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Abstract 

Purpose: 

To construct a set of metrics computed from the raw keratoscopic data collected by any 

Placido corneal topographer. These indices that measure the irregularity of the anterior 

corneal surface are computed directly from the image of the mires reflected on the 

cornea, which is the most primary data possible. Besides the high sensitivity and 

specificity, this approach allows bypassing the surface or curvature reconstruction step 

that is currently performed by the software of any commercial Placido topographer.  

Methods: 

Several basic indices are proposed in order to detect irregularities on the anterior 

surface of the cornea, via analyzing some geometric and mathematical properties of 

the mires. These individual primary indices are built in a natural and intuitive way 

directly from the displacement of the digitized images of the rings reflected on the 

cornea. Additionally, compound indices are proposed (such as the generalized linear 

model or the classification trees) by combining some of the so-called primary indices to 

improve their efficiency. The computed metrics were developed and tested for the CSO 

topography system (CSO, Firenze,Italy), but the methodology proposed here extends 

easily to any other commercial Placido disks topographer.  

Results: 

The primary indices allow to discriminate, with excellent accuracy, between normal 

eyes and eyes with keratoconic corneas. Sensitivity and specificity of the primary 

indices is analyzed by using the ROC (receiver operating characteristic) curve 

methodology. Some combined indices are presented, and raise the efficiency to 

optimal.  

Conclusions: 

All the primary indices proposed exhibit very good performance at discriminating 

between normal and irregular corneas. The combined indices accuracy is optimal, so 

*Abstract



avoiding their use in clinical practice as corneal markers of disease. All these indices 

are fast to compute and can be easily implemented in any corneal topography system. 

Keywords: Corneal irregularities; keratoconus; irregularity index; diagnosis; corneal 

topography; Placido disks 



The measurement of corneal topography is a well established tool in corneal 

analysis, with a variety of clinical applications1–9. Since the early 1980s there 

are commercially available topographers from many manufacturers, each with 

their own surface reconstruction algorithms as well as display and analysis 

procedures. As it is mentioned in10, “standards were not written until after the 

market was well developed (ANSI Z80.23-1999) and thus have not been 

adopted by many manufacturers who opted for consistency with their earlier 

models rather than the changes represented by the standards”. The authors of10 

reported serious inconsistency across instruments, making it cumbersome to 

compare maps generated from different systems, even when acquired from the 

same patient at the same time.  

 

The most common technology used to measure corneal topography is the 

Placido disk system, where an illuminated pattern of concentric rings or mires is 

focused on the anterior surface of the patient’s cornea and reflected back to a 

digital camera at the center of the cone or bowl. The images of the reflected 

rings are digitized along a fixed number of meridians (the number of projected 

rings and the number of points per ring vary from topographer to topographer, 

which determines the spatial resolution). This provides several thousand of 

points in a close-to-concentric pattern. This is the raw data that is processed by 

the software of the topographer to yield altitude (with respect to a surface), 

curvature and other parameters, using the arc-step algorithm11 or its variations. 

The result is typically represented as colour maps, which a priori allow 

subjective, qualitative analysis of the data.  
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Topographic indices are an attempt to introduce objectivity into this analysis. 

They typically analyze either the entire corneal surface (whole cornea indices) 

or its specific area (regional indices) represented by a topographic map, and 

return a value representative of that map. Additionally, composite indices are 

calculated as a mathematical combination of two or more indices.  

 

Many of the indices in use were developed as indicators for the presence or 

absence of keratoconus (KC). Keratoconus is an ecstatic disorder of the cornea 

of unknown etiology characterized by progressive thinning and cornea 

steepening. It is known that refractive surgery is not recommended to correct 

decreased vision associated with KC. Therefore, it is important to accurately 

screen candidates when considering a laser refractive procedure, which 

stimulates further development of indices.  

 

Additionally, topographic indices have been used in an attempt to distinguish 

between KC and other abnormalities such as contact lens-induced warpage and 

other forms of irregular astigmatism. 

 

There are several very popular and widely implemented corneal indices, many 

of them associated with the names of Rabinowitz or Klyce and Maeda. A partial, 

far from complete list of primary indices is:  

 Inferior-Superior or I–S index is the difference between the inferior and 

superior average dioptric values approximately 3 mm peripheral to the 

corneal vertex as defined by the center of the map. Inferior and superior 

average values are calculated by averaging 15 dioptric values on rings 



14, 15, and 16 at 30º intervals in the inferior and superior portions, 

respectively3. 

 SimK1/SimK2 are the average dioptric values of rings 8 to 10 of the 

major and minor axes. The greatest average power is defined as SimK1, 

while SimK2 is the average power of the meridian 90º from the “steepest” 

meridian3. 

 OSI or the opposite sector index reports the greatest difference in 

average area corrected power between opposite 45º sectors, while CSI 

or the center/surround index reports the difference between the average 

area–corrected power between the central area (3-mm diameter) and an 

annulus surrounding the central area (3–6 mm). An analogous definition 

hold for CSI or the center/surround index7. 

 SAI or the surface asymmetry index is the centrally weighted average of 

the summation of differences in corneal power between corresponding 

points on individual videokeratograph rings 180º apart from 90 or 128 

equally spaced meridians, depending on which reference one uses12. 

 SRAX or the skew of steepest radial axes index is calculated according 

to the procedure described in1-4, see also10. 

 both SRI or surface regularity index2, and the AIA or irregular 

astigmatism index, reported in3, have a rather complicated definition, we 

refer the reader to10 for explicit formulas, as well as for corrections 

introduced therein. 

 

There are also popular compound or compilation indices. For instance, KISA% 

is a composite index of K value, I-S value, CYL, and SRAX4, while KPI or the 



keratoconus prediction index is based on a linear model combining DSI, OSI, 

CSI, SAI, SimK1, SimK2, IAI, and AA (the ratio of the interpolated data area to 

the area circumscribed by the last ring found in a videokeratoscope image), 

see7. 

 

However, there is no standard technique for relating corneal topographic indices 

from various devices, and even the same indices on different systems can give 

different values10. An additional concern is that most diagnostic and 

classification criteria for KC are based on anterior corneal curvature data 

derived from corneal topography, and for Placido-disk devices these data are 

secondary, i.e. computed from the digitized image of the mires reflected on the 

cornea. These calculations use implicit assumptions, and even their 

implementation in each device is considered proprietary and does not 

necessarily coincide with the algorithm described in literature. 

 

The purpose of this study is to address partially this issue, proposing a 

methodology for building metrics based directly on the image captured by the 

digital camera of the Placido-based topographers. Obviously, we do not intend 

to mimic the arc-step method to calculate curvature from the image of the mires, 

and feed it as an input to one of the standard indices. Instead, our goal is to 

perform some intuitive and relatively simple calculations with the positions of the 

digitized rings in order to measure corneal irregularity. At this stage we 

discriminate only between “normal” and “irregular” corneas, without trying to 

diagnose the cause of irregularity. Nevertheless, the indices defined above 



were tested and tuned against two groups of patients, those classified as 

normal eyes, and those with a clinically diagnosed KC. 

 

In what follows we will introduce two sets of primary indices, one labelled as 

nPI
 (from “Placido irregularity indices”), and the second group as )(kAR , from 

“average ring radius” of the k -th ring. In “Methods” we give their detailed 

description, as well as introduce four combined indices, based on the primary 

ones, built with the purpose of increasing the discriminant ability, which is 

assessed in “Results”. This section contains also a discussion of a 

normalization process needed for the combined indices.  

