Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Rodríguez, Gabriel 
dc.contributor.authorGueymard, Christian A.
dc.contributor.authorBosch Saldaña, Juan Luis 
dc.contributor.authorRapp Arrarás, Igor
dc.contributor.authorAlonso Montesinos, Joaquín Blas 
dc.contributor.authorPulido Calvo, Inmaculada
dc.contributor.authorBallestrín, Jesús
dc.contributor.authorPolo, Jesús
dc.contributor.authorBarbero Francisco, Francisco Javier 
dc.date.accessioned2024-02-02T09:20:56Z
dc.date.available2024-02-02T09:20:56Z
dc.date.issued2018-04-19
dc.identifier.issn0038-092X
dc.identifier.urihttp://hdl.handle.net/10835/15677
dc.description.abstractThis work analyses the influence of water vapor on the atmospheric transmission loss of solar radiation between heliostats and the receiver of solar power tower plants. To this purpose, an atmospheric transmission code (MODTRAN) is used to generate values of direct normal irradiance (DNI) reaching the mirror and the receiver under different geometries (including sun position, tower height, and mirror-to-receiver slant range) and atmospheric conditions related to water vapor and aerosols. These variables are then used as inputs to an artificial neural network (ANN), which is trained to calculate the corresponding DNI attenuation. Two different aerosol scenarios are simulated: an ideal aerosol-free atmosphere, and a widely different one corresponding to semi-hazy conditions. The developed ANN model is then able to provide the DNI attenuation over a wide range of the input variables considered here, with root mean square differences of only 0.8%. The transmission loss due to water vapor is found to decrease with sun elevation. This is explained by the saturation effect in the incident irradiance at the mirror. The simplicity and accuracy of the algorithm are its great strengths, allowing its anticipated inclusion into the actual energy simulation codes currently used for solar tower plant design.es_ES
dc.language.isoenes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectsolar power towerses_ES
dc.subjecttransmission losseses_ES
dc.subjectwater vapores_ES
dc.subjectartificial neural networkses_ES
dc.titleModeling water vapor impacts on the solar irradiance reaching the receiver of a solar tower plant by means of artificial neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.solener.2018.04.023
dc.relation.projectIDPRESOL “Forecast of solar radiation at the receiver of a solar power tower” with references ‘ENE2014-59454-C3-1-R, ENE2014- 59454-C3-2-R and ENE2014-59454-C3-3-R’es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional