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Abstract. Following the concept of statistical convergence, we define and study statistical

analogue cr-rncepts <;f convergence ancl Cauchy's sequence on a probabilistic no¡med space that
is endowed with a strong topology. Some important properties of statistical convergencre wcre

also extended in this new setting.
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Introduction

Probabilistic normed (PN) spaces are real linear spaces in which the norm of

each vectol is an applopriate distribution function lathel than a number. Such

spaces were first introduced by A. N. Serstnev in 1963 117].

In recently, c. Alsina et al in 11] introduced a new definition of PN spaces

that includes Serstnev's and leads naturally to the identification of the principle

class of PN spaces, the Menger spaces. In this paper we investigate questions

of statistical continuity in PN spaces under the new definition. We recall some

notation and terminoiogy used in [20].
A+ denote the set of all one-dimensional probability distributions whose

support is the positive half-line, i.e., A+ is the set of all functions such that
Dom.F: [O,*co], Ran ,F' g [0,1], ¡'(0) :0, ¡'(+oo) : 1, and,P is non-

decreasing and left-continuous on (0,*oo). The subset p+ I tr+ is the set

D+ : {F € A+: l-F (+oo) : t1.

iWe wish to thank Prof. C. Sempi fbr several helpful comments. The first autho¡ was

supported by grants from Ministerio de ciencia y Tecnologia (MTM2006-12218) of spain.
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Here l-l(r) denotes the left limit of the function / at the point r, l- f (') :
Iim¿__rr_ /(ú). The set a+ is ordered by the usual pointwise ordering of functions;

and eo is a special function in A+ given by

In [18], D. L. Sibley gave a useful modified Lévy metric d¿ in A+' For

F,G e A+,

dL(F,G): inf{h € (0,11: both ltr,G;hl and [G, -F;h] hold]'

where lF,G;lt) denote the condition G(r) < F(*+ h)+ lt', for r € (0' i)' There

is a natural topology on A+ that is induced by the modified Lévy metric d¿

(see [20], sect.4.2). convergence with respect to this metric is equivalent to

weak'convergence of distribution functions. i.e., for any sequence {]7¿} in A+

and F € A+, the sequence {d7(F¡",F)} converges to 0 if and only if {¡¡(")}
converges to F(z) at every point of continuity of the Iimit filnction f'.

1 Lemma. The followi'ng statements hold:

(i) For any F € A+, d^F,es): inf{h: F'(h+) } I - lt'},

(i,i,) For anyt) 0, -F(¿) >I-t i,f and only i'f d¡(F,e,¿) <t,

(i'ii) If F,G € L+ and F < G, then d1(G,es) < dL(F,€1).

A trtangle function is a binary operation on A+ that is commutative, asso-

ciative, non-decreasing in each place, and has t0 as an identity element. Conti-

nuity of a triangle function means uniform continuity with respect to the natural
product topology on A+ x A+'

Typical continuous triangle functions are the operations ry and 25, which

are, respectively, given by

r7(F. G)(r) :,?,jg, 
"(F(u)' 

G(r)).

and
rs(F,G)(r) : ,+lf:,S(F(u), G(r)),

for all F,G e A+ and all r € R [20]. Here ? is a continuovs t-norm and s
is a continuotts t-conorm, i.e., both are continuous binary opelations on [0. i]
that are commutative, associative and nondecreasing in each place; 7 ha"s 1 as

identity and ,5 has 0 as identity. If ? is a ú-norm and ?* is defined on [0, 1] x [0, 1]

via
T*(*,Y) : 1 - T(1 - r,I - A),

, \ fo, rso",e,tr]:lt, r>a.
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then ?* is a ú-conorm, specifically the ú-conorm of T'
The most important ú-norm are the functions w, Prod, and M which are

defined, respectively, by

W(a,b):max(¿+b-1,0),
Prod(n, b) : ab,

M(a,b): min(¿, b)'

Their corresponding ú-conorms are given' respectivel¡ by

W*(n,b) : rnin(¿ + ü' 1)'

Prod*(o,b):o*b-ab,
M* (a,b) : max(a' b)'

2 Definition. [1] A probabilistic normed space (bliefly, a PN space) is a

quadruple (V,u,r,r*), where V is a real linear space' r and r*, with r ( T* are

continuous triangle functions, and the probabilistic nolm / is a mapping from

V into A+ (writing uo for u(p)), the following conditions hold:

(N1) zo : €o if and only if p : p(¡¡" zero vector of V);

(N2) z-o : up for a¡l p e V;

