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We present an efficient procedure for factorising probabilistic potentials represented as
probability trees. This new procedure is able to detect some regularities that cannot be
captured by existing methods. In cases where an exact decomposition is not achievable,
we propose a heuristic way to carry out approximate factorisations guided by a parameter
called factorisation degree, which is fast to compute. We show how this parameter can be
used to control the tradeoff between complexity and accuracy in approximate inference
algorithms for Bayesian networks.
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1. Introduction

Bayesian networks1 constitute an efficient representation of multivariate probability

distributions. During the last decades, they have been successfully used as a tool for

knowledge representation and reasoning under uncertainty. The reasoning process

consists of the computation of the posterior distribution for some variables of inter-

est given that the value of other variables is known. This task is called probabilistic

inference or inference for short.

Several exact2,3,4,5,6,7,8 and approximate9,10,11,12,13 inference algorithms can be

found in the literature, due to the fact that it is an NP-hard problem,14,15 which jus-

tifies the study of new techniques and algorithms with the aim of widening the class

of affordable problems. Some of the most relevant inference algorithms incorporate

the ability of dealing with factorised representations of the potentials that represent

the probabilistic information. Examples of these algorithms are Lazy propagation,6

Variable elimination,16,17 Lazy-penniless propagation10 and Importance Sampling

based on approximate pre-computation.12,13

1
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The use of factorised representations of probabilistic potentials has been proven

to be an appropriate way of controlling the tradeoff between complexity and ac-

curacy of propagation algorithms, by means of the concept of approximate factori-

sation of the probability trees used to represent the probabilistic potentials.18,19

In this paper we propose a method for computing factorisations of probabilistic

potentials which improves the existing one in terms of efficiency. Furthermore the

new procedure is able to detect regularities that would not be captured by previous

methods.20,18 We illustrate that the new factorisation procedure can be used for

controlling the tradeoff between efficiency and accuracy in approximate inference

algorithms, through a modified version of the Variable Elimination scheme.16,17

The rest of the paper is organised as follows. We establish the notation used

throughout the manuscript and give some basic definitions in Sec. 2. The fast fac-

torisation algorithm is described and analysed in Sec. 3. Its application to the design

of an approximate propagation algorithm is given in Sec 4. The paper ends with

conclusions in Sec. 5.

2. Preliminaries and notation

Throughout this paper, we will use uppercase letters to denote random variables,

and boldfaced uppercase letters to denote random vectors, e.g. X = {X1, . . . , Xn}.

We will use the term potential to refer to any probabilistic information, including

‘a priori’, conditional and ‘a posteriori’ distributions and intermediate results of

operations between them. Formally, a potential φ for a random vectorX is a mapping

φ : ΩX → R+
0 , where ΩX is the set of possible cases of X and R+

0 is the set on non-

negative real numbers. The set of variables for which a potential φ is defined will be

denoted by dom(φ). We will consider only discrete variables with a finite number

of cases. By lowercase letters x (or x) we denote some element of ΩX (or ΩX).

A Bayesian network is a directed acyclic graph where each node represents a

random variable, and the topology of the graph encodes the independence relations

among the variables, according to the d-separation criterion.1 Given the independen-

cies attached to the graph, the joint distribution is determined giving a probability

distribution for each node conditioned on its parents, so that for a Bayesian network

with variables X1, . . . , Xn, the joint distribution factorises as

p(x1, . . . , xn) =

n
∏

i=1

pi(xi|pa(xi)), (1)

where pa(xi) denotes a configuration of values of the parents of variable Xi in the

network.

