LWT - Food Science and Technology 115 (2019) 108439

journal homepage: www.elsevier.com/locate/lwt

Contents lists available at ScienceDirect

LWT - Food Science and Technology

LWT-

Food Science and Technology

Potential of the microalgae Nannochloropsis and Tetraselmis for being used as

innovative ingredients in baked goods

Check for
updates

Tomas Lafarga™", Erika Mayre”, Gemma Echeverria”, Inmaculada Vinas®, Silvia Villaré?,
Francisco Gabriel Acién-Fernandez®, Massimo Castellari’, Ingrid Aguil6-Aguayo®

2 Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, 25003, Lleida, Catalonia, Spain

b University of Lleida (UdL), Department of Food Technology, 25003, Lleida, Catalonia, Spain

¢ University of Almeria (UAL), Department of Chemical Engineering, 04120, Almeria, Andalucia, Spain
9 Institute of Agrifood Research and Technology (IRTA), Food Industries Programme, 17121, Monells, Catalonia, Spain

ARTICLE INFO ABSTRACT

Keywords: The potential use of the microalgae species Tetraselmis and Nannochloropsis was investigated for the production
Functional foods of functional breads and crackers. Optimum flour substitution levels were 2.5% for baked crackers and 1.0 or
Bread 2.0% for breads containing Nannochloropsis or Tetraselmis, respectively. No major differences were observed in
Crackers the physicochemical properties of the end products besides an expected darker and greener colour. Microalgae
Nannochloropsis . . . . L A N .

Tetraselmis incorporation led to increased phenolic content and in vitro antioxidant capacity in both matrices. For example,

the total phenolic content of crackers increased from 24.6 + 1.5 mg/100g in the control to 32.4 + 0.4 or
34.2 = 1.0 mg/100g in crackers containing Tetraselmis or Nannochloropsis, respectively. The amount of
bioaccessible polyphenols after a simulated gastrointestinal digestion was also higher in microalgae-containing
goods than in the controls. Sensory evaluation showed that microalgae-containing products were competitive
with the controls with the added advantage of having an improved nutritional value and a “trendy” ingredient.
Moreover, microalgae-containing products showed an increased emission of some volatile compounds such as p-
cymene and (Z)-2-heptenal, which are responsible for fresh, citrus, terpenic, woody, and spicy or fatty, oily, and

fruity odours, respectively.

1. Introduction

Humans are no strangers to the consumption of microalgae: already
in the ninth century the Kanem Empire used Arthrospira as food in
Africa (Oncel, Kose, Vardar, & Torzillo, 2015). Nowadays, microalgae
are generally marketed as nutritional supplements and promoted as
“superfoods” that can be utilised as ingredients in the manufacture of
“trendy” foods. For example, baked goods formulated using microalgae
such as Wrawp (Wrawp Foods, CA, USA) and Helga Algae Crackers
(Evasis Edibles GmbH, Bendorf, Austria) are currently commercially
available.

A large number of scientific publications evaluated the potential of
Spirulina and Chlorella for being used as ingredients in the manufacture
of milkshakes, vegetable soups, snacks, pasta, yogurts, and baked goods
including bread and biscuits (Lafarga, 2019). This makes sense as both
Spirulina and Chlorella are not only the most popular but also the most
studied and cultivated microalgal strains (Garrido-Cardenas, Manzano-
Agugliaro, Acien-Fernandez, & Molina-Grima, 2018). However, only a
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limited number of publications studied the effect of incorporating other
species into this food group. For example, Garcia-Segovia, Pagan-
Moreno, Lara, and Martinez-Monz6 (2017) reported that, although
colour differences were observed when compared to the control, tex-
tural properties of the breads were not affected after incorporation of
Isochrysis galbana, Tetraselmis suecica, Scenedesmus almeriensis, or Nan-
nochloropsis gaditana at a concentration of 1.5% (w/w). Limited in-
formation is also available on the sensorial attributes of breads for-
mulated using microalgae species different to Spirulina and Chlorella.
Sensorial attributes of foods, especially flavour and aroma, are of key
importance, as Western cultures do not seem to be willing to compro-
mise taste for health.

In addition, little is known on the effect of microalgae incorporation
into other baked products different from bread. Some studies have been
conducted on functional biscuits enriched in: (i) eicosapentaenoic acid
from I galbana (Gouveia et al., 2008); (ii) fibre and protein from S.
platensis (Singh, Singh, Jha, Rasane, & Gautam, 2015); and (iii) poly-
phenols and proteins from S. platensis, C. vulgaris, T. suecica, or
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Phaeodactylum triconutum (Batista et al., 2017). Biscuits or cookies are
good delivery vehicles for health-promoting compounds because of
their popularity and convenience. However, they contain a high sugar
and/or fat (generally butter) content and it would be interesting to
assess the effect of microalgae incorporation into other healthier pro-
ducts such as crackers.