 

METHODS 

 

I. PRIMARY INDICES 

As it was mentioned in the introduction, the digitized points captured by the 

camera of a Placido disk corneal topographer are grouped in mires. For the 

sake of precision, we assume that there are 256 points equally spaced along 

each ring corresponding to the same number of semi-meridians (a value found 

in a majority of existing devices), although the indices are easily modified for 

any different configuration. In clinical practice, not all points are available: a 

number of them is missing due to digitalization errors, eye lashes obstructions, 

tear film disruption, and other reasons. In defining the indices we use only data 

from complete rings, limiting the number of rings to the maximum of 15; it 

should be pointed out that in the exceptional cases of really defective 

measurements, when the complete rings are less than 10, the topography is 



usually discarded in clinical practice. Hence, if we denote by N  the number of 

useful innermost rings with complete data ( 15N ), we get as the input the 256 

N  points jP
 , given by their polar coordinates

 jj  ,
, Nj 256,...,2,.1 , with 

   2mod256/2 jj  . Hence, if Mk is the k -th mire ( Nk 1 ), 

then
Pj   j , j M k  j Jk : nk ,nk 1,...,nk  255 

,
)1(2561  knk . 

Clearly, points jP
 can be given also in Cartesian coordinates 

x j, y j( )
 using the 

straightforward transformation
x j   j cos( j ), y j  j sin( j ). 

 

A. Indices in the Cartesian domain 

Plotted in Cartesian coordinates the digitized images of the first 15 mires look 

like in the Figure 1.  

We fit a circle to the position of the points jP
 on the mire kM

 in the sense of the 

least squares (LS), using a standard procedure13. For that purpose we work 

with the Cartesian coordinates of jP
 , solving by LS the overdetermined system 

of linear equations bA t  with 
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The solution t = t1,t2 ,t3( )
T

 (where 
T

t  denotes the matrix transpose) gives us 

information about the best-fit circle for the k -th mire; its center is located at 

 21 , ttCk 
 (in Cartesian coordinates). 



In the ideal case, e.g. when the cornea is perfectly symmetric, all centers kC
 

coincide; asymmetric deformations though can yields dispersion in the location 

of these centers. This observation indicates that the diameter of the set of 

centers kC
 (normalized by the total number of rings N ), 

,max
1

,1
1 mn

Nmn
CC

N



PI

 

can be used as one of the irregularity indices. However, solely the diameter is 

not sufficient, as Figure 2 shows: still relatively grouped sets 
 kC

 can exhibit an 

important drift of the centers, so that we control also the deviation in the 

consecutive ones by the following metrics: 
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Clearly, these indices are of an isotropic character and measure the behavior of 

the centers of masses of each ring. If we want to capture also the spatial 

orientation and deformation of a mire we should fit the data with an ellipse. 

There are efficient methods for computation of the best-fit ellipse13-17. All of 

them pay a special attention to the constraint of the positive-definiteness of the 

underlying quadratic form (which assures that we are fitting the data with an 

ellipse). Taking into account the clear structure of our points and the relatively 

small position fluctuations, we can simplify the approach by solving the 

overdetermined system bA ˆˆˆ t , now with 
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in the LS sense. From the solution 
t̂  a,b,c,d, f 

T

we can find18 the axes 

ak ,bk ,  ak  bk  of the ellipse, 

ak
2

2


af 2  cd 2  b2  2bdf  ac

b2  ac   a  c 
2
 4b2  a  c  

,

 

bk
2

2


af 2  cd2  b2  2bdf  ac

b2  ac   a  c 
2
 4b2  a  c  

,

 

not necessarily collinear with the  yx,  axes. 

 

We can measure the irregularity of the images of the mires by studying the 

dispersion of the values of the axis ratios 
1/  kkk bar
of the k -th ellipse (see 

Figure 3, left): 

PI3 
1

N
rk  r 

2

1kN

 ,

   
r
1

N
rk

1kN


. 

 

B. Indices in the polar domain 

Now we use the polar coordinates
 j , j 

, of each
Pj , considering   as function 

of . Plotted in polar coordinates the digitized images of the first 15 mires look 

like in the Figure 4.  

