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Abstract

In the last few years, many closed-loop control systems have been introduced
in the automotive field to increase the level of safety and driving automation.
For the integration of such systems, it 1s critical to estimate motion states
and parameters of the vehicle that are not exactly known or that change over
time. This paper presents a model-based observer to assess online key mo-
tion and mass properties. It uses common onboard sensors, 1.e. a gyroscope
and an accelerometer and 1t aims to work during normal vehicle maneuvers,
Le. turning motion and passing. First, basic lateral dynamics of the vehicle
is discussed. Then. a parameter estimation framework is presented based
on a Extended Kalman filter. Results are included to demonstrate the ef-
fectiveness of the estimation approach and its potential benefit towards the
mmplementation of adaptive driving assistance systems or to automatically
adjust the parameters of onboard controllers.
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1. Introduction

The performance of driving assistance systems may be improved if the
unknown parameters of the underlying vehicle model can be measured and
updated. Weight of the vehicle, road adhesion, drag coefficient and tire cor-
nering stiffness are examples of unknown parameters. Specifically, the mass
of a vehicle plays an important role in terms of acelleration/braking, han-
dling and comfort performance. However, it is subject to variations during
operating conditions. For heavy duty wvehicles, the weight can vary as much
as 400% according to the payload. Anti-lock Braking System (ABS), Elec-
tronic Stability Program (ESP), and Adaptive Cruise Control (ACC) are all
examples of controllers that relies on the accurate value of the vehicle mass
for proper operation. Current implementations work with the assumption of
a maximum payload to provide passengers with the highest level of comfort
and safety independently of the load conditions. Therefore, the introduction
of automatic load detection systems will be the basis for some more vehicle
mmprovements. As soon as onboard controllers can incorporate iformation
about the actual vehicle weight in their response, this will enable them to
provide even more efficient comfort and support for drivers. Therefore, they
may achieve better results by taking the actual vehicle weight into account.
The paper i1s orzganized as follows. Section 2 surveys related research point-
ing out the novel contributions of the proposed approach. In Section 3, hasic
concepts of lateral vehicle dynamics are recalled that serve as a basis for the
model-based observer described in Section 4. The proposed method recur-
sively updates the vehicle mass providing flexihility to the observer. The

technique is studied in a sequence of simulations, as detailed in Section 5,



attesting to the feasibility of the proposed approach. Finally, Section 77

concludes the paper.

2. Related Work

Vehicle parameter estimation is a critical issue connected with the inte-
gration of onboard control systems, especially when these parameters change
over time or they are difficult to measure directly [1|. Therefore, the availabil-
ity of an online estimation method for the vehicle's weight would be valuable
as it greatly affects its behaviour in terms of longitudinal, lateral and vertical
dynamics. In addition, as the level of driving automation increases, there are
more control modules that may benefit from on-line estimation of the vehi-
cle’s load, including longitudinal control of platoons of vehicles [2], emission
reduction and transmission control [3].

In general, the methods proposed in the literature can be classified in two
broad families: sensor-based and model-based methods. In sensor-based
methods, an additional dedicated sensor is emploved. As an example, the
vehicle’s weight can be estimated by monitoring the suspension deflection us-
ing strain gages [4] or an electro-magnetic sensor [5]. Recently, Continental
has announced a future generation of sensors, which will be fitted directly
underneath the tread of the tire to measure the total weight of the vehicle [6].
As the contact patch of the tire increases with the vertical load, by detecting
the size of the contact area, it will be possible to infer information about the
vehicle's weight.

In contrast, model-based (or indirect) methods use a model of the vehicle,

software algorithms and exdsting sensors (different from direct mass sensors)
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to estimate the unknown parameter. They represent a promising solution in
terms of cost-effectiveness (no extra hardware). Most of the research in this
field focuses on the longitudinal dynamic problem. Examples of adaptive
controllers for vehicle speed control can be found in [7], [8]. Simultaneous
estimation of vehicle mass and road grade has been studied by many. For
example, an adaptive control scheme for longitudinal control of heavy-duty
vehicles is proposed in [9], whereas [10] propose the use of Recursive Least
Squares (RLS) with multiple forgetting factors. An EKF approach is pro-
posed in [11] using two possible measurement configurations: the first one
using only the vehicle speed and a second one in conjunction with an addi-
tiomal longitudinal accelerometer. The advantages of using an accelerometer
are also shown in [12] where a method to estimate vehicle mass and road
grade using an EKF is presented. An active estimator is proposed in [13] to
enhance parameter identifiability through the use of an EKF for parameter
estimation and model predictive control to control vehicle speed.