Based on the current gap in knowledge, the aim of the current paper
was to assess the potential of the species Tetraselmis and
Nannochloropsis, which are currently underutilised in the food industry,
for being used as novel ingredients for the production of functional
breads and crackers. Studied quality parameters included volume,
colour, texture, polyphenolic content, antioxidant activity, aroma vo-
latile compounds, and sensorial attributes. In addition, the bioaccessi-
bility of polyphenols after a simulated gastrointestinal digestion and the
volatile profile of the products were also determined.

2. Materials and methods
2.1. Preparation of the microalgae-containing breads and crackers

Flour substitution levels evaluated in preliminary trials varied from
1 to 3% (w/w) for bread and from 1.25 to 3.75% (w/w) for crackers.
Breads were produced following a straight dough baking procedure as
described by Lafarga, Gallagher, Aluko, Auty, and Hayes (2016). Con-
trol wheat-only breads were labelled as BR-C. Breads containing Tet-
raselmis or Nannochloropsis at flour substitution levels of 2.0 or 1.0%
(w/w) were labelled as BR-T and BR-N, respectively.

Crackers were produced following the methodology previously de-
scribed by Lafarga et al. (2019a) with some modifications: in the cur-
rent study, the doughs were sheeted to 2.0 mm instead of 2.5 mm and
were cut in 40 mm circles instead of squares. Control crackers were
labelled as CR-C and crackers containing Tetraselmis or Nannochloropsis
biomass at a concentration of 2.5% (w/w) were labelled as CR-T or CR-
N, respectively.

2.2. Physical analysis

Colour recordings (L*, a*, and b* values) were taken using a Minolta
CR-200 chroma meter (Minolta INC., Tokyo, Japan) and the D65 illu-
minant. Chroma (Ch) and difference from the control (AE) were cal-
culated in triplicate as described by Lafarga et al. (2019b) and de-
termined on day 1 post-baking.

The weight and dimensions of ten crackers were averaged for each
formulation and replicate. Cracker dimensions were measured at day 1
post-baking using a digital Vernier calliper (JP Selecta, Barcelona,
Spain) and the spread ratios, specific volume, and density were calcu-
lated for each cracker as described by Jan, Panesar, and Singh (2018).
Bread loaf volume was calculated using AACC Method 10-05.01.

Moisture content was determined using AACC Method 44-15.02.
The water activity (a,y) of all samples was measured using an AquaLab
meter (Decagon Devices Inc., WA, USA). Three measurements were
taken for each formulation and replicate. The pH of 1g of ground
sample, added to 10 g of distilled water, was determined in triplicate
per formulation and replicate using a Basic 20 pH-meter (Crison
Instruments S.A., Barcelona, Spain).

Texture characteristics were assessed using a TA. XT2 Texture
Analyser (Stable Micro Systems Ltd., Surrey, England) connected to
Exponent software v.5.0.6.0. Texture profile analysis of the breads was
conducted as described by Lafarga et al. (2019¢) and using a P/20
aluminium compression probe. Crackers hardness was determined
using a knife edge with slotted insert probe (HDP/BS) as described by
Lafarga et al. (2019a). Ten samples were taken for each formulation
and replicate.
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2.3. Total phenolic content

The total phenolic content (TPC) of the breads and crackers was
determined by the Folin Ciocalteu method, following the protocol de-
scribed by Lafarga, Villar6, Bobo, Sim6, and Aguilé-Aguayo (2019d).
Extraction time was 2 h at room temperature. TPC was determined in
triplicate and results were expressed as mg of gallic acid equivalents per
100 g of dry weight (DW).

2.4. Antioxidant activity

The antioxidant capacity of the breads and crackers was determined
using the same extract utilised for determination of TPC and using both
the ferric reducing antioxidant power (FRAP) and the DPPH scavenging
activity assays. The procedure followed was described previously by
Lafarga, Villard, Bobo, Simd, and Aguil6-Aguayo (2019d). Antioxidant
capacity was determined in triplicate and results were expressed as mg
of ascorbic acid equivalents per 100 g of DW.

2.5. In vitro gastrointestinal digestion

A simulated gastrointestinal digestion was performed in duplicate
following the standardised static in vitro method previously described
by Minekus et al. (2014). The method consists of three sequential states:
(i) oral (37°C, pH 7.0, a-amylase, 2 min), (ii) gastric (37 °C, pH 3.0,
pepsin, 2 h) and (iii) intestinal (37 °C, pH 7.0, pancreatin and fresh bile,
2h). The pancreatin used contained enzymatic components including
trypsin, amylase and lipase, ribonuclease, and protease. A blank was
prepared using distilled water instead of sample. Determinations after
the intestinal phase were performed in triplicate as described in pre-
vious sections.