Several data structures have been used to represent probabilistic potentials,

being probability tables and probability trees the most commonly used. In this

paper we will concentrate on probability trees, as previous factorisation methods

operate over them.
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A probability tree21,13 is a directed labeled tree, where each internal node repre-

sents a variable and each leaf node represents a piece of probabilistic information (a

probability value or, in general, a non-negative real number with some probabilis-

tic meaning as, for instance, a normalisation factor). Each internal node has one

outgoing arc for each state of the variable associated with that node. The size of a

tree T , denoted as size(T ), is defined as its number of leaves. A probability tree T

on variables X represents a potential φ : ΩX → R+
0 if for each x ∈ ΩX the value

φ(x) is the number stored in the leaf node that is reached by starting from the root

node and selecting the child corresponding to coordinate xi for each internal node

labeled with Xi.

Probability trees are in general more compact representations of probabilistic

potentials than tables, as they are able to capture asymmetric independencies (also

called context specific independencies), and furthermore, trees allow to obtain even

more compact representations in exchange of losing accuracy. This compact rep-

resentation is achieved by pruning some leaves and replacing them by the average

value. This is illustrated in Fig. 1, where it is understood that, if a variable does not

appear in a given branch, it means that the value of the potential corresponding

to that branch is the same for all the possible values of the missing variable. Note

that the location of the variables in each branch of the tree is relevant for capturing

context specific independencies, and also to allow more accurate approximations

when pruning leaves. This issue has been deeply studied in the literature.9,13

Fig. 1. A potential φ, a probability tree representing it and an approximation of it after pruning
the branches underneath configuration (X2 = 1, X3 = 1).

3. Fast factorisation of probability trees

In this section we describe our proposal for finding multiplicative decompositions of

probabilistic potentials. Our method is in general valid for different representations

of potentials, like probability tables and probability trees. However, we will focus on
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probability trees, as previous factorisation techniques operate over them. We will

distinguish between the obtention of exact and approximate decompositions.

3.1. Exact Decomposition

By exact decomposition we mean the fact that a probability tree can be factorised as

a product of two trees of smaller size. Previous factorisation methods20,18 search for

proportional sub-trees located below a given variable. Therefore, the performance is

highly dependent on the order of the variables in the tree. As an example, consider

the probability distribution for variables X , Y and Z represented as the probability

tree shown in Fig. 2. It can be seen that the sub-trees below X , for branch Y = 0,

are proportional. The classical factorisation procedure would decompose the tree

in Fig. 2 as the product of the two trees in Fig. 3, where the × symbol indicates

a point-wise product, i.e., the value of the decomposition for a given configuration

of the involved variables, is equal to the result of multiplying the values obtained

by evaluating that configuration in both trees. Notice that, in this case, the size

of the resulting factorisation (which is the sum of the sizes of individual trees that

comprise the factorisation) is higher than the one of the original tree, but applying

the classical procedure to the tree in the left side of Fig. 3 it could be further

decomposed, as the two sub-trees below X are also proportional when Y = 0.

Fig. 2. A probability tree with proportional sub-trees.

But it can even be the case that the classical factorisation algorithm is not able

to decompose a tree with respect to a given variable, if it is located away from the

root of the tree. For instance, the tree in Fig. 4 can be expressed as the product

of the two trees in Fig. 5, but such decomposition cannot be obtained using the

classical factorisation technique, since variable X is located near to the leaves. In

theory, classical factorisation could find the right decomposition, if the variables

in the tree are re-arranged until the appropriate order is obtained. However, that

would be too costly in terms of time.

In what follows we propose a factorisation technique able to deal with situations

like the one described in Figs. 4 and 5, in a computationally efficient way. The key

concept is the decomposability of trees, as stated in the next definition.
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Fig. 3. Decompositon of the tree in Fig. 2 using classical decomposition.

Fig. 4. Probability tree that cannot be factorised by variable X with classical factorisation.

Fig. 5. Decomposition of the tree in Fig. 4, which cannot be obtained using classical factorisation.

Definition 1. A probability tree T defined for a set of variables X is said to be

decomposable with respect to Y ( X if there are two probability trees T1 and T2,

defined for variables Y and Z ( X respectively, such that

(1) Y ∩ Z = ∅,

(2) X = Y ∪ Z and

(3) T = T1 × T2.