A body of research also deals with vertical dynamics for vehicle mass esti-
mation. Often, these methods assume that the terrain profile is known or
estimated [14], [15], [16], [17]. In [18] the vertical response is analyzed in the
frequency domain to reveal important resonance frequencies related to the
value of the sprung mass.

Another strand of the research on mass estimation focuses on powertrain dy-
namics. For example, in [19] the mass of a truck is estimated by measuring
wvehicle speed and engine torque and angular velocity during acceleration and
gear shifting stages, resulting in an accuracy of 10%.

In this work, an adaptive observer for automatic weight estimation is pre-



sented based on the lateral dynamic model of the vehicle, which represents a
novel contribution to the literature. An EKF formulation is proposed where
the varying parameter is included in the state vector and continuously up-
dated using current sensory data. This formulation has general value and it
may be used to track any other time-varying parameter provided that the
observability condition 1s satisfied.

3. Vehicle model

The lateral behaviour is an important aspect in vehicle design, as it di-
rectly affects handling and comfort properties. Figure 1 shows the two degree-
of-freedom model used in this research commonly known as the “bicycle” or
“single track” model that holds under the following simplifications [20]: no
weight transfer, constant vehicles longitudinal velocity u, equal internal and
external dynamics so that tires of the same axle can be collapsed, linear range
of the tires, rear-wheel drive, negligible motion resistance, and small angle
approximation. The two degrees of freedom are the vehicle lateral velocity v
and yaw rate . The equations of motion for the single-track model are given

by
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where M and I are the mass and the rotational inertia of the vehicle, 4 is
the front steer angle, a and b are the distance of the centre of gravity & from
the front and rear axle, respectively, and Cr and 'z are the front and rear

tire cornering stiffness. In the study of lateral dynamics 1t 1s often useful to

o



Figure 1: Lateral vehicle dynamics

refer to the sideslip angle 3, defined as the angle between the vector velocity
pertaining to the centre of mass and the longitudinal axis of the vehicle Xy
# = arctan i (2)
u
Note that in conventional models, the mass is usually treated as a fixed pa-
rameter that typically refers to the maximum load condition. In this study,
M is treated as a time-varying parameter. As a consequence, Eq. (1) ex-
presses a non-linear relationship hetween v, v, and M.
The method proposed in this paper for online mass estimation is based on
the use of a vertical gyroscope and a lateral accelerometer. Considering that
both sensors are generally available onboard via the ESP system, this ap-
proach results particularly attractive in terms of cost-effectiveness, requiring
only additional software efforts.

The gyro signal r, is generally subject to an offset error and needs to be mod-
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eled [21]. A good working approximation of gyro measurement is ry = v+ b,.
The relationship between accelerometer’s measurement and the state vari-
ables is ay = 0 + ur.
The state evolution of the nonlinear system can be represented in compact
matrix form as

#(t) = f(=(t),a(t)) (3)
where x is the state vector and f(.) is the state evolution function. = is given
by

z = [v, 7,0, %, by, M]T (4)
Similarly, if the measurement vector z is introduced

Ty

Iy

a measurement equation can be drawn in compact matrix form as

z(t) = h(=(t)) (6)

In summary, Eq. (3) and Eq. (6) can serve as the basis for non-linear
estimation methods. In the context of this problem, an extended Kalman

filter or EKF is found to be a good solution, as explained in the next section.