2.6. Sensorial analysis

Sensory evaluation was undertaken by 30 semi-trained panellists
(18 women, 12 men, age 18-50) recruited from IRTA Fruitcentre
(Lleida, Spain) at day 1 post-baking. Sensory evaluation was conducted
following the methodology described by Lafarga et al. (2019a).

Each panellist assessed all the samples and was asked to indicate her
or his opinion on the firmness, flavour, overall visual appearance, and
overall acceptability of the products using a 9-point hedonic scale (from
1: extremely dislike to 9: extremely like). The acceptability index (AI)
was calculated as described by Lucas, Morais, Santos, and Costa (2018).
Finally, purchase intention (PI) was assessed using a 5-point hedonic
scale which ranged from 1: “certainly would not buy” to 5: “certainly
would buy”.

2.7. Volatile compounds

Extraction and determination of the volatile compounds emitted by
the breads and crackers was performed using HS-SPME-GC/MS fol-
lowing the conditions previously described by Pico, Antolin, Roman,
Gomez, and Bernal (2018) with some modifications. Briefly, an amount
of 1g (= 0.005 g) of ground sample was weighed into 20 mL vials and
mixed with 10 mL of 20% (w/v) sodium chloride at pH 3.0. The vials
were immersed in a water bath at 60 °C and the SPME fibre (65 mm
PDMS/DVB; Supelco Co., PA, USA) was exposed to the headspace for
60 min.

After extraction, the fibre was injected for thermal desorption into
the injector port for 10 min. The GC-MS analyses were performed using
a 6890 N gas chromatograph-mass spectrometer equipped with a HP-
FFAP (50 m X 0.2 mm; 0.33 um) column, both purchased from Agilent
Technologies Inc. (CA, USA). Temperature conditions are described in
the above cited publication. In this study, injector and detector tem-
peratures were 240 °C. Mass spectra were obtained by electron impact
ionisation at 70eV and the scan mode was used to detect all the
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compounds in the range m/z 20-350. The preliminary identification of
volatile compounds was verified by comparison of the mass spectral
data obtained with those in NIST62 mass spectral database.

2.8. Statistical analysis

Results are expressed as mean + standard deviation (S.D.).
Differences between samples were analysed using analysis of variance
(ANOVA) with JMP 13 (SAS Institute Inc., Cary, USA). Where sig-
nificant differences were present, a Tukey pairwise comparison of the
means was conducted to identify where the sample differences occurred
(p < 0.05).

3. Results and discussion
3.1. Preliminary baking trials

Incorporation of Tetraselmis and Nannochloropsis biomass into bread
and crackers significantly affected colour parameters (p < 0.05): AE
was higher than 3 for all the formulated breads and crackers, suggesting
that colour differences with the control were visible to the human eye.
Higher microalgae content led in bread formulations to lower L* values
for both crust and crumb (p < 0.05; Fig. 1): a negative correlation was
observed between microalgal biomass concentration and L* values in
crust (0.905; 0.05) and crumb (0.817; 0.05). Crackers with higher mi-
croalgal biomass concentration showed lower L* values, suggesting a
darker colour (p < 0.05; Fig. 2). Similar results were reported pre-
viously (Figueira, Crizel, Silva, & Salas-Mellado, 2011; Menezes,
Coelho, Meza, Salas-Mellado, & Souza, 2015). Although a* values of the
microalgae-containing breads were lower and b* values were higher,
when compared to the control, incorporation of higher concentrations
of microalgae did not cause further differences in a* and b* values.
These results may seem unexpected but this same effect was reported in
baked products containing S. platensis (Batista et al., 2017), C. vulgaris
(Gouveia, Batista, Miranda, Empis, & Raymundo, 2007), and I. galbana
(Gouveia et al., 2008) and has been attributed to pigment degradation
during the baking process and/or to a pigment saturation effect above a
certain microalgae concentration.