Notice that the tree in Fig. 4 is decomposable with respect to X , as the three

conditions in Def. 1 are met. A detailed procedure for finding a factorisation of a

decomposable tree is described in Alg. 1. It makes use of the restriction operation

over probability trees, defined as follows.
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Definition 2. Let T be a probability tree over variables X. Let Y ( X be a set

of variables in T . The restriction of T to a value y ∈ ΩY, denoted as T R(Y=y) is a

tree defined on X\Y, obtained from T by replacing each node labeled with Y ∈ Y

by its child corresponding to value y ∈ y.

Example 1. Let T be the probability tree in Fig. 4. The tree in the right handside

of Fig.5 is actually the restriction of T to X = 0, that is, T R(X=0).

The next proposition shows that, if a tree is decomposable, then Alg. 1 actually

finds a decomposition consistent with Def. 1.

Proposition 1. Let T be a probability tree defined for a set of variables X. If T is

decomposable with respect to Y ( X, then Alg. 1 returns two probability trees T1
and T2 that factorise T according to Def. 1.

Proof. The sets of variables over which T1 and T2 are defined, are determined in

Steps 9 and 10. It is clear that, according to the definition of restriction in Def. 2,

conditions (1) and (2) in Def. 1 hold. Now we will show that condition (3) also holds

after applying Alg. 1.

If T is decomposable, then for all y, z

T (y, z) = T1(y) × T2(z). (2)

Also, according to Def. 2, for all y, z

T (y, z) = T R(Y=y)(z). (3)

Let y0 be the first configuration of Y. It follows from Steps 7 and 9 that T1(y0) = 1.

Therefore,

T (y0, z) = T1(y0)× T2(z) = T2(z),

and according to Eq. (3), it means that

T R(Y=y0)(z) = T2(z). (4)

For any other configuration yj ∈ ΩY, we can write

T (yj , z) = T1(yj)× T2(z) = T
R(Y=yj)(z),

and using Eq. (4),

T R(Y=yj)(z) = T1(yj)× T
R(Y=y0)(z)⇒ T1(yj) =

T R(Y=yj)(z)

T R(Y=y0)(z)
,



February 3, 2012 12:29 WSPC/INSTRUCTION FILE fast-factorisation

7

which corresponds to the calculation in Step 7. Finally, notice that the re-scaling

in Steps 12 and 13 do not affect this result, as

T1 ×
sT

sT1

× T2 ×
1

sT2

= T1 × T2 ×

∑

yz t(y, z)

(
∑

y t1(y))(
∑

z t2(z))

= T1 × T2 ×

∑

y,z t(y, z)
∑

y t1(y)(
∑

z t2(z))

= T1 × T2 ×

∑

y,z t(y, z)
∑

y

∑

z t1(y)t2(z)

= T1 × T2 ×

∑

y,z t(y, z)
∑

y

∑

z t(y, z)

= T1 × T2.

Therefore, it follows that T = T1 × T2 and thus condition (3) in Def. 1 holds.

Factorise(T ,Y)

Input: A probability tree T on X and set of variables Y ⊂ X.

Output: A decomposition of T with respect to Y, given as two probability

trees {T1, T2}.

1 begin

2 Let y0,...,yr−1 be the elements of ΩY.

3 Z← X \Y.

4 Let (Z = z) be any configuration for all variables in Z.

5 Let α0, . . . , αr−1 be the leaves of tree T R(Z=z).

6 for i← 0 to r − 1 do

7 Let βi =
αi

α0
.

8 end

9 Let T1 be a tree with the variables in Y as inner nodes and β0, . . . , βr−1

as leaves.

10 T2 ← T R(Y=y0).

11 Let sT , sT1
and sT2

be the sum of all the values in T , T1 and T2
respectively.

12 T1 ← T1 ×
sT

sT1

.

13 T2 ← T2 ×
1

sT2

.

14 return {T1, T2}

15 end

Algorithm 1: Fast factorisation of probability trees.

The next example illustrates the way in which Alg. 1 carries out the decompo-
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sition.

Example 2. Let T be the tree in Fig. 4. We will use Alg. 1 to decompose it with

respect to variable X . The first action is actually performed in Step 4, where a

configuration is selected for those variables in the tree, different from the one with

respect to which we are going to decompose. In this case, a configuration for (Y, Z)

has to be selected. Assume we choose configuration (Y = 0, Z = 0). Step 5 requires

the computation of tree T R(Y=0,Z=0), which is a tree that only contains variable

X , and whose leaves are α0 = 0.1 for X = 0 and α1 = 0.2 for X = 1. In Step 7, the

β coefficients are computed:

β0 =
α0

α0
=

0.1

0.1
= 1, β1 =

α1

α0
=

0.2

0.1
= 2.

Next, a tree is constructed in Step 9 with X as unique variable and β0 and β1 as

leaves. It corresponds to the leftmost tree in Fig. 5. Step 10 computes the second tree

in the decomposition, by restricting T to (X = 0). This tree is shown in the right

side of Fig. 5. Finally, Steps 11, 12 and 13 re-scale the values in the decomposition

in order to guarantee that the total mass is the same as in the original tree. The

re-scaled decomposition is shown in Fig. 6.

Fig. 6. Modified decomposition obtained from Fig. 5 after making the total mass be equal to the
one in the original tree in Fig. 4.

An important feature of this decomposition scheme is its low complexity. This

is specially interesting because it allows fast factorisation to be included in other

algorithms (for instance, inference algorithms) without increasing the complexity

order.

Lemma 1. The complexity of Alg. 1 is linear in the size of the input tree, in the

worst case.

Proof. The complexity is determined by Steps 5, 10 and 11, which compute the

restriction of the input tree and the sum of the input and output trees. The restric-

tion operation is, in the worst case, linear in the size of the input tree as it can be

obtained just by visiting all the leaves in the tree and keeping those consistent with

the restricting configuration. The sum is also linear as it requires to visit all the

leaves in the tree.
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3.2. Approximate Decomposition

As shown in Prop. 1, Alg. 1 finds the correct factorisation of a tree that is actually

decomposable. However, it may happen that a tree is not decomposable with respect

to a set of variables, but perhaps it is possible to factorise it in such a way that

the product of the resulting trees is not far away from the original one. The next

example illustrates this fact.

Example 3. Consider the probability tree in Fig. 4, but with the first two leaves

equal to 0.11 and 0.19 instead of 0.1 and 0.2 respectively. After such modification,

the tree is no longer decomposable. If we apply Alg. 1 to factorise such tree with

respect to variable X , we obtain the decomposition in Fig. 7. Notice that this

decomposition is actually an approximation. In fact, if we multiply again the two

trees, the result is the tree in Fig. 8, which is not exactly the same as the original

one.

Fig. 7. Decomposition of the tree in Fig. 8, using Alg. 1.

Fig. 8. Result of multiplying the two trees in Fig. 7.

The concept of approximate factorisation has been studied previously,18 but the

limitation of that approach is the same as the one described in the case of exact

classical factorisation. Here we analyze how to extend the factorisation procedure

explained above to the case in which a tree is not exactly decomposable.

If a tree is not exactly decomposable with respect to a given set of variables, we

propose to use the extended Kullback-Leibler divergence22 as a basis to determine
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how far from exact factorisation a given decomposition is. This divergence mea-

sure is an extension of Kullback-Leibler divergence23 to unnormalised potentials. It

is an important feature, as in general we deal with unnormalised potentials (i.e.,

potentials that do not sum up to one), especially after applying Alg. 1. For two

unnormalised potentials p and q, it is defined as

eKL(p, q) =
∑

x

p(x) log
p(x)

q(x)
+
∑

x

(q(x) − p(x)). (5)

From now on, whenever we mention the eKL divergence between probability

trees we understand the eKL divergence between the potentials represented by

those trees. The key result is given in the next theorem, which provides an upper

bound of the eKL divergence for a given decomposition.