4. Vehicle estimation

It 15 not always possible to directly measure all states describing the ve-
hicle’s dynamic behavior because of technical and/or economic reasons. In
addition, some of the model parameters may be uncertain or change over
time. Nevertheless state/parameter estimation may be inferred by deriva-

tion using other available sensors through the use of observers or virtual
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sensors. Observation means the extraction of information of a given variable
of interest that i1s not directly measurable by using only available sensor data.
The 1dea behind the proposed research is to implement a model of the real
system in an onboard computer that runs in parallel with the system itself
providing estimation of a given set of states or variables of interest. Ome
challenge is that the system to be observed is usually excited by a stochastic
noise, due for example to imperfections in modeling the system. In addition,
sensor measurements may be biased and affected by their own stochastic
noise. Therefore, a stochastic closed-loop cbserver 15 necessary. One com-
mon solution 1s the Kalman filter whose scope 1n this study 15 extended to
mass estimation as well by incorporating M in the state vector. The pro-
posed framework is of general value and may be easily modified to track
other time-varying parameters. In the proposed embodiment, explained in
the block diagram of Figure 2, the Kalman filter-based observer runs in
parallel with the system. Driver commands, i.e. the steer angle and the
longitudinal speed (4, u) and measurements of vehicles’s response (rg, a,) are
fed into the estimator that recursively estimates the states (i.e., 3 and r) and
parameters (i.e., M) of the system online during normal vehicle manceuver-
ing. Additionally, the estimator provides estimate of gyroscope's bias that

can be used for on-line sensor calibration.

4.1. Model-based Extended Kalman observer

The Kalman filter addresses the general problem of estimating the state
of a discrete-time controlled process that is governed by a difference equation

(i.e., Eq. (3)) with a measurement (i.e., Eq. (6)). The first step is to express
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Figure 2: Block diagram of the proposed approach for state/parameter estimation using
an EKF running in parallel

the non-linear model in a stochastic discrete-time state-space representation
zp = fZr_1,0k) + wr_1 (7)

2 = h(ze) + v (8)

where z;, = [vg, vy, O, Tg, by g, Mi]T is the state vector at time k, & is the
mput vector at time k, and z; is the observation sampled at time %. If the

system 15 discretised using the first-order Euler approximation with sampling



time At, f(.) becomes
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whereas h(.) can be obtained as

hy:rge =Tk

(10)

hy:ayp =0+ urg,

The process disturbance and the measurement noise, wyp and v, respec-
tively, are assumed to be Gaussian, temporally independent of each other,
and white, ¢} and R being the process and measurement noise covariance,
respectively.

The Kalman filtering estimation operates through the prediction-correction

cycle expressed by an a priort estimation:

2 = f(&x_1,0%)

(11)
By = 4P, AL +Q

and a measurement update, which is only performed when the measurements
are avallable, providing an a posteriori estimation:

K, = PJ__HE{H;,P{:HT + R)1
iy = 25 + Ki(zx — Hedy) (12)

Po=(I - K.H, )P
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where &, is the predicted state vector, P is the variance matrix for 2, K
15 the gain matrx, x; 1s the updated state vector, and P, i1s the updated error
covariance estimate. The prediction equations are responsible for projecting
forward in time the current state and error covariance estimates to obtain
the a priori estimate for the next time step. The correction equations are
responsible for the feedback, i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.

In these equations, A and Hj. are, respectively, the process and measurement
Jacobian (matrix of partial derivatives of f (k. respectively) with respect to

x) at step k of the nonlinear equations around the estimated state

1 0 At 0 0 O
1] 1 0 At 0 O
A 0 0 0 A
Ak = ASI 32 36 (13)
Apg Ap 0 0 0 Ay
0 0 0 0 1 0
0 0 a 0 0 1
g1 0010
iy — (14)

Oul0D0O0
Please refer to the Appendix for the expression of the terms A;; in Ag.
Finally, one should note that the measurement noise covariance H is used
to define the error of the sensor readings. Table 1 collects the sensor noise
and bias used in this research that can be found on the sensor specification

sheet or from observing static data from the sensor.
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Tahble 1: Sensor technical details

Gyroscope  Accelerometer

Sensor noise (1) 1 deg/s 0.5 m/s*
Output rate 200 Hz 200 Hz
Offset 0.1 deg/s -

4.2, Observability test for non-linear system

An important aspect of the state estimation problem is the observability.
A system is said to be observable at a time step kg if, for a state z(ky) at
that time, there is a finite k) > kg such that knowledge of the output 2 from
kg to k; is sufficient to determine state ky [15].