(N3) zolo > r(up,ur) for all P,q €V;

(N4) ruo 1r*(uor,u1t-eq) forevery pe V andforeverya€ [0,1]'

If. r : T7 and T* : TT'* for some continuous ú-norm 7 and its associated

ú-conorm 7*, then (V,u,r7,27-) is a Menger PN space'

Let (1/, u,T,r*) be a PN space. Since z is continuous, the system of strong

nei,ghborhoods of zero

{¡/o(^): .\ > 0}, (1)

where
Afa(^) : {p e V: d'¡(up,Eo) < )}. (2)

determines a first countable Hausdorff topology on I/, called l,he st'rong topology

(briefly, s-topology). Thns, the s-topology can be completely specified by means

of S-convergence of sequences'

3 Theorem . t20l In the szmple space (s, d, G) , the strong topology is equ'iu-

alent to the d,-rnetric topology when G € D+ . IÍ G 4 D+ , then the strong topology

co'ínc'ides wi,th the d'iscrete topolooy.

The following lemma is an immediate consequence of the definition of neigh-

borhood of. zero and Lemma 1.1(ii).
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4 Lemma. In a PN space (V,u,r,T*), Jor each P €V, we haue

ur(t)>I-t € peNe(t)

5 Definition. [20] (i) A sequence {pn} of elements of v is said to be 5-

convergent to á, the null vector of V, in the S-topology if for any ) > 0 there

is an integer K()) € N such that p¡ € 
^r0()) 

whenever k > K(^). In this case

we write pk t d or 5 - Iim¡ Px:0.
(ii) A sequence {p¡} is said to be a E-Cauchy sequence if for any ,\ > 0, there

is an integer ¡1(^) € N such that p¿ - Pt € 
^,rd()) 

whenever k'l > M(^)

6 Remark. of course, there is nothing special about á as a limit; if one

wishes to consid.er the convergence of the sequences {pr} to the vector p in the

s-topology, then it suffices to consider the sequence {px-p} and its convergence

to á. In other word, 5 - lim¿p¡ : p is eqttivalent to 5 - lim¡(p¿ - P) : 0'

7 Lemma. [2] For anY a € IR, any P€V, and any e ) 0, there er'ísts a

)t0 suchthat

ape Ne(e) wheneuer ee A/B(^)

8 Lemma. [2] If 0 ( a ( !, the'n

uop 2 up

for any p €V.
we observe that, in view of Lemma 1.2 and (N3), we have the following

Iemma.

9 Lemma. Let (V,u,r,t*) be a PN space' For euerA p1q,r €V,

d,¡(up-r,eo) < d'r(r(up-q,uq-r),eo)' (6)

10 Definition. Let (V,u,r,r*) and (V' ,u' ,2, r*) be two PN spaces with the

^9-topology. A map f :v -+ v is said to be s-continuous atu€ I/ if for every

,r*ighborhood of /(u) e v" A['¡¡u¡(s), there exists a neighborhood of u e v,
Np)(ü such that

f (") eNj1,;(") whenever r e N"(t)' (7)

The map / is said to be a S-continuous map if it is s-continuous at every

element of V.

(3)

(4)

(5)
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2 Statistical Convergence of rcalf complex numbers

The idea of the statistical convergence of real numbers ware independently
introduced by Fast [6] and Steinhaus [19]. But the rapid developments started

after the papers of salát [15], Fridy [8] and connor 15]. This concept was firrther
extended to Banach spaces by Kolk [12], to locally convex spaces by Maddox 113]

and to fuzzy numbers by savaq [16]. Recently, many papers published on the

study of statistical convelgence in many aspects of real numbers and fizzy
numbers by numerous authors (see ( [3,4,9,74]).

In this section, we list some of the basic concepts of statistical convergence

of real numbers and we refer to [7-9] for more details.

11 Definition. l7l It K is a subset of the positive integers N, then K"
denotes the set {k e K: k < n} and lK"l denotes the nttmber of elements in

Kn
The natural density of 1( is given by

d(K) : JrLry (8)

1-2 Remark. Clearly, finite subsets have zero natural density and ó(K") :
1 - d(¿f) where K" : N\K.

L3 Definition. K is said to be statisticallv dense if

d(K):1. (e)

The set {k e N: k f m2,m:1,2,...} is statistically dense, while the set

{3k: k : 1,2,'..} it not. A subsequence of a sequence is called statistically
dense if the set of all indices of its elements is statistically dense.