Let 

AR(k) k  
1

256
 j

jJk

 ,

  },,10min{,...,1 Nk   

and 
Rk max jJk  j  k , Nk ,...,1 ; then index 

,max
1
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is correlated with 3PI
 introduced above, and measures again how well points jP

 

fit the circular pattern (see Figure 3, right). A N-S and E-W asymmetry, 

characteristic in many forms of KC, can be detected by analyzing the values of 

PI5 
1

N
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For a more sensitive analysis we compute in the   domain the linear 

regression for the points corresponding to each mire, kkm   Nk ,...,1 . 

Slopes km
different from zero are an indication of the upper–lower asymmetry. 

In practice, they take rather small values, with predominance of negative slopes 

(corresponding to the more common protrusion in KC in the lower part of the 

cornea). Recall that the way the corneal topographers order the points, lower 

values of   correspond to the upper half of the disk. Hence, index 

PI7 = max
1£k£N

mk ,
 

measures the slope of the steepest regression line. 

 

The indices defined above analyze the global asymmetry of the mires. 

However, diseases such as KC are characterized by a localized steepening of 

the cornea. Values based on linear regression cannot help, and we use 

additional indices of a local character, inspired by the iterative algorithm 

introduced in19-20 that fits the data by anisotropic radial basis Gaussian functions 

(A-RBGF). We use here only one iteration of its simplified version, based on the 



purely radial basis functions, applied to the data
 j  k , j 

, kJj
, 
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.                                (1) 

Briefly, k is picked among the angles j , kJj
, corresponding 

to kjJj k
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; with k  fixed we consider an overdetermined system of linear 

equations, that we denote again by bA t , with 
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The indices kjjj ,...,1
are those for which 

05.0
2

 jk 
 (corresponding 

approximately to 10 nearest neighbours along the mire) and kj  
 match the 

sign of this value at k . The shape parameter is 2tk 
, where 

Ttt ),( 21t  is the 

solution of this system in the sense of the least squares. Finally, the scaling 

factor kc
 is computed fitting again equation (1) in the sense of linear LS to the 

same data. Using these definitions we introduce several indices. A large value 

of the 
2  norm of the vector of scaling coefficients, 





Nk

kc
1

2

8PI

, 

could indicate global irregularities on all the mires. Still, large kc
’s could 

correspond also to large values of k ’s (high and steep bell-shaped curves). 



Since the area under the graph of the normalized Gaussian y  c
1/2 exp(x2 ),  

c > 0, is equal to /c , we define the values 
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and two more indices, 
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The summation in the last index goes along all Nk ,...,1 , excluding two extreme 

(smallest and largest) values of kA
, for the sake of robustness with respect to 

the measurement errors typically present at the outermost rings (see Figure 5).  

The distribution of the centers k  in (1) bears additional information: a cluster of 

these centers might indicate a localized distortion of the adjacent rings (see 

Figure 6). Hence, we define 
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II. COMBINED INDICES 

As we will see in the next Section, neither index defined in Section I works as a 

perfect binary classifier for KC. However, we can create a synergy using their 

combination. There are several approaches for defining combined indices. In 

this paper we explore two of them. The result of the first one is a continuous 

value that can be interpreted as a probability of KC or other corneal disorder, 

and can be used as a degree of corneal irregularity. The second one gives us 



binary variables that render 0 or 1 meaning a “normal” or “irregular” cornea, 

respectively, that do not provide though the degree of irregularity. All these 

indices are easily computed once the corresponding coefficients and thresholds 

are found. For this analysis, again the statistical tool R21 was used; for the sake 

of reproducibility, we will make reference to the R functions and toolboxes. 

