Mostrar el registro sencillo del ítem

dc.contributor.authorGázquez Sánchez, Fernando 
dc.contributor.authorMonteserín, Ana
dc.contributor.authorObert, Christina
dc.contributor.authorFernández Cortés, Ángel
dc.contributor.authorCalaforra Chordi, José María 
dc.date.accessioned2022-04-07T17:54:52Z
dc.date.available2022-04-07T17:54:52Z
dc.date.issued2022-03-23
dc.identifier.issn2076-3263
dc.identifier.urihttp://hdl.handle.net/10835/13596
dc.description.abstractSubaqueous gypsum (CaSO4·2H2O) crystals are relatively common in epithermal systems where sulfide ore deposits are present. The Giant Geode of Pulpí (Almería, SE Spain) hosts some of the largest (up to 2 m in length) subaqueous gypsum crystals discovered to date. Here, we present the first U-series ages of its crystals and reconstruct the oxygen and hydrogen isotopic composition (δ18O and δ2H) of the Pulpí paleo-aquifer from which the crystals formed by using stable isotopes of gypsum hydration water. We successfully dated the onset of gypsum precipitation in the Geode at 164 ± 15 ka. However, the extremely low U concentration (<11 ppb) and relatively high detrital Th content (230Th/232Th < 3.2) hinder accurate dating other gypsum samples. The δ18O and δD values of the paleo-aquifer during the growth of the crystals aligned with the local meteoric water line, suggesting that the sulfate-enriched mother solution consisted of meteoric water that recharged the aquifer during that period. The mean isotopic composition of the Pulpí paleo-aquifer (δ18O = −6.5 ± 0.1‰ and δ2H = −42.3 ± 0.5‰) during the formation of the crystals was similar to the current groundwater in this area (δ18O = −6.1 ± 0.8‰, δ2H = −42 ± 6‰). The isotopic differences observed in samples collected from distinct locations and in individual crystals were probably related to changes in the isotopic composition of the aquifer, as a consequence of varying climate that impacted on the isotopic composition of rainwater during thousands of years in this region. Our results indicated that subaqueous selenite crystals may be useful for paleo-hydrological reconstructions. However, improving the current analytical techniques for dating gypsum with low U concentrations will be essential to obtain accurate and reliable records from Quaternary gypsum cave crystals in the future.es_ES
dc.language.isoenes_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectgeodees_ES
dc.subjectgiant crystalses_ES
dc.subjectgypsum hydration wateres_ES
dc.subjectselenitees_ES
dc.subjectpaleo-aquiferes_ES
dc.titleThe Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain)es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.mdpi.com/2076-3263/12/4/144#es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3390/geosciences12040144


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional