GPU-aided edge computing for processing the k nearest-neighbor query on SSD-resident data
Identificadores
Compartir
Metadatos
Mostrar el registro completo del ítemFecha
2021Resumen
Edge computing aims at improving performance by storing and processing data closer to their source. The Nearest-Neighbor (-NN) query is a common spatial query in several applications. For example, this query can be used for distance classification of a group of points against a big reference dataset to derive the dominating feature class. Typically, GPU devices have much larger numbers of processing cores than CPUs and faster device memory than main memory accessed by CPUs, thus, providing higher computing power. However, since device and/or main memory may not be able to host an entire reference dataset, the use of secondary storage is inevitable. Solid State Disks (SSDs) could be used for storing such a dataset. In this paper, we propose an architecture of a distributed edge-computing environment where large-scale processing of the -NN query can be accomplished by executing an efficient algorithm for processing the -NN query on its (GPU and SSD enabled) edge nodes. We also propose a ...