 

A. A generalized linear model 

A generalized linear model (GLM) is an extension of the ordinary least squares 

regression; it allows the linear model to be related to the response variable via a 

link function and by allowing the magnitude of the variance of each 

measurement to be a function of its predicted value22-23. In this work, we use the 

well-known “probit” link function that is the inverse of the cumulative distribution 

function of the standard normal distribution )1,0(N ; it is a strictly increasing 

function on the real axis taking values in [0; 1], with no explicit algebraic 

expression. The R function glm from the R package stats was applied to the 

database of 32 normal and 20 keratoconic corneas mentioned in Section III 

below. As an output, we obtained a GLM model that was adjusted a posteriori in 

order to get more reasonable values of coefficients. The described procedure 

yields a combined index that we call GLPI (from Generalized Linear Placido 

Irregularity index), calculated from the primary indices as follows: 

)(100 probitGLPI  

with 

)).4(41.425.519.05.784(10 6532

2
ARPIPIPIPI  

 

For this calculation we use the normalized values of the primary indices, as 

explained in Section IV. In this case, the linear predictor   takes its minimum 



value -7.845 when all indices are equal to 0, and its maximum value 15.84 

when all the indices are equal to 150. Index GLPI  can be considered a 

measure of the corneal irregularity or a probability (in %) of a corneal disease. 

 

B. Classification Trees 

Classification trees are simple to use and well established binary classifiers; 

they can be constructed by means of the R function rpart from the R package of 

the same name. Applying it to the database mentioned before, the following 

three best-performing classification trees were built (with a 100% of correct 

classifications), listed here in increasing order of complexity: 

Tree 1 (CT1): in this simplest case, the cornea is considered irregular if the 

following conditions are verified: 

502 PI   and   .81.1511 PI  

Otherwise the cornea is classified as normal (Figure 8, left). The philosophy 

underlying this tree is that any cornea for which 2PI
 is below the critical value 

50 (according to the normalization explained in Section IV) is automatically 

classified as normal. In the case it does not comply with this condition, normality 

is still certified if the companion index, 11PI , is considerably small (< 15.18). 

Notice also that index 11PI by itself has a very low AzROC value (see Table 1), 

but serves to raise the discrimination capacity of 2PI . 

 

Tree 2 (CT2): the cornea is considered normal if the following conditions hold: 

65.621 PI   and   
83.813 PI

   and  .61.73)1( AR  



Otherwise the cornea is classified as irregular (Figure 8, right). Observe that for 

this classification tree, a conjunction of three rather conservative conditions (the 

cut-off values are considerably greater than 50) yields a validation of the cornea 

as normal. 

 

Tree 3 (CT3): the cornea is classified as normal if 29.462 PI  or, if this condition 

fails, if either 54.50)1( AR or .44.244 PI . Otherwise the cornea is considered 

irregular (Figure 9). A comparison with 1CT  shows that if a more restrictive 

condition 29.462 PI  is not satisfied, it is complemented with 3 additional tests 

to achieve the desired accuracy.  

 

RESULTS 

 

III. ASSESSMENT OF THE PRIMARY INDICES 

In this Section we analyze the performance of the primary indices introduced 

above. For that purpose we use two test groups of Placido disks images, one 

corresponding to 32 normal eyes and another of 20 keratoconic eyes, from 

patients ranging in age from 2 to 74 year old (mean age of 32, standard 

deviation of 14.6 years). The inclusion in the KC group was based on the 

standard criteria for the diagnosis of this corneal condition and the absence of 

any previous surgical intervention that could have altered the corneal 

properties. The following signs were considered at diagnosis24: corneal 

topography revealing an asymmetric bowtie pattern with or without skewed axes 

and at least one keratoconus sign on slit-lamp examination, such as stromal 



thinning, conical protrusion of the cornea at the apex, Fleischer ring, Vogt striae 

or anterior stromal scar. In those patients wearing contact lenses for the 

correction of the refractive error, only data obtained after an appropriate contact 

lens discontinuation were considered: at least two weeks for soft contact lenses 

and at least four weeks for rigid gas permeable contact lenses. The exclusion 

criteria for the keratoconus group were other ocular active pathology at the 

moment of diagnosis and the presence of an advanced keratoconus (grade 4 

according to the Alió-Shabayek grading system25). The group of normal eyes 

only included eyes with no other ocular pathology, previous ocular surgery or 

irregular corneal pattern. 