We will be particularly concerned with integer sets having natural density

zero. So,

14 Definition. If {r¡} is a sequence such that rA satisfies property P for

all k except a set of naturai density zero, then we say that {z¿} satisfies P for

"almost all k" , and we abbreviate this by " a.Q.k" .

15 Definition. A seqlrence {r¡} of (real or complex) numbers is said to be

statistically convergent to some number L,lf for every € ) 0, the set K. : {k €
N: lr¿ - Ll> e) has natural density zero, viz.

83

d(K.; : g'

In this case we write súaú - lim¡ nk: L or rk ya3 L.

(10)
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16 Definition. A sequence {r¿} is said to be a statisti'cally cauchy's se'

quence if for each e > 0' there exists a number ¡¿: l/(e) such that

ó({k e N: lz¿ - rNl > €}) :0,

i.e.,lr6 - :rNl < e fot a.a.k.

Friday [g] proved that a sequence {r¿} is statistically convergent if and only

if it is statistically Cauchy's sequence'

3 Statistical Convergence on PN spaces

Recently, Karakus [11] has introd.uced statistical convelgence in Serstnev

PN spaces. In this section, we extend the idea of statistical convergence to the

setting of sequences in a PN space endowed with S-topology'

17 Definition. Let (V,u,r,r*) be a PN space' let {r¿} be an V-valued

secluence, and .L € v. The sequence {p*} it s-statistically convergent to d

provided that for everY Ú > 0

6({k: p¡, d 
^fo(r)}) 

: 0,

or equivalently bY (7)

iim 1l {k S n' px é Ne(t)}l : o,
n n,'

i.e., pt" e Ne(t), for a.a'k.In this case' we write p¡ s--*t 
0 or 5-stat- limp¡":0'

where g is called the ,S-statistical limit (briefly' a S-stat-limit) of {p¿}'

The following lemma is an immediate consequence of above definition and

the well-known density properties.

l-8 Lemma. Let (V,v,r,r*) be a PN space' Then, for eaery t > 0 the

following statetnents are equiualent:
(i,) sst - tim¡(P¡) : B,

(iü 6({k € N: p¡ 4 Ne(t)}) :0,
(ii,i) 6({k € N: d¿(zo'so) > ü)) :0,
(iu) 6({k € N: d¿(zou.so) < f)) : l.

19 Theorern. Let (V,u,r,r*) be a PN space' If o sequence {p¿} is 5-

stati.sti,cally co,nuergent in the s- topology, then s-stat-li'mi't i's uni'que.

Pnoo¡.. Assume that 5 - stat - li,mp*- p and 3 - stat - li'mpn : q with

p * q.For any ú ) 0, define the following sets:

KIQ): {ke N: pk-P(Ne(t)},

(11)

( 12)
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K2(t): {ke N: pk-qf Ne(t)}.

Let K(t) : K{t)nK2(t). We observe that, since ó(1(1(ú)) : 0 and 5(K2(t)) :0
for all ú > 0, we have d(11(ú)) : 0 for all ú > 0 which implies that ó(N\K(¿)) : 1

for all ¿ > 0. Let k'¡ € N \ 1{(ú), then p¿n - p e N6(t)' Let d¡(uno,-n,€o) : a'

Then ú-c > 0 and the uniform continuity of z implies that there exists a ú' ) 0

such that
d,7(r(uouu-r,G),rrrn-r) 1t - a

whenever rt,1(G,es) < ú/. Now Ietp¡",-q e Ng(t'),t\end,1(t'rr -u,eo) ( ú/' Thus,

by equation (6), we have

d,¡(u7r-q, es) < d,L(r(upu¡-yt, vpr,n-q), €o)

3 d, 1(r (uro, -p, up po - q), un *u -n) + d v(upo -p, eo)

<t,-aIa
:L.

Hence p- q € NeQ). Since ú ) 0 is arbitrary' bV (3)' we get up*q: es which

yields p - Q : 0, i.e', P - g' This compietes the proof' @Ei].l

20 Lemma. Let (V,u,r,r*) be a PN space. If 'S-stat-limp¿ 
: p and f :

V -+ Vt, tlef'nert for ult poi,nt i'n V, 'is a 3-co'nt'i'nuous funct'io'n on V, then

S-stat-lim/(P¿) - f(P)) : e.