The time derivative of measurement z is:

dz th dz

Oh ]
E_EEZEHI} (15)

Higher derivatives of z can be written compactly by introducing the operator

Ly (Lie derivative).

L¢lh] = 22 f(z) = time derivative of h along the system trajectory z.
= £ = 5 (81(@) £(2) = LylLy[h]] = L3{A
Therefore:
dkz &
= = LA (16)

A system with state vector = of dimension n is locally observable at g if the

ohservability matrix:
Ol@a,5) = [AL3IA] — dh, LA, .dLy{H] . dLy )T (17

12
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has row rank n (i.e. n linearly independent rows).

In our case the observability matrix has dimension n = 6. To calculate the
analytical expression of O(xy,d) the function diff(.) of the Matlab Symbolic
tool is used. O(xzg, d) resulted in fll rank, therefore the system is locally
observable.

5. Results

This section presents simulation results to show the effectiveness of the
proposed approach for on-hine mass estimation. In all simulations, the param-
eters of a typical passenger car are used (see Table 2). A common passing or
double lane-change manoeuver 1s considered, where the driver quickly swerves
mto the passing lane to avold a slower car or an obstacle and then immedi-
ately swerves back to avold oncoming traffic. Passing can be expressed by a
sine function for steering mput

&(t) = dpsinwt

_ 2=l
T u

(18)

where L is the moving length during the lane change and u i1s the forward
velocity of the vehicle. For a speed of 80 km/h, L. = 33m, and steering
wheel angle comprised between -80 and 80 degrees (steering ratio 7 = 1,/20),
the corresponding driver command and illustrative path are shown in Figure
3. The lateral behaviour of the vehicle is simulated by discretizing Eq. (3)
and Eq. (6) with process and sensor noise. The sensor measurements are
corrupted with random noise of the standard dewiation as claimed i the
specification of the sensor (see Table 1). Additionally, a bias that is within the

normal sensor’s specification is added to the gyroscope. The measurements

13
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Figure 3: Double lane change: {a) steering wheel angle, (b) path followed by the vehicle.

are corrupted in order to provide realistic sensory input to the model-based

observer. The correct process noise 1s given to the estimator.

5.1. Parameter sensitivity

First, a stmulation is performed to show the effects of incorrect model
parameters (i.e., vehicle load) on a conventional observer based on a “static”
model with fixed parameters, ie. without on-line mass estimation. The
estimator model is given an incorrect value of mass increased of 20% with
respect to the actual value ( M=1400 kg). Results are shown in Figure 4(a) in
terms of simulated and estimated vehicle states v and 3 and they reveal how
model parameter error leads to biased estimations of the states. One way
to check the observer accuracy is to look at the residuals, i.e., the difference
between the actual and the estimated measurements. The residuals for a

correct ohserver should be white noise with zero mean. Conversely, in Figure

4(b) residuals for the rate of turn and lateral acceleration, as obtained from

14



Table 2: Parameters of the passenger car used in the simulations, please refer to Figure 1

for more details

a 1.108 m

1492 m
Cr 117,240 N/rad
Cr 142,720 N/rad
M 1400 — 1683* kg
1 M-a-b

* The first and second value refer to the empty vehicle and maximum load, respectively

the observer with incorrect parameter, show a definite shape (or correlation).
The same manoeuver was repeated using the correct value of the vehicle mass
in the estimator. Results are collected in Figure 5(a), demonstrating that
estimation is very accurate with correct parameters even in the presence of
noisy and biased sensor measurements. This is also confirmed when looking
at the residuals of measurements that appear approximately as a zero mean

white noise (Figure 5(b)).

