
mapping between the possible functions fui from X to Y and states in ΩU then completes
the definition of the structural function fY (X, U) = fU (X) inM.

Assuming all endogenous variables inM are binary, a structured approach to defining
a consistent mapping from ui to fui for n endogenous parents of Y is defined as follows:
For a specific ordering (xi)

2n
i=1 of the 2n states of the endogenous parents X, the function

indexed by ui is given by the binary encoding of i to 2n digits, such that the digit at
position j correspond to the output y of fui(xj). If n=2, with the order of states for
X = (X1, X2) as ((0, 0), (0, 1), (1, 0), (1, 1)), u0 is defined by binary string 010 = 00002 such
that fY (X1, X2, u0) = 0 for all states, while for u3, 310 = 00112 defines fY (X1, X2, u3) = X1,
i.e. for the first two states (0, 0), (0, 1) of X1, X2, the output is 0 and for the next two states
(1, 0), (1, 1) the output is 1. Tables 1 and 2 details the complete mapping for the case
where Y has one endogenous parent X and where Y has two endogenous parents X1, X2,
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X Y
U

P (Y |X)
u0 u1 u2 u3

0 0 1 1 0 0 P (Y = 0|X = 0) = P (u0) + P (u1)

0 1 0 0 1 1 P (Y = 1|X = 0) = P (u2) + P (u3)

1 0 1 0 1 0 P (Y = 0|X = 1) = P (u0) + P (u2)

1 1 0 1 0 1 P (Y = 1|X = 1) = P (u1) + P (u3)

fU (X) = 0 X X 1

Table 1: A canonical specification of ΩU when endogenous child Y of U has one endogenous
parent X. For columns with header ui, a 1 indicates that the function fui(X) = Y as
defined in the respective column is consistent with the pair of values for X,Y as listed in
the respective row, i.e. that Y takes on its value with probability 1 given the value of X and
U . Conversely, a 0 indicates 0 probability of the value combination in question. While the
complete table shows probabilities of all state combinations, this can be translated into the
corresponding binary representation column-wise by selecting the Y -value of probability 1
for each pair of consecutive rows, which is equivalent to reading only the probabilities for
the P (Y = 1|X)-rows per column. The bottom row summarises the functions defined. The
rightmost column shows the resulting linear equations defining the credal set K(U).

X1 X2 Y
U

P (Y |X1, X2)u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 P (Y = 0|X1 = 0, X2 = 0)

0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 P (Y = 1|X1 = 0, X2 = 0)

0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 P (Y = 0|X1 = 0, X2 = 1)

0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 P (Y = 1|X1 = 0, X2 = 1)

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 P (Y = 0|X1 = 1, X2 = 0)

1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 P (Y = 1|X1 = 1, X2 = 0)

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 P (Y = 0|X1 = 1, X2 = 1)

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 P (Y = 1|X1 = 1, X2 = 1)

X1

∧
X2

X1

∧
X2

X1

∧
X2

X1

⊕
X2

X1

∨
X2

X1

∧
X2

X1

⊕
X2

X1

∨
X2

X1

∨
X2

X1

∨
X2

fU (X1, X2) = 0 X1 X2 X2 X1 1

Table 2: A canonical specification of ΩU when endogenous child Y of U has two endogenous
parents X1 and X2. The table is read analogously to Table 1. The probabilities in the
rightmost column are again the sum of the probabilities of all ui for which the respective
column evaluates to 1.

respectively. Given this definition of fY (X, U), the credal set K(U) is now defined by the
following linear system:∑

u∈Ωj,k
U

P (u) = P (Y = yk|X = xj), yk ∈ ΩY ,xj ∈ ΩX (4)

with Ωj,k
U = {ui ∈ ΩU , i = 0, . . . , |U |−1 s.t. position j in the binary encoding of i equals yk}