 

All patients were informed about the study and signed an informed consent 

document in accordance with the Helsinki Declaration. 

 

A particular index from the set of indices defined in Section I, let us call it I , 

takes values I1
N ,..., I32

N

 corresponding to the normal eyes, and values I1
K ,..., I20

K ,
 

corresponding to eyes with KC. In the way these indices were defined, we can 

expect that the values for normal eyes are in general smaller than those for the 

keratoconic ones (this explains the negative sign in some of the indices). 

 

The receiver operating characteristic (ROC) curve analysis is a well established 

tool for assessing the discriminant capability of a model. For that purpose, for 

every cut-off or threshold value 
)0(I we define 



FP  # j : I j
N  I (0) ,

         
FN  # j : I j

K  I (0) ,
 

where FP and FN stand for “false positive” and “false negative”, respectively 

( #A  stands for the cardinality or number of elements in the set A). It is 

convenient also to introduce the number of “true positive” and “true negative” 

cases, FPTN  32 and FNTP  20 . Normalizing these values, we get the 

fraction or rate of false positive and negatives, and of true positives and 

negatives: 

FPR=
FP

32
,
      

TNR
TN

32
 1 FPR,

 

FNR=
FN

20
,
      

TPR
TP

20
 1 FNR.

 

These fractions, computed for each threshold value
)0(I , allow us to plot the 

ROC curves for all indices introduced above. A ROC curve represents 

graphically the “sensitivity”, orTPR, vs. (1- “specificity”), orFPR, as 
)0(I  is varied. 

Since the number of cases is finite, the ROC curve takes a piecewise constant 

form, see Figure 7. A standard criterion for assessing the performance of an 

index is the area under the ROC curve (AzROC): the higher it is, the better, 

being area 1 the ideal maximum. The third row of Table 1 shows the values of 

AzROC for the described primary indices. We see that the values for the best 

five are not less than 0.95, being optimal the indices 1PI and 2PI . Along with the 

AzROC method we have considered also an alternative way to select the best 

index, based on the consideration that for a perfect binary classifier there exists 

a threshold value 
)0(I  for which both TNR =1 andTPR =1. Hence, we can 

consider a better classifier the index for which  

2
max

)0(

TPRTNR

I



                    (2) 



is greater. For comparison, the second row of Table 1 shows the values of the 

maximum average of TNR and TPR for each index. We see that again the 

optimal indices are 1PI and 2PI , and that both used criteria give consistent 

results.  

 

Practically all calculations were carried with Matlab (The MathWorks, Inc., 

Natick, MA) using a custom written software. For the ROC analysis, the version 

2.10.1 of the freely available statistical tool R21 was used. 

 

IV. NORMALIZATION OF THE PRIMARY INDICES 

Since the metrics defined in Section I have very different units and scales, in 

order to build a combined index or a decision tree we need to find a proper 

normalization of each index to make them suitable for further joint analysis. 

 

In the way the indices have been defined, 
Imin = min I j

N :j = 1,..., 32{ } < I*,
where 

*I is the threshold value 
)0(I  maximizing (2). In order to get the modified index 

Ĵ  corresponding to the primary index I we perform the linear transformation 

,ˆ baIJ     (3) 

which maps the interval [ *,min II ] onto [0, 50]. In this way, all values of J  

accounted in TN are between 0 and 50. In order to avoid negative and very 

large positive values we define finally the normalized index 















.ˆ

150ˆ,150

0ˆ,0

otherwiseJ

Jif

Jif

J

 



In this way, we consider every value of 50J  as normal, as well as all values 

above this threshold as indicating an irregularity. The values of the coefficients 

a  and b  in (3) corresponding to each primary index introduced above appear in 

Table 2. In the next Section we only use the values of the normalized indices 

nPI
and )(kAR , obtained after applying (3) with the values from Table 2. In order 

to simplify notation, we omit in what follows the “hat” when referring to these 

indices. 