PROOF,. Since / is s-continuous function, for every e > 0 there exists a

.\)0suchthat

p* - P€ 
^,6(^) 

implies f(pü - f(p) e Ne'G)

But then

f@ü - f(p) f Ne'k) implies Pn - P ( Ne(x)'

Thus

{k e N: f(pü - f(p) # Ne,k)} g {k € N, pr - e I Ne(x)}

and therefbre

ó({k e N' /(p¿) - f(p)d ¡B(.))} < ó({k € N: p¿ -'p É Jr-eQ)}) : o

becanse S-stat-limnpn - p - 0. This proves 'S-stat-lim*/(p¡') - /(r) :-0)'
IQEDI

21 Theorern. Let (V,v,r,r*) be a PN space. If S - lim(pr) : 0, then

S-sta't-lim(P¿):B'
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Pnoor,. By hypothesis, for every ú ) 0, there is an integer K e N such that
pk e Ne(t) whenever k > N(¿) This guaranties that for every ú > 0 the set

{k e N: p¡" / Ne(t)} has at most finitely many elements. Thus, by the property

ofdensit¡wegetd({keN'pr#^'r0(¿)}):0'ThereforeS-stat-lim(p¡):á'
the conclusion. IQEDI

22 Theorern, Let (V,u,r,r*) be u PN s'puce. A seque'nce {px} i'nV is 3-
stati,sti,cally conuergent to 0 i,f and only i'f there ertsts a stati,sti,cally dense subset

K: {h 1k21. } q N such thats -límn(p¡"^)--0.
PROOp. The proof of sufficiency is easy and can be omitted, Suppose that

S-stat-lim(pr) : á. Put K,,,: {n, € N:P,n€Ne(*),tn € N}' Since,A/e(t1) I
Ne(tü whenever t1 ) t2, for each rn € N we have

K1 )K2 l'IKr,r)K7¡¡¡1 2"',

and S-stat- Iim(P¿) : á implies

6(K,,,) : I for each rn € N'

Now, choose kt € Kt. According to (14), there exists a kz ) kt,
that, for every n ) k'2

111
;ltn t n: p¡ € NeQ)It > 

2.

Again by (14) there exists a k3 ) k2, k3 e K3, such that, for every n ) k3

ltí = 
n: p¡ e"rr'tf lf r t l

and so on. So by induction we get an increasing index sequence

h 1kz

strch that for every n ) ki

lKil - 1tt, < n: p¡, €¡rrtlllt > r= (i :2,3,...). (1b)
n n' .:l J

Now, we construct the subset K g N as follows:

I{:{n€N: 13n1ft}utU{ne Ki:k¡1n <k¡+t}l (16)

j€N

we show that K e N is statistically dense,i.e., ó(K) : 1. Let n ) k1. Then r¿

belongs to {rz € Ki: ki 1n 1k¡".1} for some j € N' Thus by (13)' (14) we

conclude that,

(13)

(14)

k2 €. K2, such

( 17\lKl lK;l i-I
nn'J
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and it follows that ó(K) : 1. Let ) > 0 and choose an integer j e N such that

] < ,1. Let n2 k¡ and n e K. Then, by definition of K, there exists an integer

*>.¡ such that k*ln 1km+r and n € K¡' Hence, for every 
^ 

> 0, we get

p, e Ne() g ¡/p(^), (18)
J

for every n2k¡ and n € K' This proves that 5 -limnptn:Q 6EDl

23 Lemma. Let (V,u1r'I',rT'*) be u Me'nge'r PN s'pace wi'thT(r,r) ) r
for eueryr € 10, 1]. 1/ s-stat-lim¡p¡ - p, 5-stat-lirn¡,q¡" - q and a'is a real

number, then

(t) 9-stat- lim¿(p¿ 'f qn) : P + q,

(i,i,) S-sta!- lim¿(P¿ - qk) :'P - Q,

Pnoor'. (l) For every € ) 0, define the following sets:

P:{n€N:p¿ -p(NeG)},

Q:{n€N:s¿'q(Nok)}
Then, 6(P) : 0 and ó(Q) : 0' Now, Iet K ! (P nQ) Then, clearly ó(K) : g

which implies ó(N//f) : 1. If ,k e N/K, then we get

u(pt"+qt)-@+q) (e ) > 
,l'f;:,T('ro-o('u), 

unr-r('u)) '

Now, we choose ) < e such that.\: min(u,u). we note that ¡/d(^) q 
^/e(e)Then the above inequality becomes

u(pt+qt)-(p+q¡(e ) > 
133 

r(zn--r()), run*-n()))

2 T (upr-p(,\), znr-n()))

> 
"(1-),1-^) 

>1-^
) l-e'

This shows that

ó({he N'(pr +sü- @+a) (Nek)},

i.e., S-stat-lim*(p¿ + qk) : P + q.
ffi
la¿LUl(ii) Similar to (i).
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