Before discussing the sensorial acceptance of the breads and
crackers it is important to highlight that panellists were first asked if
they would be willing to buy baked products enriched in microalgae
and only those who answered “yes” conducted the sensorial analysis.
Moreover, results on sensorial analysis must be taken with caution,
especially those on overall acceptance and PI, as the ideal would have
been to assess these parameters using ~100 consumers. For a product
to be accepted in terms of sensorial characteristics, it is necessary to
obtain an AI greater than 70% (Lucas et al., 2018). Although micro-
algae incorporation into the bread led to lower overall acceptability
scores (p < 0.05), formulated breads showed AI values ranging be-
tween 71.7 and 80.8%. These values are in line with those reported for
other foods containing microalgae (Lafarga et al., 2019b; Lucas et al.,
2018). Maximum AI was obtained for breads containing Tetraselmis at a
concentration of 2.0% and Nannochloropsis at a concentration of 1.0%.
These breads showed relatively high PI values: approximately 55% of
the panellists said they “probably would buy” them. Approximately the
same amount of panellists suggested that they “probably would buy”
the control breads, although these showed a higher percentage of pa-
nellists who “certainly would buy” them. Overall acceptability of
crackers was not affected after incorporation of microalgae into the
recipe. All of the microalgae-containing crackers showed Al values over
70%. Crackers containing Tetraselmis and Nannochloropsis at a flour
substitution level of 2.5% (w/w) showed AI values of 85.9 and 79.8%,
respectively. Approximately 82 and 91% of the panellists scored these
two crackers within the range 7-9 (between “like moderately” and “like
extremely”) and their PI ranged between 4 and 5 (between “would
probably buy” and “certainly would buy”). Microalgae concentration
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higher than 2.5% resulted in decreased AI and PI values (p < 0.05).
Based on these results, breads containing Tetraselmis at a con-
centration of 2.0% (w/w) or Nannochloropsis at a flour substitution level
of 1.0% (w/w) were selected for further analysis. These were labelled as
BR-T and BR-N, respectively. Moreover, crackers containing Tetraselmis
or Nannochloropsis at a flour substitution level of 2.5% (w/w), which
were labelled as CR-T and CR-N were also selected for further analysis.

3.2. Physicochemical properties

3.2.1. Colour and volume

No differences were observed between the colour attributes of the
breads at day 3 post-baking (data not shown) when compared to those
measured at day 1 (Fig. 1) - except for a decrease in crust L* values
(p < 0.05), probably caused by a loss of moisture during storage.
Moreover, no colour differences were detected during storage of
crackers for 10 days. Colour values during storage suggest a stable
product in terms of visual appearance.

In the current study, the specific volume of BR-T and BR-N was
lower than that of BR-C (p < 0.05; Table 1). Results can be attributed
to a dilution of starch and gluten after substituting flour with micro-
algae and a decrease in the amount of fully hydrated starch granules
caused by the added powder competing for water with starch. The
lower loaf volume obtained after incorporation of microalgae into the
recipe led to higher density in BR-N when compared to BR-C
(p < 0.05). In addition, microalgae-incorporation into the crackers
formulation did not affect volume and density, suggesting that higher
microalgae concentrations can be incorporated into crackers without
negatively affecting the visual appearance of the products (when
compared to bread). A high spread ratio, which is a quality measure, is
desirable in baked products (Mudgil, Barak, & Khatkar, 2017). The
spread ratio of the crackers was not affected after the incorporation of
microalgae into the crackers’ recipe. Previous studies suggested an in-
crease of the spread ratio of crackers enriched in powdered broccoli co-
products and reported a positive correlation between spread ratio and
broccoli content (Lafarga et al., 2019a). Higher microalgae concentra-
tion could probably lead to higher spread ratios, although this would
need to be assessed in further studies.

3.2.2. Moisture and water activity

Moisture content and a,, values of the breads was comparable to
that measured in the crumb of commercially available bagels or breads
(Schmidt & Fontana, 2008). Incorporation of microalgae into the bread
formulations led to lower moisture content (p < 0.05). The moisture
content of BR-T was lower than that of BR-N (p < 0.05). A decrease in
moisture was observed at day 3 post-baking because of bread staling
(p < 0.05). Water loss during storage was calculated as 18.5, 9.0, and
5.3% for BR-C, BR-T, and BR-N, respectively. Microalgae incorporation
into the crackers also led to reduced humidity at day 1 post-baking
(p < 0.05). However, no significant differences were observed be-
tween the moisture content at days 1, 5, and 10 post-baking, suggesting
stable products.

Substituting wheat flour with microalgal biomass did not affect the
pH and the a,, of the breads at day 1 post-baking (Table 1). A decrease
in a,, was observed in bread samples during storage (p < 0.05). The
observed decrease was bigger in BR-C when compared to BR-T and BR-
N, probably caused by a higher moisture loss during storage. Similar a,,
values were also observed in breads enriched in bioactive ingredients
(Lafarga et al., 2016). The a,, of CR-T and CT-N was lower than that CR-
C, caused by the above mentioned lower moisture content. Storage for
10 days did not affect pH and a,, values for any of the cracker samples,
suggesting once again stable products.

3.2.3. Textural properties
Fig. 3 shows the textural properties of BR-C, BR-T, and BR-N at days
1 and 3 post-baking. A higher bread density has often been correlated
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Fig. 1. Microalgae-containing breads.

(A) BR-C: control bread, (B) bread containing Tetraselmis at a concentration of 1.0%, (C) BR-N: bread containing Nannochloropsis at a concentration of 1.0%, (D) BR-T:
bread containing Tetraselmis at a concentration of 2.0%, (E) bread containing Nannochloropsis at a concentration of 2.0%, (F) bread containing Tetraselmis at a
concentration of 3.0%, (G) bread containing Nannochloropsis at a concentration of 3.0%. Different capital letters show significant differences between breads
containing the same microalgae at a different concentration. Different lower case letters show differences between breads containing different microalgae species at
the same concentration. The criterion for statistical significance wasp < 0.05. Abbreviations: Al, acceptability index; PI: Purchase intention (assessed using a 5-point

hedonic scale).

with increased hardness. However, in the current study, no differences
were observed in hardness, which is the peak force that occurred during
the compression of the bread slices. Similar results were observed after
incorporation of freeze-dried broccoli co-products into bread at a con-
centration of 2% (Lafarga et al., 2019c). The observed increase in
hardness at day 3, when compared to the values obtained at day 1, can
be attributed to bread staling and moisture loss. Moreover, no differ-
ences in springiness, cohesiveness, gumminess, chewiness, and resi-
lience were observed between the microalgae-containing breads BR-T
or BR-N and BR-C, suggesting a comparable mouth-feel and a similar
retention of the textural properties after compression at both days 1 and
3 post-baking. Results were in line with those reported by Garcia-
Segovia et al. (2017).

Hardness of the control and microalgae-containing crackers, which
is the force required to break or snap the cracker, is shown in Fig. 3.
Lower moisture content is correlated with increased hardness in
crackers (Millar et al., 2017). However, no significant differences be-
tween the hardness of CR-T, CR-N, and CR-C. As shown in Fig. 3, no
differences in hardness were observed during storage. Similar results
were observed previously in other food matrices where microalgae in-
corporation did not affect functional properties of the end products (De
Marco, Steffolani, Martinez, & Le6n, 2014; Garcia-Segovia et al., 2017).
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Fig. 2. Microalgae-containing crackers.

3.3. Total phenolic content and antioxidant capacity

Currently, algae-derived polyphenols are one of the top trends in
functional foods for the prevention of cardiovascular diseases and
diabetes (Murray, Dordevic, Ryan, & Bonham, 2018). Microalgae in-
corporation led to increased TPC in both studied food matrices
(p < 0.05) and, as expected, to an increased antioxidant capacity
(Fig. 4). Results are not surprising as several studies reported the high
antioxidant activity of microalgal biomass, which has been attributed to
their high phenolic and carotenoid content (Goiris et al., 2012). A po-
sitive correlation was observed between TPC and antioxidant capacity
of crackers at when assessed using the FRAP (0.884at day 1 and
0.986 at day 5; 0.05) and DPPH (0.852 at day 1 and 0.991 at day 5;
0.05) methods. Previous studies also reported an increased content of
polyphenols and a higher antioxidant capacity after incorporation of
microalgae in, for example, pasta (De Marco et al., 2014) or broccoli
soup (Lafarga et al., 2019b).

Results shown in Fig. 4 demonstrate that the amount of polyphenols
in the enzymatic digestive extracts obtained after a simulated gastro-
intestinal digestion is higher than that expected based on extractions
made using methanol (p < 0.05). This was probably caused by a
higher liberation of polyphenols because of the action of digestive en-
zymes. The longer extraction time can also partially explain these
findings. Not only the phenolic content but also the antioxidant capa-
city of the enzymatic digestive extracts was higher than that of the
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(A) CR-C: control cracker, (B) crackers containing Tetraselmis at a concentration of 1.25%, (C) crackers containing Nannochloropsis at a concentration of 1.25%, (D)
CR-T: crackers containing Tetraselmis at a concentration of 2.50%, (E) CR-N: crackers containing Nannochloropsis at a concentration of 2.50%, (F) crackers containing
Tetraselmis at a concentration of 3.75%, (G) crackers containing Nannochloropsis at a concentration of 3.75%. Different capital letters show significant differences
between crackers containing the same microalgae at different concentrations. Different lower case letters indicate significant differences between crackers containing
different microalgae species but at the same concentration. The criterion for statistical significance wasp < 0.05. Abbreviations: Al, acceptability index; PI: Purchase
intention (assessed using a 5-point hedonic scale).
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Table 1