Theorem 1. Let T be a probability tree to be decomposed with respect to a set of

variables Y. Let X be the set of variables for which T is defined. Let be Z = X \Y.

Let T1 and T2 be the output of function Factorise(T ,Y), described in Alg. 1. Then

it holds that

eKL(T , T1⊗T2) ≤
∑

x

t(x) log t(x)−

(

∑

x

t(x)

)





∑

y:t1(y)≤1

log t1(y) +
∑

z

log t2(z)



 ,

(6)

where t, t1 and t2 are the potentials represented by trees T , T1 and T2 respectively.

Proof.

eKL(T , T1 ⊗ T2) =
∑

x

t(x) log
t(x)

t1(y)t2(z)
+
∑

x

(t1(y)t2(z)− t(x))

=
∑

y,z

t(y, z) log
t(y, z)

t1(y)t2(z)
+
∑

y,z

(t1(y)t2(z) − t(y, z))

=
∑

y,z

t(y, z) (log t(y, z) − log t1(y) − log t2(z))

+
∑

y,z

(t1(y)t2(z) − t(y, z))

=
∑

y,z

t(y, z) log t(y, z) −
∑

y,z

t(y, z) log t1(y) −
∑

y,z

t(y, z) log t2(z)

+
∑

y,z

t1(y)t2(z)−
∑

y,z

t(y, z).

Now, let us denote by t∗1 and t∗2 the potentials corresponding to the trees T1 and T2
in Steps 9 and 10 of Alg. 1, i.e., before re-scaling the trees. Then,
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∑

y,z

t1(y)t2(z) =
∑

y,z

t∗1(y)
sT

sT1

t∗2(z)
1

sT2

=
sT

sT1
sT2

∑

y,z

t∗1(y)t
∗
2(z)

=
sT

sT1
sT2

(

∑

y

t∗1(y)

)(

∑

z

t∗2(z)

)

=
sT sT1

sT2

sT1
sT2

= sT =
∑

y,z

t(y, z),

where sT , sT1
and sT2

are defined in Step 11 of Alg. 1. Hence,

eKL(T , T1 ⊗ T2) =
∑

y,z

t(y, z) log t(y, z) −
∑

y,z

t(y, z) log t1(y) −
∑

y,z

t(y, z) log t2(z)

=
∑

y,z

t(y, z) log t(y, z) −
∑

y

(

(log t1(y))
∑

z

t(y, z)

)

−
∑

z

(

(log t2(z))
∑

y

t(y, z)

)

.

Notice that, since the values in t are not negative, it holds that
∑

z

t(y, z) ≤
∑

y′,z

t(y′, z) (7)

and
∑

y

t(y, z) ≤
∑

y,z′

t(y, z′). (8)

Furthermore, the values in t2 are guaranteed to be lower than 1, and therefore

their log is a negative number. Thus, we can write

eKL(T , T1 ⊗ T2) ≤
∑

y,z

t(y, z) log t(y, z) −
∑

y:t1(y)≤1



(log t1(y))
∑

y′,z

t(y′, z)





−
∑

z



(log t2(z))
∑

y,z′

t(y, z′)





=
∑

x

t(x) log t(x)−

(

∑

x

t(x)

)





∑

y:t1(y)≤1

log t1(y) +
∑

z

log t2(z)



 ,

which completes the proof.
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Note that, if a decomposition is exact, then eKL(T , T1⊗T2) is equal to 0, and the

further a decomposition is to the exact one, the higher the value of the divergence

reaches.22 Observe also that the upper bound given in Eq. (6), actually depends on

the specific decomposition through the term

S =
∑

y:t1(y)≤1

log t1(y) +
∑

z

log t2(z),

which suggests that S could be used as a measure of the degree of decomposability

of a tree T with respect to Y. The computation of S is rather fast, as it requires a

time linear on the size of T1 and T2. Hence, we use the reasoning above to formally

define the degree of decomposability of a tree with respect to a given set of variables,

called the factorisation degree, as follows.

Definition 3. Let T be a probability tree. Let X be the set of variables for which

T is defined, and Y ⊂ X. Let Z = X \Y. Let T1 and T2 be the output of function

Factorise(T ,Y), described in Alg. 1. We define the factorisation degree of T with

respect to Y as

fd(T ,Y) =
∑

y:t1(y)≤1

log t1(y) +
∑

z

log t2(z), (9)

where t1 and t2 are the potentials represented by T1 and T2 respectively.

The factorisation degree defined above provides a heuristic way to choose the

variable or set of variables with respect to which a tree can be decomposed, pro-

ducing the lowest error in terms of eKL divergence. It is only heuristic since what

is minimised is not the eKL divergence itself, but an upper bound, as given in

Th. 1. This heuristic suggests a way to control the tradeoff between accuracy and

complexity in approximate inference algorithms for Bayesian networks, namely by

establishing a threshold of factorisation degree, and decomposing those trees for

which there is a set of variables whose factorisation degree surpasses such thresh-

old. Notice that, according to Def. 3 and Th. 1, the higher the factorisation degree,

the lower the bound above the divergence between the original and decomposed

representation of the tree. Therefore, by setting a lower threshold, more trees are

potentially decomposed, and therefore the complexity of the inference problem is

reduced as it has to deal with smaller trees, in exchange of losing accuracy.

The effectiveness of this approach depends on whether or not the kind of reg-

ularity characterised in Def. 1 is actually found in real-world problems. In order

to investigate this fact, we have analysed four real-world networks commonly used

as a benchmark for approximate inference algorithms. These networks are called

Munin,24 Andes,25 Barley26 and Water.27 The analysis consisted of decomposing

their conditional distributions according to the variable with highest factorisation

degree, and measuring the root mean squared error between the original probability

tree and its decomposition. The results are shown in Fig. 9, which is a beanplot28
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Fig. 9. Decomposability in four real-world examples. The plot shows the distribution of the po-
tentials that, after decomposing, attained different levels of error.

that displays the empirical distribution of the errors obtained for the four networks.

It can be seen how a high amount of distributions can be factorised introducing a

very low error, close to zero, specially in the case of the Water network. Of course

there are many potentials for which it is not possible to carry out the decomposi-

tion without introducing a large error, but this is a common fact in methods for

approximating probability trees. For instance, consider the tree in the rightmost

part of Fig. 1. It is clear that it can no longer be approximated using tree pruning,

unless a high error in the approximation is admitted.

4. Applying fast factorisation to approximate inference in

Bayesian networks

In this section we show how fast factorisation can be used for controlling the trade-

off between complexity and accuracy in approximate inference algorithms. As a

background, we have chosen the variable elimination algorithm,16,17 described in

Alg. 2, that is actually an exact inference algorithm, which computes the posterior
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distribution for all the unobserved variables in a given Bayesian network, given a

set of variables E for which their values are known to be e. We assume that any

probabilistic potential is represented as a probability tree, and therefore the restric-

tion operation in Step 2 corresponds to Def. 2. We have considered two variations

over the basic variable elimination algorithm in order to carry out approximate

inference.

Variable Elimination(X,W ,E,e,P )

Input: The variables in the network (X), an observation E = e, the target

variable (W ) and a set of probability trees, P , over the variables in X.

Output: The posterior distribution of W given E = e.