(See the rightmost column in Table 1 for an example). This linear system is underdeter-
mined with 22

n
unknowns, such that there are infinitely many solution models for M,

for which D is M-compatible. Now, consider reductions R for which the resulting model
M′ = R(M,AU ) has a single solution M . The following theorem bounds the size of the
domain of an exogenous variable U ′ of a reduced modelM′ for which the linear system has
a unique solution:
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Theorem 2 Let M be a partially-defined Markovian SCM with binary endogenous vari-
ables, and D an M-compatible dataset. For an exogenous variable U with endogenous child
variable Y inM, let n denote the number of endogenous parents of Y . If a reduction R is
applied toM returningM′ such that the resulting linear system defining K(U ′) has exactly
one solution M for D, then |ΩU ′ | ≤ 2n + 1, where U ′ is the image of U under R.

Proof The equation
∑

i P (ui) = 1 along with {P (Y = 0|X = xj)}2
n

j=1 ({P (Y = 1|X =

xj)}2
n

j=1 being dependent given
∑

i P (ui) = 1) together form a system of 2n+1 independent
linear equations. For a number of unknowns after reduction |ΩU ′ | > 2n + 1, the system
solution space is infinite.

Such a model reduction R, for which |K(U ′)| = 1, effectively reduces the number of
unknowns in {P (ui)}ui∈ΩU

by fixing 22
n−(2n+1) of these probabilities to be 0. If the unique

solution of the resulting linear system given data D respects P (ui) ≥ 0 and
∑

i P (ui) = 1,
then this solution is a model M ∈ SM,D, for which qM ∈ qM,D.

4.3. Satisfiability

Algorithm 1 outlines the steps of the process of finding fully-specified SCMs given a partially-
specified modelM and a dataset D, where Line 4 corresponds to finding a reduction such
that the resulting model has a unique solution. Now, Theorem 2 states that such a reduction
R may reduce the complexity of the model to be solved significantly in replacing variable U ,
for which |ΩU | = 22

n
, by U ′ with |ΩU ′ | ≤ 2n + 1. However, the space of possible reductions

consists of a total of
(

22
n

2n+1

)
distinct R’s, for which U ′ has the required domain size 2n + 1.

Moreover, out of this set of reduced models, only a potentially small subset will be consistent
with a given dataset D. Thus, this search is not straight forward when n grows.

A connection to the satisfiability problem is introduced next. Defining a new set of

variables {zi}m−1
i=0 such that zi =

{
True, if P (ui)>0
False, if P (ui)=0

, a Conjunctive Normal Form (CNF)

formula may be formed from the left hand side expressions of the equation set given by
Equation (4). For each sum

∑
u∈Ωj,k

U
P (u), a disjunction clause over the variables in the

corresponding set {zi : i s.t. ui ∈ Ωj,k
U } is added to the CNF formula, such that the complete

formula is the conjunction of all 2 ·2n disjunction clauses. For n = 1, the complete equation
set as shown in the rightmost column of Table 1 corresponds to the CNF formula g(z) =
(z0∨z1)∧(z2∨z3)∧(z0∨z2)∧(z1∨z3). Now, in order for any subset {P (ui)}i∈I , |I| = 2n+1,
to solve the linear system given by Equation (4), the variables in {zi}i∈I set to True must

be a solution to the corresponding CNF formula g(z). If not, P (u) = 0 ∀u ∈ Ωj,k
U for some

pair of values xj , yk, which in general will violate Equation (4). Thus it is only necessary
to consider I such that g(z) is satisfied, to be possible model solutions of the linear system.

Thus, Line 4 of Algorithm 1 may be accomplished by first finding a set {zi}i∈I that
solves g(z), and only then solving the linear system, by setting all {P (uj)}m−1

j=0 \ {P (ui)}i∈I
to 0 and then inverting the resulting (2n+1)×(2n+1) square matrix. If this unique solution
satisfies

∑
i∈I P (ui) = 1 and P (ui) ≥ 0, ∀i ∈ I, the solution corresponds to a fully-specified
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Algorithm 1 Learning

input: M (partially-specified SCMs), D (endogenous
dataset), N (number of runs)

output: S = {M1,M2, . . . ,MN} (set of fully-specified
SCMs)