 

 

DISCUSSION 

 

It is known26 that data obtained from the first corneal surface can be used as a 

highly sensitive and specific diagnostic tool for the early detection of ecstatic 

diseases such as the subclinical KC.  

 

By means of standard statistical methods, metrics were constructed that 

differentiated, with excellent accuracy, between normal eyes and eyes with 

irregular corneas. They are based on a set of individual corneal irregularity 

indices built in a natural and intuitive fashion directly from the digitized images 

of the Placido rings reflected on the cornea. Although the indices were 

developed and tested for the CSO topography system (CSO, Firenze, Italy), the 

methodology proposed here extends easily to any other commercial Placido 

topographer. Future studies including a larger sample size drawn a priori will 

allow further improvement of detection and classification results, especially for 

subclinical KC, which is the most difficult entity to detect. It is known that the 



importance of an early detection of such cases lays in avoiding undergoing 

excimer laser refractive surgery procedures in these weakened and altered 

corneas, and also in selecting the most appropriate treatment option 

(intracorneal ring segments, crosslinking, contact lens. . . ) in order to prevent 

KC progression.  

 

Our indices not necessarily supersede or supplant the common metrics such as 

KISA% or KPI, but can serve as a valuable complements in clinical practice. In 

our experiments we have found data of real patients, clinically diagnosed with 

KC but with rather low KPI, and for which our indices gave excellent results, see 

Table 3 for an example. They present the advantage of reliability with respect to 

existing indices that are based on proprietary or questionable algorithms of 

derivation of curvature and corneal power from the raw ring images. 

Additionally, they present the advantage of simplicity with respect to more 

sophisticated approaches, such as neural networks27-28. See29 for a preliminary 

report on the first assessment of the applicability of these indices to the 

detection of KC. 

 

Undoubtedly, the topography of the posterior surface and the thickness of the 

cornea have an additional relevant information that can help in the early 

detection of KC and other ecstatic diseases30-34. However, nowadays this 

information is collected only by more sophisticated devices based on the 

Scheimpflug imaging, the optical coherence tomography and similar 

alternatives, which are still not widely available in the clinical practice. In this 



sense, the simple and easy to use Placido disk topographers represent a vast 

majority of devices. It is known also that they are especially precise for 

measuring the central part of the cornea. 

 

As it follows from the results in Table 1, all individual indices have AzROC 

values from good to excellent, even in comparison with existing primary metrics; 

similar conclusions are obtained for the sensitivity and specificity7. However, the 

use of combined indices, especially the generalized linear model or the 

classification trees, allows raising the efficiency to optimal. These metrics have 

a rather different character. The generalized linear model gives a continuum of 

values that can be used not only to detect an irregularity but also to assess its 

degree; however, values that fall close to the cut-off value (30 in our case) 

should be examined with care. The classification trees have the advantages of 

the simplicity of application and the binary outcome (“irregularity yes or not”), so 

can be used as a warning for a clinician for a further analysis. 

At this stage, the indices developed above are of a general character and do 

not intend to differentiate between types of ecstasies or degrees of KC. Rather 

they serve as a reliable detector of existence of a corneal irregularity, as an aid 

for a clinician. However, the ability to discriminate between several types of 

diseases of some of these indices or to assign a meaning to the value of each 

metrics, especially of the generalized linear modelGLPI , is currently under 

study. We also plan to extend this methodology to metrics for both anterior and 

posterior faces of the corneas, using the raw data collected by more specialized 

topographers, such as those based on the Scheimpflug imaging. Besides their 

diagnostic value, these metrics would allow for an indirect study of the 



biomechanical properties of the affected corneas. We hope that the approach 

proposed here will shed a new light on the diagnosis of ecstatic diseases, 

opening new perspectives to be analyzed in the future research. 
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FIGURE LEGENDS 

 

Figure 1. Representation in Cartesian coordinates of the digitized points 
Pj  for a 

normal cornea (left) and in a case of keratoconus (right). 