1 Let ti, i = 1, . . . , k, be the probability trees in P .

2 T := {t
R(E=e)
i , i = 1, . . . , k}.

3 foreach U ∈ X \E \ {W} do

4 TU := {t ∈ T |U ∈ dom(t)}.

5 Let gU be the product of the trees in TU .

6 Let rU be the result of marginalising out variable U from gU .

7 T := (T \ TU ) ∪ {rU}.

8 end

9 Let t be the product of the trees in T .

10 Normalise t in order to make it sum to 1.

11 return t.

Algorithm 2: Pseudo-code of the variable elimination algorithm.

The setting we have established is simple, in order to facilitate the evaluation of

the real impact of using factorisation of probability trees as a means to control the

level of approximation, and also to be able to compare this approach with the well

known approximation method based on tree pruning (see Sec. 2), successfully used

as the fundamental of various approximate algorithms.9,13 The idea is to simplify

the inference problem by reducing the size of the initial probability distributions in

the network, using either tree pruning or factorisation of the trees. Both schemes

are described in Alg. 3 and 4 respectively.

Procedure Prune VE(B,E,e,α) (Alg. 3) carries out the approximation by

pruning the probability trees corresponding to the initial conditional distribution

in the network. The pruning is controlled by parameter α. Intuitively, this parame-

ter indicates that sub-trees whose entropy is higher than the entropy of the binary

probability distribution {0.5− α, 0.5 + α} will be pruned, i.e., replaced by a single

value equal to the average of all the values in the subtree.13 On the other hand,

algorithm Factorise VE(B,E,e,d) (Alg. 4) carries out the approximation by fac-

torising those initial distributions in the network for which the best factorisation

degree obtained by any of its variables, surpasses a given threshold d.
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Prune VE(B,E,e,α)

Input: A Bayesian network B and an observation E = e. A threshold α for

pruning the initial distributions.

Output: The posterior distribution of all the unobserved variables in the

network, given E = e.

1 Let X be the variables in B.

2 Let P = {ti, i = 1, . . . , n}, be the probability trees representing the

conditional distributions in B.

3 foreach t ∈ P do

4 Let t′ be the result of pruning t according to parameter α.

5 P ← (P \ {t}) ∪ {t′}.

6 end

7 R = ∅.

8 foreach W ∈ X \E do

9 t← Variable Elimination(X,W ,E,e,P ).

10 R← R ∪ {t}.

11 end

12 return R.

Algorithm 3: Pseudo-code of the variable elimination algorithm with tree

pruning of the initial distributions.

Using both procedures, we carried out a series of tests in order to check that

parameter d is appropriate for controlling the complexity of the inference process,

in a similar way as parameter α. The tests consisted of running both algorithms

over the four real-world networks mentioned in Sec. 3.2 (Munin, Andes, Barley and

Water) with different values of α and d. For each run, we measured the execution

time, error in the estimation of the posterior probabilities and average and maximum

size of the probability trees handled during the inference process. The error was

measured using Fertig and Mann’s divergence,29 which is defined as follows. For

one variable X , the error is computed as

G(X) =

√

√

√

√

1

|ΩX |

∑

x∈ΩX

(p̂(x|e)− p(x|e))2

p(x|e)(1 − p(x|e))
, (10)

where p(x|e) is the exact posterior probability, p̂(x|e) is the approximate value and

|ΩX | is the number of possible values of variable X . For a set of variables X, the

error is:

G(X) =

√

∑

X∈X

G(X)2 . (11)
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Factorise VE(B,E,e,d)

Input: A Bayesian network (B) and an observation (E = e). A factorisation

degree threshold (d) for decomposing the initial distributions.

Output: The posterior distribution of all the unobserved variables in the

network, given E = e.

1 Let X be the variables in B.

2 Let P = {ti, i = 1, . . . , n}, be the probability trees representing the

conditional distributions in B.

3 P ′ ← ∅.

4 foreach t ∈ P do

5 Let Y1, . . . , Yk be the variables in t.

6 Compute fd(t, Yi), i = 1, . . . , k according to Eq. (9).

7 Y ← arg max
i=1,...,k

fd(t, Yi).