1: S ← ∅
2: for i ∈ {1, . . . , N} do
3: for U ∈ U do
4: Find a AU ⊂ ΩU s.t. M′ = R(M,AU ) has a

single solution for U .
5: P ′(U)← solve U inM′ given the data D.
6: end for
7: Mi ← build an SCM with {P ′(U)}U∈U.
8: S ← S ∪ {Mi}
9: end for

10: return S

Algorithm 2 Inference

input: S (set of fully-
specified SCMs), q (causal
or counterfactual query)

output: bounds of q
1: q← ∅
2: for M ∈ S do
3: q← q ∪ {qM}
4: end for
5: return (min(q),max(q))

model M ∈ SM,D, of which qM lies in qM,D to be approximated. Algorithm 2 details the
approximation of qM,D given a set of fully-specified models found by Algorithm 1.

For n = 1, all subsets of {P (ui)}3i=0 of size 21 + 1 = 3 correspond to subsets of {zi}3i=0

that satisfy g(z), and the 3 equations given by Equation (4) may be solved for each of the(
22

1

21+1

)
=

(
4
3

)
= 4 possible subsets, such that a solution model M ∈ SM,D is found if the

solution corresponds to a probability distribution.

Example 4 There are four possible reductions R(M, ui) for i ∈ {0, 1, 2, 3}, for variable U
of model M of Figure 1. With data D of Figure 1, the solution set K(U) for R(M, u2)
is as shown in Example 3. The reduction R(M, u0) returns a model with the solution
set K(U) = {[P (u1) = 0.462, P (u2) = 0.323, P (u3) = 0.215]}, while both R(M, u1) and
R(M, u3) are models with empty solution sets for D.

For n = 2, it is no longer the case that all of the size 22 + 1 = 5 subsets of {P (ui)}15i=0

satisfies g(z). The total solution space of
(
16
5

)
= 4368 possible solutions may still be searched

exhaustively, tested for satisfiability against g(z), then tested by solving the equation system

for possible solution models. For n = 3 however,
(

22
n

2n+1

)
=

(
256
9

)
≈ 1016, and a complete

search is no longer feasible. Thus, a heuristics based search approach is described here to
allow faster retrieval of models in SM,D, based on ensuring satisfiability of the CNF formula.

4.4. Heuristic-based solution search

Now, instead of testing every possible subset among the
(

22
n

2n+1

)
possibilities, the approach

presented here will generate sets {zi}i∈I of size |I| = 2n +1 in such a way that 1) the CNF
formula is guaranteed to be satisfied and 2) the solution for {P (ui)}i∈I is more likely to be
a probability distribution than for randomly sampled subsets. Per conditional distribution
P (Y |X = xj) over binary Y , each P (ui) contributes to exactly one of P (Y = 0|X = xj) or
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P (Y = 1|X = xj). Thus for a pair of distribution clauses, any zi not part of one clause is
part of the other. This can be seen in Figure 2, which shows the CNF disjunction clauses
when Y has two endogenous parents X1, X2.

CNF disjunction clauses P (Y |X1, X2)

z0 ∨z1 ∨z2 ∨z3 ∨z4 ∨z5 ∨z6 ∨z7 P (Y = 0|X1 = 0, X2 = 0)

z8 ∨z9 ∨z10∨z11∨z12∨z13∨z14∨z15 P (Y = 1|X1 = 0, X2 = 0)

z0 ∨z1 ∨z2 ∨z3 ∨z8 ∨z9 ∨z10∨z11 P (Y = 0|X1 = 0, X2 = 1)

z4 ∨z5 ∨z6 ∨z7 ∨z12∨z13∨z14∨z15 P (Y = 1|X1 = 0, X2 = 1)

z0 ∨z1 ∨z4 ∨z5 ∨z8 ∨z9 ∨z12∨z13 P (Y = 0|X1 = 1, X2 = 0)

z2 ∨z3 ∨z6 ∨z7 ∨z10∨z11∨z14∨z15 P (Y = 1|X1 = 1, X2 = 0)

z0 ∨z2 ∨z4 ∨z6 ∨z8 ∨z10∨z12∨z14 P (Y = 0|X1 = 1, X2 = 1)

z1 ∨z3 ∨z5 ∨z7 ∨z9 ∨z11∨z13∨z15 P (Y = 1|X1 = 1, X2 = 1)