 

Figure 2. Relative positions of centers Ck  for a normal cornea and two cases of 

keratoconus. 

 

Figure 3. Left: values of the ratios rk  ak / bk  1 on each ring 1 k  15  for a 

normal and a keratoconic corneas; dotted lines indicate r  in each case. Right: 

values of Rk  for a normal and a keratoconic corneas. 

 

Figure 4. Representation in polar coordinates of the digitized images of the first 

15 mires for a normal cornea (left) and in a case of keratoconus (right). 

 

Figure 5. Coefficients ck  (left) and areas Ak  (right) for a normal and a 

keratoconic corneas. 

 



Figure 6. Location of centers k  for a normal cornea (left) and in a case of 

keratoconus (right). 

 

Figure 7. Receiver Operating Characteristic (ROC) curves for the best four 

primary irregularity indices: PI1  (upper left), PI2  (upper right), PI4  (lower left) 

and PI8  (lower right). 

Figure 8. Classification Trees CT1 and CT2. 

 

Figure 9. Classification Tree CT3. 



TABLE 1. ROC (Receiver Operating Characteristic) efficiency criteria for the best 

performance primary indices (sorted in a decreasing AzROC value order). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index 2PI
 1PI

 8PI
 4PI

 10PI
 9PI

 3PI
 5PI

 7PI
 6PI

 
)4(AR

 
)1(AR

 11PI
 

2
max

TPRTNR 

 

0.97 0.93 0.89 0.88 0.88 0.86 0.86 0.89 0.86 0.72 0.75 0.72 0.65 

AzROC 
0.98 0.98 0.96 0.95 0.95 0.93 0.91 0.90 0.83 0.77 0.71 0.71 0.66 

Table



TABLE 2. Primary indices normalization constants for the linear scaling defined in (3). 

 

 

Index name a b Index name a b 

1PI  
41024.1   

71025.1   )1(AR  
31096.1   

21045.4   

2PI
 

31070.9   
11083.1   

)2(AR
 

21063.5   
21080.2   

3PI
 

31024.5   
11038.1   )3(AR  

21087.4   
21031.3   

4PI
 

21043.4   
11032.1   

)4(AR
 

21018.3   
21098.2   

5PI
 

31013.2   07.0  )5(AR
 

21088.2   
21021.3   

6PI
 

31025.2   4.1  )6(AR
 

21023.2   
21004.3   

7PI
 

31088.2   
41033.7   

)7(AR
 

21041.2   
21069.3   

8PI
 

21005.2   
11042.1   

)8(AR
 

21083.1   
21025.3   

9PI
 

21020.6   66.7  )9(AR
 

21088.1   
21067.3   

10PI
 

41032.2   03.1  )10(AR
 

21007.2   
21047.4   

11PI
 4.4  66.55     

 

 

 

 

 

 

 

 

 



TABLE 3. Values of the indices for an actual patient diagnosed with KC, but with 

KPI=16. Recall that the cornea is considered irregular for KPI values equal or above 

50. Additionally, all classification trees CTn (classification tree n) assessed the cornea 

as irregular, while the probability of a corneal irregularity by the GLPI (Generalized 

Linear Placido Irregularity index) was of 93%. 

 

 

Index 1PI  2PI  3PI
 4PI  5PI

 6PI
 7PI

 8PI
 9PI

 10PI
 11PI  

)1(AR  )4(AR  

Value 78 61 37 61 150 40 3 67 70 89 55 64 38 
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