Physicochemical properties of the microalgae-containing baked goods.
Breads
Sample Weight (g) Maximum height (mm) Specific volume (mL/g) Density (g/mL) Humidity (%) pH aw
BR-C 46.2 = 0.6° 57.4 = 0.2 37 £ 0.0% 0.27 = 0.01° 34.7 = 0.4 6.6 + 0.1° 0.950 * 0.006 *
BR-T 473 014 53.8 = 0.6 3.5 + 0.0° 0.28 * 0.00 AP 27.5 + 0.5€ 6.5 + 014 0.936 + 0.010 #
BR-N 47.0 = 0.3 48 54.8 = 0.7% 3.5 + 0.0° 0.29 *+ 0.01 4 29.8 + 0.5 6.6 + 0.0 0.952 * 0.004 *
Crackers
Sample Weight (g) Specific volume (mL/g) Density (g/mL) Spread ratio Humidity (%) pH aw
CR-C 53 +1.1°% 1.5 £ 037 0.7 = 0.1° 11.3 £ 167 11.2 = 0.3° 85 =+ 0.0° 0.472 + 0.003 ?
CR-T 51+ 052 1.6 £ 0.2° 0.6 = 0.1° 11.7 £ 1.7* 8.4 + 0.6° 86 = 0.1° 0.434 + 0.018"
CR-N 45 + 0.6° 1.7 £ 0.2° 0.6 = 0.1° 105 = 1.1° 8.0 + 0.3 84 +01° 0.433 = 0.004°

Results are the average of three independent experiments = S.D. Results shown in the table are those obtained at day 1 post-baking. Different letters indicate
significant differences between formulations. The criterion for statistical significance was p < 0.05.
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Fig. 3. Textural properties of the manufactured controls and microalgae-containing (A) breads and (B) crackers.

Results are the average of three independent experiments = S.D. Different capital letters indicate significant differences between formulations. Different lower case
letters indicate significant differences between sampling days. The criterion for statistical significance was p < 0.05. Legends: (A) @ Day 1 and n Day 3; (B) #Day 1,
Day 5, and 1 Day 10.
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Fig. 4. Total phenolic content and antioxidant activity of the formulated (A) breads and (B) crackers before and after a simulated gastrointestinal

digestion.
Results are the average of three independent experiments +

S.D. Different capital letters indicate significant differences between formulations at the same sampling

day. Different lower case letters indicate significant differences between sampling days for the same formulation. Differences between values obtained for metha-
nol:water extracts and digestive enzymatic extracts were significant at every sampling day for every formulation. The criterion for statistical significance was
p < 0.05. Legends: § methanol:water extracts and I in vitro enzymatic digestive extracts
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Fig. 5. Visual and sensorial analysis of the formulated (A) breads and (B) crackers.

Legends: (A) 1 BR-C, 1 BR-T, and 1 BR-N; (B) # CR-C, 1 CR-T, and 1 CR-N.

methanolic extracts (p < 0.05). The observed increase in antioxidant
capacity can be attributed to the higher phenolic content but also to the
generation of bioactive peptides with antioxidant capacity, as previous
studies demonstrated that microalgae are good sources of bioactive
peptides (Ko et al., 2018; Wu, Xu, Sun, Yu, & Zhou, 2015). Food pro-
cessing is a crucial step to improve bioaccessibility and produce pro-
ducts with beneficial nutritional properties (Barba et al., 2017).
Cavonius, Albers, and Undeland (2016) suggested that cell disruption,
and to a lesser extent, strong pH variations were needed to increase
bioaccessibility of lipids while a pre-freezing step was required to

improve accessibility of proteins derived from Nannochloropsis oculata.
The bioaccessibility and bioavailability of other antioxidant compounds
found in microalgae such as carotenoids have been shown to strongly
depend on, for example, the food matrix and processing conditions
(Kopec & Failla, 2018).

3.4. Sensorial attributes and volatile profile

Incorporation of microalgae into the bread formulation, at the
concentrations studied herein, did not affect the visual appearance



T. Lafarga, et al.

LWT - Food Science and Technology 115 (2019) 108439

Table 2
Volatile compound profiles of the formulated breads and crackers.
Crackers Breads