Figure 2: The CNF formula disjunction clauses over variables {zi}15i=0 when Y has two
endogenous parents X1, X2. Each pair of consecutive rows make up a single conditional
distribution. Conditional probabilities are shown in the rightmost column, with left hand
clauses corresponding to conditional probabilities for Y = 0 given different values for parents
X1, X2, and right hand clauses correspond to conditional probabilities for Y = 1. Over the
set of left hand clauses, two examples of variable sets are circled that both satisfy the full
formula. Both sets {z7, z11, z13, z14} (in red) and {z3, z13, z14} (in blue) are such that at
most one of the variables is present in each clause, such that the remaining variables must
be present in the corresponding right hand clause.

Now, this relationship between the clauses within a distribution may be exploited in
order to generate subsets of variables that satisfy the CNF formula. Specifically, for any
collection of exactly one clause per configuration of endogenous parents x, selecting a set of
two or more variables such that no two variables of the set appear in the same clause will
satisfy the formula, due to the inverse symmetry across distributions. See Figure 2 for an
example, where both sets {z7, z11, z13, z14} and {z3, z13, z14} are identified as CNF-solutions
for n = 2 over the clauses for P (Y = 0|X1 = x1, X2 = x2), ∀x1 ∈ ΩX1 , x2 ∈ ΩX2 .

Furthermore, this can be done systematically such that distinct partial solutions are
generated across all 2n possible sets of clauses. The approach generates partial CNF-
solutions of size m, where 2 ≤ m ≤ 2n, but any choice of additional variables may be
included not affecting satisfiability, in order to find complete 2n + 1-size solutions. While
the approach so far guarantees that all solutions I searched are such that {zi}i∈I solves the
CNF-formula, the corresponding unique solution to (4) will most of the time not correspond
to a probability distribution. Thus, in order to focus the search towards the probability
simplex, the approach may consider only some of the 2n subsets of clauses to build the partial
solutions across. Specifically, clauses may be selected according to their corresponding
probability: For each distribution, choose the clause of lowest probability, and for this set
of lowest probability clauses, build partial solutions. An example is shown in Figure 3.

This approach biases the search towards solutions that will have more non-zero com-
ponents in equations that sum to probabilities > 0.5, and fewer non-zero components in
equations that sum to < 0.5. Expanding the partial solutions to 2n + 1 size could similarly
be approached by favouring variables that appear most often in higher probability clauses.
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CNF disjunction clauses P (Y |X1, X2)