5.2, Adaptive estimation

Results presented in the previous section showed that the availability of
an adaptive estimator for on-line mass estimation would be of great value
to enhance the performance of on-board control systems by continuously
updating the parameters of the vehicle model. A passing manceuver simu-

lation was performed using the adaptive observer proposed in this research.
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Figure 4: (a) State estimation and (b) residuals as obtained from a “static” estimator
using incorrect parameters in the vehicle model for a double lane-change manoeuvre
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Figure 5: (a) State estimation and (b) residuals as obtained from a “static” estimator
using exact parameters in the vehicle model for a double lane-change manoeuvre
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Initially, the ohserver is given an erroneous value of the vehicle mass corre-
sponding to the maximum load condition, 1.e., M= 1683 kg. Estimation of
states r, § and M as obtained from the observer i1s shown in Figure 6. In
detail, the lower plot of Figure 6 shows the recursive mass estimation denoted
by a solid grey line. The module corrects the parameter towards its actual
value M = 1400kg (denoted by a black dashed line), after an approximately
1 second adaptation window (the time required to reach 90% of the actual
value is 0.3% seconds). As the system adjusts to the actual vehicle mass, the
observer response becomes more accurate and the discrepancy of the state
estimates r and A with respect to the actual values decreases, as shown in
the upper and middle plot of Figure 6, respectively.
Uncertainty in the estimation, expressed as standard deviation (3a), is also
shown denoted by a grey shaded area along the corresponding curves. In
detail, the variance of r coincides with the term P (2, 2) of the error covari-
ance matrix. The variance of 3, Pf: can be obtained by applying the law of
uncertainty propagation:

Pl = P a (19)
Where J; is the Jacobian matrix and Ff is the covariance of the variables
which & depends on, i.e. the state v.
From Eq. (2), it results:

5= ( st 0) (20)
B 6 .
gl g k(o ) ] JT (21)

1w As seen in Figure 6, the estimation uncertainty tends to decrease as the

i accuracy in the mass estimation improves.
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the actual value.

19



161

162

163

164

165

166

167

168

168

m

mn

iz

i

i

17

17e

wr

17e

17

180

181

182

183

184

Figure 7 shows a comparison of the noisy measurements given in input to the
system (denoted with a solid grey line) with the output obtained from the
estimator (marked by a solid black line) in terms of yaw rate r and lateral
acceleration a,, respectively. It is apparent the good work of the adaptive
estimator in “cleaning” the sensor data (upper and middle plot of Figure 6).
The gyroscope measurement is also successfully updated in a few seconds,
as shown in the lower plot of Figure 7. Again, the uncertainty in the bias

estimation is denoted by a grey shaded area along the estimation curve.

5.3. System performance

In order to evaluate how the adaptive observer behaves under different op-
erating conditions various step-steer simulations are performed by changing
forward speed u and steer angle 4.

Add results

Another important aspect is the system sensitivity, i.e. the minimum
detectable change in the vehicle load. A double lane-change manoceuvre with
travel speed of xx and steer angle amphtude yy 15 simulated by setting the
initial value of the vehicle mass 5% lower than the actual value, 1.e. My =
1330kg. Results are shown in Figure 8 in terms of estimation of state M and
its associated uncertainty.

The system responds well even in case of small changes in the vehicle load.
One additional advantage is that, the observer does not require any reset
procedure or learning stage that can be typically time consuming and difficult

to perform.
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6. Conclusions

A model-based estimator for estimating vehicle’s mass during normal
driving and using only standard sensors was presented. The algorithm is
based on a Extended Kalman filter to give robust and accurate estimates of
the vehicle load and, at the same time, to allow abrupt changes to be tracked
quickly. Results obtained from extensive simulation tests were presented to
validate the proposed approach, using common manoeuvres (i.e., step-steer
and double lane-change) and varying operating conditions (1.e., varying travel
speed and steer angle). The sensitivity of the system was also studied. Es-
pecially, variations in the vehicle load can be detected quite accurately. The
proposed approach could be useful to implement warnming and safety systems
and for accurate estimation of the vehicle states as possible input to onboard
control systems.

A possible limitation of this approach is that it may perform poorly un-

der low excitation conditions. Before implementation, the system should be
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