8 if fd(t, Y ) > d then

9 F ← Factorise(t,Y ).

10 end

11 else

12 F ← ∅.

13 end

14 P ′ ← P ′ ∪ F .

15 end

16 R = ∅.

17 foreach W ∈ X \E do

18 t← Variable Elimination(X,W ,E,e,P ′).

19 R← R ∪ {t}.

20 end

21 return R.

Algorithm 4: Pseudo-code of the variable elimination algorithm with factori-

sation of the initial distributions.

Fertig and Mann’s divergence is an appropriate measure for comparing approxi-

mate inference algorithms, as it takes into account the magnitude of the exact value

when evaluating the approximation. More precisely, it gives more weight to errors

made when estimating extreme probabilities (close to 0 or 1), as it can be easily

checked that the denominator in Eq. (10) is maximised for p(x|e) = 0.5.

The results of the experiments are summarised in Figs. 10 to 15. In general,

it can be said that parameter d can be used to control the approximation level

in a similar way as parameter α (Figs. 10 and 11). The only anomaly is detected

in the case of network Munin (see the right side of Fig. 10), where for the first

point, execution time is higher than for others with lower errors. However, the

same behaviour can be observed for the α parameter in this case. It can be seen
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Fig. 10. Error vs. time for the Barley (left) and Munin (right) networks. The solid line corresponds
to method Factorise VE and the dotted one to Prune VE.

11.8 12.0 12.2 12.4 12.6

0
2

4
6

8
10

Time (seconds)

G
 −

 e
rr

or

*

*
*

*
*

+

+

+

+ +

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

G
 −

 e
rr

or

*
*

*

*

+

++ +

+
+

Fig. 11. Error vs. time for the Andes (left) and Water (right) networks. The solid line corresponds
to method Factorise VE and the dotted one to Prune VE.

that for networks Barley and Munin, the convergence to low error values is reached

more quickly by algorithm Factorise VE, while the contrary happens for networks

Andes and Water.

Regarding the size of the potentials involved in the calculations during the in-

ference process, the experiments show how the average size is lower for algorithm

Factorise VE (see Figs. 12 and 13). However, the maximum size of such potentials

is lower when using algorithm Prune VE (see Figs. 14 and 15).

5. Conclusions

In this paper we have introduced a new and fast procedure for factorising probability

trees. An important feature of the proposed algorithm is related to its capability for

obtaining optimal decompositions in case that the tree is actually decomposable,

in the sense that the decomposition is as compact as possible. We have also shown
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Fig. 12. Average potential size (in logarithmic scale) vs. time for the Barley (left) and Munin
(right) networks. The solid line corresponds to method Factorise VE and the dotted one to
Prune VE.
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Fig. 13. Average potential size vs. time for the Andes (left) and Water (right) networks. The solid
line corresponds to method Factorise VE and the dotted one to Prune VE.

that the decomposition can be carried out even if the tree does not really contain

proportional subtrees, in which case the obtained factorisation will be approximate.

In order to deal with the degree of approximation of the possible decompositions

of a potential, we have introduced a measure called the factorisation degree, that

provides a heuristic to rank the variables in the domain of a potential according

to the accuracy of the decompositions that they induce. The computation of such

measure is fast enough as to be included in probabilistic inference algorithms, where

computing time is a crucial issue.

We have analysed the behaviour of the fast factorisation algorithm as a means of

controlling the tradeoff between accuracy and complexity. In the networks tested in

the experiments, the factorisation degree performed in a similar way as tree pruning.

Possible applications of the concept of fast factorisation go beyond probabilistic

inference algorithms. It could be used in algorithms for learning structured repre-
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Fig. 14. Maximum potential size (in logarithmic scale) vs. time for the Barley (left) and Munin
(right) networks. The solid line corresponds to method Factorise VE and the dotted one to
Prune VE.
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sentations of probabilistic potentials, such as recursive probability trees.30,31
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