z0 ∨z1 ∨z2 ∨z3 ∨z4 ∨z5 ∨z6 ∨z7 P (Y = 0|X1 = 0, X2 = 0) = 0.95

z8 ∨z9 ∨z10∨z11∨z12∨z13∨z14∨z15 P (Y = 1|X1 = 0, X2 = 0) = 0.05

z0 ∨z1 ∨z2 ∨z3 ∨z8 ∨z9 ∨z10∨z11 P (Y = 0|X1 = 0, X2 = 1) = 0.78

z4 ∨z5 ∨z6 ∨z7 ∨z12∨z13∨z14∨z15 P (Y = 1|X1 = 0, X2 = 1) = 0.22

z0 ∨z1 ∨z4 ∨z5 ∨z8 ∨z9 ∨z12∨z13 P (Y = 0|X1 = 1, X2 = 0) = 0.07

z2 ∨z3 ∨z6 ∨z7 ∨z10∨z11∨z14∨z15 P (Y = 1|X1 = 1, X2 = 0) = 0.93

z0 ∨z2 ∨z4 ∨z6 ∨z8 ∨z10∨z12∨z14 P (Y = 0|X1 = 1, X2 = 1) = 0.39

z1 ∨z3 ∨z5 ∨z7 ∨z9 ∨z11∨z13∨z15 P (Y = 1|X1 = 1, X2 = 1) = 0.61

Figure 3: The CNF formula disjunction clauses sorted by probability distributions. Clauses
to the left correspond to lowest probabilities. Choosing partial subsets over these clauses
bias the selected variable set such that variables appear more often in high-probability
clauses. Circled in red is the size 4 partial CNF-solution Z1 = {z1, z2, z7, z11} and circled
in blue is the size 3 partial CNF-solution Z2 = {z1, z2, z15}. Indeed, for each clause on the
right hand side corresponding to higher probabilities, |Z1|− 1 = 3 of the variables in set Z1

appear, as does |Z2| − 1 = 2 of the variables in set Z2.

Finally, note the special case in which P (Y = yk|X = xj) = 0 for one or more pairs of
values (yk,xj) ∈ ΩY ×ΩX. If a conditional probability equals 0, it forces every component of
the corresponding sum

∑
u∈Ωk,j

U
P (u) to be 0, and by such reduces the number of equations

in the system by 1. Thus solution sets I are now to be of size 2n. This also affects the
CNF formula in the following way: The disjunction clause corresponding to the equation
in question becomes negated, ensuring no variable part of that clause can evaluate to True
while solving the formula. This similarly extends if more than one conditional equals 0,
reducing both the number of equations and the size of the set of variables to chose from.

In order for the heuristics-based search to deal with such special cases most efficiently,
for any equation

∑
u∈Ωk,j

U
P (u) = 0 part of the system, the solutions searched are restricted

to contain exactly one variable zi for which ui ∈ Ωk,j
U . Then, P (ui) is solved to be 0 as part

of a now still unique solution to the 2n + 1 equations of the linear system.

5. Experiments

For validation, we consider a benchmark of 380 randomly generated Markovian SCMs with
all the endogenous variables being binary. All the models have the inverted tree topology
discussed in Section 4.2, where a variable Y has a set of independent parents X. Among
all the models, 41 have three parents, whereas the rest have two. The SEs are randomly
selected to be either canonical or non-canonical. After randomly initializing the exogenous
distributions, an M-compatible dataset of 1000 instances is sampled. For each model,
different queries are considered, specifically PS and PN with Y as the effect and each of the
parents in X as the cause. The benchmark and Python code for replicating the experiments
is available in a dedicated GitHub repository1.

1. https://github.com/PGM-Lab/2024-PGM-DCCC
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Figure 4: Average computation time (left) and error with respect the exact bounds (right).

The results of the experimentation are summarized in Figure 4, where our method
(DCCC) is compared against EMCC with a fixed number of iterations of 50, 100, and
150. The two subfigures on the left show the average computation time (i.e., learning and
inference times) for an increasing number of generated solutions (i.e, parameter N from
Algorithm 1). For the two-parent case, DCCC is applied exhaustively, whereas a heuristic
search is used for models with three parents. In all cases, DCCC is the most efficient
approach. The two subfigures on the right depict the RMSE (root mean squared error)
with respect to the exact bounds computed using the exact method proposed by Zaffalon
et al. (2020). DCCC achieves the lowest error levels for a given number of visited solutions.
Although EMCC could potentially reach a similar error with a large number of iterations,
this would be extremely time-consuming.

6. Conclusions and future work

In this paper we propose a method for bounding unidentifiable queries in SCMs using a
divide and conquer strategy to transform a general causal model into a set of models with
low-cardinality exogenous variables, in which we can calculate any query using standard
Bayesian network inference. Bounds for the query in the original model are then efficiently
approximated by aggregating the results from these smaller models. The experiments show
that the proposed method is more efficient than current state of the art. We envision at
least three directions for future research: Firstly, the theoretical properties of the algorithm
need further investigation. Secondly, we want to extend the applicability of the approach
to more general model classes, like non-Markovian SCMs. Finally, we want to investigate
other ideas for generating efficient heuristics for which reductions to prioritize (for instance,
make the selection of reductions informed by the query being calculated).
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