Volatile compounds CR-C CR-N CR-T BR-C BR-N BR-T
2-Methyl-butanal 1456502,0 336244,0 * 1867659,0 656452,5 854926,0 1032072,3 *
3-Methyl-butanal 1870421,5 562192,0 * 2184207,3 * 1188962,5 806640,3 1058427,3
Hexanal 614746,0 654567,7 722891,7 933218,0 1559641,0 1223863,0
Heptanal 432666,5 587432,0 549645,0 365699,3 536985,0 712844,3 *
(Z)-2-Heptenal 622020,0 1215928,3 * 1885052,0 * 447705,3 8850942,5 * 4645493,0 *
Nonanal 6872281,5 5932491,7 3695041,0 * 1717063,3 3290893,0 * 3926358,5 *
(E)-2-Octenal 369717,0 723228,7 * 805712,5 * 463204,0 2306880,7 * 2181563,3 *
Benzaldehyde 681337,5 1071167,5 * 887402,0 731393,5 720133,3 881963,5
(E)-2-Nonenal 1356374,0 1270901,5 1467163,0 1110098,0 548559,7 * 2026351,7 *
(E)-2-Decenal 736863,0 1295786,0 * 2063622,3 * 446985,7 1919680,3 * 4824836,5 *
Phenylacetaldehyde 1829040,0 130323,0 * 468985,0 * 560125,7 309850,0 586234,7
5,9-dimethyldeca-4,8-dienal 708631,0 1453779,5 * 457796,5 * 1467838,3 1543859,7 1847122,3
Total aldehydes 17550600,0 14665694,0 15717076,0 8285746,0 23422192,5 * 26992950,5 *
3-Methyl-1-butanol 2690338,0 9585690,5 * 11570103,7 * 1707206,0 1583241,7 1285733,0
1-Octen-3-ol 2769427,0 4864458,5 * 2092149,0 530807,3 2555765,3 * 2244381,7 *
2-Ethyl-1-hexanol 1875606,0 2904757,3 * 2154406,0 2117333,3 2005925,0 2522598,3
6-methyl-1-Heptanol 745865,0 1916176,5 * 445393,0 * 292460,3 1228784,5 * 2162446,5 *
(Z)-2-Octen-1-ol 160501,5 363289,0 * 420423,3 * N.D. 1161643,0 * 545152,0 *
Total alcohols 5237577,5 20756811,0 * 16385546,3 * 4647807,0 8186254,7 * 7277357,0 *
1-Octen-3-one 214747,0 169973,0 610035,0 136203,0 2587128,7 * 2258767,0 *
6-Methyl-5-hepten-2-one 197113,0 385079,0 * 567492,3 * 195196,5 952920,5 * 468368,5 *
2-Nonanone 7540989,0 17602755,3 * 13197904,0 * 2435429,0 2661321,3 2863440,5
2-Undecanone 208244411,5 262059049,7 249219314,5 51845267,5 48022055,7 79966550,0
Total ketones 219113109,0 280228092,3 * 259226486,0 * 67347600,5 54097148,3 * 114133559,3 *
Ethyl hexanoate 2812230,0 3923123,3 * 2370968,0 712601,0 708664,3 697527,0
Hexyl acetate 2304307,5 4311060,0 * 2428148,3 609109,3 641082,5 702798,5 *
Ethyl trichloroacetate 150175,5 121679,0 225555,7 233938,5 232660,0 193327,5
2-Ethylhexyl acetate 176376,0 1435656,7 602391,0 * 113244,0 131452,5 167770,5
Butyl hexanoate 579171,5 707396,7 790085,0 N.D. 334216,7 * 342407,7 *
Hexyl butanoate 646822,3 763861,7 * 1130761,0 * 458046,0 324706,5 356552,0
Hexyl 2-methylbutanoate 227140,5 640408,0 * 809915,0 * 127699,3 215185,0 247808,7
Ethyl octanoate 267485,5 362627,3 248202,7 178661,0 175969,0 220860,0
Octyl acetate 206025,5 1059843,7 * 921439,0 * 168421,5 103717,0 223141,3
Linalyl acetate 358798,5 419927,7 602441,0 * 178768,5 163997,0 214183,0
2-(4-Methyl-1-cyclohex-3-enyl)propan-2-yl acetate 594810,5 823941,3 * 948970,7 * 244543,0 129422,3 386793,0
Total esters 10740188,5 14758949,3 12662247,7 2933864,7 2844802,7 3304165,0
Methylpropyl disulfide 513660,0 1114198,3 * 650503,0 473781,7 568402,7 562928,0
Dipropyl disulfide, 31081309,0 41628527,3 * 34134332,0 6017922,3 7403843,0 * 8856025,5 *
Total sulfur compounds 31594969,0 42742725,7 * 34784835,0 * 6491704,0 7972245,7 * 9418953,5 *
Hexadecanoic acid 41795596,5 64586999,7 * 1521788,0 * 16902529,5 26000814,3 * 4702439,3 *
Total acids 41795596,5 64586999,7 * 1521788,0 * 16902529,5 26000814,3 * 4702439,3 *
y-Terpinene 375468,5 1973838,0 * 2016211,3 * 273835,5 141930,0 * 441076,0 *
p-Cymene N.D. 598675,5 * 710885,0 * N.D. 532083,5 * 351246,4 *
1-Methyl-4-propan-2-ylcyclohexene 274610,5 722865,0 * 547683,0 * 103485,0 380047,5 * 242436,0 *
2-Carene 630079,5 1055568,0 * 1070526,5 * 481221,0 397297,5 374394,0
Total terpenes 2313351,3 4335215,0 * 4188873,3 * 698273,0 682699,5 * 1062103,0 *
Dodecane 116916,5 868190,5 * 2290373,0 * 164836,5 473354,7 * 218632,7
1,3,5,7-Cyclooctatetraene 1101895,7 3934294,0 * 2405128,0 425920,7 491180,7 445527,5
Tetradecane 273424,3 333079,7 312354,0 248510,3 310816,3 218197,7
Total hydrocarbons 3705614,5 4500685,3 * 5007855,0 * 944700,7 1275351,7 * 1188148,3 *

Abbreviations used: N.D., not detected.

Results are expressed as relative areas. Values represent the mean of three independent determinations. * denotes differences with the controls. The criterion for

statistical significance was p < 0.05.

scores of the breads. Lafarga et al. (2019c¢) recently reported high visual
acceptability scores of a green bread formulated using broccoli leaves.
No differences were observed in the texture and flavour scores of BR-C
and BR-T or BR-N, although some panellists (3 out of 30) described an
unpleasant “fishy” taste. Incorporation of microalgae into the bread
formulation led to lower aroma scores (p < 0.05). The aroma score of
BR-T was lower than that of BR-N (p < 0.05), probably caused by a
higher microalgae content. Incorporation of microalgal biomass into
the cracker formulation led to a decreased visual appearance when
compared to CR-C (p < 0.05; Fig. 5). Although green crackers con-
taining Chlorella biomass, at a concentration of 5%, are currently being
commercialised under the brand Helga Algen Cracker (Evasis Edibles,
Austria), the number of green-coloured baked goods currently being
commercialised in Europe is still limited. European consumers are not

yet used to coloured baked products and this could be the cause of the
observed lower visual appearance scores. Moreover, no differences
were detected between the aroma scores of CR-T, CR-N, and the control
CR-C. In turn, flavour and overall acceptance scores were higher in
microalgae-containing crackers when compared to the control
(p < 0.05) - don't forget that only panellists that would be willing to
buy microalgae-enriched products carried out the sensorial analysis. As
mentioned previously, these results are preliminary and a sensorial
analysis with a larger number of consumers would better describe the
sensorial attributes and the acceptance of these products.

Volatile compounds identified in the breads and crackers are listed
in Table 2. A total of 42 compounds including alcohols (5), aldehydes
(12), ketones (4), esters (11), sulfur compounds (2), acids (1), terpenes
(4) and hydrocarbons (3) were detected in the samples. The most
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abundant compounds in crackers were (listed in decreasing order) un-
decanone, hexanoic acid, dipropyl disulfide, nonanal, phenylacetalde-
hyde, 3-methyl-1-butanal, and 2-methyl-1-butanal. Regarding alde-
hydes, the most important odorant was nonanal, which is formed from
B-cleavage of the 10-OOH hydroperoxide and imparts green and fatty
notes to flavour (Parker, 2015). Among the Strecker aldehydes of the
amino acid methionine, phenylacetaldehyde and 2- and 3-methylbu-
tanal were the most prominent in the aroma profile of crackers, which
were also detected in previous HS-SPME studies on wheat bread (Raffo,
Carcea, Castagna, & Magri, 2015). Most relevant alcohols were 3-me-
thyl-1-butanol, 1-octen-3-ol, and 2-ethyl-1-hexanol. 3-Methyl-1-butanol
is produced during dough fermentation (Mildner-Szkudlarz, Zawirska-
Wojtasiak, Szwengiel, & Pacynski, 2011). In the group of ketones, be-
sides identifying aroma compounds such as 1-octen-3-one, 6-methyl-5-
hepten-2-one, and 2-nonanone, we would like to highlight the identi-
fication of 2-undecanone, which was the most abundant ketone in this
study and was not reported in previous HS-SPME analyses on bread
(Pacynski, Wojtasiak, & Mildner-Szkudlarz, 2015). The groups of esters,
acids, sulphides, terpenes, and hydrocarbons completed the list of
identified compounds. The aroma profile of bread and crackers was
similar. However, in bread the most significant aldehyde was (Z)-2-
heptenal, which is a product from the degradation of the linoleic acid
(Parker, 2015).

4. Conclusions

Overall, Tetraselmis and Nannochloropsis biomass show potential for
being used as novel functional ingredients in bread and crackers.
Results demonstrated that not only the in vitro phenolic content or
antioxidant capacity of the products was improved after microalgae-
incorporation but also the amount of bioaccessible polyphenols and the
antioxidant capacity of the enzymatic digestive extracts, suggesting
healthier products. Their utilisation would also allow food processors to
differentiate by using a “trendy” ingredient. Sensory evaluation showed
that microalgae-containing breads and crackers, enriched at the con-
centrations studied in the current study, were competitive with the
control breads and crackers with the added advantage of having an
improved nutritional value.
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